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Port Based Modeling of Spatial Visco-Elastic Contacts

Stefano Stramigioli and Vincent Duindam�
Control Laboratory, Faculty of EEMCS, University of Twente, 7500AE Enschede, The Netherlands

In this paper, the geometrical description of viscoelastic
contacts is described using physical modeling concepts
based on energy conservation and network theory. The
proposed model is on one side simple enough to be used
in real time applications and on the other captures the
geometrical features and coupling of a complete spatial
geometric unisotropical contact.
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1. Introduction

The model of contacts is of fundamental importance
in robotics since most of interesting situations like
grasping, walking and mechanical interaction, do
feature mechanical contact. The normal component of
a contact has been vastly studied and has led to the
Kelvin–Voight model and the better Hunt–Crossley
model (Hunt and Crossley 1975) which has been
analytically studied in Marhefka and Orin (1999).
Detailed models concerning tangential friction instead
can be found in Amstrong-Hlouvry et al. (1994). An
excellent reference on soft finger contacts is Cutkosky
and Wright (1986).

The first model to the knowledge of the authors
which treats the complete geometry of contacts from a
kinematical point of view is Montana (1989a,b). In
this model the geometry of rolling is described

using the differential geometric description of the
curvature of the contacting surfaces, but no dynamics
is treated and the bodies are considered in contact at
all times.

A nice analysis on controllability of rolling contacts
can be found in Marigo and Bicchi (2000) and for a
general review on grasping and contacts the reader is
addressed to Bicchi and Kumar (2000).

In this paper, we will show build a geometric port-
Hamiltonian model of a contact which is able to
describe no-contact to contact transition, rolling and
contact viscoelasticity at the same time. The presented
model, being lumped, is a big simplification of the
continuous mechanic effects of material deformation,
but at the same time, due to its geometrical description
is very valuable for its light computational load and
could be used in real time control.

The paper is organized as follows: in Section 3 the
kinematics of three-dimensional (3D) contacts will be
quickly reviewed, in Section 4 the major contribution
will be presented by first describing the used inter-
connection structure and then the elastic and viscous
description. Section 5 will illustrate some simulation
results and Section 6 will draw some conclusions and
address possible future research topics.

2. Background

In this paper, we use a network modeling approach
based on Dirac structures (Courant 1990, van der
Schaft and Maschke 1995, van der Schaft et al. 1996,
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Bloch and Crouch 1999, Stramigioli 2001). In this
technique the concept of a power port is of funda-
mental importance. A power port is a pair of dual
vectors whose intrinsic dual product is power:

ð f, eÞ 2 V� V �, ð1Þ
where f is called a flow, e an effort, V is a vector space
and eð f Þ 2 R represents the instantaneous power
passing through the port. In this paper, V will have
the structure of a Lie algebra since this will allow to
rigorously talk about spatial mechanics as shown in
the following sections.

Any power continuous interconnection can be
expressed using a Dirac structure which can be defined
in a complete coordinate free way for finite and
infinite dimensional spaces (van der Schaft and
Maschke 2002). For the sake of space and conciseness
we only say that it is geometrically a subspace of
V� V � and as such any finite dimensional Dirac
structure where V ¼ V1 � � � � � Vn, can be represented
in Kernel representation by the following equation:

Eeþ Ff ¼ 0, ð2Þ
where e 2 V, f 2 V � and E, F are in general time
varying matrices such that the rank of [E F] should be
equal to the dimension of V and should satisfy the
following condition:

EFT þ FET ¼ 0: ð3Þ
This latter condition implies that each element ( f, e)
belonging to the Dirac structure, or in other words all
the possible ( f, e) which are allowed by the network
constraints, are such that eð f Þ ¼ 0 which is nothing
else than Tellegen’s theorem (Tellegen 1952). This
allows to have a rigorous description of a network
structure which can be directly used for analysis.

3. Kinematics of Contacts

In Montana (1989a) the kinematics of two contacting
bodies is presented. This analysis does not consider
the case of non contacting bodies which is important
for the detection of collision and does not allow
a straight forward coordinate-free interpretation. In
Visser et al. (2002) the analysis of Montanais has been
extended to non contacting bodies and in Duindam
and Stramigioli (2003) a clean coordinate-free
formulation has been presented. In this last work,
based on the relative configuration H1

2 of the two
bodies, the differential geometric description of their
surfaces S1 and S2 and their relative twist T 1

2 2 seð3Þ,
the velocity of their minimal distance contact points

p1 2 S1 and p2 2 S2 is calculated providing an implicit
formulation of a section of the following form
describing the surfaces:

�ðH1
2,T

1
2Þ : S1 � S2 ! TS1 � TS2: ð4Þ

Using the last mapping it is possible to track the
motion of the points with minimal distance of the two
convex bodies under consideration. We indicate
the distance between this two points with D and we
address the reader to Duindam and Stramigioli (2003)
for more details.

In Lie group terms, the relative configuration of the
two contacting bodies can be studied using SE(3). The
relative instantaneous motion instead, can be studied
using the Lie algebra se(3) associated to SE(3). This
algebra is 6D and corresponds to the six possible
motions of a rigid body.

4. Viscoelastic Description

The general scheme which is presented follows the
port representation shown in Fig. 1 where it can be
seen that a Dirac structure expresses the power
continuous interconnection between the contacting
bodies, the elastic energy storage of the contact and
the (free) energy dissipation part.

4.1. The Dirac Structure of the Contact

The purpose of the Dirac structure is to provide
the correct, energy consistent relations between the
ports that connect the rigid bodies and the storage
and dissipation elements. This Dirac structure is not

Fig. 1. Setup of the model: the contact forces are realized by elastic
storage and dissipation, interconnected by a Dirac structure
between the two rigid bodies that are in contact.
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constant in time, since the connection of the storage
and dissipation elements depends on whether there is
contact or not. If the bodies are moving freely without
touching, there should be no interaction forces from
the dissipation and damping elements.

To monitor whether the Dirac structure should
switch or not, we use the kinematics equations which
are presented in Duindam and Stramigioli (2003). We
define the binary signal sD as

sD ¼ 1 if D � 0,
0 if D < 0,

�

so sD ¼ 1 if there is no contact and sD ¼ 0 if there is
contact. We will use this variable in the equations for
the Dirac structure.

We start by constructing the relative velocity of the
two bodies, since both the storage and the dissipa-
tion depend only on this velocity. So, denoting by T 1,1

2

the relative twist of body 2 with respect to body 1,
we need as the first part of the Dirac structure
(represented in the kernel form Eeþ Ff ¼ 0)

E

W 0
1

W 0
2

W 1
21

0
B@

1
CAþ F

T 0,0
1

T 0,0
2

T 1,1
2

0
B@

1
CA ¼

0

0

0

0
@

1
A, ð5Þ

where

E :¼
0 0 0

I6 0 ðsD � 1ÞAdTH1
0

0 I6 ð1� sDÞAdTH1
0

0
B@

1
CA ð6Þ

and

F :¼
ð1� sDÞI6 ðsD � 1ÞI6 AdH 0

1

0 0 0

0 0 0

0
@

1
A, ð7Þ

where we used the switching element in E to switch off
the contact forces W1

21 when there is no contact. The
matrix F and E which clearly also satisfy the rank
condition, then also contains the switching element
in such a way that the power continuity condition
EFT þ FET ¼ 0 for all values of sD.

If we consider a geometric description of the bodies
as undeformable for the purpose of modeling, we
allow the distance D between p1 and p2 to become
negative as shown in Fig. 2. This means that we
virtually allow the two bodies B1 \ B2 6¼ ;:

Under the assumptions previously explained of
convexness, there are two unique points p1 2 S1 and
p2 2 S2 in the region @ðB1 [ B2Þ (see Fig. 2) whose
connecting line ln is normal to the surfaces in p1 and p2.

Furthermore, given a point c 2 ln, there is a unique
plane O orthogonal to ln and passing through c.

We can therefore choose 6 basis vectors (screws)
belonging to se(3). In order to decompose the motion
between relative motions involving elastic storage of
energy and not, we will choose two screws represent-
ing pure distinct rotations around two axis living onO
and passing through cðrx, ryÞ (which are two screws
with zero pitch), and the other basis screws as the
rotation around lnðrzÞ (again a screw with zero pitch),
and the three translations (tx, ty, tz) (which are screws
with infinite pitch).

We can now decompose se(3) in the direct sum of
two subspaces1R :¼ span rx, ry

� �
and span tx, ty, rz, tz

� �
which turns out to be equal to the Lie algebra se(2)�T
of motions on O (se(2)) together with2 the normal
motion along li (T ):

seð3Þ ¼ R� ðseð2Þ � TÞ,

that is, as the direct sum of two subspaces. We can
indicate the projection of a twist T 2

1 defined by this
decomposition as

PR,c : seð3Þ ! seð2Þ � T; T 2
1 ! PT 2

1 : ð8Þ

For any linear operator, there is an adjoint opera-
tor which maps dual elements corresponding to
‘‘wrenches’’

P�
R,c : se

�ð2Þ � T � ! se�ð3Þ; W ! P�W ð9Þ

in such a way that power is conserved:

hWjPT 2
1 i ¼ hP�WjT 2

1 i:

Fig. 2. The geometrical undeformed contact model.

1It is important to note that this decomposition is only dependent
on the choice of the position of c and NOT on the choices of rx and
ry as long as they are linear independent and lying on the plane O.
2Notice that this is not a semi-direct group product, but a normal
group product.
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We can write this last decomposition/projection part
in kernel form (where the projected wrench P�Wc

21 is
just the sum of the wrenches from the storage and
dissipation elements) to obtain the second part of the
Dirac structure:

E

W 1
21

�WW
c
dis

�WW
c
store

0
B@

1
CAþ F

T 1,1
2

�TT
c,1
2ðdisÞ

�TT
c,1
2ðstoreÞ

0
BB@

1
CCA ¼

0

0

0

0
B@

1
CA, ð10Þ

where

E :¼
0 0 0

0 0 0

I6 �AdTHc
1
P� �AdTHc

1
P�

0
B@

1
CA ð11Þ

and

F :¼
PAdHc

1
�I4 0

PAdHc
1

0 �I4

0 0 0

0
@

1
A: ð12Þ

We can combine both parts and eliminate ðT1,1
2 ,W1

21Þ
to obtain the complete Dirac structure with ports
ðT 0,0

1 ,W 0
1 Þ, ðT 0,0

2 ,W 0
2 Þ, ð �TTc,1

2ðstoreÞ, �WW
c
storeÞ and ð �TTc,1

2ðdisÞ,
�WW

c
disÞ as shown in Fig. 1. It is possible to see that the

complete Dirac structure is:

E

W 0
1

W 0
2

�WW
c
store

�WW
c
dis

0
BBBB@

1
CCCCAþ F

T 0,0
1

T 0,0
2

�TT
c,1
2

�TT
c,1
2

0
BBBBB@

1
CCCCCA

¼ 0, ð13Þ

where

E :¼

I6 0 ðsD � 1ÞAdTHc
0
P� ðsD � 1ÞAdTHc

0
P�

0 I6 ð1� sDÞAdTHc
0
P� ð1� sDÞAdTHc

0
P�

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA

ð14Þ

and

F :¼

0 0 0 0

0 0 0 0

ðsD � 1ÞPAdHc
0

ð1� sDÞPAdHc
0

�I4 0

ðsD � 1ÞPAdHc
0

ð1� sDÞPAdHc
0

0 �I4

0
BBBB@

1
CCCCA:

ð15Þ

4.2. The Elastic Coupling Description

The elastic storage element is used to represent the
elastic energy that is (reversibly) stored in the com-
pressed surfaces of the bodies that are in contact. As
explained earlier, its port is 4D with port variables
�TT
c,1
2ðstoreÞ and �WW

c
store. It is important to understand that

this decomposition does NOT exclude any tangential
force on the contact, but only excludes pure rolling of
the bodies from any energetical influence.

The energy as stored in the element is represented
by a function V

V : SEð2Þ � T ! R; V : �HH 7!VðHÞ,

where �HH denotes the element of the group SE(2)�T
that describes the deformation (translation in three
directions plus rotation around the vertical axis) of the
surfaces. Even if other representations are possible, if
we represent the twist �TT

c,1
2ðstoreÞ as a 6D twist with the

first two elements (rotations in the contact plane)
equal to zero, we can compute �HH just like in the 6D
case: by integrating the twist �TT

c,1
2ðstoreÞ as

�HHðtÞ ¼
Z t

0

~�TT�TT
c,1
2ðstoreÞð�Þ �HHð�Þ ¼ d�:

The resulting �HH will be a 4� 4 matrix of the form

�HH ¼
cosð�Þ � sinð�Þ 0 x
sinð�Þ cosð�Þ 0 y
0 0 1 z
0 0 0 1

0
BB@

1
CCA,

where � is the rotation angle around the vertical axis.
The function Vð �HHÞ can now be any lower-bounded
function (zero for �HH ¼ I4) to describe the energy
associated to a deformation �HH. The wrench generated
at a deformation �HH is finally equal to

Wc
store ¼ AdT�HHdVð �HHÞ:

Unfortunately, the partial derivative of V over �HH is
not so easy to compute since �HH is globally redundantly
represented by a matrix, not a vector due to topolog-
ical reasons. A simple solution is to take �, x, y, z as
representation of the deformation instead, such that
the equation becomes

ð0 0 �ww� �wwx �wwy �wwzÞT

¼ AdT�HH 0 0
@V

@�

@V

@x

@V

@y

@V

@z

� �T

: ð16Þ

A different solution that is often presented is to use
a two-covariant tensor called the stiffness tensor K to
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define the energy function V implicitly. Around
equilibrium, K is defined such that K�T is the change
in spring force, resulting from a small motion in the
direction �T. Globally, the stiffness tensor can be
defined only using a connection (Howard et al. 1995,
Zefran and Kumar 1997). The potential function V is
then constructed from K at the minimum by integra-
tion of the forces (see Stramigioli 2001 for the details).

4.2.1. Handling Anisotropy and Curvature

Using Hertzian theory (Harris 1990), we can study
each body elastic properties: we can consider a com-
pression of each of the bodies separately against a flat,
infinitely rigid plane. Assuming no tangential load for
the moment as it is done in the Herzian theory, we can
consider an elliptical contact patch.3 This patch will
have a shape corresponding to the radius curvature
quadric (also called Dupin indicatrix) RðpÞ defined as

RðpÞ :¼ f� 2 TpS s:t: h�,Pg�ð pÞ�i ¼ 1g, ð17Þ

where P and g�( p) are related to the surface descrip-
tion and its curvature in p as explained in detail in
Duindam and Stramigioli (2003).

We assume that the characterization of the elliptic
contact patch and its forces are related by three
factors:

� The normal compression (�D).
� The curvature of the body in the contact point pi
(g�( pi)).

� The possible unisotropical properties of the material
at the contact point.

If we now consider direct contact and loading of B1

and B2 in the points p1 and p2, we assume that an
elliptic contact patch will increase around the initial
contact points and that this patch lies in the plane O.
The shape of the patch is related to the patches
obtained in the contact surface and differential geo-
metrically speaking is directly dependent on the rela-
tive curvature of the surfaces in the following way:

RðcÞ ¼ ðR1ð p1Þ þ R2ð p2ÞÞ, ð18Þ
where Ri indicates the radius-curvature of body Bi.

Clearly, in order to be able to compute Eq. (18) as
the sum of two quadrics, we have to consider p1¼ p2
which can be done considering the initial contacting
situation.

In a similar way, due to possible anisotropy of the
materials there can be direction dependent stiffnesses
in the contact.

In order to take these effect into account, we can
associate a stiffness information to each point of the
contacting surfaces and then calculate a correspond-
ing geometrical anisotropical stiffness during contact
based on them. Once this stiffness is defined, it can be
used in the projection plane in order to integrate the
projected twists and calculate the corresponding
wrenches as explained.

In mathematical terms we can proceed as follows.
We can associate to each point of the surfaces a two
covariant tensor based on se(2)�T corresponding to
a stiffness:

Ki : Si ! ðseð2Þ � TÞ2, i ¼ 1, 2: ð19Þ

The previous mappings are in differential geometric
terms called tensor bundles. By clearly making an
approximation, we can then consider both tensors
defined in the same point c considering the initial
contact situation as also done to calculate Eq. (18).
Under this assumption, it is meaningful to consider

KðcÞ :¼ ðK�1
1 ð p1Þ þ K�1

2 ð p2ÞÞ�1 ð20Þ

as a representative stiffness of the contact. To under-
stand this, it is sufficient to realize that in case one of
the two contacting materials is much softer than the
other, the resulting combined stiffness K(c) is almost
equal to the one with the smallest stiffness.

4.2.1.1. The choice of the point. c 2 ln. It is now
possible to find a physical way to uniquely identify the
position of c 2 ln (see Fig. 2) in order to decompose
motions based on the elastic properties of the material.
In order to give a mathematical expression we first
need to define a projection operator which gives the
normal component of the stiffness tensor:

Pn :¼ ðseð2Þ � TÞ2 ! <; K 7!KðT̂T, T̂TÞ, ð21Þ

where T̂ indicates a unit vector in the direction of ln.
Using this operator, we can then uniquely define the
position of c as:

c :¼ ð1� �Þp1 þ �p2 where � :¼ PnðK1ðp1ÞÞ
PnðKðcÞÞ :

ð22Þ
The intuition of Eq. (22) is easily explained: suppose
that B2 is much harder than B1. This implies that
Pn(K2) will be much bigger than Pn(K1). This implies
that Pn(K)’Pn(K1) and therefore �’ 1. This means

3This can be considered correct in a first approximation, but more
general consideration can be made. Due to the complexity of more
involved patches shapes, they will not be considered in this paper.
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that cwill be very close to p2 which makes a lot of sense
since B2, being much harder, will deform the least.

4.2.1.2. Anisotropy. A crucial point at this stage is
that the elastic anisotropy of the material can be
handled as a metrical property and coordinate
deformations can be applied in such a way that the
contact would be described in new coordinates for
which the materials would have relative unity uniform
stiffness. Clearly, this change of coordinates does have
effect on the contact patch shape which would change
accordingly. In geometrical terms, the new principal
directions of the relative contact patch can be calcu-
lated by looking at the eigen vectors of the original
undeformed patch quadric RðcÞ with respect to the
relative stiffness metric K(c). In this new situation we
obtain an equivalent contact with a different rotated
contact patch, between two homogeneous materials.
Analytically we can proceed as follows. Under the
condition that there is no coupling among the normal
stiffness, the rotational one and the tangential one, it
is possible to find two lines lx, ly 2 O by means of
which we can define four screws rn, tn, tx, ty which are
an orthonormal base of se(2)�T with respect to the
metric K(c). rn is a zero pitch screw along ln corres-
ponding to a pure rotation around ln and tn, tx, ty are
infinite pitch screws corresponding to translations
respectively in the directions ln, lx and ly. Using the
base BK(c) :¼ {tx, ty, tn, rn} for se(2)�T, a numerical
representation for K(c) becomes by construction the
identity matrix I4�4.

On the other hand, a numerical representation of
RðcÞ using the base elements tx, ty would in general
not result in a diagonal matrix which would corre-
spond with the principal curvature directions along
the basis vector. For this reason, we can implement a
second partial change of coordinates which imple-
ments a pure rotation in the plane spanned by tx and ty
in order to have coordinates in which the radius-
curvature is oriented with the coordinate axis. Such a
map can be implemented by:

�RR : <4 ! <4 s:t:

x
y
z
�

0
BB@

1
CCA 7!

R 0 0
0 1 0
0 0 1

0
@

1
A

x
y
z
�

0
BB@

1
CCA,

where R is an orthonormal matrix which has as rows
the normalized eigenvectors of RðcÞ calculated with
respect to the metric K(c). In this way, we can define
for the compliant contact an energy function

�VV : <4 ! <, ð23Þ

which abstracts from the compliant properties of the
materials of the two bodies and which has the relative
radius-curvature aligned with the first two coordin-
ates. The total normalizing change of coordinates is
therefore

NðcÞ : seð2Þ � T ! <4 s:t: v 7! �RR � tx ty tn rn
� �

v,

ð24Þ
which is a linear map and has as such an adjoint
N� which maps the corresponding wrenches in the
opposite direction:

N�ðcÞ : ð<4Þ�! se�ð2Þ � T �

s:t: f 7! tx ty tn rn
� �� �RRT f:

ð25Þ

The only step left is the definition of an energy func-
tion �VV which can be either quadratic (giving rise to a
linear spring) or not.

Remark 1. The change of coordinates has used the
tensor K(c) which is representing the stiffness of the
material. In general the stiffness is not a tensor, but it
can be defined as such when a geometric connection is
considered (Howard et al. 1995, Zefran and Kumar
1997). In our case, the natural connection which could
be used is the one associated to the exponential
coordinates of the Lie group SE(2)�T which being a
commutative group gives rise to basis coordinates and
therefore a symmetric stiffness. For a non quadratic
energy function this would be position dependent and
not equal to K(c), but for the geometrical considera-
tions we made we consider K(c) as representative.

4.2.1.3. The complete picture. The previous con-
siderations can be applied to any relative contacting
situation of the bodies. This implies that at each
instant the points p1, p2 can be computed integrating
the section of Eq. (4) and therefore the line ln is con-
sequently defined. Based on K1( p1) and K2( p2) the
point c can be calculated using Eq. (22). Once c is
available, the plane O is uniquely determined and
therefore it is possible to uniquely project a relative
motion belonging to se(3) on se(2)�T along R using
the projection operator of Eq. (8). This projection can
than be transformed through N as defined in Eq. (24).
The resulting vector can be directly integrated due to
the commutativity in the exponential coordinates of
SE(2)�T. This results in the elastic state which gen-
erates a force which is calculated using d �VV(x, y, z, �).
The corresponding elastic repulsive force is then
equal to

W ¼ P�N�d �VVðx, y, z, �Þ, ð26Þ
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and this completes the elastic model of the contact.
In the complete structure presented here, N P should
be substituted in Eq. (13) to P.

It is important to realize that the elastic function �VV
is left general. This implies that different elastic
models can be implemented based on the linear
Kelvin–Voight model or the more general non linear
Hunt–Crossley model (Hunt and Crossley 1975).

Clearly, when the elastic load reaches a certain
threshold, slipping occurs. This will be briefly handled
in Section 4.4.

4.3. The Viscous Part

The dissipative part can be handled in a similar way to
the elastic one. As we did for the elastic part, using the
tensor fields reported in Eq. (19) we can define
damping fields for the surfaces

Bi : Si ! ðseð2Þ � TÞ2, i ¼ 1, 2: ð27Þ

The resulting field which will characterize the damp-
ing will be resultant of a series interconnection (in the
network sense) of the two elements which similarly to
Eq. (20) can be calculated as

BðcÞ :¼ ðB�1
1 ð p1Þ þ B�1

2 ð p2ÞÞ�1: ð28Þ

This can be directly used as a linear dissipation
following the line of the Kelvin–Voigt model by
considering the linear map corresponding to the
previous quadratic form which is a map like:

B]ðcÞ : seð2Þ � T ! se�ð2Þ � T � ð29Þ
or this information can be used to create a geometrical
extension of the Hunt–Crossley model (Hunt and
Crossley 1975) by considering for example:

Bn
HðcÞ : seð2Þ � T ! se�ð2Þ � T

s:t: v 7!B]ðcÞN�1ðcÞ
xn 0 0 0
0 yn 0 0
0 0 zn 0
0 0 0 �n

0
BB@

1
CCANðcÞv,

ð30Þ
where (x, y, z, �) is the state of the elastic energy �VV as
introduced in Eq. (23).

4.4. Slipping

A lot of research is going on in the geometrical
modeling of slipping by the authors and a detailed
description will be reported in a forthcoming paper.
In this section, we briefly give the basic ideas on how

slipping can be handled within the presented frame-
work because we bilieve this is useful for complete-
ness. From a microscopical point of view, slip occurs
when the elastic coupling between the two bodies
reaches a threshold of extension. In such a situation
the elastic bindings break and relative motion occurs.
When motion occurs, the elastic extension up to the
moment of slip is retained and will play a role during
the stick phase. A simplified efficient model of the slip
effect can be obtained from a microscopical point of
view defining the following two functions:

Vslip : seð2Þ ! < ð31Þ

and

S : T ! <: ð32Þ
The first function Vslip associates to a tangential
elastic load an energy value. This function could be
also strictly related to the elastic energy function �VV, but
not necessarily.

The threshold function S associates instead to the
current compression D2T a maximum energetical
value after which slip occurs. This function will clearly
be strictly decreasing and have a shape similar to the
one reported in Fig. 3. An analytical expression of
S and Vslip based on physical principles will be pre-
sented in future work. Slip is then detected when the
following condition is satisfied:

VslipðhÞ > SðDÞ, ð33Þ

where (h, D) 2 se(2)�T indicates the geometrical state
of the elastic spring.

5. Simulations

We implemented the 3D kinematics and dynamics
model in the simulation package 20sim (http://www.
20sim.com), and simulated the dynamics of two
ellipsoids bouncing on each other and on the floor
under the influence of gravity. Since there are three

Fig. 3. The threshold function for slip detection.
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objects, we need to have three copies of the contact
model (one between each pair of objects) to be able to
model all contact situations. Figure 4 shows a 2D
schematic setup of the model. The sub-models are
implemented using screw bond graphs (Paynter 1960,

Stramigioli 2001), which allow for easy modeling of
the power ports to capture the energy balance of the
system. We use relatively soft settings for the spring to
be able to see more clearly what happens.

We drop the two ellipsoids at some distance right
above each other, with zero initial velocity. Figures 5
and 6 show the results, indicating also the following
time instants in the simulation:

(a) The two objects start from a certain height, with
some distance between them, the largest distance
is between the black ellipsoid and the ground.

(b) The grey ellipsoid hits the ground first and com-
presses a bit. When the black ellipsoid hits the
grey, the grey is penetrated more into the ground.

(c) The two ellipsoids start to roll over each other.
(d) As the black ellipsoid rolls over the grey, it

approaches the ground fast.
(e) The black ellipsoid touches the ground.
(f) Both ellipsoids roll away, creating a distance

between them.

6. Conclusion and Future Work

This paper has presented a geometrical, energetically
consistent model of the contact dynamics between two
convex bodies whose surface viscoelastic properties
are described by two, possibly anisotropical, tensor
fields defined on the surfaces. The model is able to
handle a lot of linear and non-linear models and can

Fig. 4. Schematic setup of the simulation model. We use three
copies of the contact model to model all possible collisions between
the three objects.
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Fig. 5. Time evolution of the distances between the three objects. The labels D1,D2,D3 correspond to the labels in Fig. 4, and the labels
(a)–(f) correspond to the labels in Fig. 6.
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be the basis for a more physical description of the
contact dynamics.

Slipping has been only introduced and a future
paper will report a detailed analysis on how to handle
slip and stick in this framework.

A future and important extension to this work
would clearly be an identification and validation stage
which would prove the validity of the model in real
experiments. This would be of great value since the
model is geometrically complete and at the same time
computationally not very heavy and this has great
advantages for real time applications like the space
application RokViss (Landzettel et al. 2002).
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