
Node-Grained Incremental Community Detection for Streaming Networks

Siwen Yin1, Shizhan Chen1, Zhiyong Feng2, Keman Huang1, Dongxiao He1*, Peng Zhao1 Michael Ying Yang3
1:School of Computer Science and Technology, Tianjin University, Tianjin, China

2: School of Computer Software, Tianjin University, Tianjin, China
3: Department of Earth Observation Science, University of Twente, Enschede, the Netherlands

Email: siwenyin@tju.edu.cn; shizhan@tju.edu.cn; zyfeng@tju.edu.cn; keman.huang@tju.edu.cn;
hedongxiao@tju.edu.cn; 2013216106@tju.edu.cn; michael.yang@utwente.nl

Abstract—Community detection has been one of the key re-
search topics in the analysis of networked data, which is a
powerful tool for understanding organizational structures of
complex networks. One major challenge in community detec-
tion is to analyze community structures for streaming net-
works in real-time in which changes arrive sequentially and
frequently. The existing incremental algorithms are often de-
signed for edge-grained sequential changes, which are sensitive
to the processing sequence of edges. However, there exist many
real-world networks that changes occur on node-grained, i.e.,
node with its connecting edges is added into network simulta-
neously and all edges arrive at the same time. In this paper, we
propose a novel incremental community detection method
based on modularity optimization for node-grained streaming
networks. This method takes one vertex and its connecting
edges as a processing unit, and equally treats edges involved by
same node. Our algorithm is evaluated on a set of real-world
networks, and is compared with several representative incre-
mental and non-incremental algorithms. The experimental
results show that our method is highly effective for discovering
communities in an incremental way. In addition, our algorithm
even got better results than Louvain method (the famous mod-
ularity optimization algorithm using global information) in
some test networks, e.g., citation networks, which are more
likely to be node-grained. This may further indicate the signifi-
cance of the node-grained incremental algorithms.

Keywords—Community Detection; Complex Network; Incre-
mental Algorithm; Modularity.

I. INTRODUCTION
Complex systems, widely studied in many scientific

fields, e.g., biology, social science and engineering, can be
represented as networks, where elementary units of a system
and mutual interactions between them are represented as
nodes and edges respectively[1, 2]. Real-world networks
which represent complex systems have some special proper-
ties, one of which is local inhomogeneity of edge distribu-
tion, i.e., high density of edges within some groups of nodes
while low density of edges between different groups. This is
so-called community structure [3]. So far, there is no widely
accepted accurate definition for community structure. Gener-
ally, communities are considered as groups of nodes in
which there are edges connecting nodes, while between
which there are few edges [4].

Community structure indicates that individuals within a
community have common or similar properties/functions, or
play similar roles, while individuals in different communities
usually have significant dissimilarity [5]. Thus it is helpful
for discovering organizational structures and underlying fea-
tures of networks. Furthermore, it provides rich information
for studying existing networks and powerful help for mining
some uncovered parts of the networks such as link predic-
tion. Community detection has been successfully used in
many applications, e.g., event detection, topic detection, pro-
tein interaction analysis and terrorist organization recogni-
tion.

Most real networks are not static but often change fre-
quently over time. These frequent changes are usually repre-
sented as streaming networks, which require real-time ana-
lytical methods which can process the network incrementally
and update the community structure in time. The existing
incremental methods [6,7,8,9,10] usually take the evolution
of large scale networks as a sequence of additions of edges,
i.e., modeling a streaming network as edge-grained sequen-
tial changes which is very sensitive to the processing se-
quence of edges. However, there is another type of changes
which happens on the level of nodes: a single node with its
connecting edges is added into the network simultaneously,
and all the edges are added at the same time. There is no
reason to assign them an assumed adding sequence. For ex-
ample, in citation networks in which node represents article
and edge represents citation between two articles, a network
was expanded when an article with some citations was pub-
lished. These citations happened at the same time, and hence
there is no reason assuming one happened after another.
Webpage networks take web-pages as nodes and hyperlinks
as edges. The node-grained change took place when a brand
new webpage was deployed, i.e., a new node (representing
webpage) and all its connecting edges (representing the hy-
perlinks of this webpage) were added into the network at the
same time. To the best of our knowledge, there is no special
node-grained incremental community detection methods
designed for streaming networks.

In this paper, a Node-Grained Incremental community
detection algorithm, namely NGI, is proposed to handle the
frequent node-grained addition which involves the simulta-
neous additions of edges. This algorithm is based on the op-
timization of modularity. It equally treats the edges arrived at
the same time, and updates community structures in real-

*Corresponding Author: Dongxiao He, hedongxiao@tju.edu.cn

2016 IEEE 28th International Conference on Tools with Artificial Intelligence

2375-0197/16 $31.00 © 2016 IEEE

DOI 10.1109/ICTAI.2016.92

584

2016 IEEE 28th International Conference on Tools with Artificial Intelligence

2375-0197/16 $31.00 © 2016 IEEE

DOI 10.1109/ICTAI.2016.92

585

2016 IEEE 28th International Conference on Tools with Artificial Intelligence

2375-0197/16 $31.00 © 2016 IEEE

DOI 10.1109/ICTAI.2016.92

585

time when node-grained changes arrive. The experimental
results showed the applicability of our method for processing
networks changing frequently, and showed its superior per-
formance over competing incremental and non-incremental
methods in terms of both community quality and efficiency.
Besides, our nearly almost one-pass algorithm got better
results than the well-known static algorithm Louvain [2]
(using global information and iterating multi-times) on many
citation and Web networks. This indicates specific character-
istics of node-grained streaming networks.

II. RELATED WORK
Modularity was proposed by Newman and Girvan [11]

which is built on the comparison between network with
community structure and a random graph (also called null
model) without this property [3].

Let G be a given graph G ={V,E}, whose vertex set is
denoted by V and edge set is denoted by E. The modularity
of a community partition P={C1, C2,..., CK}, where Ck
denote one of community k, k=1,...,K and �C�, C� P,
C��C�= , V=�K

1 Ck, is defined as :

2

()
edg() deg()

2
k

k k

C P
Q P

C C
m m∈

=
� �� �� �− � �� �� �� �

� (1)

where edg(Ck) denotes the number of intra-community
edges in community Ck , deg(Ck) denotes the sum of degree
of every vertex in community Ck, and m is the total number
of edges in C. The modularity of an identified community
partition is a scalar value between -1 and 1 that measures the
density of edges within communities compared to the
density of edges between different communities [3]. Hence,
a partition with higher modularity on a given graph is
thought to be better.

Finding a partition corresponding to the maximum value
of modularity on a given graph is a NP-hard problem due to
the space of possible partitions grows quite fast [12]. Many
heuristic methods for maximizing modularity have been
proposed, including fast greedy method by Newman [11],
CNM algorithm [14], Eig algorithm [15], method by
Xie[16], algorithm by Wakita and Tsurumi [14], and
Louvain algorithm [2] which is considered as state-of-the-
art. However, all of these methods were designed for static
networks, and need to use whole network topology to find
community structure. When changes happened on a network,
these methods have to be re-performed on changed network
topology so as to discover community structure for the
changed network [18,19]. Hence, the time cost will grow
rapidly and it become intractable as network changes
frequently.

In order to analyze networks that change frequently in
real time, many incremental community detection methods
were proposed. They updated community structure by using
local information around the change and the priori
community information, which do not need to re-perform a
community detection algorithm like for processing a brand
new network and can avoid unnecessary computing. There
is no doubt that incremental method is more suitable for

discovering community structures in streaming networks
with frequent changes.

Here we summarized some recent modularity-based
incremental community detection algorithm. Nguyen's QCA
method [11] handles four types of changes including node
addition/deletion and edge addition/deletion, but it transfers
node addition/deletion into sequence of edge changes which
is very sensitive to the processing order of edges. Shang's
GreMod method [7] uses similar processing technique in
certain simple scenarios, i.e., intra/inter edge addition, while
leaves node addition unhandled. A disadvantage of Shang's
method is that it needs an initial community partition
produced by non-incremental community detection methods
as its input, and this also leads to another drawback, i.e., its
results are influenced by the initial partition and the order in
which edges are processed. Pan's OLTM [8] and Zhang's
OLEM [10] are designed for processing an edge-grained
network stream by optimizing modularity and expected
modularity respectively. These traditional modularity-based
incremental algorithms have a common drawback, i.e.,
being very sensitive to the processing order of edges, which
may lead to unstable results. More importantly, they cannot
handle node-grained changes well because they impose an
assumed order for edges involved by a node addition which
violates the fact these edges are added simultaneously, thus
poor performance may occur when they are applied on
networks growing in node-grained.

III. METHODS

In this paper, we aim to propose an algorithm for the
node-grained streaming network which has two
characteristics: one is network expands node-by-node, the
other is multiple edges is added simultaneously and should
be treated equally. Assuming a node stream containing N
elementary units �1, �2,..., �N where �n, n=1,..., N is defined
as an elementary incremental unit including a single vertex
with its connecting edges,

�n
 = {vn, Links = {enz | z<n, enz E}}

In order to analyze this type of streaming network in
real-time, we will update community structure as each node
is added, by analyzing the local topology of newly added
nodes vn and current community partition so as to maximize
modularity.

A. The Proposed Method

1) Formalization
Assuming a network denoted as GT ={VT, ET}, VT and ET

denotes its vertex set and edge set at time T respectively, the
corresponding modularity is,

,

2
, ,edg() deg()

()
2

k T T

k T k T
T

C P

C C
Q P

m m∈

= −
� �� �
� �� �� �� �� �

� (2)

where Ck,T and PT denotes the community Ck and
community partition at time T and m denotes the total
number of edges of network at time T.

585586586

At time T+1, i.e., after vT+1's arriving, the modularity is,

, 1 1

2
, 1 , 1

1

edg() deg()
()

' 2 '
k T T

k T k T
T

C P

C C
Q P

m m
+ +

+ +
+

∈

= −
� �� �
� �� �� �� �� �

� (3)

where m' denote the total number of edges in the new
network. Let h=|�T+1.Links|, then m'=m+h.

At first, modularity gain from time T to time T+1 is,

() ()1 1T T T TQ Q p Q p+ +Δ = −

() ()
, 1 1 ,

, 1 ,
1

edg edg
k T T k T T

k T
C P C P

k TC C
m h

+ +

+
∈ ∈

= −
+

	
� �
�

� �� �

� �

()
() ()

, 1 1 ,

2 2
, 1 ,2

1
deg deg

4
k T T k T T

k T k T
C P C P

C C
m h

+ +

+
∈ ∈

− −
+

	
� �
�

� �� �

� �

()
,

,
1 1

edg
k T T

k T
C P

C
m h m ∈

+ −
+

	
� �� �
�
� �

� �� �� �
�

()
()

,

2
,2 2

1 1
deg

4 4
k T T

k T
C P

C
m m h ∈

+ −
+

	
� �� �
� ��
� �� �� �� �

�
(4)

let

()
,

,1
1 1

edg
k T T

k T
C P

C
m h m ∈

−
+

	
� �� �Θ = �
� �
� �� �� �

� (5)

()
()

,

2
,2 2 2 deg

1 1
4 4

k T T

k T
C P

C
m m h ∈

	
� �� �� �Θ = − �
� �+ � �� �� �
�

(6)

() ()
, 1 1 ,

3 , 1 ,edg edg
k T T k T T

k T k T
C P C P

C C
+ +

+
∈ ∈

Θ = −� � (7)

() ()
, 1 1 ,

2 2
4 , 1 ,deg deg

k T T k T T

k T k T
C P C P

C C
+ +

+
∈ ∈

Θ = −� �

(8)

then a concise expression for modularity gain was attained,

1 2 3 42

1 1
4()

Δ = Θ + Θ + Θ − Θ
+ +

Q
m h m h

 (9)

Note that in �1(5) and �2 in (6) only depend on the
snapshot of time T. Therefore, they can be calculated in
constant time if edg(Ck) and deg(Ck) are stored and updated
as network changes, and the calculations of �3 in (7) and �4
in (8) are also fast and simple by using local topology.

2) Local Topology Analysis

In this section, we will introduce different strategies for
updating community structure when node vT+1 arrives, so as
to maximize �Q .

According to the local topological characteristic of
newly arrived nodes, we adopt different strategies. Here we
classify the local topology of new node into 3 cases as
shown in TABLE I., where topology-specific designed
operators for each case are also shown.

TABLE I. TOPOLOGICAL CLASSIFICATION AND
OPERATORS

 Topological Characteristic Operator
Case 1 Without any edge ISOLATE
Case 2 All neighbors are isolating

singleton community
AGGREGATION

Case 3 Having adjacent community
with multiple vertices

INSERT,MERGE

Case 1: When new node joined the network without any
connected edge, i.e., �T+1.Links=�. It is obvious that it is not
proper to let the new coming node join any community, and
the only reasonable way based on current information is
isolating it as a new community. Operator ISOLATE is
adopted.

Case 2: For the case that all of the adjacent communities
of new node are singletons (i.e., only containing one node),
we aggregate all of them with the newly arrived node into a
community, considering synchronicity of all adjacent single
vertices and a basic regulation that a partition with
maximum modularity has no community including a single
node with degree one [10].

Case 3: For new node without above characteristics, we
employ two operators (INSERT and MERGE) to update
community partition. At first, according to a widely
accepted generative mechanism, i.e., networks expanded
continuously through the addition of new nodes and new
nodes attached preferentially to communities which are
already well connected [20], we define INSERT operator by
letting the new node join one of its adjacent communities.
Moreover, considering that community structures in real-
world networks are always hierarchical, it is reasonable to
provide MERGE operator which merges two adjacent
communities with new coming node together when two
communities are similar enough.

3) Operators

In this section, we will show how does each operator up-
date community partition and how does the corresponding
modularity gain �Q for each operator be calculated accord-
ing to (9). As mentioned above, �1 and �2 in (9) only depend
on the snapshot of time T and can be calculated easily, we
will mainly introduce how to calculate �3 and �4 for each
operator.

Definition 1 ISOLATE Operator ISO(�n)

V = V ���n.v
Cnew

 = {�n.v}
P = P ��Cnew

Since h = 0 in case 1, thus we got �1 = 0, �2 = 0 by using (5)
and (6). And according to (7) and (8), we got:

586587587

�3 = edg(Cnew) = 0 and �4 = deg(Cnew)2 = 0.
Thus, according to (9), the modularity gain �Q = 0.

Definition 2 AGGREGATION Operator AGG(�n)
 For each ezn in �n.Links and vz is isolated
 Cnew

 = Cnew �{vz}
 P = P/{ vz}
 End for
 P = P � Cnew

When Cnew is created, edg(Cnew)=h and deg(Cnew)=2h,
thus according to (7) and (8), we got:�3 = h and �4 = 4h2.

In the following, we use ys denoted the number of links
between the new node and community Cxs, s=1,...,S and each
xs denotes one of community number among S adjacent
communities of new node respectively.

Definition 3 INSERT Operator IST(�n, r)
 Cr

 = Cr�{�n.v}
 for each neighbor vnb of �n.v
 if Cr has most neighbour of vnb then
 Cr

 = Cr �{vnb}
 end for

Supposing community Cr is the community joined by
new node. The number of inner-community edge of commu-
nity Cr is increased by yr, and the total degree of community
Cr, i.e., deg(Cr), is added by both the degree of new node and
the increased degree of other vertices in Cr which is also
equal to yr. And for other adjacent communities Ck',
k'=x1,...,xs, k'�r the degree gain is yk' while there is no inner-
community edge being added. Thus, according to (7) and (8),
we got:

3 ryΘ = and

2 2
4 2 deg() 2 deg() 2s s s r r

S S
C y y h C h y hΘ = ⋅ + + ⋅ ⋅ + ⋅ ⋅ +� �

In addition, considering the local topology of neighbors
of the new node may be modified as well, we did a fast, ef-
fective adjustment for neighbors of the new node, i.e., letting
each neighbor in one hop join the community which has
most members among its own neighbors.

Definition 4 MERGE Operator MRG(�n,p,q)

 Cp
 = Cp�Cq�{�n .v}

 P = P/Cq

Supposing merging Cq into Cp and letting the new node
join Cp, the total gain number of inner-community edges of
Cp after operation of MERGE contains four parts: (a) the
number of inner-community edges of Cq, (b) the number of
connections between new node and Cp, (c) the number of
connections between new node and Cq, (d) the number of
connections between Cp and Cq, denoted by Mpq. And for
other communities there is no change in inner-community
edges. The degree of Cp is increased by the sum of degree of
Cq and degree of new node. According to (7) and (8), we
have,

3 p q pqy y MΘ = + +

()()

()

()

()

2 2
4

,

2

2 2

2 2

deg() deg()

deg() deg()

deg() deg()

2 deg()

2{ deg()deg() ()

deg() deg() deg() deg() }

S

s s s
s p s q

p q p q

p q

s s s
S S

p q p q p q

p q p q q p

C y C

C C y y h

C C

y C y h

y y C C y y h

C C h C y C y

≠ ≠
Θ = + −

+ + + + +

− −

= ⋅ + +

+ ⋅ + + + ⋅

+ + ⋅ + +

�

� �

B. Algorithm Framework

Here we gave the pseudo code of our algorithm for node-
grained streaming networks.

Algorithm NGI: Node-Grained Incremental community
detection
Inputs: A queue of vertex with/without edges �1,�2,...,�N
Output: Community partition P = {C1,C2,...,CK}
1 BEGIN
2 P =�
3 For each �n do
4 If �n.Links =� then
5 ISO(�n)
6 else
7 if �n.v has adjacent isolated vertex then
8 AGG(�n)
9 else
10 Find r that maxmize �Qinsert(r)
11 if max �Qinsert(r) >0 then
12 IST(�n, r)
13 else
14 Find p and q that maxmize �Qmerge(p,q)
15 if max�Qmerge(p,q) < �Qinsert(r)
16 IST(�n, r)
17 else
18 MRG(�n, p, q)
19 end if
20 end if
21 end if
22 end while
23 End

C. Complexity Analysis

In the following, we will give time complexity analysis
of our proposed NGI. Let N denote the total vertex number
of network, H is average degree of all vertices and c is
average number of adjacent communities. In our algorithm,
when a new node arrives, we sweep its neighbors with time
cost �(H) and analyzed the local topology as follows. For
Case 1 (or Case 2), i.e., ISOLATE (or AGGREGATION)
operator is adopted, the time cost is �(1) (or �(H)). For

587588588

Case 3, the worst situation is that no positive modularity
gain is achieved by INSERT operator and any combination
of two adjacent communities are searched for MERGE
operator, which leads to �(c2) time cost. Thus, the total time
cost of processing one node is O(H)+max{O(1), O(H),
O(c2)}. Note that c is the average number of adjacent
communities, not the total number of communities in whole
network, which is usually smaller than H. Thus, the time
complexity to process one vertex is smaller than �(H2) and
time complexity on whole network is �(N*H2), equal to
�(m*H). As usual, the average degree of all vertices H can
be considered as a constant, compared with the total number
of edges m. Thus, the time complexity of our algorithm is
near linear.

IV. EXPERIMENTS

In order to validate the effectiveness and efficiency of
our proposed algorithm, we tested our algorithm on a set of
large-scale real-world networks, and compared our algo-
rithm with several competing incremental community detec-
tion algorithms and several representative non-incremental
algorithms which use global information to attain a commu-
nity structure.

We implemented our algorithm in JAVA. All experime-
nts were done on Lenovo Server (Intel (R) CPU i5@2.70 G-
Hz and 8GB RAM)

A. Effectiveness

1) Comparison with Incremental Methods

In this section, we compared our algorithm with a
number of incremental algorithms: OLTM [8], GreMod [7]
and QCA [6]. We compared our NGI with OLTM, since
both OLTM and our algorithm accomplished to detect
community structure incrementally from the very beginning
(i.e., the first node of network arriving). Furthermore, we
also did some comparison with GreMod and QCA, which
begin their incremental process from a basic network with
certain scale and require an initial community structure
obtained by static algorithm as their input.

Our comparisons were on 11 real-world networks which
were collected from Stanford Large Network Dataset
Collection, and these networks are listed in TABLE II, of
which the number of nodes varies from thousands to near a
million and the number of edges range from tens of
thousands to several millions. Among these datasets,
citation networks (4, 5, 11) and webpage networks (7-10)
have the property that changes happens in node-grained.
More importantly, for dataset 4 Cit-HepPh, most of vertices
have timestamps which denote the time a node was added
into the network, and we extracted a sub-network containing
all of nodes with timestamps and defined an adding
sequence of nodes according to the time information. We
denoted this sub-network as Cit-HepPh_REAL which is
listed as network 11 in TABLE II. For other networks, due
to the lack of real timestamps, all nodes were added in
random sequence and each edge was added along with its
later adjacent node.

TABLE II. SUMMARY OF DATASETS.
NO. Data Name Nodes Edges
1 Ca-AstroPh 18772 198110
2 Ca-HepPh 12008 118521
3 Ca-HepTh 9877 25998
4 Cit-HepPh 34546 421578
5 Cit-HepTh 17770 352807
6 Ca-CondMat 23133 93497
7 Web-NotreDame 325729 1497134
8 Web-Stanford 281903 2312497
9 Web-BerkStan 685230 7600595
10 Web-Google 875713 5105039
11 Cit-HepPh_REAL 30638 346703

At first, we compared our algorithm with OLTM. To
make the comparison more fully, we modified OLTM into
an algorithm for processing node-grained streaming network
by assigning connecting edges of a node a random assumed
addition order and renamed it as 'OLTM+'. We applied our
algorithm, OLTM and OLTM+ on 11 datasets. For each da-
tasets, we simulated a growing process of the network, and
set 10 observation points during this expansion to compare
results obtained by these 3 different algorithms. In order to
ensure the comparisons for 3 algorithms on a same network
topology at every observation point, our algorithm and
OLTM+ which are node-grained algorithms adopted a same
node adding sequence. On the contrary, OLTM is edge-
grained algorithm, which is fed with an edge adding se-
quence that maintains a same set of edges between any two
observation points but ranks these edges in a random order.

As the optimization objectives of all of these 3
algorithms are modularity functions, we took modularity as
a quality criterion to evaluate their performance of these
algorithms. Note that all results in Fig.1. are the average
results over 10 runs. As shown in Fig.1, our proposed
algorithm outperforms both OLTM and OLTM+ on all of
these real-world networks, and the superiority on most of
them is significant. Moreover, OLTM+ significantly
outperformed OLTM on most of citation networks and
webpage networks (as shown in Fig.1. (4)(5)(7)(8)(9)(10))
which are considered to be networks expanded on node-
grained. This fact also indicates the significance of
developing node-grained incremental algorithm to cope with
this type of networks.

Moreover, we compared our NGI with GreMod and
QCA. As GreMod and QCA algorithm need a basic network
and require to be fed with an initial community structure
obtained by static algorithm, in the following experiments
GreMod and QCA took a sub-network with 10 percent of
nodes as basic network and adopted community structure
obtained by Louvain algorithm for the basic network as their
initial community structure. Note that our NGI didn't used
initial community structure obtained by Louvain which is an
excellent static algorithm, and just began its incremental
process from network with a single node.

The experimental results of the 11 data sets are shown in
Fig. 2. It shows our incremental algorithm outperforms
QCA and GreMod on all of networks as network grows.
This is because GreMod and QCA used initial community
structure obtained by Louvain algorithm (one of the best

588589589

Fig. 1. The change of modularity as network grow

static algorithm using global information) while our
algorithm did not. Therefore, at first, GreMod and QCA
obtained higher modularity than our NGI. But, as it shows
in Fig. 2, the modularity values obtained by GreMod and
QCA decrease dramatically as nodes were added and the
superiority of our algorithm became more and more obvious.
It is noteworthy that, for network 10, although our NGI got
a much smaller modularity value than GreMod and QCA at
the first observation point, it outperforms GreMod and QCA
significantly in the end. This demonstrates the strong
capability of our algorithm on processing streaming network
incrementally.

2) Comparison with Static Methods

In this section, we further compared our algorithm with
some representative static algorithms which need to use the
whole network topology to identify community structure.
Here we chose CNM algorithm [14], Eig algorithm [15],
Louvain algorithm [2] and FAMBGC [21]. Experiments in
this section were on datasets of TABLE II. Note that our
algorithm almost processed network stream in a one-pass
way and only utilized the local information of newly added
node in every updating, while these static methods used
global information and may iterate many times on a network.
TABLE III listed the modularity values obtained by 4
representative static algorithms (CNM, Eig, Louvain,
FAMBGC) and our NGI on these real-world networks. As
one can see, our algorithm outperforms CNM significantly
and has comparable or even better modularity values with
Louvain, state-of-the-art, and FAMBGC. Furthermore, our
algorithm got higher modularity values than Louvain on
most of citation networks and webpage networks, especially
on the dataset 11 with real timestamps. One reason why our
algorithm outperforms these static methods may be that the
way we update community structure on node-grained and

treat every edges of newly added node equally is more close
to the way network evolves in reality

Although Louvain get better results on some networks, it
needs much more time for processing streaming networks
which was demonstrated in Sec. IV.B, as it is a static
algorithm. Furthermore, our algorithm has the flexibility to
update community structure in real time when a new node
arrives.

TABLE III. COMPARISON OF MODULARITY

Data set NGI Louvain Eig CNM FAMBGC
1 0.613 0.628 0.487 0.535 0.582
2 0.621 0.658 0.582 0.581 0.643
3 0.710 0.768 0.18 - 0.743
4 0.781 0.724 0.494 0.523 0.665
5 0.692 0.655 0.596 0.613 0.586
6 0.689 0.731 0.573 0.646 0.706
7 0.882 0.935 - - 0.933
8 0.945 0.930 0.419 0.894 0.911
9 0.965 0.935 0.339 0.904 0.923
10 0.953 0.976 - - 0.973
11 0.788 0.728 0.567 0.564 0.661

3) Comparisons on Networks with Ground-truth

In this section, to further illustrate the effectiveness of
our algorithm we did our comparisons on networks with
ground-truth by using a widely used accuracy metric, i.e.,
Normalized Mutual Information (NMI)[1], which measures
the similarity between the results and truth community
structures. Here we chose OLTM and Louvain as comparing
algorithms, as OLTM is a representative incremental
algorithm and can begin its incremental process from the

589590590

Fig. 2. The change of modularity as network grows

very beginning, i.e., a single edge, and Louvain is one of the
best static algorithms using global information. All contrast
experiments are on 4 public large datasets with ground-truth
community structure, which are from Stanford Large
Network Dataset Collection. Here for each data set, we use
the sub-network with top 5,000 communities processed by
data provider for community detection[22]. com-Amazon is
a product co-purchasing network, where nodes represent
products and there will be existed an edge between two
products if the two products were brought together. It has
16716 nodes and 48739 edges. com-DBLP is a
collaboration network, where a node denotes an author and
two authors are connected if they co-published at least one
paper together. It has 93432 nodes and 335520 edges. com-
Youtube is a video sharing web, where nodes represent
users and edges will be generated between two users if the
two users share a video. It has 39841nodes 224235 edges.
com-LiveJournal is an on-line blogging network where
nodes represent blog users and an edge will connect two
users if they declared to be friends with each other. It has
84438 nodes and 1521988 edges.

TABLE IV. NMI BENCHMARK BY FOUR
COMMUNITY DETECTION ALGORITHMS

Data set NGI OLTM Louvain
com-Amazon 0.913 0.879 0.916
com-DBLP 0.526 0.692 0.606
com-DBLP 0.526 0.692 0.606

com-Youtube 0.591 0.494 0.574
com-LiveJournal 0.824 0.862 0.866

The NMI value of 1 means that two assignments are
identical and 0 implies the opposite. As we can see from
TABLE IV., for com-Amazon and com-Youtube network,

the NMI scores of our NGI are obvious higher than
OLTM’s. For com-DBLP network, nodes denote computer
science researchers and an edge will be added between two
researchers if they co-publish a paper. Thus, it is more likely
the network expanded in edge-grained, not in node-grained.
Maybe that is why OLTM obtained better results than ours
in com-DBLP. Furthermore, compared with Louvain, our
algorithm still achieves competitive results. Especially in
com-Amazon network, both the result of ours and Louvain
are considerably high and close to 1, indicating that both the
results of our NGI and Louvain have high quality. Note that
Louvain makes use of the whole network information to
identify communities, and it wastes lots of time for
processing network changes frequently, which is shown in
detail in the following section.

B. Efficiency

In this section, we compared the time cost of our
algorithm with that of Louvain and OLTM.

For every dataset, sub-graphs were stored when every
tenth of total vertices were added and then 10 sub-graphs
were tested for each network. Fig.3(a) shows the time cost
of Louvain on total 110 sub-graphs of 11 networks and the
regression curve indicated the relationship between time
cost and number of vertex. Fig.3(b) shows the cost of
accumulative time which grows as the number of vertex
increases. For the static algorithm Louvain, the cost of
accumulative time was approximately calculated by
integrating the regression expression because it must be re-
performed the whole algorithm on new network topology
after every node addition. On the contrary, the total time
cost of incremental methods is the total running time of our
algorithm (OLTM) for processing a sequence of node
additions.

590591591

Fig. 3. Consuming time on networks of different scale

V. CONCLUSION
While most of traditional incremental techniques are de-

signed for processing edge-grained changes, there exist some
real-world networks which expanded on node-grained. We
propose a node-grained incremental community detection
algorithm which took each vertex and its connecting edges as
a processing unit and equally treat edges involved by the
same node. The main idea of this algorithm is to update the
community structure by analyzing the local topology of a
new node and utilizing some prior information as nodes are
added. To be specific, we defined 4 operators (ISOLATE,
AGGARAGATION, INSERT and MERGE) which are adopted
according to different local topological characteristics of
newly arrived node, so as to attain the largest modularity
gain. Experimental results demonstrated that our algorithm
achieves better results than the competing edge-grained algo-
rithms, and outperforms the representative static algorithms
which use global information. Besides, it even obtains better
results than Louvain method, one of the best methods for
modularity optimization, in networks which are more likely
to evolve on node grained. This also indicates the signifi-
cance of node-grained incremental algorithms.

ACKNOWLEDGMENT
This work was supported by Natural Science Foundation

of China (61373035, 61502334, 61572350, 61502333) and
the Tianjin Research Program of Application Foundation and
Advanced Technology (14JCYBJCI5600).

REFERENCES
[1] A.Lancichinetti, S. Fortunato, 2009. Community detection algo-

rithms: A comparative analysis. Physical review E 80(50):056117.
[2] V.D. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, 2008. Fast

unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008(10): P10008.

[3] S. Fortunato, 2010. Community detection in graphs. Physics Reports
486(3-5): p. 75-174.

[4] M. Coscia, F. Giannotti, D. Pedreschi, 2011. A classification for
community discovery methods in complex networks. Statistical Anal-
ysis and Data Mining: The ASA Data Science Journal4(5): p. 512--
546.

[5] J. Duch, A. Arenas, 2005. Community detection in complex networks
using extremal optimization. Physical review E 72, 027104 (2005)

[6] N.P. Nguyen, T.N. Dinh, Y. Xuan, M.T. Thai, 2011.Adaptive algo-
rithms for detecting community structure in dynamic social networks.
INFOCOM, 2011 Proceedings IEEE. IEEE, 2011: 2282-2290.

[7] J. Shang, L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, C. Wu, 2014. A
Real-Time Detecting Algorithm for Tracking Community Structure of
Dynamic Networks. In6th SNA-KDD Workshop, 2012.

[8] G. Pan, W. Zhang, Z. Wu, S. Li, 2014. Online Community Detection
for Large Complex Networks. PLoS ONE 9(7): e102799.
doi:10.1371

[9] J. Xie, M. Chen, B.K. Szymanski, 2013. LabelRankT: Incremental
Community Detection in Dynamic Networks via Label Propagation.
Proceedings of the Workshop on Dynamic Networks Management
and Mining. ACM, 2013: 25-32.

[10] W. Zhang, G. Pan, Z. Wu, S. Li, 2013. Online community detection
for large complex networks. Proceedings of the Twenty-Third inter-
national joint conference on Artificial Intelligence. AAAI Press2013:
1903-1909. 2013.

[11] M.E.J. Newman, M. Girvan 2004. Finding and evaluating community
structure in networks. Physical review E 69(2): 026113.

[12] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikolo-
ski, D. Wagner, 2006. On modularity-np-completeness and beyond.
Univ. Fak. für Informatik, Bibliothek, 2006

[13] M.E.J. Newman, 2004. Fast algorithm for detecting community struc-
ture in networks. Physical review E 69(6): 066133

[14] A. Clauset, M.E.J. Newman, C. Moore, 2004. Finding community
structure in very large networks. Physical review E 70(6): 066111.

[15] M.E.J. Newman, 2006. From the Cover: Modularity and community
structure in networks. Proceedings of the National Academy of Sci-
ences 103(23): 8577-8582.

[16] J. Xie, B.K. Szymanski, 2013. LabelRank: A Stabilized Label Propa-
gation Algorithm for Community Detection in Networks. Network
Science Workshop (NSW), 2013 IEEE 2nd. IEEE, 2013: 138-143.

[17] K. Wakita, T. Tsurumi. 2007. Finding community structure in mega-
scale social networks. Proceedings of the 16th international confer-
ence on World Wide Web.ACM, 2007: 1275-1276.

[18] W.H. Chong, L.N. Teow, 2013. An incremental batch technique for
community detection. Information Fusion (FUSION), 2013 16th In-
ternational Conference on. IEEE, 2013: 750-757.

[19] C.E. Tsourakakis, C. Gkantsidis, B.R.M. Vojnovic, 2014. FENNEL:
streaming graph partitioning for massive scale graphs. Proceedings of
the 7th ACM international conference on Web search and data min-
ing. 2014.

[20] A.L. Barabási, R. Albert 1999. Emergence of scaling in random net-
works. science 286(5439): p. 509-512.

[21] H. Shiokawa, Y. Fujiwara, M. Onizuka, 2013. Fast Algorithm for
Modularity-Based Graph Clustering. AAAI. 2013.

[22] J. Yang, J. Leskovec (2012) Defining and evaluating network com-
munities based on ground-truth. In: Proceedings of the Twelfth Inter-
national Conference on Data Mining. pp. 745–754.

591592592

