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Abstract. Commutator errors arise in large-eddy simulation of incompressible turbu-
lent flow from the application of non-uniform filters to the continuity — and Navier-Stokes
equations. Control over the commutator errors compared to the turbulent stress fluxes
can only be obtained by appropriately restricting the spatial variations of the filter-width
and filter-skewness. For situations in which the dynamical consequences of the commuta-
tor errors are significant, e.q., near solid boundaries, explicit similarity modeling for the
commutator errors is proposed, including Leray reqularization. The performance of this
commutator error parameterization is illustrated for the one-dimensional Burgers equa-
tion. The Leray approach is found to capture the filtered flow with higher accuracy than
conventional similarity modeling, which is particularly relevant for large filter-width vari-
ations.

1 INTRODUCTION

The extension of the large-eddy approach to spatially heterogeneous flows provides a
natural motivation for the use of filters with space-dependent filter-widths. The appli-
cation of such filters to the Navier-Stokes equations seriously complicates the turbulent
closure problem, as both contributions from the turbulent stress tensor as well as from
so-called commutator errors emerge. The former are related to spatial filtering of the non-
linear convective terms, while the latter arise from interchanging the filtering operator and
spatial derivatives. Although the commutator errors are of limited dynamical importance
in many bulk turbulence configurations, their relevance in near-wall turbulence is signif-
icant, especially at high Reynolds number. We propose explicit closure models for the
commutator-errors, derived from regularization principles for the Navier-Stokes equations.
We consider in particular the Leray model for the commutator-error. The quality of the
explicit commutator-error models is assessed for Burgers flow.
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In large-eddy simulation (LES) of turbulence one aims to predict the primary features
of an unsteady flow without explicitly resolving all dynamically relevant length-scales [1].
The modeling of turbulent flow in large-eddy simulation starts from the introduction of a
spatial, low-pass filter with externally specified filter-width A. This allows one to locally
distinguish flow-features with a length-scale larger than A from flow-features with length-
scale smaller than A. In the large-eddy simulation context, the former are referred to as
‘resolved’ while the latter class of flow-structures is identified as ‘subgrid’ or ‘sub-filter’.
During a simulation, the time-dependent resolved scales are explicitly calculated while the
dynamic effects of the subgrid scales on the evolution of the resolved scales are represented
through the introduction of an explicit ‘subgrid’ model [2].

The desire to extend large-eddy simulation to flows in complex domains generally
implies that one is confronted with strongly varying turbulence intensities within the
flow-domain. In certain regions a nearly laminar flow may exist while a lively, fine-
scale turbulent flow can be present simultaneously in other regions. As an example, one
may think of flow over a backward facing step [3, 4] which displays very small turbulent
boundary layer scales characteristic of a separated shear layer, while at other locations in
the domain an unsteady but large-scale flow may be observed. Various other examples
from nature and technology come to mind, which emphasize the need to incorporate
heterogeneous smaller scales into the large-eddy approach in order to consistently address
turbulent flows in complex situations.

In the filtering approach to large-eddy simulation, strongly non-uniform turbulence can
be accommodated efficiently using a filter operator with non-uniform filter-width [5, 6].
The use of such filters, however, complicates the subgrid closure problem through the
appearance of additional commutator errors [7]. These terms arise because non-uniform
filtering does not commute with spatial differentiation. That is, d,u # 0,1 where J,u
denotes differentiation of the solution v with respect to  and the overline indicates the
filter operation. In this paper we discuss the additional commutator error closure terms
and propose and illustrate explicit similarity modeling and Leray regularization [8, 9].
These findings encourage the further extension of the large-eddy approach to turbulence
under realistic flow conditions and in complex flow domains.

To provide an illustration of explicit dynamical consequences of commutator errors
and their similarity models, the evolution of running ‘ramp-cliff’ waves in the viscous
Burgers equation is studied in one dimension. It is shown that the ‘Leray-regularized’
formulation provides a better representation of the non-uniformly filtered velocity field
than the extended Bardina similarity model for this situation. In particular, the Leray
approach simultaneously captures turbulent stress fluxes as well as commutator errors
without increasing computational costs compared to the traditional case of uniform filters.
The extension toward non-uniformly filtered turbulent flow in three dimensions is the
subject of ongoing research.

The organization of the paper is as follows. In section 2 we consider how commutator
errors arise from applying non-uniform spatial filters to the Navier-Stokes equations. For
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cases in which the variations in the properties of the filter are sufficiently abrupt, explicit
modeling of the dynamic effects of the commutator errors is required. Similarity and
Leray models are introduced in section 3 and their performance for the Burgers equation is
illustrated numerically in section 4. Finally, concluding remarks are collected in section 5.

2 COMMUTATOR ERRORS IN THE FILTERING APPROACH TO LES

This section introduces non-uniform filters with compact support and applies them
to the equations governing incompressible flow. The application of a non-uniform filter
generates turbulent stress fluxes as well as commutator errors. These closure terms will be
written as the commutator bracket of the filter operator and either the product operator,
or the derivative operator, establishing its shared algebraic properties with the Poisson-
bracket in classical mechanics [15, 16]. The filtered velocity field is shown to acquire a
non-zero divergence as a consequence of spatial variations in the filter properties. Finally,
the effects of the commutator errors are described in terms of their contributions to the
kinetic energy evolution. This description expresses the additional energy-transfer and
interaction mechanisms associated with non-uniform filtering.

A general compact-support filter, whose application in one spatial dimension is denoted
by ¢, can be written as:

z+A4 (z,t) x
(e, ) = (u)(ot) = | A6 ety de 1)

z—A_(z,t) A('T? t)

where H(x,&,t) is the ‘characteristic’ filter function and Ay > 0 denote the upper — and
lower bounding functions which define the filter-width A = A, + A_. The filter ¢ is
assumed to be normalized, i.e., (1) = 1. This class of filters can readily be extended to
product-filters in three spatial dimensions by defining the composition L = ¢; o {5 o /3
where ¢; with j = 1,2,3, represents filtering in the z;-direction only, as in (1). The
application of such filters gives rise to a number of additional closure terms, to which we
turn next.

As is well-known, incompressible flow is governed by the principles of conservation of
mass and momentum. These can be expressed in terms of the continuity equation and
Navier-Stokes equations as

8juj = 0

1

Oru; + 0;(uju;) + O0ip — e

where u; is the component of the velocity u in the x;-direction, ¢ denotes time and 0,
0; are the partial derivative operators with respect to ¢ and x; respectively. Moreover, p
is the pressure and Re = (u,\.)/v, denotes the Reynolds number in terms of reference
velocity u,, length-scale A, and kinematic viscosity v, [17]. Throughout, the summation
convention is adopted, implying summation over repeated indices.
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If one applies the filter L to the incompressible flow equations, commutator errors may
arise, e.g., if O, f — 0, f = L(0,f) — 0. (L(f)) = [L, 0,)(f) # 0. Here, the commutator error
is written in terms of the commutator bracket [L, 0] of L and the derivative operator 0,.
One may show that [L, 0;](f) = 0 for j = 1,2, 3, if and only if the filter L is a convolution
filter, which, by definition is spatially uniform. As for the continuity equation we may
formally write

Oju; = —[L, 0;](uy) (3)

Hence, the divergence of the non-uniformly filtered velocity differs from zero, i.e., u; is

not solenoidal, and the corresponding continuity equation is no longer in local conserva-

tion form. The term on the right-hand side corresponds to apparent local creation and
annihilation of ‘resolved’ mass as a consequence of variations in Ay and H.

Likewise, filtering the Navier-Stokes equations yields the following system of equations:

1
O + 0;(usw;) + Op — 05U = —{[L> O] (us)

Re
+ 0L, S](ui, uy)) + [L, 9;)(S (us, uj))
L)) — (L))} (W

We observe that commutator brackets emerge involving the filter L and the product
operator S(f,g) = fg, as well as commutator brackets of L and first — or second order
partial differentiation. Filtering a linear term such as 0,u; gives rise to a ‘mean-flow’ term
Ou; and a corresponding commutator error [L, 0;|(u;). Filtering the nonlinear convective
terms leads to two different types of closure terms. First, as in the case of uniform filtering,
the divergence of the turbulent stress tensor 7;; = w;u; — w;u; = [L, S|(u;, u;) arises. The
divergence of 7;; will be referred to as the turbulent stress flux. Second, an associated
commutator error [L, 9;](S(u;, uj)) emerges from filtering the convective fluxes. The local
conservation form of the Navier-Stokes equations is no longer maintained as a result of
the non-uniform filtering, similar to what was observed in (3) for the continuity equation.

Spatial filtering of the incompressible flow equations gives rise to an ‘LES-template’ [1]
in which the ‘Navier-Stokes’ operator on the left hand side of (4) acts on the filtered solu-
tion {@;, p}. In addition, several unclosed terms arise. Of these, only the parameterization
of the turbulent stress fluxes 0;([L, S](u;, u;)) = 0;7;; has attracted much attention in the
literature. However, the subgrid modeling problem associated with non-convolution filters
entails various additional commutator errors. These terms require explicit modeling in
case the spatial and temporal properties of the filter are sufficiently variable.

The effects of the commutator errors can be effectively quantified by considering the
turbulent kinetic energy equation. Multiplying (4) by @; and summing over ¢ yields after
some rewriting

Oy (k) + 0;(ujk) = %Uﬁjﬂi — ;057 — kOju; —W,0;p
1
~wlL, 0 (ws) = wlL, O] (wivy) — wlL, 3] (p) + L il L, 9y (ui) (5)

4
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where k£ = EZHZ/Q and we have used the 1dent1ty (9j (HJHZHZ) = 2@@ (ﬂ]ﬂz) - ﬂﬂi@jﬂj. On
the right-hand side of (5) one identifies contributions due to the viscous terms and the
turbulent stresses. Moreover, since 0;u; # 0 a specific commutator error contribution
arises from the continuity equation (3) in addition to a pressure related term. The last
four terms on the right-hand side of (5) represent effects of commutator errors in the
momentum equations (4).

The resolved kinetic energy in a flow domain € of size || is defined as

1 1
EF=— / dx —Hiﬂi 6
)y ™2 R

In a flow domain with periodic boundary conditions, the evolution of £ can be written
in terms of the commutator error contributions as

‘Q‘CZ—? = _/de (%@-maﬂi—m@jm) _/de (P — k)[L, 9;](uy)
- /Q dx Hi<[L,at](ui)+[L,ai](p)) - /Q dx w;[L, 95)(uu;)
+ Ri dx WL, 9j;] (u;) (7)
€ Ja

after some partial integrations. One observes the usual dissipation of kinetic energy F
due to the viscous terms, as well as the transport term involving the subgrid stress tensor:
7,;0;4;. Moreover, one notices a contribution arising from the fact that the filtered velocity
field is no longer solenoidal involving (p—k)[L, 9;](u;). Finally, four terms emerge charac-
terizing the effects of the commutator errors in the momentum equations. The magnitude
of the various terms and commutator errors can be quantified by explicitly evaluating the
different integrals during a simulation or by post-processing direct numerical simulation
data-bases (see also [11]).

3 Similarity and regularization modeling of commutator errors

This section considers explicit modeling of the commutator errors. We include simi-
larity modeling and Leray regularization. Specifically, we will extend Bardina’s approach
[12] to include commutator errors and derive the implied subgrid models for the turbulent
stresses and the commutator error, arising from non-uniform Leray regularization [8, 9].

Bardina’s similarity model for the turbulent stress tensor arises by applying the defi-
nition of 7;; = [L, S](u;, u;) to the filtered solution w,, i.e.,

il (8)

£l

Tij — mg = [L, S](ﬂ“ﬂj) = Hiﬂj —
Extending this idea to the commutator error suggests the following parameterization:
[L, 9;)(uiuz) — [L, 0;](usu;) (9)

5
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In a turbulent boundary layer flow the model contributions (8) and (9), were shown
to provide a high correlation with the actual turbulent stress tensor and commutator
errors respectively [6]. The extended Bardina model may be motivated in an alternative
manner. Instead of distinguishing separate closure problems for the commutator error
and the turbulent stress fluxes, we may consider the full non-uniformly filtered convective
flux, i.e., 0;(wu;) — 0;(w;u;) [18]. One may verify that
Oj(uiwy) = 0;(uy) + {0;(uiuy) — 9;(usu;)
= 0;(usu;) + [L, 0; 0 5] (us; uy) (10)

The similarity closure arises as before, i.e., [L, 0; o S|(u;, u;) — [L,0; o S|(t;,w;), where:
L, 95 0 S](ws, w;) = [L, 9] 0 S(wi, w;) + 05 0 [L, S] (ui, ) (11)

In rewriting this model, use was made of the Leibniz rule, applied to the operators L,
0; and S. The similarity modeling of the separate closure problems for the commutator
error, cf. (9), and the turbulent stress fluxes, cf. (8), is hence re-obtained directly from
the similarity modeling of the full convective-flux. By adopting the same modeling as-
sumptions for both the turbulent stress tensor and the commutator error the combined
model can be implemented at reduced computational cost.

Recently, the Leray regularization principle [8] was revisited in the context of large-eddy
simulation [9]. In this approach the convective fluxes u;0;u; are replaced by w;0;u;, i.e.,
the solution u is convected with a smoothed velocity u. The governing Leray equations
for incompressible flow are given by

1
8juj =0 3 8tui + ﬂjﬁjui -+ @-p — R—ﬁjjui =0 (12)
e

This formulation can be written in terms of {@;, p} by assuming the existence of a (formal)
inverse L™! of L, i.e., u; = L™'(u;). After some calculation, one obtains the filtered
momentum equation as

1
o, +  0;(Wtiy) + 0ip — —-0;U; = —<[L, O] (us)

Re
+ {050mb) + WA | + [L,0,)(S(ws, )
L)) — (2,03 (13)

The divergence of the turbulent stress tensor 0,7;; in (4) is represented in terms of the
Leray model mZL] = u;u; — u;u; and an additional term associated with the divergence of
the filtered velocity field:

3]-%» — 8j (m{;) + uiajﬂj (14)
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in which the commutator error is expressed as [L, d;](u;u;) — [L,0;](@;u;). The other
commutator errors are identical to those in (4) with the understanding that in actual
simulations every occurrence of an unfiltered flow-variable implies the application of L1
to the smoothed field. The Leray model is known to provide good predictions of three-
dimensional turbulent mixing at arbitrarily high Reynolds number when a uniform filter
is used [9].

4 Commutator-error dynamics in Burgers flow

In this section we compare the extended Bardina and Leray models for the commutator-
error in a simple but illustrative situation by considering ‘ramp-cliff’ solutions of the
viscous Burgers equation running across a region of strong filter non-uniformity. While
the dynamics of the viscous Burgers equation is clearly different from that of the Navier-
Stokes equations, both models for fluid flow are quadratically nonlinear and exhibit the
same commutator errors, except for the pressure term. First, we describe the numerical
method, then some a priori analysis is given to establish the magnitude of the commutator
errors for specific non-uniformities in filter width and finally we illustrate the performance
of the explicit similarity and regularization models for the commutator errors.

We consider the one-dimensional viscous Burgers equation

1 1

and adopt Re = 500. The numerical treatment of this equation follows the standard
method of lines [1]. Introducing u;(t) = u(z;,t) as the discrete solution at location z; at
time ¢, the method of lines implies the semi-discretization

du,;

= T fi=0 5 uy(0) = uolay) (16)
where f; denotes the numerical flux at z; and wu, the initial condition. We adopt periodic
boundary conditions and obtain the numerical flux by second order accurate finite dif-
ferencing on a non-uniform grid. The approximation of the convective term (1/2)9,(u?)

follows from
D (u?) — 6, (u?); = 21— (17)
Tjy1 — Tj—1

and the approximation of the viscous term 0d,,u results from

Opetl — Ope(U)j = @j 41041 — U5 + GG 1Uj 1 (18)
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where
2
a ..
Pt (i1 — 25) (2501 — 251)
2
0 19
n (i1 — x5) (x5 — 2j-1) (19)
2
Ajj—1

(7 = zj1) (@1 — 1)

On a uniform grid with grid-spacing h these weights reduce to a;;_; = a; ;41 = 1/h* and
aj; = 2/h?* which is recognized as the second order accurate finite difference scheme for
the second order derivative.

The system of ordinary differential equations in (16) is integrated in time using explicit
time-integration, restricted by stability time-steps. In fact, we use time-steps associated
with local stability that follow from the Courant-Friedrich-Lewy condition (CFL). This
implies

. ] Tjt1 — Tj-1
At = mjm(Atj) D Aty =T— ; Az; = RS (20)
where the CFL-number I' is chosen consistent with the stability requirements of the
adopted time-integration method. Use was made of either the explicit Euler forward
method at a low value I' = 0.1 or the compact storage, four-stage explicit Runge-Kutta
method with I' = 1.5 [1].

The implementation of the Bardina model follows the standard LES-template (4),
applied to the one-dimensional Burgers equation. For the Leray model we used (12) as the
basis for the implementation. Since the numerical illustration is in one spatial dimension
only, computational resources do not represent a limiting factor. Typically, we show
results in which the Burgers equation is discretized using grids with N = 2048 intervals.
This is more than adequate for obtaining the nearly grid-independent, unsteady solution,
as was verified independently by comparing results on different grids. An example of a
developing ramp-cliff solution is shown in figure 1. The initial velocity profile consists of
a small positive value to which a Gaussian profile is added. In the examples shown, this
Gaussian profile is centered around x = —5 and its width was selected as 5.

The explicit filtering required in the Bardina and Leray models, or when filtering direct
numerical simulation data, was implemented using the trapezoidal rule for evaluating the
top-hat filter. Specifically, we define

N 1 Tj+nq
w) = [ w0 (21)
Tjtny — Tj—ngy Tj—ny
which covers n; + ny grid-cells. In terms of the grid, a non-uniform filter-width A; =
Tjin, — Tj_n, 1S obtained together with a normalized skewness
_ Ty — 2T+ Tjp,

oj = (22)
’ Tjtny — Lj—ngy

8
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Y % 4 2 o0 2 4 6 8 1
Figure 1: Solution to the Burgers equation initiated with a Gaussian profile, developing into a ramp-cliff
structure at Re = 500. The solution is shown at times t =0,1,2,....

The integration over £ in (21) is evaluated using the composite trapezoidal rule. This
rule is sufficiently accurate, because in one dimension we can allow for large numbers of
intervals, i.e., take n; and ny large enough to imply negligible discretization errors. This
setting allows one to approximate the grid-independent large-eddy solution corresponding
to a fixed filter-width distribution.

We consider a non-uniform grid with grid-spacing h; = (¢/N)(1 + g;) where /£ is the
length of the domain, which was set equal to 20 in our simulations. The grid is non-
uniform around i = N/2 with
cicm-aN
m m

(-N2) N\ N
), =

and 0 otherwise. We use ¢ = 3, m = 8 and N = 2" with n sufficiently large. The parameter
A < 1 controls the ratio between largest and smallest intervals (14 A)/(1 — A).

In figure 2 we collected the contributions to the total convective flux for a representative
uniform and non-uniform case. The solution and the filtered solution both display the
‘ramp-cliff” structure. The total flux in figure 2(a) is piecewise linear and the turbulent
stress flux is localized in the cliff-region. In figure 2(b) the filter-width non-uniformity
strongly influences the mean flux on the ‘ramp side’ near x = —3. The commutator error
compensates for this such that the total flux remains nearly linear in z. The commutator
error and the turbulent stress flux have comparable magnitude in the filtered cliff-region
2 < x < 4, in which these contributions are seen to partially counteract each other.

g; = Asin <27T(N
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Figure 2: Snapshot of the solution (multiplied by 1/2) (solid) and filtered solution (solid; markers o)
obtained at N = 2048. Convective flux: total (dots), mean (dash-dotted), turbulent stress (dashed),
commutator error (solid with x). In (a) we use A = £/16, i.e., computational filter-width n; = ny = 64
and in (b) the non-uniform case with A = 1/2 and the same values of n; and ny is shown. Underneath
in (b), the grid-spacing (minus 0.2) as a function of x is presented.

In figure 3(a) we show the locations of the front and back of the ramp-cliff solution
as a function of time. These locations are defined to be where |u| equals max(|ul|)/20.
Upon comparing filtered Burgers results with predictions from the Leray and Bardina
parameterizations, one finds the Leray results are more accurate. The Lo-norm of the
fluxes show that the commutator error is about 1/3-1/2 the value of the turbulent stress
flux in this case. The Leray model also preserves better the qualitative properties of the
filtered Burgers solution cf. figure 3(b). The Bardina parameterization creates additional
variations in the solution, which do not correspond to the physics of the filtered Burgers
equation in this rather extreme non-uniform case.

5 Concluding remarks

In this paper the commutator errors associated with non-uniform filtering in large-
eddy simulation were studied. For a general class of non-uniform filter operators the
filtered, incompressible Navier-Stokes equations were derived and all closure terms were
identified. Besides the turbulent stress contributions, commutator errors were shown to
arise. An independent control over the commutator errors cannot be obtained through
the application of a general high-order filter.

A more detailed analysis of the commutator errors and turbulent stress fluxes shows
that the commutator errors may be reduced in size by explicitly restricting the variations
in the filter-width and skewness of the filter. This suggests employing only gradually

10
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0.6

20

(b)

Figure 3: Location of the head z4 of the cliff (upper curves) and the tail x_ of the ramp (lower curves)
in (a) and in (b) snapshot of the filtered solution: filtered Burgers (solid), Leray (dashed) and Bardina
(dash-dotted) for A = 0.85 and ny =ng = 64 at N = 2048.

varying filter-widths in complex geometries, from the point of view of avoiding explicitly
modeling of the commutator errors. In view of maintaining appropriate efficiency in large-
eddy simulations of turbulent flows in/around complex geometries it may, however, be
required to allow for sharp variations in the filter. In such cases the dynamic importance
of the commutator errors summons an explicit parameterization of the commutator errors.
At sufficiently large filter non-uniformities explicit modeling will become necessary. An
extension of the similarity approach was formulated and compared with the Leray regular-
ization approach. The Leray parameterization captures both the flux due to the turbulent
stresses and the commutator errors in one model. Consequently, it combines computa-
tional efficiency with high accuracy. This result motivates the use of the Leray model in
complex flows and it stimulates the study of more general regularization approaches for
the closure of commutator errors in large-eddy simulation. As a first illustration, the pre-
diction of the solution to the non-uniformly filtered Burgers equation was studied and the
Leray approach was found to provide higher accuracy than the full similarity modeling.
The extension to turbulent flow in three dimensions in a turbulent channel and over a
backward facing step are presently being considered and will be presented elsewhere.
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