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Abstract: This paper gives a new nonlinear force control of hydraulic robots. Unlike the
electrical robots, hydraulic robots are governed not only by the energy conservation but also by
the mass conservation. First we propose a generalized continuity law and a canonical form of
hydraulic robots. Second, we propose a new nonlinear robust force control based on passivity
in order to achieve the desired force in the presence of unknown environment consisting of
the energy storing elements and dissipative elements. Finally, we confirm the validity of our
proposed methods by simulation and experiment.
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1. INTRODUCTION

This paper gives a new design method of force control
for hydraulic manipulators in port-Hamiltonian form (van
der Schaft (2000)). Port-Hamiltonian systems are general-
ization of Hamiltonian systems in classical mechanics and
can model many systems such as electro-mechanical sys-
tems, mechanical systems with nonholonomic constraints
(Maschke and van der Schaft (1994)) , distributed systems
and their mixed systems (Macchelli and Melchiorri (2005))
as well as classical mechanical systems.

Passivity is one of the most important properties of port-
Hamiltonian systems and some passivity based control
methods, originally from Takegaki and Arimoto (1981),
were developed, such as, Energy-Casimir methods (van
der Schaft (2000)) , the generalized canonical transforma-
tions (Fujimoto and Sugie (2001)), IDA-PBC (Ortega and
Garcia-Canseco (2004)) and IPC approach (Stramigioli
et al. (1998)) and so on.

Modeling and control of several fluid systems are discussed
in port-Hamiltonian form. For example, Ramkrishna and
van. der. Schaft (2006) discuss infinite dimensional canal
systems in three dimensional space and Johanson (2006)
discuss the four-tank systems based on IDA-PBC. These
fluid systems have free-surface and are incompressible. Ric-
cardo et al. (2006) discuss the modeling of hydraulic arms
and show some experimental results. Gernot and Schlacher
(2005) discuss the control of the hydraulic arms in port-
Hamiltonian form. In these approaches, the modeling is
based on the standard procedure in port-Hamiltonian
framework and the positing control is discussed in almost
all cases. Apart from these approaches, we discuss the
modeling and force control of the class of fluid mechanical
systems, such as hydraulic robot arms, pneumatic robot
arms, based on the other structural property.

This paper is organized as follows. In Section 2, we refer
port-Hamiltonian systems and their properties, especially
Casimir functions and hydraulic systems. In Section 3, we

discuss the modeling and the canonical form of the hy-
draulic robots. In Section 4, we give a new passivity based
force control of hydraulic mechanical systems. In Section
5, the proposed method are confirmed by simulation and in
Section 6, by experiment. Finally we conclude this paper
in Section 7.

In this paper, In is n×n identity matrix, Rm×n is the real
space of m rows and n columns matrix.

2. PRELIMINARY

In this section, we refer basic concepts such as passivity,
port-Hamiltonian systems and their control methods.

2.1 A Special Class of Port-Hamiltonian systems

Definition 1 A (simplified version of) port-Hamiltonian
system with a Hamiltonian H(x) ∈ R is a system de-
scribed by















ẋ = J(x)
∂H(x)

∂x

T

+ g(x)u

y = g(x)T
∂H(x)

∂x

T (1)

with u, y ∈ Rm, x ∈ Rn and a skew symmetric matrix
J(x), i.e. −J(x) = J(x)T holds. The following property of
such systems is known.

Lemma 1 Consider the port-Hamiltonian system (1).
Suppose the Hamiltonian H(x) satisfies H(x) ≥ H(0) = 0.
Then the input-output mapping u %→ y of the system is
passive with respect to the storage function H , and the
feedback

u = −D(x) y (2)

with a matrix D(x) > 0 ∈ Rm×m renders (u, y) → 0.
Furthermore if H(x) is positive definite and if the system
is zero-state detectable, then the feedback (2) renders the
origin asymptotically stable.
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Fig. 1. Hydraulic systems

2.2 Casimir functions

One of other properties of port-Hamiltonian systems are
the existence of Casimir functions. Casimir functions (with
respect to J) are defined as solutions of the following PDE,

∂C(x)

∂x
J(x) ≡ 0. (3)

Not only Hamiltonian, but also Casimir functions are
the special first integrals. However Casimir functions are
different from Hamiltonian and

Ċ ≡ 0 (4)

holds for any Hamiltonian H(x) when u = 0. Unlike
Hamiltonian, Casimir functions are not bounded from
below nor upper in general. Casimir functions do not alway
exist for port-Hamiltonian systems in general, but exist in
some important cases in robotics.

2.3 Hydraulic robots

Fig.1 shows hydraulic arms. Hydraulic arms are different
from electrical arms with respect to the complexity in
the actuators. Especially, the output signals from the
actuators are not only the input into the mechanical
systems but also the input into the actuators as the
internal loop.

While the dynamics of the electrical arms can be derived
from the viewpoint of the energy conservations, the dy-
namics of the hydraulic arms can be derived from the
viewpoint of the mass conservations as

V

b
ṗ = Q2 − Q1 (5)

where p is the pressure, V is the volume, β is the bulk
modulus and Qi are modeled as

Qi = kv(p, sgn(xv))xv = ksgn(xv)
√

|p − ps|xv (6)

with the spool displacement xv, the supply pressure ps and
the spool coefficient k.

3. NONLINEAR MODELING

A nonlinear modeling of hydraulic robot arms are dis-
cussed in this section. First, the (electrical) manipulators
are described in the port-Hamiltonian form

Σm :
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(7)

where qm and pm are the position and the momentum,
M(qm) = M(qm)T > 0 U(qm) ≥ 0, Hamiltonian Hm =
(1/2)(pTM−1p) + U(qm) and the nonsingular matrix Gm.

Definition 1 (Generalized continuity law) An input-
output system

Σf :
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(8)

is the generalized continuity law where uf , xv ∈ R are the
inputs, yf ∈ R is the output and vi is Bernoulli velocity
Ai is the cylinder area, qm ∈ [0, L] = B (Fig.2).

This is a generalization of the mass conservation as a port-
Hamiltonian system is the generalization of the energy
conservation. Note that equation (8) is not written in the
form (1).

Theorem 1 (Canonical form of hydraulic robots)
Consider the system Σf and the system Σm. Then there
exists a coordinate transformation and a scaler function
Hfm(x) such that the following feedback interconnection

{

uf = −ym

um = +yf
(9)

gives the closed-loop systems
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Fig. 2. Equivalent model



Σfm :
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︸ ︷︷ ︸

≡gfm

xv

yv =gT
fm

∂Hfm

∂(qm, pm, C1, C2)

T

(10)

with x = (qm, pm, C1, C2) ∈ R4 and Js =

[

0 1
−1 0

]

.

Proof of Theorem 1
Casimir function C1, C2 as the solutions of PDE (3) gives
the following transformation







qm

pm

C1
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=φ(qm, pm, p1, p2)=







qm

pm

p1 + log(qm)
p2 − log(L − qm)






(11)

where ∂φ

∂x
is invertible. This implies the feedback intercon-

nection (9) gives the port-Hamiltonian systems (12) with
a Hamiltonian

Hfm = Hm + A1(b(e
C1/b − qm+

qmlog(qm)) − qmC1) + A2(b(e
C2/b − (L − qm)+

(L − qm)log(L − qm)) − (L − qm)C2).

(Q.E.D.)

Remark 1 The above canonical form makes the dynamics
of C1, C2 a drift-less system, that is, the hydraulic arms is
a serial connection of a driving system and a driven system
as the electrical arms. This fact is important with respect
to the simplicity in the control systems design/analysis.

Remark 2 The friction effects (Coulomb effects, Stribeck
effects) are easily modeled in the above situation but
omitted here for the space limitation.

4. NONLINEAR FORCE CONTROL

In this section, a new force control of hydraulic arms are
given in the presence of unknown environment.

Theorem 2(Nonlinear force control) Consider the
unknown environment

Σe :







˙qm = ym

Fe = −
∂Ue

∂qm

− Ceym

and the (modified) system Σfm

Σfm :
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(12)

and assume that ∂Ue(q)

∂q
= Fd has a solution q∗m ∈ R. Then

the force controller

ΣF : xv = −(A1g3 − A2g4)R(F − Fd) (13)

makes the set Ω = {F = Fd} asymptotically stable where
R > 0 is the gain Fd is the desired force, Ue, Ce are the
unknown parameters of the environment and g3, g4 are the
third and the fourth elements of gfm.

Proof of Theorem 2
A coordinate transformation
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(14)

is invertible and the system Σfm is converted into
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where











J23 = b(A2
1 + A2

2)/V
J24 = b(A2

1 − A2
2)/(2V A1A2)

ga = A1g3 − A2g4(≥ 0)
gb = g3/(2A2) + g4/(2A1)

(15)

and the identity

J23

∂Hfm

∂F

T

+ J24

∂Hfm

∂F⊥

T

− F = 0 (16)

holds. By separating the dynamics of F⊥, the reduced
system of qm, pm, F is

Σfmr :



































˙qm

˙pm

Ḟ
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where ga(t) = ga(F, F⊥). From qm ∈ B, the function

Hcl = Hfm + Fd(L − qm) (17)

is lower bounded and the coordinate transformation
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(18)

makes the closed-loop system (including the environment)
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This implies

Ḣcl + U̇e ≤ −Cm

(

∂Hcl

∂pm

)2

− Rg2
a

(

∂Hcl

∂F̃A

)2

(20)

is non-positive and is the sum of squares with respect to
pm, F̃A and Ω = {pm = F̃A = 0} is a positive-invariant
set. Since we have

ṗm = −(−Fd +
∂Ue

∂qm

) + J23F̃A, (21)

the assumption and ˙pm → 0 means the convergence
F → Fd and

qm → q∗m s.t.
∂Ue(qm)

∂qm

= Fd (22)

holds. (Q.E.D.)

Note that the closed-loop system is robust against the
parameter perturbation as long as the inequality (20)
holds. It is possible to improve the transient behavior by
adjusting the gain R.

5. SIMULATION

A simple mechanical system is considered in this section.
This system is one dof and interacts with unknown en-
ergy storing element (U(qm) = (1/2)keq

2
m) and unknown

energy dissipative element. The desired force is Fd = 1
and the other parameters V , b and the gain D are normal-
ized. The initial conditions are qm(0) = −1, pm(0) = 1

F̃A(0) = 1.2.

Fig.3 shows the time response of (F − Fd)2. It is con-
firmed that the cylinder force F converts to the desired
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Fig. 4. Response of qm

Fd smoothly against the environment with unknown pa-
rameters ke, Ce. Fig.4 shows the time response of qm.
The behavior of qm depends on the unknown parameters
ke, Ce and converts to a value q∗m asymptotically. In all,
the validity of the proposed controller is confirmed in the
simulation phase.

6. EXPERIMENT

6.1 Experimental setup

Fig.5 shows a standard hydraulic robot. According to the
actual applications, this robots has not only rotational
joints but also the translational joints. This robot is
reconfigurable, that is, has nine configurations. This is
important because the nonlinear effect (the gravity, the
centrifugal, Coriolis) can be deleted in the experiments.
Table 2 shows the specification.

Table 1. Specification of robot arm

parameters values

length of link 0.5 m
cylinder area A1 7.0 10−4 m2

cylinder area A2 5.4 10−4 m2

cylinder stroke L 0.75 m
mass 40 kg
viscous Cm 9500 Ns/m
bulk modulus b 1.5 109 Pa

spool coefficient k 2.0 10−7 m3
/(
√

PaVs)
pump pressure 7.0 MPa

Fig. 5. Standard hydraulic arm
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6.2 Control experimental result and discussion

The control experiment is executed in the Cartesian con-
figuration and make the environment parameters Ue =
megqm, Ce = 0 (me =5kg, 15kg). 300 Hz dizzier signals
are added on the reference signal. The spool displacement
is measured by LVDT.

Fig.6 shows the reference signal in the case of Fd = 5
and Fig.7-9 show the spool displacement xv, the cylinder
forceF and the cylinder displacement qm. The cylinder
force F converts to the desired value and keeps the
position. The behavior of the force F has become smaller
after the settling time while the behavior of the cylinder qm
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is not large. Fig.10, 11, 12, 13 are the responses in the case
of Fd = 15. The force F converts to the desired value and
the transient behaviors are almost similar to those in the
case of Fd = 5. Note that the gain R is any positive value
and the controller does not require the hydraulic system
parameters and the structure such as Bernoulli velocity.
Indeed the force signal is asymptotically stable against
the complexity in the actual system. The robustness is
confirmed from the experiment.

7. CONCLUSIONS

A passivity based force control for hydraulic robots are
discussed in this paper. The generalized continuity law is
defined and a canonical form of hydraulic robots is derived.
In the presence of the unknown environment, a robust
force controller is proposed and the validity is confirmed
by the simulation and the experiment.
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