
A Parser for Deep Packet Inspection of IEC-104:
A Practical Solution for Industrial Applications

Justyna Chromik
University of Twente

Enschede, the Netherlands
j.j.chromik@utwente.nl

Anne Remke
Westfälische Wilhelms-Universität

Münster, Germany
anne.remke@wwu.de

Boudewijn R. Haverkort
Tilburg University

Tilburg, the Netherlands
b.r.h.m.haverkort@uvt.nl

Gerard Geist
Coteq Netbeheer

Almelo, the Netherlands
g.geist@coteq.nl

Abstract—We present a practical solution for deep packet
inspection for IEC-104 SCADA traffic, which can be used
in monitoring approaches to ensure the dependable operation
of critical systems. We re-implement an outdated parser and
extend it to also parse the content of individual IEC-104
packets and to extract information relevant for monitoring
and securing the physical processes being controlled. The
deep packet inspection framework Spicy was used for the
implementation, which allows for easy extensibility in the
future. To illustrate the feasibility of the proposed solution,
the throughput obtained when using the parser in combination
with the monitoring tool Zeek1 has been evaluated for traces of
different lengths. The traces have been captured in an operating
electrical distribution field station with a single RTU.

Keywords-parser; IEC-104; SCADA; IDS; Zeek;

I. INTRODUCTION

SCADA (Supervisory Control and Data Acquisition) sys-
tems are used to monitor and control large physical infras-
tructures, like electricity transmission and distribution sys-
tems. In such systems, traditionally, little attention was paid
to security. Today, however, these systems are connected to
the Internet to provide remote control capabilities, which
makes them vulnerable to adversary parties, which aim at
disrupting the controlled process; we have seen various
examples of this recently [1]. Due to this increased attack
surface on SCADA systems, many packet inspection and
monitoring mechanisms have been proposed [2]–[6]. Deep
packet inspection requires the capability to read and interpret
protocol-specific information from captured packets in real-
time. However, many SCADA protocols are not yet sup-
ported by adequate parsers providing real-time monitoring
capabilities, as is the case for IEC-60870-5-104 (also named,
for short, IEC-104). This protocol is often used in electrical
industries in Europe [7]. With recent malware developed
to abuse the lack of security mechanisms in IEC-104 [1],
it is of utmost importance to include real-time monitoring
capabilities for this protocol.

This paper presents a dedicated IEC-104 parser, imple-
mented using the Spicy deep packet inspection framework
[8], and its connection to the Zeek1 network monitoring

1The Bro Network Monitor has recently been renamed into Zeek; we
adhere to the new name.

tool [9]. We extend the parser proposed by Udd et al. [10]
by implementing 34 IEC-104 functions (referenced by Type
IDs), and extracting relevant process variables from the IEC-
104 Data Units. By making the parser available, we hope
to share a practical solution for deep packet inspection,
which will enable further research w.r.t. monitoring, and
intrusion detection of the IEC-104 protocol to enhance the
dependability of the controlled system.

Related work: Intrusion detection techniques for crit-
ical infrastructures require dedicated approaches. Standard
signature-based approaches such as whitelisting [11] and
anomaly-based approaches [2] help to solve only part of the
problem. IDS for SCADA systems can be improved when
also information about the physical process is taken into
consideration [3]–[6]. Zeek is a network monitoring tool
with a modular structure that allows using so-called policies
to analyze system traffic; it supports the easy inclusion of
new parsers, and is often used in SCADA systems [5], [6],
[10]. However, the parsing of the very important protocol
IEC-104 is currently not supported. To the best of our
knowledge, only one parser has been proposed for IEC-
104, using a compiler-assisted tool called BinPac++ [10].
However, BinPac++ is no longer in use (it was replaced
by Spicy [8]) which limits its current usability. Moreover,
Udd et al. [10] implemented only 5 different Type IDs
and was limited to parsing only the control information
w.r.t. the connection from the IEC-104 packets, and not the
contents of the packets. In contrast, the solution presented
here allows for parsing the content of the most relevant
Application Service Data Units (ASDU) for monitoring
individual substations.

This paper is further organized as follows. Section II
explains our implementation of the IEC-104 parser and
its use in process-aware policies, Section III evaluates its
performance on traces of various lengths, and Section IV
concludes the paper with pointers to future work.

II. IEC-104 PROTOCOL ANALYZER

This section presents the main components of the IEC-104
parser and illustrates its use within an Intrusion Detection
System implemented in Zeek [9].

5

2019 IEEE/IFIP International Conference on Dependable Systems and Networks Industry Track

978-1-7281-3032-3/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN-Industry.2019.00008

Table I
IEC-104 PROTOCOL TYPE IDS

Number Type ID Number Type ID
1 M SP NA 1 49 C SE NB 1
2 M SP TA 1 50 C SE NC 1
3 M DP NA 1 51 C BO NA 1
5 M ST NA 1 58 C SC TA 1
7 M BO NA 1 59 C DC TA 1
9 M ME NA 1 60 C RC TA 1
11 M ME NB 1 61 C SE TA 1
13 M ME NC 1 62 C SE TB 1
21 M ME ND 1 63 C SE TC 1
30 M SP TB 1 64 C BO TA 1
31 M DP TB 1 70 M EI NA 1
32 M ST TB 1 100 C IC NA 1
33 M BO TB 1 101 C CI NA 1
34 M ME TD 1 102 C RD NA 1
35 M ME TE 1 103 C CS NA 1
36 M ME TF 1 107 C TS TA 1
45 C SC NA 1 142 proprietary
46 C DC NA 1 143 proprietary
47 C RC NA 1 200 proprietary
48 C SE NA 1

A. IEC-104 protocol and parser
Every IEC-104 packet, a so-called Application Protocol

Data Unit (APDU), contains a header called Application
Protocol Control Information (APCI). S-frames (for num-
bered supervisory functions) and U-frames (for unnumbered
control functions) are built from only the APCI. I-frames
(used for information transfer), consist additionally of Appli-
cation Service Data Units (ASDUs). ASDUs determine what
kind of function (the so-called Type ID) they carry. They
can contain up to 127 Information Objects (IOs), referring
to different addresses on the RTU that is being controlled.

Zeek uses a set of protocol parsers to process network
data, and the information generated is analyzed, e.g., to de-
tect intrusions. For currently unsupported protocols, a parser
can be built using the deep packet inspection framework
called Spicy [8]. It provides a format specification language
and a toolchain that compiles the protocol specification
into a robust and efficient native code protocol parser. We
extend previous work of Udd et al. [10] to define the syntax
of the IEC-104 protocol and implement 34 protocol Type
IDs, as listed in Table I. The five Type IDs highlighted in
orange were implemented already in [10]. To summarize
the applicability of the proposed solution, we characterize
the implemented Type IDs below.

The measurement information from field stations to the
control room is transported using data types with Type IDs
beginning with ‘M ’ (monitoring direction). The controlling
functions sent from the control room to field stations are sent
using Type IDs with names beginning with ‘C ’ (control
direction). Process values are sent using Type IDs and data
format defined by the operator. For example, measurement
of the current could be sent either using a normalized value
with Type ID 9 or 34, a scaled value with Type ID 11 or
35, or as a floating point using Type ID 13 or 36. Type IDs
1, 3, 5, 7, 9, 11 and 13 transport various data types without
time tags. They transport single point information, double
point information, step position, bit string, normalized or

scaled measured values and floating points, respectively.
Type IDs 30–36 transport the same data types but with time
tag of format CP56Time2a as defined in the IEC-60870-5-
101 standard. Type IDs 45–51 refer to commands of setting
values for the same data types as listed before, without time
tag, while Type IDs 58–64 do the same and include the
time tag of format CP56Time2a. Type ID 2 is not supported
by IEC-104, as it contains a single point information with
an outdated time tag CP24Time2a, defined in IEC-101.
Type IDs 100 and 101 are the interrogation and counter-
interrogation commands, respectively. They are always sent
after establishing a connection between the control room
and the field station, and when the control room requests
the most up-to-date measurements in the field station.

With the Type IDs described above, it is possible to
parse traffic containing the most commonly used functions.
The parser is available on Github2 and can be tested using
exemplary IEC-104 traffic3.

B. Connecting the parser and Zeek

Having specified the grammar of the IEC-104 protocol
and compiled a parser, it can be connected to Zeek to parse
network traffic. When processing pre-defined objects within
the Spicy code, events are generated and evaluated within
Zeek. For example, processing a control function-related U-
frame triggers an event as follows:

on T104::Apci if (self.ctrl.mode == 3) ->
event t104::u($conn);

Here, if parser T104 encounters an Apci object with prop-
erty ctrl.mode equal to 3, a t104::u event is created
with argument $conn, denoting the connection information.

Depending on the desired level of detail, various events
can be created. For example, in order to analyze the values
from a single Information Object within an ASDU carrying
multiple objects, it may be necessary to create events for
every created object. For example, for analyzing the content
of an ASDU containing Type ID M ME TD 1 (nr. 34),
i.e., containing the monitoring information for a measured
value in normalized format with time tag CP56Time2a, one
would need to export the type for that Type ID and create
the following event:

on T104::Measured_Val_Normalized_Val_TTCP56 ->
event t104::m_me_td_1s
($conn, T104::bro_m_me_td_1(self));

The event generated above has two arguments:
$conn is the connection information, while
T104::bro_m_me_td_1() is a function call that
returns self (ASDU information). This function is located
in the *.spicy file and defines the tuple passed to Zeek as
an argument. For the above Type ID with measured values
in normalized format and time tag, we obtain the Object’s
address and the normalized value measured for that Object.

2Available at https://github.com/jjchromik/hilti-104.
3https://wiki.wireshark.org/SampleCaptures\#IEC\ 60870-5-104

6

tuple <uint64, double>
bro_m_me_td_1 (asdu :

Measured_Val_Normalized_Val_TTCP56) {
return (asdu.info_obj_addr,
asdu.normalized_value); }

This function allows us to access the normalized value of
the Information Object in Zeek, based on which, detection
policies can be implemented, as explained next.

C. Policies for IEC-104
The enhanced parser allows defining network-level poli-

cies, like whitelists [11], and include them in Zeek. In the
following, we will illustrate how policies accessing ASDU
fields can be specified for process monitoring, as proposed
in [4], [12].
policy = rule → action
rule = condition (OR|AND) condition (OR|AND) ...
condition = state[ioa] �� reference value
�� ∈ {<,≤, >,≥,=, �=}
action ∈ { block, log, display alert }

The policy consists of a rule that has to be satisfied in order
to trigger one of the three policy actions. The monitoring
tool can either block the traffic, log the event, or display
an alert. Every rule consists of several conditions that can
be connected via an OR or an AND operator. A condition
compares a state value to a predefined reference value.

When the monitoring tool processes the traffic in the
network and evaluates the policies in real time, an event is
triggered when a specific Type ID instance is parsed within
a packet. Upon an event, depending on the Type ID, the
monitoring tool may pre-calculate or update the system state,
or idle, before the execution of the policy is triggered.

event type id → preparation
→ policy

preparation ∈ { precalculation, update, ∅ }
We distinguish three sets of Type IDs: (i) the unused

Type IDs (typeid un), (ii) the Type IDs in the monitoring
direction (typeid m) and (iii) the Type IDs in the control
direction (typeid c), as summarized below.

typeid ∈ { typeid un, typeid m, typeid c }
event typeid un → action
event typeid m → state m[ioa] = value

→ policy(state m)
event typeid c → state c[ioa] = value

→ state c = f (state c[ioa], state m)
→ policy(state c)

ioa ∈ [0; 65535] (IOA range is defined in the standard [13])

In case of an unused Type ID, the monitoring tool directly
performs an action, e.g., displays a warning. For Type IDs in
the monitoring direction, i.e. readings, beginning with ‘M ’
(c.f. Table I), the measured values is extracted and stored in
state m. The policy evaluates that state.

If Type IDs in the control direction appear (commands),
e.g., numbers 45–48 in Table I), the information about the

requested change to the system is extracted and stored in
state c[ioa]. Additionally, if a physical relationship f like
consistency or safety [14] has been defined for elements of
the system state, it can be re-calculated based on previously
measured state values. Finally, the last action triggered by a
typeid c event is the evaluation of state c w.r.t. the policy.

III. APPLYING THE PARSER IN PRACTICE

To illustrate the feasibility of the proposed parser, we
evaluated its throughput for varying flow lengths. We ob-
tained an IEC-104 traffic trace on March 2, 2018 at a
Dutch power distribution station, operated by our industrial
partner Coteq. SCADA networks in general have a relatively
low throughput, in this capture the IEC-104 throughput
was around 0.1 packets per second (pps). To stress-test the
monitoring tool linked to the parser, we used the Scapy
Python library to create four groups of IEC-104 traffic
traces, each with a different number of packets per TCP
flow, i.e., 1048, 10130, 50043 and 100233 packets per flow.
From these, we created different traffic traces, with total
lengths ranging between 20000 and 500000 packets. These
traces have each been processed ten times on an Oracle VM
VirtualBox with two logical processors with 2.9 GHz core
and 4 GB RAM. The resulting processing time (in seconds)
and throughput (in pps) are shown in Figures 1 and 2,
together with 95% confidence intervals.

Figure 1 shows that the processing time for each TCP
flow length increases linearly with the total trace length.
However, the longer a single TCP flow is, the faster the
processing time increases. The throughput as presented in
Figure 2, however, shows that for different TCP flow lengths,
the throughput of the monitoring tool reaches a constant
(albeit different) value. Moreover, for the shorter TCP flows
(1000 and 10000 packets), the throughput is initially higher
and then decreases until that constant value is reached.

Figure 1. Processing time for multiple TCP flow lengths.

7

Figure 2. Throughput as function of file size for multiple TCP flow lengths.

The processing times have been measured within Zeek and
the measurements were only started after the initialization
phase of Zeek was finished. The measurements demonstrate
that the performance of Zeek is strongly influenced by
the total flow length in the trace. As indicated on the
Zeek website4, its performance highly depends on various
parameters and currently no performance benchmarks are
available for comparison. As SCADA traffic usually consists
of long TCP flows [11], it is important to be aware of the
throughput drop for such long TCP flows. The obtained
results are based on a single trace only, hence, may not
be generic enough to fully evaluate the performance of our
parser. However, we do believe that the proposed parser in
combination with Zeek is fast enough to be used for real-
time monitoring of SCADA traffic on single RTUs (as also
proposed in related work [14]), since such networks have a
relatively low throughput.

IV. CONCLUSION

Monitoring SCADA traffic can help to ensure a depend-
able operation of critical systems, such as power distribution.
The parser presented here for IEC-104, builds on the Spicy
framework and is able to extract traffic- and control-relevant
information by deep packet inspection. Based on a real IEC-
104 trace, taken at a Dutch power distribution station, we
have created IEC-104 traces with variable length. We have
shown that the realized throughput is sufficient to employ
the parser in real-time with Zeek in real SCADA systems.
The evaluation also shows that the performance of Zeek
highly depends on the offered load. We demonstrated that the
proposed parser provides a practical solution for inspecting
IEC-104 packets in real-time.

4https://www.zeek.org/development/projects/benchmark.html

ACKNOWLEDGMENT

Funded by NWO MOSES project, grant nr. 628.001.012.

REFERENCES

[1] ICS-CERT, “Alert (TA17-163A) CrashOverride Malware,”
released June 12, 2017, available online: https://www.us-cert.
gov/ncas/alerts/TA17-163A. Accessed on: 24 Apr 2018.

[2] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware in-
trusion detection in industrial control systems,” in 1st ACM
Work. on CPSS. ACM, 2015, pp. 13–24.

[3] J. J. Chromik, A. Remke, and B. R. Haverkort, “Improving
SCADA security of a local process with a power grid model,”
in 4th Int. Symp. for ICS-CSR. BCS, 2016, pp. 114–123.

[4] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and
M. Masera, “Modbus/DNP3 state-based intrusion detection
system,” in 24th IEEE Int. Conf. on Advanced Information
Networking and Applications. IEEE, 2010, pp. 729–736.

[5] H. Lin, A. Slagell, C. Di Martino, Z. Kalbarczyk, and R. K.
Iyer, “Adapting Bro into SCADA: building a specification-
based intrusion detection system for the DNP3 protocol,”
in 8th Annual Cyber Security and Information Intelligence
Research Workshop. ACM, 2013, p. 5.

[6] J. Nivethan and M. Papa, “A SCADA Intrusion Detection
Framework that Incorporates Process Semantics,” in 11th
Annual Cyber and Information Security Research Conference.
ACM, 2016, p. 6.

[7] G. R. Clarke, D. Reynders, and E. Wright, Practical mod-
ern SCADA protocols: DNP3, 60870.5 and related systems.
Newnes, 2004.

[8] R. Sommer, J. Amann, and S. Hall, “Spicy: a unified deep
packet inspection framework for safely dissecting all your
data,” in 32nd Annual Conference on Computer Security
Applications. ACM, 2016, pp. 558–569.

[9] V. Paxson, “Bro: a system for detecting network intruders in
real-time,” Computer networks, vol. 31, no. 23, pp. 2435–
2463, 1999.

[10] R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi,
and M. Ekstedt, “Exploiting bro for intrusion detection in a
SCADA system,” in 2nd ACM Int. Work. on CPSS. ACM,
2016, pp. 44–51.

[11] R. R. R. Barbosa, R. Sadre, and A. Pras, “Flow whitelist-
ing in SCADA networks,” International Journal of Critical
Infrastructure Protection, vol. 6, no. 3-4, pp. 150–158, 2013.

[12] J. J. Chromik, A. Remke, and B. R. Haverkort, “Bro in
SCADA: dynamic intrusion detection policies based on a
system model,” in 5th International Symposium for ICS-CSR
2018. BCS, 2018, pp. 112–121.

[13] IEC-104, “IEC TS 60870-5-7:2013,” TC 57 - Power systems
management and associated information exchange, Geneva,
Technical Specification, 2013.

[14] J. J. Chromik, A. Remke, and B. R. Haverkort, “An integrated
testbed for locally monitoring SCADA systems in smart
grids,” Energy Informatics, pp. 1–29, 2018.

8

