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A B S T R A C T

Agriculture is a key sector and a major consumer of water resources; therefore, a clear understanding of the
agricultural water demand for crop production and consumption is imperative for addressing water scarcity
problems, particularly in water export regions. This study provides new insights into the influential factors
driving the changes in the agricultural production water footprint (WFprod) and consumption water footprint
(WFcon) in the net water import and net water export regions. The WFprod and WFcon of wheat are evaluated in
Beijing city (the net water import region) and Heilongjiang province (the net water export region) over the
period 1996–2015. The statistical significances of the influential factors, i.e., climate change, gross domestic
product, population, dietary demand and technology update are determined using a multivariate linear re-
gression model (LRM) and nonlinear regression model (NLRM). The results indicate that the gross domestic
product and population were the dominant positive influential factors, whereas technology update and dietary
demand were the dominant negative influential factors affecting the changes in the WFprod and WFcon in the net
water import region. In the net water export region, technology update was the dominant negative influential
factor affecting the changes in the WFprod and WFcon. Climate change did not contribute significantly to the
changes in the WFprod and WFcon of wheat; however, it was an important factor (especially precipitation for the
green WF with an average relative importance of more than 22% and the blue WF with an average relative
importance of more than 15%) affecting the changes in the WFprod and WFcon of the crop. An in-depth analysis of
the influential factors that contribute to the changes in the WFs is fundamentally important for decision-makers
to develop countermeasures and strategic planning implementations to mitigate water resource pressure in
China.

1. Introduction

Agricultural water demand has shown a noticeable increasing trend
around the world and accounts for 90% of global water consumption
(Hoekstra and Mekonnen, 2012). The main influential factors for this
trend were rapid economic development, population explosion, im-
provement of living standards, expansion of the agricultural sector, and
climate change (Mo et al., 2016; Zhuo et al., 2016a; Tamea et al.,
2014). Recently proposed solutions to meet the increasing agricultural
water demand include the development of nonconventional water re-
sources and virtual water trade (Dalin et al., 2015; Zhuo et al., 2016b;
Ye et al., 2018). The virtual water content (VWC) is defined as the
amount of water required for the production of goods and services
along the supply chains and the virtual water trade refers to the trade in

water resources, which are virtually embedded in the traded com-
modities (Allan, 1998). Trade in water-intensive commodities has
generated water savings for the import regions and relieved the pres-
sure on their own water resources; however, trade has also increased
water use in the export regions (Dalin et al., 2014). This situation ex-
acerbates water stress for virtual water export regions and causes the
local population to suffer from increased water scarcity. Therefore, it is
critical to clearly understand the unique effects of various factors on the
water demand for the production and consumption of agricultural
products in water import and export regions, for the purposes of water
scarcity alleviation and water resources management.

Water footprint (WF), based on the concept of the VWC, is an in-
dicator of water use related to production or consumption in the
economy (Hoekstra, 2003). The WF of crop production measures the
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consumption of rainfall over croplands during the crop’s growing
period (the green WF), the consumption of surface and underground
water as a result of irrigation (the blue WF), and the water pollution
resulting from leaching and runoff of fertilizers and pesticides from
croplands (the grey WF) (Hoekstra et al., 2011; Hoekstra, 2013). The
green and blue WFs together are called the consumption WF (WFcon).
The WFcon in a region consists of internal and external components. The
internal WF refers to the part of the WF that is used in the region for the
production of products that are consumed locally (here, the internal WF
is called the production WF, WFprod). The external WF refers to the part
of the WF that is used in other areas for creating products that are
imported and consumed in the region (Hoekstra et al., 2011).

Recently, some studies have investigated the influence of various
factors on the agricultural WF and the virtual water trade. One im-
portant study is by Zhao and Chen (2014), who explored the driving
forces behind changes in the agricultural WFcon by decomposing the
factors that affected the changes in China’s agricultural WFcon into the
diet structure, efficiency, agricultural economic activity, and popula-
tion effects. The authors provided a useful framework for analyzing the
driving forces of the agricultural WFcon in water import regions and
determined that economic activity was the largest positive contributor
to increase in theWFcon, whereas water efficiency improvement was the
most significant factor affecting a decrease in the WFcon. Due to the
large water consumption for the production of crops and the opposite
impacts of water trade on water import and export regions, an analysis
of the difference in the driving forces of the WFprod and WFcon between
water import regions and export regions should be conducted to im-
prove our current understanding. Tamea et al. (2014) identified the
significant drivers of virtual water import and export for each country
in the world and focused on changes in the population, gross domestic
product, arable land, the WF of agricultural production and dietary
demand, and the geographical distance between countries. Nowadays,
climate change and its impact have major impacts on water resources
and crop production in China (Piao et al., 2010). Precipitation changes
directly influence the green WF of agricultural products and indirectly
affect irrigation water consumption (blue WF). Moreover, increasing
frequencies of climate extremes such as floods and droughts will affect
the growing conditions of crops and may cause economic losses.
Therefore, climate change has to be included in any study on future
water resources, in addition to various socio-economic factors.

There is a current lack of studies providing comprehensive analyses
of the effects of climate, economy and society on the agricultural water
demand for virtual water import and export regions. Therefore, the
objective of this study is to provide new insights into the influential
factors driving the changes in the agricultural WFprod and WFcon in
water import and water export regions, respectively. The WFprod (in-
cluding green production WF, WFprod green, and blue production WF,
WFprod blue) and WFcon (including green consumption WF, WFcon green,
and blue consumption WF,WFcon blue) of wheat are evaluated for Beijing
city (water import region) and Heilongjiang province (water export
region) during 1996–2015. The statistical significances of the influen-
tial factors, i.e., climate change, gross domestic product, population,
dietary demand, and technology update, are determined using a mul-
tivariate linear regression model (LRM) and nonlinear regression model
(NLRM). The results provide guidance for agricultural water resources
management in water import and export regions to improve the long
term resiliency and sustainability.

2. Methods

2.1. Study area

Beijing city and Heilongjiang province were selected as the water
import and export regions, respectively (Fig. S5). As the largest urban
region and economic center of northern China, Beijing has to feed 21.7
million residents and a large transient population (BMBS, 2016). Due to

limited arable land resources, almost all crops and livestock products
produced in Beijing are supplied to local consumers (Huang et al.,
2012). However, the local products cannot meet the large demand for
food for the entire population and only accounted for about 17% of
total grain crop consumption and 23% of total livestock product con-
sumption in 2014 (FAO, 2014; BMBS, 2015). Thus, Beijing needs to
import a large number of primary products from other regions to meet
the local food demand and this involves the virtual water trade em-
bedded in the products. The virtual water import volume of Beijing
exceeded 7.26million m3 in 2007, in particular, around 90% of the
virtual water import was from agricultural sectors (Dong et al., 2014).
Heilongjiang province is located in the northern part of mainland China
and receives an annual precipitation of 420.1 mm in 2015 (75.7% of
precipitation occurs during June, July, August and September) (HMBS,
2016). Heilongjiang has 25% of the national agricultural land, ac-
counting for 22% of the national grain demand in 2012 (FAO, 2012;
NBSC, 2013; HMBS, 2013). The export volume of rice was more than 40
thousand tons, with a turnover of 30.92 million US dollars in 2012
(HMBS, 2013). Agricultural water consumption contributed 78.3% of
the total water consumption in Heilongjiang. However, the water use
efficiency and productivity in Heilongjiang were relatively low due to
irrational irrigation methods and structures (Dalin et al., 2014). The
region’s surface and groundwater resources were further threatened by
a projected drought and by the development of the water-intensive coal
industry. Water scarcity is also a considerable problem in this water
export region.

2.2. Calculation of WFprod and WFcon

Wheat was selected as the crop in this study for the implementation
of the methods. A series of 20-year (1996–2015) WFprod, WFprod green,
WFprod blue, and WFcon, WFcon green, WFcon blue of wheat in Beijing and
Heilongjiang province were evaluated.

The WFprod (m3/ton) of the crop was calculated by dividing the total
green and blue evapotranspiration (ET, m3/ha) during the crop’s
growing period by the crop yield (Y, ton/ha) (Ye et al., 2018; Dalin
et al., 2014; Hoekstra et al., 2011). This represented crop water con-
sumption.

=WF ET
Yprod (1)

The daily ET and Y were simulated with the Food and Agriculture
Organization (FAO) crop water productivity model AquaCrop (Steduto
et al., 2009; Raes et al., 2009; Hsiao et al., 2009). In AquaCrop, the
daily crop transpiration (Tr, mm) was used to derive the daily gain in
above-ground biomass (B) based on the normalized biomass water
productive of the crop, which was normalized for carbon dioxide (CO2)
concentration of the bulk atmosphere, the evaporative demand of the
atmosphere (ET0), and the crop classes. The harvestable portion (the
crop yield) of the B at the end of the growing period was determined as
the product of the B and the harvest index. The harvest index was ad-
justed to the water stress depending on the timing and extent of the
stress (Steduto et al., 2009; Raes et al., 2009; Hsiao et al., 2009). The
simulated Y of each crop was consistent with that in the Beijing and
Heilongjiang province statistics.

The WFcon (m3/ton) was accounted on the base of a bottom-up ap-
proach, by multiplying the product consumption volume of the regional
population by the corresponding WF:

=

× + ×

+

WF
P WF I WFi

P Icon
prod prod

(2)

where P is the final consumption of the local agricultural products, I is
the final consumption of the imported agricultural products. WFprod is
the local WF of the crop and WFiprod is the national average WF of the
imported crop. Here it was assumed that the external WF (i.e., the WF
that is used in other areas for creating products that are imported and
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consumed in the importing region) excluded the WF from other coun-
tries due to data availability.

2.3. Multivariate and regression analysis

In this study a multivariate regression analysis was conducted using
the JMP Pro 12® and R software (Team, 2014) to determine the re-
lationships between the WFs (WFprod, WFprod green, and WFprod blue for
crop production; WFcon, WFcon green, and WFcon blue for crop consump-
tion) and seven influential factors (average minimum temperature
(Tmin), average maximum temperature (Tmax), and total precipitation
(P) for climate change indicators, gross domestic product (GDP), po-
pulation (Pop), annual per-capita dietary demand (D), and yield per unit
area for technology update (Yunit)). First, a pairwise method was used to
estimate the Pearson correlation coefficient (r) between the WFs and
the influential factors, with values closer to 1 or −1 indicating stronger
positive or negative correlation, respectively. Then, a regression ana-
lysis was performed to identify the potential influence and the effects of
the influential factors on the WFs. A LRM and a NLRM were used. The
LRM is defined as:

= + + + +WF α α v α v α v· · ... ·0 1 1 2 2 7 7 (3)

where v1–v7 are the influential factors affecting the WFs and α0–α7 are
the linear regression parameters. The NLRM is defined as:

=WF β v v v· · ·...·β β β
0 1 2 7

1 2 7 (4)

where β0–β7 are the nonlinear regression parameters. The uncertainties
of the fitted model were examined by determining: the p-value, the R2

value, and the relative error (e). The p-value indicates the observed
significance level of the influential factor affecting the WFs. The R2

value represents the proportion of variation in the WFs that is explained
by the influential factors. The e value reflects the suitability of the
model in different regions; a lower e value indicates better suitability in
other regions. A relative importance (RI) analysis was also performed to
examine the contribution of each influential factor variable to the WFs
using a dominance analysis method (Kruskal, 1987; Lindeman et al.,
1980) and decomposition method (Genizi, 1993).

3. Results

3.1. Multivariate and regression analysis model for WFprod

Fig. 1 illustrates the multivariate analysis results for the different
types ofWFprod of wheat in Beijing. The WFprod green represents the direct

consumption of rainfall during the crop’s growing period and it had the
strongest positive correlation with P (r= 0.69). Pop and GDP had the
second and third highest positive correlations with WFprod green. D and
Yunit had negative correlations with WFprod green. The climate indicators,
Tmin and Tmax, had low correlations with the WFprod green because its
growing period is in the winter and spring when the ET of green water
and blue water were both low. For the same influential factors, the
correlation coefficients differed forWFprod blue andWFprod green. P had the
largest negative correlation with WFprod blue for wheat (r= -0.77). Tmin

and Tmax had low correlations with WFprod blue but Tmax had a stronger
relationship than Tmin. D and Yunit also showed a high negative corre-
lation with WFprod blue. A higher Yunit indicated higher water use pro-
ductivity and the total blue water was lower in this case. The WFprod of
wheat also showed very strong correlations with Yunit for the same
reason as mentioned for WFprod blue. The other influential factors, i.e.,
Pop, GDP, Tmin and Tmax, all had low correlations with the WFprod of
wheat in the study areas (r < 0.6).

Fig. 2a and b summarize the results of the LRM and NLRM for wheat
in Beijing. The R2 values of the regression models for the WFs were all
less than 0.9. This was attributed to the long growing period of wheat
(around 250 days in Beijing) and the fluctuating environmental and
social conditions. The RI values of the factor P in regression models
were highly significant for the WFprod green and WFprod blue. In particular,
the RI of P forWFprod green was 43.97% in the LRM. The RI values of GDP
and Pop for the WFprod and WFprod green (but not for the WFprod blue) were
significant in the two regression models. Yunit exhibited a low con-
tribution to the WFprod, WFprod green and WFprod blue in the two regression
models. Another noteworthy result was the high contribution of Tmax to
the WFprod blue in the two regression models (RI= 15.26% for the LRM
and 17.97% for the NLRM).

In summary, the different types of WFprod of wheat in the water
import regions were significantly influenced by P, GDP, and Pop
(Table 1). P exhibited a positive contribution to WFprod green and a ne-
gative contribution to WFprod blue. GDP and Pop exhibited positive con-
tributions to the WFprod. There were no consistent contributions from
the other influential factors to the WFs of wheat in this study.

In water export regions, crop production and supply are the first
priority for the agricultural sector not only for local demand but also for
outside trade. Thus, an understanding of the driving factors for the WFs
of the crop production should be a priority in these regions; however,
few studies have determined the driving factors for the WFprod in the
water export regions. The WFprod in the water export regions were in-
fluenced significantly by technology update (Table 1, Figs. S1 and S2).
Technology update contributed negatively to all the WFprod. The other

Fig. 1. Correlations between the WFprod of wheat (WFprod, WFprod green and WFprod) and seven influential factors (average minimum temperature (Tmin), average
maximum temperature (Tmax) and total precipitation (P) for climate change indicators, gross domestic product (GDP), population (Pop), annual per-capita dietary
demand (D), and yield per unit area for technology update (Yunit)) in Beijing. The numbers in the green boxes are the correlation coefficients (r) of the two variables.
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influential factors did not exhibit consistent contributions to the WFprod
for wheat in this study. The details of the results are described in Driving
influential factors for WFprod in the net water export region, Supporting
Information.

3.2. Multivariate and regression analysis model for WFcon

The driving factors for WFcon were the main focus of previous stu-
dies, which have considered the factors of GDP, population, dietary
demands, etc. (Tamea et al., 2014; Zhao and Chen, 2014; Zhao et al.,
2014). Climate change was for the first time considered in this study to
conduct a comprehensive analysis of the influences on the WFcon.

Fig. 3 illustrates the multivariate analysis results for the different
types of WFcon of wheat in Beijing. P exhibited a high correlation with
the WFcon green and WFcon blue; however, unlike for the WFprod, the factor
was not the most significant one. GDP and Pop were the top positive
influential factors with the highest correlation coefficients for the
WFcon, WFcon green and WFcon blue of wheat in Beijing. D had a strong
negative correlation with WFcon, WFcon green and WFcon blue.

The significant influential factors for the WFcon of wheat were de-
termined by the regression models and RI analysis (Fig. 4a and b).

Overall, the R2 values were lower for the NLRM than the LRM, which
indicated that the influential factors affecting the change in theWFcon of
wheat were more clearly described by the LRM due to the linear
bottom-up evaluation approach. Pop and GDP were the two most
dominant and significant driving factors affecting the change in the
WFcon in the LRM and NLRM. Zhao and Chen (2014) obtained similar
results and found that the driving factors for the national consumption
WF in China were economic activity and population. Moreover, D was
the third most important and significant factor after Pop and GDP af-
fecting theWFcon of wheat in the LRM, but the result was weaker for the
NLRM. In summary, all types of WFcon in the net water import regions
were positively influenced by GDP and population, whereas they were
negatively influenced by technology update (Table 1). There were no
consistent contributions by the other influential factors to the WFcon of
wheat in this study.

All types of WFcon in the net water export regions were negatively
influenced by technology update and GDP, whereas they were posi-
tively influenced by dietary demands (Table 1). The details of the re-
sults are described in Driving influential factors for WFcon in the net water
export region, Supporting Information.

a.

b.

Fig. 2. Results of the (a) linear regression analysis and (b) nonlinear regression analysis showing the statistically significant factors for the WFprod, WFprod green and
WFprod blue in Beijing. The green numbers represent the coefficients in the regression equations of the influential factors in the column. Significance levels: ***> 99%;
** 95–99%; * 90–95%. The “RI” values are the relative importance values of each selected factor variable of each WF.

Table 1
Influential factors driving the different types of the production and consumption WFs in the net water import and export regions.

Net water import region Net water export region
Tmin Tmax P GDP Pop D Yunit Tmin Tmax P GDP Pop D Yunit

WFprod L L, N L, N N L, N L, N L,N L, N
WFprod green L, N L, N L, N L, N L N L,N L, N
WFprod blue N L, N L N L L, N L,N L, N
WFcon L, N L, N L, N L, N L, N L,N L, N
WFcon green L L, N L, N L, N N N L L,N L, N
WFcon blue L, N L, N L, N L N L, N L,N L, N

Notes: Blue font indicates positive influence; red font indicates negative influence; “L” is the linear regression model; “N” is the nonlinear regression model.
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4. Discussion

Through multivariate and regression analysis, the influential factors
were obtained for the changes in the production and consumption WFs
of wheat in the water import and export regions. Table 1 summarizes
the positive and negative influential factors driving the production and
consumption WFs of wheat. In the water import regions, a GDP increase
had a strong effect on the change in the WFs, especially for the different
types of the consumption WFs. Although rapid economic growth has
largely been driven by industrialization, many farmers in remote areas
still strongly rely on agriculture for their income. The desperation of

these farmers to move out of poverty has accelerated the development
of agriculture, which has resulted in a significant increase in the agri-
cultural WFs. Population increase has been another driver for the
change in the WFs but has also caused extensive water resource pres-
sure. Despite the successful enforcement of a population control policy
in China, the population will increase to 1.436 billion in 2033 owing to
population growth inertia (Xu et al., 2013). Thus, the production of
sufficient agricultural products remains a priority to support such a
large population in the next 10 years. Under the dual pressures of socio-
economic development and the increase in population density, en-
vironmental issues should also become a greater focus area.

Fig. 3. Correlations between the WFcon of wheat (WFcon, WFcon green and WFcon blue) and seven influential factors (average minimum temperature (Tmin), average
maximum temperature (Tmax) and total precipitation (P) for climate change indicators, gross domestic product (GDP), population (Pop), annual per-capita dietary
demand (D), and yield per unit area for technology update (Yunit)) in Beijing. The numbers in the green boxes are the correlation coefficients (r) of the two variables.

a.

b.

Fig. 4. Results of the (a) linear regression analysis and (b) nonlinear regression analysis showing the statistically significant factors for the WFcon, WFcon green and
WFcon blue in Beijing. The green numbers represent the coefficients in the regression equations of the influential factors in the column. Significance levels: ***> 99%;
** 95–99%; * 90–95%. The “RI” values are the relative importance of each selected factor variable of each WF.
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Environmental quality is highly correlated with socio-economic devel-
opment and the interactions between these two aspects should be a
priority for decision and policy makers; examples include the “Three
Red Line” policy and the “Green GDP” concept in China for example.
Dietary demands and technology update largely depended on the in-
crease in GDP and the labor force. The rapid economic growth and
urbanization in China over the last two decades have contributed to
higher personal incomes, which has resulted in a higher proportion of
meat in food consumption (Xue and Landis, 2010). Another common
phenomenon is the waste of food in restaurants and home-cooked
meals; the average person wasted (consumed) 16 (415) kg of food at
home annually, which is equivalent to 40 (1080) kg CO2, 18 (6 7 3) m3,
and 173 (4956) gm2 for the carbon, water and ecological footprints,
respectively (Song et al., 2015). Strategies for reducing food waste and
developing a sustainable diet require information on the impacts of
consumption behavior and waste generation on climatic, water, and
land resources.

In the net water export region, technology update mainly improved
the efficiency and productivity of water utilization in the agricultural
sector. The reduction in of irrigation water consumption contributed to
large savings in the amount of blue water which could be utilized by
other sectors with a better economic output. Although China’s water
use efficiency in the agricultural sector improved during the study
period, the water use efficiency is still lower than that of other in-
dustrialized countries due to inappropriate irrigation management
practices and unsound investments in infrastructure construction. There
is still a large opportunity to further improve China’s water use effi-
ciency. The climate indicators did not show consistent contributions to
the WFs of wheat in the net water export region, but certainly influ-
enced the WFs of the crop. As shown in Table 1, the three climate in-
dicators significantly influenced the WFs of wheat in Beijing; however,
the influence was not significant for the WFs of wheat in Heilongjiang
due to the climate in the study areas. It was determined that in China,
the climate was the second most important factor after water avail-
ability affecting the yield of crops (Piao et al., 2010); for example,
warming is believed to be harmful to rain-fed crops but beneficial to
irrigated agriculture (Wang et al., 2009). Data from the Chinese Na-
tional Bureau of Statistics suggested that warming had already enabled
a significant northward expansion of rice planting in Heilongjiang from
0.22 million ha in the early 1980s to 2.25 million ha in 2007, i.e., a
northward shift from ∼48 °N to ∼52 °N (NBSC, 2013). In parallel, the
rice yield in Heilongjiang has increased from 0.7 million tons to 14.2
million tons over the same period. All these changes suggested that the
crop yield in the temperate climate zones of north China has benefited
from the increased temperature.

Arable land could also be a potential factor affecting the WFs.
Tamea et al. (2014) found that arable land was an overall negative
driver for the global virtual water trade. A larger amount of virtual
water was exported to trading partners with less arable land (e.g.,
Norway, Germany, Mongolia, Botswana). The mismatch between arable
land and water availability has led to an unsustainable agricultural
expansion in semiarid areas of China. Important associated environ-
mental issues include soil degradation, water resource overexploitation
and pollution, and land subsidence from groundwater overdraft, all of
which threaten ecosystems and human activity (Dalin et al., 2015).
Aside from the technology effect, the yield also reflects the quality of
local arable land, namely land productivity. Land with high pro-
ductivity in northern and southwestern China benefits local farmers by
providing a higher yield of crops. In order to protect arable land, the
Chinese Central Government published the “Soil Pollution Prevention
Action Plan” in 2016 to protect the quantity and quality of arable land
and limit the overuse of arable land for commercial activities.

An investigation of the provincial agricultural water demand in
water import and export regions during 1996–2015 and an in-depth
analysis of the influential factors contributing to the changes in the WFs
are fundamentally important to decision makers for developing

countermeasures and strategic planning implementations to mitigate
the water resource pressure in China. The results of the WF accounting
and the analysis of the influential factors in this study provide several
suggestions to address the water required for agricultural food pro-
duction and consumption. Climate change results in more extreme
rainfall events and higher temperature and requires that human activ-
ities are focused on resource saving and environmental sustainability.
The combination of conventional and nonconventional water resources
from a quantity and quality aspect provides a promising method to
supply future water demand and has been widely implement world-
wide; examples include the Water Sensitive Urban Design in Australia,
the Best Management Practices and Low Impact Development in the
United States, and the Sponge City Construction and Development in
China. However, water use efficiency improvement is the most suitable
method to alleviate the current water stress from a water quantity and
water quality perspective. An increase in the water use productivity
would result in a reduction in the blue water consumption and water
pollution to meet the water demand of other sectors and protect water
ecosystems. Last but not least, water saving could also be achieved by
importing water-intensive products from other regions or countries, like
Beijing and Tianjin. Virtual water strategies of importing products
would shift the domestic water resource burden to the other regions and
also transfer high productivity products to China. The potential water
savings of the international product trade would be considerable if
products were exported from water-rich countries to water-scarce
countries.

It should also be noted that there are inherent uncertainties in the
evaluation and simulation of the production and consumption WFs both
in other regions and in the future. The limitations for multivariate and
regression analysis were major for the data defection. In addition, the
influential factors for other crops and other regions (including water
import and export regions) should be analyzed in the future to obtain
more reliable statistics on the influential factors affecting the produc-
tion and consumption WFs. Finally, a future scenario analysis could
provide reference data for agricultural water resource management;
however, it would be based on assumptions regarding climate change
and socio-economic developments. Future studies should be conducted
for period of five years and additional parameters regarding climate
change, economic and social development in the future. Nevertheless,
this study has filled an important research gap by investigating the
influential factors affecting the production and consumption WFs in net
water import and export regions.

5. Conclusions

This study provides new insights into the influential factors driving
the changes in the agricultural WFprod and WFcon in net water import
and net water export regions. The results indicate that the gross do-
mestic product and population were the dominant positive factors,
whereas technology update and dietary demand were the dominant
negative factors affecting the changes of in the WFprod and WFcon in the
net water import region. In the net water export region, technology
update was the dominant negative factor affecting the changes in the
WFprod and WFcon. Climate change did not contribute significantly to
the changes in the WFprod and WFcon of wheat; however, it was an in-
dispensable factor (especially precipitation for green WF with average
relative importance more than 22%; and blue WF with average relative
importance more than 15%) affecting the changes in the WFprod and
WFcon. An in-depth analysis of the influential factors contributing to the
changes in the WFs is fundamentally important to decision-makers to
develop countermeasures and strategic planning implementations to
mitigate the water resource pressure in China.
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