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Abstract—Community detection has been one of the key re-
search topics in the analysis of networked data, which is a 
powerful tool for understanding organizational structures of 
complex networks. One major challenge in community detec-
tion is to analyze community structures for streaming net-
works in real-time in which changes arrive sequentially and 
frequently. The existing incremental algorithms are often de-
signed for edge-grained sequential changes, which are sensitive 
to the processing sequence of edges. However, there exist many 
real-world networks that changes occur on node-grained, i.e., 
node with its connecting edges is added into network simulta-
neously and all edges arrive at the same time. In this paper, we 
propose a novel incremental community detection method 
based on modularity optimization for node-grained streaming 
networks. This method takes one vertex and its connecting 
edges as a processing unit, and equally treats edges involved by 
same node. Our algorithm is evaluated on a set of real-world 
networks, and is compared with several representative incre-
mental and non-incremental algorithms. The experimental 
results show that our method is highly effective for discovering 
communities in an incremental way. In addition, our algorithm 
even got better results than Louvain method (the famous mod-
ularity optimization algorithm using global information) in 
some test networks, e.g., citation networks, which are more 
likely to be node-grained. This may further indicate the signifi-
cance of the node-grained incremental algorithms. 

Keywords—Community Detection; Complex Network; Incre- 
mental Algorithm; Modularity. 

I. INTRODUCTION  
Complex systems, widely studied in many scientific 

fields, e.g., biology, social science and engineering, can be 
represented as networks, where elementary units of a system 
and mutual interactions between them are represented as 
nodes and edges respectively[1, 2]. Real-world networks 
which represent complex systems have some special proper-
ties, one of which is local inhomogeneity of edge distribu-
tion, i.e., high density of edges within some groups of nodes 
while low density of edges between different groups. This is 
so-called community structure [3]. So far, there is no widely 
accepted accurate definition for community structure. Gener-
ally, communities are considered as groups of nodes in 
which there are edges connecting nodes, while between 
which there are few edges [4]. 

Community structure indicates that individuals within a 
community have common or similar properties/functions, or 
play similar roles, while individuals in different communities 
usually have significant dissimilarity [5]. Thus it is helpful 
for discovering organizational structures and underlying fea-
tures of networks. Furthermore, it provides rich information 
for studying existing networks and powerful help for mining 
some uncovered parts of the networks such as link predic-
tion. Community detection has been successfully used in 
many applications, e.g., event detection, topic detection, pro-
tein interaction analysis and terrorist organization recogni-
tion. 

Most real networks are not static but often change fre-
quently over time. These frequent changes are usually repre-
sented as streaming networks, which require real-time ana-
lytical methods which can process the network incrementally 
and update the community structure in time. The existing 
incremental methods [6,7,8,9,10] usually take the evolution 
of large scale networks as a sequence of additions of edges, 
i.e., modeling a streaming network as edge-grained sequen-
tial changes which is very sensitive to the processing se-
quence of edges. However, there is another type of changes 
which happens on the level of nodes: a single node with its 
connecting edges is added into the network simultaneously, 
and all the edges are added at the same time. There is no 
reason to assign them an assumed adding sequence. For ex-
ample, in citation networks in which node represents article 
and edge represents citation between two articles, a network 
was expanded when an article with some citations was pub-
lished. These citations happened at the same time, and hence 
there is no reason assuming one happened after another. 
Webpage networks take web-pages as nodes and hyperlinks 
as edges. The node-grained change took place when a brand 
new webpage was deployed, i.e., a new node (representing 
webpage) and all its connecting edges (representing the hy-
perlinks of this webpage) were added into the network at the 
same time. To the best of our knowledge, there is no special 
node-grained incremental community detection methods 
designed for streaming networks. 

In this paper, a Node-Grained Incremental community 
detection algorithm, namely NGI, is proposed to handle the 
frequent node-grained addition which involves the simulta-
neous additions of edges. This algorithm is based on the op-
timization of modularity. It equally treats the edges arrived at 
the same time, and updates community structures in real-
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time when node-grained changes arrive. The experimental 
results showed the applicability of our method for processing 
networks changing frequently, and showed its superior per-
formance over competing incremental and non-incremental 
methods in terms of both community quality and efficiency. 
Besides, our nearly almost one-pass algorithm got better 
results than the well-known static algorithm Louvain [2] 
(using global information and iterating multi-times) on many 
citation and Web networks. This indicates specific character-
istics of node-grained streaming networks. 

II. RELATED WORK 
Modularity was proposed by Newman and Girvan [11] 

which is built on the comparison between network with 
community structure and a random graph (also called null 
model) without this property [3]. 

Let G be a given graph G ={V,E}, whose vertex set is 
denoted by V and edge set is denoted by E. The modularity 
of a community partition P={C1, C2,..., CK}, where Ck 
denote one of community k, k=1,...,K and �C�, C� P, 
C��C�= , V=�K 

1 Ck, is defined as : 

2

( )
edg( ) deg( )

2
k

k k

C P
Q P

C C
m m∈

=
� �� �� �− � �� �� �� �

�  (1) 

where edg(Ck) denotes the number of intra-community 
edges in community Ck ,  deg(Ck) denotes the sum of degree 
of every vertex in community Ck, and m is the total number 
of edges in C. The modularity of an identified community 
partition is a scalar value between -1 and 1 that measures the 
density of edges within communities compared to the 
density of edges between different communities [3]. Hence, 
a partition with higher modularity on a given graph is 
thought to be better.  

Finding a partition corresponding to the maximum value 
of modularity on a given graph is a NP-hard problem due to 
the space of possible partitions grows quite fast [12]. Many 
heuristic methods for maximizing modularity have been 
proposed, including fast greedy method by Newman [11], 
CNM algorithm [14], Eig algorithm [15], method by 
Xie[16], algorithm by Wakita and Tsurumi [14], and 
Louvain algorithm [2] which is considered as state-of-the-
art. However, all of these methods were designed for static 
networks, and need to use whole network topology to find 
community structure. When changes happened on a network, 
these methods have to be re-performed on changed network 
topology so as to discover community structure for the 
changed network [18,19]. Hence, the time cost will grow 
rapidly and it become intractable as network changes 
frequently. 

In order to analyze networks that change frequently in 
real time, many incremental community detection methods 
were proposed. They updated community structure by using 
local information around the change and the priori 
community information, which do not need to re-perform a 
community detection algorithm like for processing a brand 
new network and can avoid unnecessary computing. There 
is no doubt that incremental method is more suitable for 

discovering community structures in streaming networks 
with frequent changes. 

Here we summarized some recent modularity-based 
incremental community detection algorithm. Nguyen's QCA 
method [11] handles four types of changes including node 
addition/deletion and edge addition/deletion, but it transfers 
node addition/deletion into sequence of edge changes which 
is very sensitive to the processing order of edges. Shang's 
GreMod method [7] uses similar processing technique in 
certain simple scenarios, i.e., intra/inter edge addition, while 
leaves node addition unhandled. A disadvantage of Shang's 
method is that it needs an initial community partition 
produced by non-incremental community detection methods 
as its input, and this also leads to another drawback, i.e., its 
results are influenced by the initial partition and the order in 
which edges are processed. Pan's OLTM [8] and Zhang's 
OLEM [10] are designed for processing an edge-grained 
network stream by optimizing modularity and expected 
modularity respectively. These traditional modularity-based 
incremental algorithms have a common drawback, i.e., 
being very sensitive to the processing order of edges, which 
may lead to unstable results. More importantly, they cannot 
handle node-grained changes well because they impose an 
assumed order for edges involved by a node addition which 
violates the fact these edges are added simultaneously, thus 
poor performance may occur when they are applied on 
networks growing in node-grained. 

III. METHODS 

In this paper, we aim to propose an algorithm for the 
node-grained streaming network which has two 
characteristics: one is network expands node-by-node, the 
other is multiple edges is added simultaneously and should 
be treated equally. Assuming a node stream containing N 
elementary units �1, �2,..., �N  where �n, n=1,..., N is defined 
as an elementary incremental unit including a single vertex 
with its connecting edges,   

�n
 = {vn, Links = {enz | z<n, enz E}} 

In order to analyze this type of streaming network in 
real-time, we will update community structure as each node 
is added, by analyzing the local topology of newly added 
nodes vn and current community partition so as to maximize 
modularity. 

A. The Proposed Method 

1) Formalization 
Assuming a network denoted as GT ={VT, ET}, VT  and ET 

denotes its vertex set and edge set at time T respectively, the 
corresponding modularity is, 

,

2
, ,edg( ) deg( )

( )
2

k T T

k T k T
T

C P

C C
Q P

m m∈

= −
� �� �
� �� �� �� �� �

�  (2) 

where Ck,T and PT denotes the community Ck and 
community partition at time T and m denotes the total 
number of edges of network at time T. 
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At time T+1, i.e., after vT+1's arriving, the modularity is, 

, 1 1
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k T k T
T

C P

C C
Q P

m m
+ +

+ +
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where m' denote the total number of edges in the new 
network. Let h=|�T+1.Links|, then m'=m+h. 

At first, modularity gain from time T to time T+1 is, 
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then a concise expression for modularity gain was attained, 

1 2 3 42

1 1
4( )

Δ = Θ + Θ + Θ − Θ
+ +

Q
m h m h

 (9) 

Note that in �1(5) and �2 in (6) only depend on the 
snapshot of time T. Therefore, they can be calculated in 
constant time if edg(Ck) and deg(Ck) are stored and updated 
as network changes, and the calculations of �3 in (7) and �4 
in (8) are also fast and simple by using local topology. 

2)  Local Topology Analysis 

In this section, we will introduce different strategies for 
updating community structure when node vT+1 arrives, so as 
to maximize �Q . 

According to the local topological characteristic of 
newly arrived nodes, we adopt different strategies. Here we 
classify the local topology of new node into 3 cases as 
shown in TABLE I., where topology-specific designed 
operators for each case are also shown. 

TABLE I.    TOPOLOGICAL CLASSIFICATION AND 
OPERATORS 

 Topological Characteristic Operator 
Case 1 Without any edge ISOLATE 
Case 2 All neighbors are isolating 

singleton community 
AGGREGATION 

Case 3 Having adjacent community 
with multiple vertices 

INSERT,MERGE 

Case 1:  When new node joined the network without any 
connected edge, i.e., �T+1.Links=�. It is obvious that it is not 
proper to let the new coming node join any community, and 
the only reasonable way based on current information is 
isolating it as a new community. Operator ISOLATE is 
adopted. 

Case 2: For the case that all of the adjacent communities 
of new node are singletons (i.e., only containing one node), 
we aggregate all of them with the newly arrived node into a 
community, considering synchronicity of all adjacent single 
vertices and a basic regulation that a partition with 
maximum modularity has no community including a single 
node with degree one [10]. 

Case 3: For new node without above characteristics, we 
employ two operators (INSERT and MERGE) to update 
community partition. At first, according to a widely 
accepted generative mechanism, i.e., networks expanded 
continuously through the addition of new nodes and new 
nodes attached preferentially to communities which are 
already well connected [20], we define INSERT operator by 
letting the new node join one of its adjacent communities. 
Moreover, considering that community structures in real-
world networks are always hierarchical, it is reasonable to 
provide MERGE operator which merges two adjacent 
communities with new coming node together when two 
communities are similar enough. 

3) Operators 

In this section, we will show how does each operator up-
date community partition and how does the corresponding 
modularity gain �Q for each operator be calculated accord-
ing to (9). As mentioned above, �1 and �2 in (9) only depend 
on the snapshot of time T and can be calculated easily, we 
will mainly introduce how to calculate �3 and �4 for each 
operator. 

Definition 1 ISOLATE Operator ISO(�n) 
  

 
 

V = V ���n.v 
Cnew

 = {�n.v} 
P = P ��Cnew 

Since h = 0 in case 1, thus we got �1 = 0, �2 = 0 by using (5) 
and (6). And according to (7) and (8), we got: 

586587587



�3 = edg(Cnew) = 0 and �4 = deg(Cnew)2  = 0. 
Thus, according to (9), the modularity gain �Q = 0. 

Definition 2 AGGREGATION Operator AGG(�n) 
 For each ezn in �n.Links and vz is isolated 
 Cnew

 = Cnew �{vz} 
 P = P/{ vz} 
 End for 
 P = P � Cnew 

When Cnew is created, edg(Cnew)=h and deg(Cnew)=2h, 
thus according to (7) and (8), we got:�3 = h and �4 = 4h2.   

In the following, we use ys denoted the number of links 
between the new node and community Cxs, s=1,...,S and each 
xs denotes one of community number among S adjacent 
communities of new node respectively. 

Definition 3 INSERT Operator IST(�n, r) 
 Cr

 = Cr�{�n.v} 
 for each neighbor vnb of �n.v 
       if  Cr has most neighbour of vnb then 
              Cr

 = Cr �{vnb} 
 end for 

Supposing community Cr is the community joined by 
new node. The number of inner-community edge of commu-
nity Cr is increased by yr, and the total degree of community 
Cr, i.e., deg(Cr), is added by both the degree of new node and 
the increased degree of other vertices in Cr which is also 
equal to yr. And for other adjacent communities Ck', 
k'=x1,...,xs, k'�r the degree gain is yk' while there is no inner-
community edge being added. Thus, according to (7) and (8), 
we got: 

3 ryΘ =  and  

2 2
4 2 deg( ) 2 deg( ) 2s s s r r

S S
C y y h C h y hΘ = ⋅ + + ⋅ ⋅ + ⋅ ⋅ +� �  

In addition, considering the local topology of neighbors 
of the new node may be modified as well, we did a fast, ef-
fective adjustment for neighbors of the new node, i.e., letting 
each neighbor in one hop join the community which has 
most members among its own neighbors. 

Definition 4 MERGE Operator MRG(�n,p,q)

 Cp
 = Cp�Cq�{�n .v} 

 P = P/Cq 

Supposing merging Cq into Cp and letting the new node 
join Cp, the total gain number of inner-community edges of 
Cp after operation of MERGE contains four parts: (a) the 
number of inner-community edges of Cq, (b) the number of 
connections between new node and Cp, (c) the number of 
connections between new node and Cq, (d) the number of 
connections between Cp and Cq, denoted by Mpq. And for 
other communities there is no change in inner-community 
edges. The degree of Cp is increased by the sum of degree of 
Cq and degree of new node. According to (7) and (8), we 
have, 

3 p q pqy y MΘ = + +  

( )( )

( )

( )
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2 2
4

,

2

2 2

2 2
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�
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B. Algorithm Framework 

Here we gave the pseudo code of our algorithm for node-
grained streaming networks. 

Algorithm NGI: Node-Grained Incremental community 
detection
Inputs: A queue of vertex with/without edges �1,�2,...,�N
Output: Community partition P = {C1,C2,...,CK}
1 BEGIN
2 P =�
3 For each �n do
4 If �n.Links =� then 
5 ISO(�n)
6 else
7 if  �n.v has adjacent isolated vertex then
8 AGG(�n) 
9 else
10 Find r that maxmize �Qinsert(r) 
11 if max �Qinsert(r) >0 then 
12 IST(�n, r) 
13 else
14 Find p and q that maxmize �Qmerge(p,q)
15 if max�Qmerge(p,q) < �Qinsert(r)
16 IST(�n, r) 
17 else
18 MRG(�n, p, q)
19 end if
20 end if
21 end if
22 end while
23 End  

C. Complexity Analysis 

In the following, we will give time complexity analysis 
of our proposed NGI. Let N denote the total vertex number 
of network, H is average degree of all vertices and c is 
average number of adjacent communities. In our algorithm, 
when a new node arrives, we sweep its neighbors with time 
cost �(H) and analyzed the local topology as follows. For 
Case 1 (or Case 2), i.e., ISOLATE (or AGGREGATION) 
operator is adopted, the time cost is �(1) (or �(H)). For 
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Case 3, the worst situation is that no positive modularity 
gain is achieved by INSERT operator and any combination 
of two adjacent communities are searched for MERGE 
operator, which leads to �(c2) time cost. Thus, the total time 
cost of processing one node is O(H)+max{O(1), O(H), 
O(c2)}. Note that c is the average number of adjacent 
communities, not the total number of communities in whole 
network, which is usually smaller than H. Thus, the time 
complexity to process one vertex is smaller than �(H2) and 
time complexity on whole network is �(N*H2), equal to 
�(m*H). As usual, the average degree of all vertices H can 
be considered as a constant, compared with the total number 
of edges m. Thus, the time complexity of our algorithm is 
near linear. 

IV. EXPERIMENTS 

In order to validate the effectiveness and efficiency of 
our proposed algorithm, we tested our algorithm on a set of 
large-scale real-world networks, and compared our algo-
rithm with several competing incremental community detec-
tion algorithms and several representative non-incremental 
algorithms which use global information to attain a commu-
nity structure. 

We implemented our algorithm in JAVA. All experime-
nts were done on Lenovo Server (Intel (R) CPU i5@2.70 G-
Hz and 8GB RAM) 

A. Effectiveness 

1) Comparison with Incremental Methods 

In this section, we compared our algorithm with a 
number of incremental algorithms: OLTM [8], GreMod [7] 
and QCA [6]. We compared our NGI with OLTM, since 
both OLTM and our algorithm accomplished to detect 
community structure incrementally from the very beginning 
(i.e., the first node of network arriving). Furthermore, we 
also did some comparison with GreMod and QCA, which 
begin their incremental process from a basic network with 
certain scale and require an initial community structure 
obtained by static algorithm as their input. 

Our comparisons were on 11 real-world networks which 
were collected from Stanford Large Network Dataset 
Collection, and these networks are listed in TABLE II, of 
which the number of nodes varies from thousands to near a 
million and the number of edges range from tens of 
thousands to several millions. Among these datasets, 
citation networks (4, 5, 11) and webpage networks (7-10) 
have the property that changes happens in node-grained.  
More importantly, for dataset 4 Cit-HepPh, most of vertices 
have timestamps which denote the time a node was added 
into the network, and we extracted a sub-network containing 
all of nodes with timestamps and defined an adding 
sequence of nodes according to the time information. We 
denoted this sub-network as Cit-HepPh_REAL which is 
listed as network 11 in TABLE II. For other networks, due 
to the lack of real timestamps, all nodes were added in 
random sequence and each edge was added along with its 
later adjacent node. 

TABLE II.        SUMMARY OF DATASETS. 
NO. Data Name Nodes Edges
1 Ca-AstroPh 18772 198110
2 Ca-HepPh 12008 118521
3 Ca-HepTh 9877 25998
4 Cit-HepPh 34546 421578
5 Cit-HepTh 17770 352807
6 Ca-CondMat 23133 93497
7 Web-NotreDame 325729 1497134
8 Web-Stanford 281903 2312497
9 Web-BerkStan 685230 7600595
10 Web-Google 875713 5105039
11 Cit-HepPh_REAL 30638 346703

At first, we compared our algorithm with OLTM. To 
make the comparison more fully, we modified OLTM into 
an algorithm for processing node-grained streaming network 
by assigning connecting edges of a node a random assumed 
addition order and renamed it as 'OLTM+'. We applied our 
algorithm, OLTM and OLTM+ on 11 datasets. For each da-
tasets, we simulated a growing process of the network, and 
set 10 observation points during this expansion to compare 
results obtained by these 3 different algorithms. In order to 
ensure the comparisons for 3 algorithms on a same network 
topology at every observation point, our algorithm and 
OLTM+ which are node-grained algorithms adopted a same 
node adding sequence. On the contrary, OLTM is edge-
grained algorithm, which is fed with an edge adding se-
quence that maintains a same set of edges between any two 
observation points but ranks these edges in a random order. 

As the optimization objectives of all of these 3 
algorithms are modularity functions, we took modularity as 
a quality criterion to evaluate their performance of these 
algorithms. Note that all results in Fig.1. are the average 
results over 10 runs. As shown in Fig.1, our proposed 
algorithm outperforms both OLTM and OLTM+ on all of 
these real-world networks, and the superiority on most of 
them is significant. Moreover, OLTM+ significantly 
outperformed OLTM on most of citation networks and 
webpage networks (as shown in Fig.1. (4)(5)(7)(8)(9)(10)) 
which are considered to be networks expanded on node-
grained. This fact also indicates the significance of 
developing node-grained incremental algorithm to cope with 
this type of networks.  

Moreover, we compared our NGI with GreMod and 
QCA. As GreMod and QCA algorithm need a basic network 
and require to be fed with an initial community structure 
obtained by static algorithm, in the following experiments 
GreMod and QCA took a sub-network with 10 percent of 
nodes as basic network and adopted community structure 
obtained by Louvain algorithm for the basic network as their 
initial community structure. Note that our NGI didn't used 
initial community structure obtained by Louvain which is an 
excellent static algorithm, and just began its incremental 
process from network with a single node. 

The experimental results of the 11 data sets are shown in 
Fig. 2. It shows our incremental algorithm outperforms 
QCA and GreMod on all of networks as network grows. 
This is because GreMod and QCA used initial community 
structure obtained by Louvain algorithm (one of the best 
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Fig. 1. The change of modularity as network grow

static algorithm using global information) while our 
algorithm did not. Therefore, at first, GreMod and QCA 
obtained higher modularity than our NGI. But, as it shows 
in Fig. 2, the modularity values obtained by GreMod and 
QCA decrease dramatically as nodes were added and the 
superiority of our algorithm became more and more obvious. 
It is noteworthy that, for network 10, although our NGI got 
a much smaller modularity value than GreMod and QCA at 
the first observation point, it outperforms GreMod and QCA 
significantly in the end. This demonstrates the strong 
capability of our algorithm on processing streaming network 
incrementally. 

2) Comparison with Static Methods 

In this section, we further compared our algorithm with 
some representative static algorithms which need to use the 
whole network topology to identify community structure. 
Here we chose CNM algorithm [14], Eig algorithm [15], 
Louvain algorithm [2] and FAMBGC [21]. Experiments in 
this section were on datasets of TABLE II. Note that our 
algorithm almost processed network stream in a one-pass 
way and only utilized the local information of newly added 
node in every updating, while these static methods used 
global information and may iterate many times on a network. 
TABLE III listed the modularity values obtained by 4 
representative static algorithms (CNM, Eig, Louvain, 
FAMBGC) and our NGI on these real-world networks. As 
one can see, our algorithm outperforms CNM significantly 
and has comparable or even better modularity values with 
Louvain, state-of-the-art, and FAMBGC. Furthermore, our 
algorithm got higher modularity values than Louvain on 
most of citation networks and webpage networks, especially 
on the dataset 11 with real timestamps. One reason why our 
algorithm outperforms these static methods may be that the 
way we update community structure on node-grained and 

treat every edges of newly added node equally is more close 
to the way network evolves in reality 

Although Louvain get better results on some networks, it 
needs much more time for processing streaming networks 
which was demonstrated in Sec. IV.B, as it is a static 
algorithm. Furthermore, our algorithm has the flexibility to 
update community structure in real time when a new node 
arrives. 

TABLE III.   COMPARISON OF MODULARITY 

Data set NGI Louvain Eig CNM FAMBGC 
1 0.613 0.628 0.487 0.535 0.582 
2 0.621 0.658 0.582 0.581 0.643 
3 0.710 0.768 0.18 - 0.743 
4 0.781 0.724 0.494 0.523 0.665 
5 0.692 0.655 0.596 0.613 0.586 
6 0.689 0.731 0.573 0.646 0.706 
7 0.882 0.935 - - 0.933 
8 0.945 0.930 0.419 0.894 0.911 
9 0.965 0.935 0.339 0.904 0.923 
10 0.953 0.976 - - 0.973 
11 0.788 0.728 0.567 0.564 0.661 

3) Comparisons on Networks with Ground-truth 

In this section, to further illustrate the effectiveness of 
our algorithm we did our comparisons on networks with 
ground-truth by using a widely used accuracy metric, i.e., 
Normalized Mutual Information (NMI)[1], which measures 
the similarity between the results and truth community 
structures. Here we chose OLTM and Louvain as comparing 
algorithms, as OLTM is a representative incremental 
algorithm and can begin its incremental process from the  
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Fig. 2. The change of modularity as network grows 

very beginning, i.e., a single edge, and Louvain is one of the 
best static algorithms using global information. All contrast 
experiments are on 4 public large datasets with ground-truth 
community structure, which are from Stanford Large 
Network Dataset Collection. Here for each data set, we use 
the sub-network with top 5,000 communities processed by 
data provider for community detection[22]. com-Amazon is 
a product co-purchasing network, where nodes represent  
products and there will be existed an edge between two 
products if the two products were brought together. It has 
16716 nodes and 48739 edges. com-DBLP is a 
collaboration network, where a node denotes an author and 
two authors are connected if they co-published at least one 
paper together. It has 93432 nodes and 335520 edges. com-
Youtube is a video sharing web, where nodes represent 
users and edges will be generated between two users if the 
two users share a video. It has 39841nodes 224235 edges. 
com-LiveJournal is an on-line blogging network where 
nodes represent blog users and an edge will connect two 
users if they declared to be friends with each other. It has 
84438 nodes and 1521988 edges. 

TABLE IV.        NMI BENCHMARK BY FOUR 
COMMUNITY DETECTION ALGORITHMS 

Data set NGI OLTM Louvain
com-Amazon 0.913 0.879 0.916 
com-DBLP 0.526 0.692 0.606 
com-DBLP 0.526 0.692 0.606 

com-Youtube 0.591 0.494 0.574 
com-LiveJournal 0.824 0.862 0.866 

The NMI value of 1 means that two assignments are 
identical and 0 implies the opposite. As we can see from 
TABLE IV., for com-Amazon and com-Youtube network,  

the NMI scores of our NGI are obvious higher than 
OLTM’s. For com-DBLP network, nodes denote computer 
science researchers and an edge will be added between two 
researchers if they co-publish a paper. Thus, it is more likely 
the network expanded in edge-grained, not in node-grained. 
Maybe that is why OLTM obtained better results than ours 
in com-DBLP. Furthermore, compared with Louvain, our 
algorithm still achieves competitive results. Especially in 
com-Amazon network, both the result of ours and Louvain 
are considerably high and close to 1, indicating that both the 
results of our NGI and Louvain have high quality. Note that 
Louvain makes use of the whole network information to 
identify communities, and it wastes lots of time for 
processing network changes frequently, which is shown in 
detail in the following section. 

B.  Efficiency 

In this section, we compared the time cost of our 
algorithm with that of Louvain and OLTM. 

For every dataset, sub-graphs were stored when every 
tenth of total vertices were added and then 10 sub-graphs 
were tested for each network. Fig.3(a) shows the time cost 
of Louvain on total 110 sub-graphs of 11 networks and the 
regression curve indicated the relationship between time 
cost and number of vertex. Fig.3(b) shows the cost of 
accumulative time which grows as the number of vertex 
increases. For the static algorithm Louvain, the cost of 
accumulative time was approximately calculated by 
integrating the regression expression because it must be re-
performed the whole algorithm on new network topology 
after every node addition. On the contrary, the total time 
cost of incremental methods is the total running time of our 
algorithm (OLTM) for processing a sequence of node 
additions. 
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Fig. 3. Consuming time on networks of different scale 

V. CONCLUSION 
While most of traditional incremental techniques are de-

signed for processing edge-grained changes, there exist some 
real-world networks which expanded on node-grained. We 
propose a node-grained incremental community detection 
algorithm which took each vertex and its connecting edges as 
a processing unit and equally treat edges involved by the 
same node. The main idea of this algorithm is to update the 
community structure by analyzing the local topology of a 
new node and utilizing some prior information as nodes are 
added. To be specific, we defined 4 operators (ISOLATE, 
AGGARAGATION, INSERT and MERGE) which are adopted 
according to different local topological characteristics of 
newly arrived node, so as to attain the largest modularity 
gain. Experimental results demonstrated that our algorithm 
achieves better results than the competing edge-grained algo-
rithms, and outperforms the representative static algorithms 
which use global information. Besides, it even obtains better 
results than Louvain method, one of the best methods for 
modularity optimization, in networks which are more likely 
to evolve on node grained. This also indicates the signifi-
cance of node-grained incremental algorithms. 
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