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Abstract
We study the problem of the integrated scheduling of drayage operations and long-
haul transport in synchromodality. Although different in time span and characteris-
tics of execution, these two processes have an impact on each other and their inter-
action has a direct influence on the overall performance of the transport network 
over time. We propose a simulation based integration of a Mixed-Integer Linear Pro-
gramming model for the drayage operations and a Markov Decision Process model 
for the long-haul transport. We analyze the interfaces between these models, outline 
the challenges of integrating them, and design a heuristic approach to the simulation 
based integration. In a series of numerical experiments, we evaluate the cost savings 
compared to a non-integrated approach, using various transport network configura-
tions. We show that our approach achieves average cost savings between 4 and 24% 
on networks with a majority of pre-haulage freights. Furthermore, we discuss limi-
tations of our model and experiments, and provide guidelines for further research 
for the integrated scheduling of drayage and long-haul operations in synchromodal 
transport.

Keywords  Synchromodal transport · Drayage · Long-haul · Matheuristic · 
Approximate Dynamic Programming

1  Introduction

In recent years, the freight transport industry has faced the challenge of reducing 
the environmental impact of their operations while staying profitable. To tackle this 
challenge, Logistic Service Providers (LSPs) have been re-defining performance 
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measures and exploring new approaches to control their operations. One of the new 
perspectives on performance measurement and control of freight transport opera-
tions over a multi-modal network is synchromodality. In synchromodality, the path 
of a freight from its origin to its destination is not necessarily established up front, 
but decided using the latest information about the status of the transport network and 
freight demand. Furthermore, freight can be assigned to any mode and any trans-
fer terminal available in the transport network. This increased flexibility provides 
LSPs with more opportunities for consolidation and options for efficient transport, 
throughout the network and throughout time. However, to take advantage of such 
opportunities and options, transport decisions must encompass the entire network, 
and performance measurements must span more than a single decision moment. In 
this paper, we study a network-wide and multi-period decision problem in synchro-
modality: the integrated scheduling of drayage operations and long-haul transport.

Drayage operations and long-haul transport have usually been scheduled inde-
pendently due to their difference in time span of execution. On the one hand, dray-
age operations, also known as pre-/end-haulage and first/last-mile, are carried out 
by trucks in small geographical areas where each truck can move more than one 
freight per day. Drayage scheduling involves, simultaneously, the timing of pick-ups 
and deliveries, the routing of the vehicles, and the selection of the departure termi-
nal for pre-haulage freights, i.e., the intermodal terminal where pre-haulage freights 
are brought to for the start of their long-haul transport. On the other hand, long-
haul transport is carried out by high-capacity modes such as trains and barges, over 
long geographical areas with traveling times typically lasting more than a day. Long-
haul scheduling involves the selection of intermodal services to use for each freight, 
where an intermodal service is defined by a transport mode and scheduled departure 
and arrival time. Although the scheduling decisions of each part are mutually inde-
pendent, schedules of the drayage operations can influence the long-haul transport, 
and the long-haul schedules can influence the opportunities for the drayage opera-
tions, as we exemplify next.

Consider an LSP controlling a synchromodal transport network (one organization 
able to choose between various carriers) that has to decide which of two intermodal 
terminals to use as a departure terminal. If the focus is on drayage performance, the 
terminal closest to the origin of the freight is most likely to be chosen, even if the 
furthest terminal has better consolidation opportunities for long-haul transport. If 
the focus is on the long-haul, the terminal with the best consolidation opportunities 
is most likely to be chosen, even at the expense of unnecessary drayage operations 
costs. Traditionally, literature on multi-modal long-haul transport has not consid-
ered drayage operations as a whole (e.g,. movement of empty containers, pre- and 
end-haulage freight, etc.), even though the integration of independent scheduling 
activities using up-to-date network information has been identified as fundamental 
to improve the performance of multi-modal transport (Crainic et al. 2009).

For an LSP facing the circumstances mentioned before, integrating the schedul-
ing of drayage operations and long-haul transport is difficult for two reasons. First, 
freights that arrive each day, and their characteristics, are uncertain. Second, the 
individual drayage and long-haul scheduling decisions have an impact on each oth-
er’s feasible decision space. A network-wide focus may signify the deterioration of 
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one of the individual performances, e.g., bringing a freight to a further terminal may 
be beneficial for the long-haul and the network as a whole but detrimental for the 
drayage. Balancing such a trade-off requires a careful analysis of the problem char-
acteristics. Considering these challenges, we establish a twofold objective for this 
paper: (1) to design an approach that integrates the scheduling decisions of drayage 
operations and long-haul transport and (2) to provide insights into the use of our 
approach under various freight demand patterns and cost settings.

Following our objective, the contribution of this paper is twofold. First, we design 
a simulation-based approach to overcome the optimization challenges of integrating 
the scheduling of drayage operations and long-haul transport. Our approach itera-
tively solves a Mixed-Integer Linear Programming (MILP) model of the drayage 
operations and a Markov Decision Process (MDP) model of the long-haul opera-
tions. The MILP considers long-haul performance based on the solution of the MDP 
while the MDP uses freight arrival rates based on the solution of the MILP. To use 
our approach on large instances, we use a Math-Heuristic (MH) for solving the 
MILP and an Approximate Dynamic Programming (ADP) algorithm for solving the 
MDP. Second, we study the use of our approach under various instances of freight 
demand and drayage/long-haul costs, and evaluate the relation between the decisions 
and costs of drayage operations and long-haul transport. In addition, we evaluate 
the gains of integrated scheduling compared to a benchmark heuristic. Based on 
the evaluations, we gather managerial insights for integrated scheduling of drayage 
operations and long-haul transport and provide guidelines for further research.

The remainder of this paper is structured as follows. In Sect. 2, we examine lit-
erature related to drayage scheduling, long-haul scheduling, and their integration. 
In Sect. 3, we describe and formulate the problem, along with the MILP and MDP 
models for the drayage and long-haul scheduling, respectively. In Sect. 4, we present 
our simulation-based approach and describe the MH and ADP heuristics. In Sect. 5, 
we present the results of our numerical experiments, and discuss their research and 
managerial implications. Finally, we present our conclusions in Sect. 6.

2 � Literature review

In this section, we briefly review the literature on scheduling drayage operations as 
well as scheduling long-haul transport in a multi-modal network. The daily sched-
uling of drayage operations, for the available freights of that day, can be seen as a 
special case of the Vehicle Routing Problem (VRP): the Full Truckload Pickup-and-
Delivery Problem with Time-Windows (FTPDPTW) with flexible tasks (Erera and 
Smilowitz 2008), where the flexible tasks are the freights whose long-haul terminal 
is not pre-defined. The scheduling of long-haul transport in a setting with multiple 
modes, a multi-period horizon, dynamic assignment of freight to services, and sto-
chastic freight arrivals, can be seen as a special case of Dynamic Service Network 
Design (DSND) problems (SteadieSeifi et  al. 2014). In DSND, the assignment of 
services to freight through time and through different links in a transport network 
is studied. Since we are interested in the integration of decisions and performance 
as a perspective to schedule synchromodal transport, we focus on the modeling 
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assumptions of the studies about scheduling multi-modal transport instead of their 
solution methodologies. For an in-depth review of models and solution methodolo-
gies for scheduling drayage operations and long-haul transport, we refer the reader 
to Erera and Smilowitz (2008) and SteadieSeifi et  al. (2014), respectively, noting 
that the literature about drayage operations is scarce. We start by reviewing the stud-
ies on scheduling drayage operations and their relation to synchromodality and long-
haul transport. Subsequently, we review studies on scheduling long-haul transport 
and their relation to synchromodality and drayage operations. We finalize by stating 
our scientific contribution to integrated scheduling in synchromodal transport.

The impact of drayage operations on the total costs of multi-modal transport is 
large (Konings 2009), but, research on their scheduling has been limited (Caris et al. 
2013). Particularly, studies on the scheduling of drayage operations considering 
multiple characteristics of synchromodality, such as the flexible choice of drayage 
destination (i.e., departure terminal for the long-haul) and the use of network infor-
mation (e.g., including long-haul performance), is limited. Examples that consider 
and focus on the flexibility in the origin of an empty container to use for a new 
request can be found in Caris and Janssens (2009), Francis et al. (2007) and Smilow-
itz (2006). Examples that consider multiple terminals and focus on a homogenous 
fleet of trucks can be found in Nossack and Pesch (2013) and Braekers et al. (2013), 
and that consider a heterogeneous fleet without considering time-windows of the 
requests in Imai et  al. (2007). Moreover, most studies about scheduling drayage 
operations that include some form of network information usually focus on special 
cases of information that impact decisions rather than network-wide performance. 
For example, Taylor et  al. (2002) include the flexible selection of an initial ramp 
(i.e., terminal) for freight in truck-rail transport with the objective of minimizing 
trucking costs. Wang and Regan (2002) and Escudero et al. (2013) consider delays 
at intermodal terminals as triggers for re-scheduling. Markovi et al. (2014) consid-
ers stochastic delays at intermodal terminals that impact the drayage costs. Studies 
that explicitly include performance on both drayage and long-haul do so for special 
applications and objectives. For example, Verma and Verter (2010) and Verma et al. 
(2012) develop a drayage model considering total costs, that includes long-haul 
costs, for a truck-rail network of hazardous materials and with an additional objec-
tive and set of constraints regarding the risk of transporting the hazardous materi-
als. Pérez Rivera and Mes (2017c) consider a terminal assignment costs, which they 
point out can be used to capture long-haul performance, but does not depend on 
the combination of freights brought to the terminals. To summarize, scheduling of 
drayage operations have mostly been studied considering only a few forms of flex-
ibility and without considering long-haul performance that varies through time as 
new information is revealed.

Compared to drayage operations, scheduling long-haul transport in multi-modal 
transport has been widely studied. Studies that are closely related to synchromo-
dality are those that include dynamic decisions, flexible assignment to modes, and 
network-wide performance considering stochastic demand over time. DSND stud-
ies have built a strong body of knowledge for modeling the evolution of network-
wide decisions and performance through time (Wieberneit 2008). However, the 
complexity of the models have made it difficult to include stochastic components 
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(SteadieSeifi et al. 2014), even though the need to incorporate uncertainty in demand 
has been recognized (Lium et al. 2009). Studies that include stochastic demand and 
anticipate on its realization, such as Lium et al. (2009) and Crainic et al. (2014), usu-
ally consider scenario-based models to develop a schedule that is robust to incom-
ing freights over the horizon. Nevertheless, this way of scheduling does not adapt 
dynamically to a new status of the network. Models that dynamically adapt to new 
information from the network, such as the two-stage stochastic programming models 
of Lo et al. (2013) and Bai et al. (2014), and the Markov Decision Process models 
of Dall’Orto et  al. (2006) and Pérez Rivera and Mes (2017b), focus on modeling 
the complex relations of mode and transfer choices over time, but do not explicitly 
model the richness of drayage operations and the interaction between the two deci-
sion processes (drayage and long-haul). In fact, most DSND studies, independent of 
whether they include stochastic components, do not explicitly model characteristics 
of the drayage operations. Some of the studies, such as Crainic et al. (2015), point 
out that costs from the origin of freights to the initial terminals can be calibrated to 
mimic drayage operations. Yet, these costs might depend on the status of the net-
work, as we exemplified in Sect. 1. To summarize, scheduling long-haul transport 
in synchromodality can build upon multi-modal studies with stochastic demand and 
extend these studies by including the richness of drayage operations.

To conclude, most literature about scheduling drayage operations and schedul-
ing long-haul transport have largely ignored the impact of both decision processes 
on each other’s operations. Furthermore, some of the key characteristics of syn-
chromodal transport networks have not been included in the modeling assumptions. 
Considering this, the contribution of our paper to the scientific literature is twofold. 
First, we design a scheduling approach that focuses on the interaction between dray-
age and long-haul decisions, considering multiple characteristics of synchromodal-
ity such as stochastic arrivals and flexible terminal assignment. Second, we provide 
insight into how the characteristics of a synchromodal network influence the integra-
tion of drayage and long-haul scheduling decisions.

3 � Problem description and formulation

We introduce the problem by subsequently describing the characteristics of freight 
(Sect. 3.1), timing of decisions (Sect. 3.2), drayage operations (Sect. 3.3), and long-
haul transport (Sect. 3.4). The latter two parts are based on Pérez Rivera and Mes 
(2017c) and Pérez Rivera and Mes (2017b) respectively. However, to ease the pres-
entation of the integrated approach, we apply some simplifications to earlier work as 
we describe in Sect. 3.5.

3.1 � Freight characteristics

We study the problem of scheduling drayage operations and long-haul transport 
in a synchromodal network, over a multi-period horizon � , with the objective of 
minimizing the total expected costs over the network and over the horizon. For 
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simplicity, we refer to a period t ∈ � as a day in the remainder of this paper, notic-
ing nevertheless, that time can be discretized into any arbitrary interval as long as 
the modeling considerations mentioned below are applied.

Each day t, new freights ℱt arrive into the network. We distinguish between pre-
haulage jobs and end-haulage jobs. A pre-haulage job represents freight that starts 
its long-haul journey and needs to be transported to an initial intermodal terminal by 
means of a drayage job. An end-haulage job represents freight that finished its long-
haul transport and only requires a drayage job to bring it to the customer. Hence, 
only pre-haulage freights use the long-haul modes and have a destination in the 
long-haul part of the network. End-haulage freights only use the trucks of the dray-
age part, and hence have a drayage destination but no long-haul destination. These 
two considerations make the network asymmetric in paths followed by pre- and end-
haulage freights, as exemplified in Fig. 1. In this figure, drayage operations only take 
place in the left side of the network; in the right side of the network (i.e., around the 
destinations of the pre-haulage freights), drayage operations are not explicitly mod-
eled, but considered implicitly through the costs of the services running between 
intermodal terminals and the long-haul destinations.

Each freight fN ∈ ℱt has a drayage request type rD ∈ ℛ , and depending on the 
request type, it has drayage destination dD ∈ �D (in case of an end-haulage job), or 
drayage origin oD ∈ � and long-haul destination dL ∈ �L (in case of a pre-haulage 
job). The set of drayage request types ℛ represents all possible drayage jobs, which 
not only differ in whether they are a pre- or end-haulage job, or whether they use an 
empty or full container, but also in required driver clearance, truck chassis, etc. The 
sets of drayage destinations �D , origins � , and long-haul destinations �L denote 
locations in the network, as seen in Fig. 1.

In addition to location information, each freight has a drayage and long-haul 
time-window. The drayage time-window 

[
eD, lD

]
∈ �D defines the earliest and 

Fig. 1   Simplified example of network locations, pre-haulage jobs, and end-haulage jobs. This is a simple 
network in the sense that choice of departure terminal determines the arrival terminal, which is not nec-
essarily the case in general networks
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latest arrival time of a truck to the drayage origin, where the set of drayage times 
�D ⊂ ℝ represents the time during a single day when trucks are working. The 
long-haul time-window length lL ∈ �L represents the number of days, relative to 
the current day t, in which a freight must be at its long-haul destination. In other 
words, a freight with long-haul time-window length lL at day t is due on (t + lL) . 
Using the notation just introduced, we can describe a freight fN ∈ ℱt with the tuple 
fN =

(
rD, dD, oD, eD, lD, dL, lL

)
.

Although freights are not known before they arrive, there is probabilistic knowl-
edge about their arrival intensity and about their characteristics. Between two con-
secutive days, f ∈ ℕ freights arrive with probability pF

f
 . Each freight has drayage 

request type rD ∈ ℛ with probability pR
r
 and drayage origin oD ∈ � with probability 

pO
o
 . Depending on the request type rD ∈ ℛ , a freight has drayage destination 

dD ∈ �D with probability pDD
r,dD

 , long-haul destination dL ∈ �L with probability 
pDL
r,dL

 , earliest drayage truck arrival eD ∈ �D with probability pETD
r,eD

 , latest drayage 
truck arrival lD ∈ �D with probability pLTD

r,lD
 , and long-haul time-window length 

lL ∈ � with probability pLTL
r,lL

 . To be concise, we enclose all the probabilities men-
tioned before, which describe all freights that arrive to the network, in the set �D.

3.2 � Timing of decisions

Each day t ∈ � , the planner must first schedule the drayage operations and then 
schedule the long-haul transport. Drayage scheduling includes two decisions: (1) the 
initial terminal where each pre-haulage freight will begin its long-haul, and (2) the 
route of trucks that execute the drayage operations. Long-haul scheduling includes 
the assignment decision of each freight in a terminal to an available service at that 
terminal at the current day, or the postponement of freight to future days (i.e., no 
service). This assignment decision results in consolidation of certain freight on cer-
tain services, and implies part of the route a freight will take, not necessarily the 
whole route. Although drayage and long-haul scheduling might be done separately, 
their decisions have an influence on the decision space of each other, and conse-
quently, on the attainable performance over the network and over time. For instance, 
the assigned initial terminal of pre-haulage freights influences the route of trucks in 
the drayage operations and the consolidation possibilities in the long-haul modes.

We illustrate the timing of the freight arrivals, transport processes and schedul-
ing decisions using Fig. 2. Consider one terminal with a long-haul mode departing 
daily at noon and freights that arrive throughout the day. The long-haul schedule (
xL
t

)
 for day t is created at noon, just before the mode departs. The drayage sched-

ule 
(
xD
t

)
 is created at midnight (i.e., the beginning of day t), considering freights 

that arrived before midnight ℱt as well as routing costs and terminal costs 
(
CL
t

)
 . 

Drayage operations are completely carried out between midnight and noon. Freights (
f L
t

)
 to be considered for the schedule of the long-haul at day t 

(
xL
t

)
 depend then on 

freights that were brought by the drayage operations of that day 
(
xD
t

)
 in addition to 

the freights that were not scheduled for the long-haul the day before 
(
xL
t−1

)
 . This 

example shows our modeling assumption of alternating one long-haul schedule cre-
ation and one drayage schedule creation. We note, however, that this assumption can 
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easily be generalized to a different timing of schedule creation for the two parts of 
transport, as long as (1) each long-haul scheduling decision depends on all drayage 
scheduling decisions performed (i.e., long-haul freight brought to intermodal termi-
nals) in between the previous and the current long-haul scheduling decisions, and 
(2) each time a drayage schedule is created, the impact on the next long-haul sched-
ule is considered, even if the immediately following scheduling is another one for 
the drayage. The notation given inside parenthesis in the figure is described later on 
but already included to illustrate their relation. Note that the superscript ‘D’ denotes 
the parameters related to drayage scheduling and ‘L’ the parameters related to long-
haul scheduling.

3.3 � Drayage operations

To perform all drayage operations, there is a fleet � of heterogeneous trucks. The 
subset of trucks that can carry out drayage request type rD ∈ ℛ is denoted by �r . 
The time to execute a drayage request type rD ∈ ℛ , e.g., load/unload a container, by 
truck k ∈ � is denoted by TSD

r,k
 . Truck k ∈ � must begin its route in terminal Bk and 

finalize it in terminal Fk ∈ ℋ , where ℋ represents all terminals available in the 
transport network. Each terminal h ∈ ℋ has a service time TSH

h
 , which denotes the 

time to serve a drayage truck. To represent all locations in the drayage, i.e., origins, 
drayage destinations, and terminals, we define the set 𝒩D = 𝒪 ∪𝒟D ∪ℋ and index 
it with i and j. We denote the traveling time between locations i and j with TTD

i,j
 . The 

routing costs of truck k ∈ � consist of a fixed cost CFD
k

 for its use and a variable 
cost CVD

k,i,j
 for traveling between locations i and j.

We represent the drayage decisions using the binary variable xD
k,i,j,t

 , which gets a 
value of 1 if truck k ∈ � moves from location i ∈ �D to location j ∈ �D at time t and 

Fig. 2   Timing of freight arrivals, transport processes, and scheduling decisions
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0 otherwise. We represent all decisions xD
k,i,j,t

,∀k ∈ �, i ∈ �D, j ∈ �D with a vector 
xD
t
 . The drayage costs at time t, as a function of xD

t
 , are defined in (1).

For a complete formulation of the drayage scheduling problem, we refer to the 
Mixed-Integer Linear Programming (MILP) model from Pérez  Rivera and Mes 
(2017c).

3.4 � Long‑haul transport

To perform the long-haul transport, there are various high-capacity modes traveling 
between locations in the long-haul, i.e., long-haul terminals and long-haul destinations. 
We denote all locations in the long-haul with 𝒩L = ℋ ∪𝒟L and index it with i and j. 
Note that an intermodal terminal is by definition an intermediate terminal and cannot 
be a destination. We define a service as a specific long-haul transport mode going from 
location i to j, both in �L , with a capacity of Qi,j freights and a duration of TTL

i,j
 , which 

includes traveling and handling times at the locations. Although there are no capacity 
limits in departure terminals, the capacity of the long-haul services may prevent 
freights from using this service and instead use an alternative one or use trucks. Similar 
to the trucks, we consider the long-haul costs of the service between i and j to consist of 
a fixed component CFL

i,j
 if at least one freight uses this service, and a variable cost CVL

i,j,d
 

per freight with destination d ∈ �L consolidated in this service. Furthermore, we con-
sider additional long-haul cost CGL

i,j,�
 per group of long-haul destinations � ⊆ �L vis-

ited after, or during, the service between i and j. This cost component can be used to 
capture, for example, last-mile routing costs after the service between two intermodal 
terminals, or stopping costs at intermediate destinations visited by the service. Note 
that in practice, part of the capacity of a service between i and j might be reserved up 
front, resulting in sunk costs for this service. In principle, this can be handled in our 
model by duplicating a service, resulting in reserved and unreserved capacity with dif-
ferent prices.

We represent the long-haul transport decision with the integer variable xL
i,j,d,l,t

 , which 
counts the number of freights that will be assigned to the service from i to j (both in 
�L ) at time t, which have long-haul destination d ∈ �L and long-haul time-window 
length l ∈ � . We represent all decisions xL

i,j,d,l,t
,∀i ∈ �L, j ∈ �L, d ∈ �L, l ∈ � 

with a vector xL
t
 . In addition to the xL

i,j,d,l,t
 variable, we introduce the auxiliary binary 

variable yL
i,j,d,t

 , which gets a value of 1 if there is a freight with destination d ∈ �L con-
solidated at time t in the service from i to j, both in �L , and 0 otherwise, as shown in 
(2).

(1)zD
t

(
xD
t

)
=

∑
k∈𝒦

(
CFD
k

⋅
∑
j∈𝒩D

xD
k,Bk ,j,t

)
+

∑
k∈𝒦

∑
i∈𝒩D

∑
j∈𝒩D

CVD
k,i,j

⋅ xD
k,i,j,t

(2)yL
i,j,d,t

=

⎧⎪⎨⎪⎩

1, if
�
l∈�

�
xL
i,j,d,l,t

�
> 0

0, otherwise

, ∀i ∈ �L, j ∈ �L, d ∈ �L



	 A. E. Pérez Rivera, M. R. K. Mes 

1 3

The long-haul transport costs at time t, as a function of xL
t
 , are defined in (3).

In (3), the first line captures the economies of scale of long-haul services (through 
the fixed and variable cost component) and the second line captures the combina-
tion of destinations in each service (through the group cost component). This cost 
definition is a more generic cost function than the one from Pérez Rivera and Mes 
(2017b), which does not include the group cost component and which includes a 
reward per freight making it a profit maximization rather than cost minimization 
problem. However, the decision variable for freight consolidation is equivalent.

We model the scheduling of long-haul transport using an MDP model. The deci-
sion is represented by xL

t
 . The state is given by freights that are, and will be, present 

at the terminals. To represent them, we use the integer variable f L
j,d,l,t

 , which counts 
the number of freights at terminal j ∈ ℋ at time t that have long-haul destination 
d ∈ �L , and long-haul time-window length l ∈ � . The state sL

t
 is defined as the 

vector of these variables, i.e., sL
t
= f L

t
=
[
f L
j,d,l,t

]
,∀j ∈ ℋ, d ∈ 𝒟L, l ∈ 𝒯 . The state 

sL
t
 is the result of freights from the previous day t − 1 that were not consolidated (i.e., 

difference between the previous state sL
t−1

 and previous long-haul decision xL
t−1

 ) and 
freights that arrived to the terminal in between the previous day t − 1 and day t. 
These latter freights are the freights that were brought to the terminals by the dray-
age operations, which depend on the random freights that arrived to the system (as 
illustrated in Fig. 2) and are known as the exogenous information of the MDP model. 
The exogenous information wL

t
 captures the stochasticity of the system, which in 

turn, converts it into a policy that optimizes the expected performance as will be 
explained later on. Similar to the freights in the state, we define freights in the exog-
enous information using the integer variable f̂ L

j,d,l,t
 , which counts the number of 

freights that arrived at terminal j ∈ ℋ at time t, and that have long-haul destination 
d ∈ �L and long-haul time-window length l ∈ � . The exogenous information wL

t
 is 

defined as the vector of these variables, i.e., wL
t
=
[
f̂ L
j,d,l,t

]
,∀j ∈ ℋ, d ∈ 𝒟L, l ∈ 𝒯.

For the constraints and equations defining the decision space �L
t

 , state space � , 
and transition function SM , we refer to the MDP model of Pérez  Rivera and Mes 
(2017b). In case of a simplified network as shown in Fig. 1, i.e., separated long-haul 
lanes, the formulation from Pérez Rivera and Mes (2017a) can be used, replicating 
the model for each long-haul lane. Although our solution approach is formulated for 
the generic network setting, we use a simplified network with separated long-haul 
lanes for our numerical experiments.

The optimal expected cost Vt

(
sL
t

)
 for each state sL

t
∈ � is given by the Bellman’s 

recursion (4). This optimal value captures the direct cost of the long-haul zL
t

(
xL
t

)
 

(3)

zL
t

(
xL
t

)
=

∑
i∈𝒩L

∑
j∈𝒩L

(
CFL
i,j

⋅
∑
d∈𝒟L

yL
i,j,d,t

+
∑
d∈𝒟L

(
CVL
i,j,d

⋅
∑
l∈𝒯

xL
i,j,d,l,t

))

+
∑
i∈𝒩L

∑
j∈𝒩L

∑
𝒢⊆𝒟L

(
CGL
i,j,𝒢

⋅
∏
d∈𝒢

yL
i,j,d,t

⋅
∏

d�∈𝒢⧵𝒟L

(
1 − yL

i,j,d�,t

))
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plus the expected future costs �
[
Vt+1

(
sL
t+1

)]
 . In (4b), we use a transition function SM 

to define state sL
t+1

 in terms of two known vectors at time t: the state sL
t
 and the deci-

sion xL
t
 ; and one unknown vector at time t: the exogenous information wL

t+1
 , which 

is partly random and partly due to the drayage decision. Using p�t+1

�  as the probabil-
ity of exogenous information � , where � is a realization of the exogenous informa-
tion wL

t+1
 from the set of all exogenous realizations �t+1 following from the drayage-

dependent arrival distributions, we can further expand the Bellman’s recursion as 
shown in (4c). 

3.5 � Simplifications

Before presenting our integrated model of drayage and long-haul operations, we 
introduce our main simplifications compared to earlier work. We introduce these 
simplifications to ease the presentation of the integrated approach.

First, we assume that all freights that arrive at an initial long-haul terminal are 
“released” for transport (i.e., can be immediately transported in the long-haul after 
drayage). Second, we assume that trucking of freight between intermodal terminals 
is not allowed, i.e., once the drayage brings a freight to an intermodal terminal, it 
departs from that terminal by the long-haul mode. Third, we assume that all services 
(between intermodal terminals, and between an intermodal terminal and all destina-
tions) have a duration of at most 1 day. Fourth, we assume that every service departs 
every day. These three assumptions can easily be generalized in the long-haul sched-
uling model, following the work from Pérez  Rivera and Mes (2017b), but in this 
paper allow us to omit additional time information required in the state definition. 
Finally, we assume there is only one service between intermodal terminals i and j 
(both in �L ) and one service between an intermodal terminal i ∈ �L and all desti-
nations d ∈ �L . As examples of the latter, we can have a truck performing the last 
mile delivery from an intermodal terminal i to a destination d, or a train making a 
round trip from an intermodal terminal i to a number of destinations d.

4 � Solution approach

As mentioned earlier, we consider drayage scheduling and long-haul scheduling to 
be done separately, but with integrated objectives, since their decisions influence the 
performance of each other in synchromodal transport. In this section, we analyze 

(4a)Vt

(
sL
t

)
= min

xLt ∈�
L
t

(
zL
t

(
xL
t

)
+ �

[
Vt+1

(
sL
t+1

)])
, ∀sL

t
∈ �

(4b)= min
xLt ∈�

L
t

(
zL
t

(
xL
t

)
+ �

[
Vt+1

(
SM

(
sL
t
, xL

t
,wL

t+1

))])
, ∀sL

t
∈ �

(4c)= min
xLt ∈�

L
t

(
zL
t

(
xL
t

)
+

∑
�∈�t+1

p
�t+1

�

(
Vt+1

(
SM

(
sL
t
, xL

t
,�

))))
, ∀sL

t
∈ �
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each component for integration (Sects.  4.1 and 4.2), based on the models described 
in Sects.  3.3 and 3.4 respectively, and describe the integrated objective function 
(Sect. 4.3), outline our iterative solution approach (Sect. 4.4), present several challenges 
of our approach and how to overcome them (Sect. 4.5), and end with a complete over-
view of our solution approach (Sect. 4.6).

4.1 � Modification of the drayage part

The only necessary modification to the drayage part, to integrate the long-haul trans-
port process to drayage decisions, relates to the inclusion of terminal assignment cost 
for pre-haulage jobs. The terminal assignment costs should capture the consolidation 
opportunities throughout the network and throughout the time horizon that were men-
tioned in Sect.  1. Examples of such opportunities include economies of scale (e.g., 
reduction of cost per freight with an increasing number of freights brought to a termi-
nal) and the combination of freights with similar destinations (e.g., there are freights 
present at a terminal that go to the same area of new drayage freights). To capture these 
costs, we use a function that depends on the freights f L

t
 that are already at the long-

haul terminals, in addition to freights that are brought to those terminals by the drayage 
operations. We introduce the function CL

t
(f L
t
, xD

t
) and re-define the drayage cost consid-

ering the long-haul using z̃D
t
= zD

t
+ CL

t

(
f L
t
, xD

t

)
 instead of (1). This modification is key 

to integrate the long-haul transport performance over time into the drayage operations, 
as we will elaborate upon later on.

To define CL
t

(
f L
t
, xD

t

)
 , we use the increment in the optimal expected costs Vt(⋅) of the 

Bellman’s recursion in (4), as shown in (5). This increment captures the “extra” costs 
in the long-haul when bringing drayage freights to terminals that already have freights. 
In other words, these marginal costs capture opportunities that arise, for example, when 
a terminal already has some freight for a specific long-haul destination and it is cheap 
to bring pre-haulage freights that have the same destination to that terminal. The costs 
CL
t

(
fD
t
, xD

t

)
 are affected by the timing of drayage decisions (as exemplified in Fig. 2) 

in two ways. First, the freights f L
t

 at the terminals on day t form the so-called post-
decision state sL,x

t−1
 of the previous day t − 1 . The post-decision state is the state of the 

long-haul terminals after a long-haul decision has been made but before the exogenous 
information arrives, or in our problem, before the drayage operations occur. The post-
decision state is a function of the long-haul state and long-haul decision, as shown in 
(5c) and defined in Pérez Rivera and Mes (2017b). This state has an optimal expected 
cost of Vt

(
s
L,x

t−1

)
 . Second, the long-haul state sL

t
 at day t and its expected downstream 

costs Vt

(
sL
t

)
 depend on the drayage decision xD

t
 at day t and the post-decision state sL,x

t−1
 

of the previous day t − 1 . Using the transition function SM , we can define this state 
based on the post-decision state from the previous day sL,x

t−1
 and the drayage-dependent 

exogenous information wL,x
t  , as shown in (5b). Note that the ∅ in SM refers to the long-

haul decision, which takes place after the drayage. Remind that wL,x
t  is a function of the 

new freights ℱt that arrived, randomly, for drayage and the drayage scheduling decision 
xD
t
 that brought them to the terminals, as shown in (5d). 

(5a)CL
t

(
f L
t
, xD

t

)
=CL

t

(
s
L,x

t−1
, xD

t

)
= Vt

(
sL
t

)
− Vt

(
s
L,x

t−1

)
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4.2 � Modification of the long‑haul part

The modification of the long-haul part lies in the stochastic arrival process of 
freights to the network considered, i.e., the exogenous information process 

[
�t

]
∀t∈�

 . 
In our problem, freights arrive randomly to the drayage part of the network, and sub-
sequently, after the decisions of the drayage, to the long-haul terminals. Conse-
quently, the exogenous information process (i.e., freight arrivals) for the long-haul 
scheduling is stochastic and drayage-dependent. To model such an exogenous infor-
mation process, we define probabilities per intermodal terminal in the drayage, as it 
is considered in the model of Pérez Rivera and Mes (2017b), with the relation that 
one “origin” in their model is one departure terminal in ours. These probabilities 
capture the drayage dependency of arrivals. In other words, the probabilities in our 
model capture the probability that a certain freight type is brought to a certain termi-
nal, opposed to certain freights becoming known to the system. Using our previ-
ously defined probability distributions of freight arrivals, we introduce the set of 
drayage-dependent probabilities �L that is used in the MDP model and encloses the 
following probabilities. In between two consecutive days t − 1 and t, a total of f ∈ ℕ 
freights arrive with probability pFL

f ,j,t
 to terminal j ∈ �L . A freight that arrives 

between days t − 1 and t to terminal j ∈ �L has destination d ∈ �L with probability 
pDL
d,j,t

 , and time-window length l ∈ �L with probability pLTL
l,j,t

 . The probabilities in �L 
describe all freights that arrive to the long-haul based on the probabilities in �D and 
decision xD

t
 . The integration of the long-haul scheduling and the drayage scheduling 

is completely described by the relation between �L and decision xD
t
.

4.3 � Integrated problem

In the long-haul scheduling model, drayage performance is captured indirectly 
through the exogenous information process 

[
�t

]
∀t∈�

 . The exogenous information 
� ∈ �t , and its corresponding probability p�t

�  , is partly due to the stochastic arrival 
of freights to the drayage (i.e., �D ) and the drayage decision (i.e., xD

t
 ). Therefore, 

the solution to the Bellman equations in (4) is dependent on the drayage decisions. 
In turn, drayage decisions are dependent on the solution of the Bellman equations 
required for the long-haul decisions. The challenge to solve the integrated schedul-
ing problem considering this recursion is to find a set of long-haul drayage-depend-
ent probabilities �L

�
 for a policy � ∈ � that has two properties: (1) it results in a 

stable recursion, i.e., a solution to the Bellman equations that does not modify the 

(5b)
where

sL
t
= SM

(
s
L,x

t−1
, �,wL,x

t

)

(5c)s
L,x

t−1
= SM,x

(
sL
t−1

, xL
t−1

)

(5d)wL,x
t

= SM,w
(
ℱt, x

D
t

)
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drayage scheduling decisions that gave rise to its input long-haul drayage-depend-
ent probabilities, and (2) it minimizes the overall costs (i.e., drayage plus long-haul) 
defined in (6a). We now discuss the components of this objective function and the 
recursion therein. 

In the integrated objective function (6a), there are two new components to both 
the drayage and long-haul scheduling models: the drayage decisions dependent on a 
long-haul policy 

(
xD
t,�

)
 , and the function that defines the long-haul probabilities 

from the drayage decisions (� ) . The drayage decision xD
t,�

 at time t ∈ � given policy 
� ∈ � is defined as the decision that minimizes the drayage cost considering the 
long-haul z̃D

t
 , as shown in (6b). Note that z̃D

t
 has a subscript � to denote that the Bell-

man equation costs used are those of that policy, i.e., Vt,� . Note also that the costs we 
consider in the integrated objective in (6a) are the drayage costs only, i.e., zD

t
 , such 

that the long-haul costs are not added twice since they are already included in zL
t
 . 

The function �  maps the probabilities of the drayage �D , and the drayage decisions 
that consider the long-haul 

[
xD
t,�

]
∀t∈�

 under policy � , to the probabilities of the long-
haul �L

�
 under policy � , as shown in (6c). It is in these two components that the 

recursion lies, as exemplified in Fig. 3: to compute �L
�

 , we need xD
t,�

 , which depends 

(6a)min
�∈�

�

[∑
t∈�

(
zD
t

(
xD
t,�

)
+ zL

t

(
xL
t,�

))|||||
sL
0
,�D,�

]

(6b)
where

xD
t,𝜋

= arg min
xDt ∈�

D
t

[
z̃D
t,𝜋

(
xD
t

)]

(6c)�L
�

= �

(
�D,

[
xD
t,�

]
∀t∈�

)

Fig. 3   Components of the recursion between drayage and long-haul decisions
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on Vt,� , which in turn depends on �L
�

 . Note that the recursion occurs only when 
computing the value functions Vt,� and that, once the value functions are computed, 
they do not change with daily long-haul decision-making in practice (i.e., the recur-
sion is not present when implementing in practice). Considering this recursion, we 
have two approaches to solve the problem: either we consider one optimization 
problem with a large system of equations for the evolution of the network and con-
straints for drayage and long-haul scheduling, or we consider an iterative approach 
where we split the problem into several steps and iterations. Since a close-form solu-
tion for the overall optimization problem may only exist under limiting assumptions 
(e.g., the definition of �  ), we focus on an iterative approach. In the following sec-
tion, we describe the iterative method for computing �L

�
 and solving the recursion.

4.4 � Iterative integration

To solve the optimization problem in (6a), we propose a simulation-based approach 
connecting the MILP and MDP models for the drayage and long-haul scheduling, 
respectively. In this approach, we iteratively define �L

�
 using the costs and decisions 

from policy � . Our approach, which we call iterative integration, consists of four 
steps: 

Step (A)	� Define the long-haul probabilities �L
�

 using �  as in (6c). If there are 
observed drayage decisions (i.e., we are arriving at this step from Step 
D), then �  is used as an updating function.

Step (B)	� Solve the Bellman equations in (4) using the exogenous information from 
the probabilities �L

�
 resulting from Step (A). Store the expected long-

haul costs Vt,�

(
sL
t

)
 for all states and days in the horizon.

Step (C)	� Simulate the drayage and long-haul scheduling policies resulting from 
the Bellman equations, for the entire horizon, and for a number of repli-
cations. Each replication yields an observation of drayage and long-haul 
costs, ẑD

𝜋
 and ẑL

𝜋
 , respectively, as well as an observed set of drayage deci-

sions 
[
x̂D
t,𝜋

]
∀t∈�

.
Step (D)	� Decide whether to continue to the next iteration and go back to Step (A) 

or to stop.

The four steps of the iterative integration method are shown in Fig. 4. In addi-
tion, we show a second approach which we call the sequential integration method. 
This method consists of Steps (A) and (B) of the iterative integration only, or in 
other words, only a single iteration. This method is computationally simpler and 
can be used, for instance, when there is an analytical expression to define the dray-
age-dependent arrival rates for each terminal, or when these probabilities can be 
defined based on experience of human planners or historical data. We consider both 
approaches for our experiments, as we explain later on in Sect. 5. For now, we focus 
on the challenges of the iterative integration.

Each step of the iterative integration has its own challenges. Steps (A) and (D) 
have challenges that are intrinsic to the simulation-based approach connecting the 
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MILP and MDP models. First, defining long-haul probabilities �L
�

 involves defining 
the function �  . Second, deciding whether to stop or to continue involves the assess-
ment of whether the policy � is good enough, or if it converged (i.e., continuing 
does not have any effect). Steps (B) and (C) involve the computational challenges 
due to increasing complexity of the MILP and MDP models with increasing prob-
lem size. In the following sections, we elaborate on these challenges and propose 
ways to overcome them.

4.5 � Challenges

Steps (A) and (D) are the fundamental steps where our iterative approach defines the 
information parameters that integrate drayage and long-haul decisions shown in 
Fig. 3: the long-haul freight arrival information �L

�
 and the drayage terminal assign-

ment cost 
[
Vt,�

]
∀t∈�

 . Remind that �L
�
= �

(
�D,

[
xD
t,�

]
∀t∈�

)
 . The general objective 

in these steps is to define the parameters that achieve the overall objective in (6).
In Step (A), a function �  that maps the probabilities of drayage freight arrivals 

�D to the probabilities of the long-haul freight arrivals �L
�

 must be defined. The 
challenge is twofold. First, the dependence of �L

�
 in the drayage decisions 

[
xD
t,�

]
∀t∈�

 
that consider the long-haul is recursive, and hence the mapping complex to define. 
Second, the influence of �L

�
 on the overall costs/objective is indirect and difficult to 

measure. For the long-haul costs, the MDP model yields direct expected costs for a 
given �L

�
 , but for the drayage costs and the integrated costs, the MILP and the MDP 

model interact in a difficult way to measure and derive costs. This difficulty is also 
present in Step (D), where a decision whether to continue to the next iteration must 
be made. The main criteria is whether the policy � from �L

�
 results in sufficiently 

low overall costs. However, as stated before, this is difficult to measure and other 
criteria may be necessary, such as convergence of costs or convergence of the 
policy.

In contrast to the modeling challenges in Steps (A) and (D), Steps (B) and (C) 
have computational challenges with increasing problem size due to the complex-
ity in solving the individual MILP and MDP models. Per iteration, the MDP model 
has to be solved once, and the MILP model |�| ∗ N times, where N is the num-
ber of simulation runs and |�| the length of the planning horizon, per iteration. To 

Fig. 4   Proposed solution methods to the integrated scheduling model
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overcome these challenges, we use the Math-Heuristic (MH) for the MILP model 
from Pérez Rivera and Mes (2017c) and the Approximate Dynamic Programming 
(ADP) algorithm for the MDP model from Pérez Rivera and Mes (2017b). We apply 
two modifications to the MH and one modification to the ADP algorithm, which 
we elaborate upon next. For all details on these heuristics, we refer the reader to the 
aforementioned papers.

In the ADP algorithm, we modify the Value Function Approximation (VFA) 
by designing a new set of characteristics ℬt , or basis functions �b ∀b ∈ ℬt , that 
approximate the downstream rewards in the Bellman’s equations. This new VFA 
provides a better fit with the integrated problem and works as follows. We categorize 
freights based on a common freight description used in transport problems: must 
go and may go freights. On a given day t, must go freights are those freights due 
at t, i.e., time-window length equal to zero, and may go freights are those freights 
that can be postponed, i.e., time-window length greater than zero. Based on this cat-
egorization, we include the following four basis functions per terminal j ∈ ℋ : (1) 
number of must go freights, (2) count of must go destinations, (3) number of may go 
freights, and (4) count of may go destinations, as shown in (7a) to (7d), respectively. 
To count the must go destinations, we use the binary variables uj,d,t , which get a 
value of 1 if there is a must go freight to destination d ∈ �L in terminal j ∈ ℋ and 
0 otherwise. Similarly, we use the binary variable vj,d,t to count the may go destina-
tions. In addition to the must go and may go freight basis functions, we include the 
total number of freights of a post-decision state in (7e), a constant in (7f), and all 
post-decision state variables, as shown in (7g). In total, we now have ||ℬt

|| = ||sLt || + 6 
characteristics (also denoted by features), indexed from 

[
1, 2,… , ||ℬt

||
]
 , using the 

auxiliary function b(d, l, t) ↦
[
7, 8,… , 7 + ||sLt ||

]
 . 

(7a)�1,j

(
sL
t

)
=
∑
d∈�L

f L
j,d,0,t

(7b)�2,j

(
sL
t

)
=

∑
d∈�L

uj,d,t

(7c)�3,j

(
sL
t

)
=
∑
d∈�L

∑
l∈�⧵0

f L
j,d,l,t

(7d)�4,j

(
sL
t

)
=

∑
d∈�L

vj,d,t

(7e)�5,j

(
sL
t

)
=
∑
d∈�L

∑
l∈�

f L
j,d,l,t

(7f)�6,j

(
sL
t

)
=1

(7g)�b(d,l,t),j

(
sL
t

)
=f L

j,d,l,t
, ∀d ∈ �L, l ∈ �
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The VFA is then the product of the basis functions and weights �b,j,t as shown 
in (8). This VFA is used in the drayage costs that consider the incremental long-
haul costs shown in (5). Vt(⋅) captures the expected long-haul performance for all 
terminals, but can also be used for individual terminals, as we see next.

For the MH approach to solve the MILP model, we include an additional Math-Heu-
ristic Operator (MHO). This MHO is based on the long-haul performance result-
ing from the VFA described before, as shown in (9). For pre-haulage jobs F ∈ ℱt , 
we fix the arc to the terminal with lowest integrated costs (i.e., drayage costs and 
expected increase in long-haul costs), as shown in (9a). If the pre-haulage job needs 
an empty container, we use one from the closest terminal, as shown (9b). 

4.6 � Heuristic approach

With the MH and ADP heuristics, our iterative integration method works as 
shown in Fig.  5. First, ADP learns the VFA (i.e., weights � of the basis func-
tions described in the previous sections) based on the initial long-haul arrival 
probabilities �L . Then, a simulation is carried out where freights arrive ran-
domly for the drayage. These freights are scheduled using the MH described 
in the previous section, considering the learned VFA. After N simulation runs, 
the observed long-haul arrivals wL,x for all days in the horizon and simulation 
runs are given to the probability updating function �  , which yields new long-
haul arrival probabilities. The process is repeated M times. Note that in Fig. 5, 
parameters that vary per simulation run have a subscript n, and those that vary 
per iteration of the integrated approach (but remain constant through the simula-
tion) have a subscript m. Furthermore, the ADP algorithm runs for a number of 
internal-iterations at each iteration m and the MH runs for a number of internal-
iterations at each time t, of replication n, and of iteration m.

(8)Vt

(
sL
t

)
− Vt

(
s
L,x

t−1

)
≈

∑
j∈ℋ

∑
b∈ℬ

�b,j,t ⋅ �b,j

(
sL
t

)
−
∑
j∈ℋ

∑
b∈ℬ

�b,j,t ⋅ �b,j

(
s
L,x

t−1

)

(9a)

∑
k∈𝒦

xk,i,j�,t = 1

such that

j� = arg min
j∈�+(i)

(
Ti,j ⋅ C

VD
k,i,j

+
∑
j∈ℋ

∑
b∈ℬ

�b,j,t ⋅ �b,j

(
sL
t

)
−
∑
j∈ℋ

∑
b∈ℬ

�b,j,t ⋅ �b,j

(
s
L,x

t−1

))

(9b)
∑
k∈𝒦

xk,j�,i,t = 1
|||||
j� = arg min

j∈�−(i)

(
Tj,i ⋅ C

VD
k,i,j

)
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5 � Numerical experiments

In this section, we study the performance of our integrated scheduling approach 
through a series of numerical experiments. We explore the use of our integrated 
approach and evaluate its implications under various problem characteristics. 
This section is structured as follows. We begin by describing the transport net-
work and the three phases of experiments we carry out. Then, we present the 
results of each experimental phase and our observations. Finally, we discuss our 
results and provide ideas for future research.

5.1 � Experimental setup

We consider a transport network with a point-to-point topology and three long-
haul services, as shown in Fig. 6. The network spans an area of 1000 × 500 km, 
to resemble the distances that make consolidation (e.g., using barges and trains) 
for the long-haul desirable in Europe (Woxenius 2007). The origin of pre-haul-
age freights, as well as all other drayage request locations, occurs in an area of 
200x500km around Terminals 1, 2, and 3. There are 25 trucks, of which 9 are 
located at Terminal 1, and 8 at each of the Terminals 2 and 3. There are six long-
haul destinations for pre-haulage freights, which are evenly distributed between 
Terminals 4, 5, and 6. There is the possibility to hire additional trucks for the 
long-haul, at a much larger expense than the trains and barges in the network. We 
use a literature-based cost structure, similar as the one in Pérez Rivera and Mes 

Fig. 5   Graphical representation of the iterative integration method
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(2017b), where drayage operations, on average, contribute 40% to the total trans-
port costs. The cost details and parameters are shown in “Appendix 2”.

We consider a planning horizon of 5 days, i.e., one working week. Each day, new 
drayage freights arrive according to a right-truncated Poisson distribution with mean 
20 and truncated at 25. Each freight that arrives has four random characteristics: (1) 
drayage location, (2) drayage request type, (3) long-haul destination, and (4) long-
haul time-window length. The drayage location is uniformly distributed in an area 
of 200 ×  500 km around Terminals 1, 2, and 3, as exemplified in Fig.  6. For the 
Drayage Request (DR) type, we consider four categories. Category DR1 represents 
an end-haulage request starting with a full container at a known terminal, transport-
ing it to a customer (i.e., drayage location), unloading it, and then finishing with 
the transport of the empty container to any terminal. Category DR2 represents an 
end-haulage request starting with a loaded container at a known terminal and fin-
ishing with its transport to the customer. Category DR3 represents a pre-haulage 
request starting with an empty container in any of the terminals, transporting it to a 
customer, loading it, and then finishing with the transport of the loaded container to 
any terminal. Category DR4 represents a pre-haulage request starting with a loaded 
container at a customer and finishing with its transport to any terminal. A drayage 
request is category DR1 with probability 0.1, DR2 with 0.1, DR3 with 0.4, and DR4 
with 0.4. Each pre-haulage freight that arrives, independent of its type (i.e., DR3 or 
DR4), has long-haul destination 7, 8, 9, or 10 with probability 0.05 each, and desti-
nation 11 or 12 with probability 0.4 each. Furthermore, each pre-haulage freight has 
a long-haul time-window length of 1 or 3 days with probability 0.1 each, and 2 days 
with probability 0.8.

We use a total of 8 combinations of network characteristics, which we call 
instances. These instances are based on the network described above, considering 
variations to three of the stochastic characteristics considered. For the drayage loca-
tion distribution, we study two settings: the random one described before and a clus-
tered one consisting of drayage locations distributed uniformly around Terminal 3 in 

Fig. 6   Locations and transport modes of the experimental network
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a square of 150 × 150 km. For the drayage type distribution, we study two settings: 
the original setting, which we denote by pre-haulage dominant, and an end-haulage 
dominant setting where drayage requests are of type DR1 or DR2 with probability 
0.4 each, and are type DR3 or DR4 with probability 0.1 each. For the long-haul des-
tination, we study two settings: the unbalanced distribution described before and a 
balanced distribution where each destination has probability of 1 / 6. These network 
characteristics, and the notation we use to refer to them, are shown in Table 1.

The goal of our numerical experiments is to study freight demand characteris-
tics that have a direct impact on the integration of drayage and long-haul transport 
scheduling and how an integrated approach compares to a non-integrated one. For 
this reason, we consider that only the aforementioned freight demand characteristics 
are random and that all others settings are fixed. The drayage time-window length, 
maximum driving time of drayage trucks, and terminal opening times are equal to 
1  day. Furthermore, all pre-haulage freights that arrive are released for the long-
haul, i.e., once arrived at the long-haul, all pre-haulage freights are allowed to be 
taken by the first long-haul service departing. It is important to note that our models 
and algorithms can handle these characteristics as stochastic, but that in our experi-
ments we consider them deterministic. We divide the experiments into three phases 
where we use the sequential integration method (see Fig. 4) in the first two phases, 
and the iterative integration method in the third phase. Remind that the sequential 
integration method is a special case of the iterative integration method in Fig. 5 with 
M = 1.

Experiments with the integrated scheduling method require both a learning and 
an evaluation phase. In the learning phase, the approach from Figs. 4 or 5 is carried 
out, and results in a policy that is tested in an evaluation phase, using simulation of 
100 weeks. To prevent randomness in the learning phase (i.e., simulation used in 
ADP) from affecting the methods, the same policy is learned for the three methods. 
To prevent randomness in the evaluation phase, the same freight arrivals over the 
horizon of the problem (i.e., 1 week) and over the simulation runs (i.e., 100 weeks) 
are used for evaluating the four scheduling methods. Furthermore, for reducing the 
statistical noise of learning the policies, we replicate the whole learning and evalu-
ation phase 10 times for the first two experimental phases (i.e, with the sequential 
integration method). Across the replications, we observed an average relative error 
of 0.03 (at a t confidence level of � = 0.05 ) for all costs performance indicators.

Our integration method, both in its sequential and iterative form, requires careful 
calibration of various parameters. Before performing our experimental phases, we 
study the calibration of four parameters: (1) ADP initial probability distributions, 

Table 1   Network characteristics 
and their settings

Network characteristics Values (code)

Drayage location Random (R), Clustered (C)
Drayage type Pre-haulage dominant (P), 

End-haulage dominant (E)
Long-haul destination Unbalanced (U), Balanced (B)
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(2) ADP time horizon, (3) ADP initial weights, and (4) ADP updating step size. 
These parameters have a direct influence on the expected long-haul costs for the 
planning horizon, which affect the terminal assignment decision in the drayage and 
consequently the freights available for consolidation in the long-haul. We describe 
the details of this calibration study in “Appendix 4”.

We now discuss the purpose of each of the experimental phases of our numeri-
cal study. First, we perform an exploratory phase where we study the relative costs 
savings of our integrated approach compared to the costs of using a non-integrated 
approach commonly found in practice (Sect. 5.2). Second, we perform an evalua-
tion phase where we delve into the specific consequences of our integrated approach 
towards each part of the transport process: the drayage operations and the long-haul 
transport (Sect. 5.3). Third, we perform an convergence test phase where we study 
the behavior of our iterative integrated approach throughout the iterations (Sect. 5.4). 
After presenting the results of the three phases, we discuss the limitations of our 
experiments and provide future research ideas to overcome them in Sect. 5.5.

5.2 � Phase I: exploratory experiments

In the exploratory experiments, we evaluate the relative cost savings of our inte-
grated scheduling approach over a non-integrated scheduling approach using various 
cost setups. The non-integrated scheduling approach we use as a benchmark con-
sists of two independent heuristics, one for the long-haul and one for the drayage. 
The long-haul heuristic consolidates freights that must be sent today with the low-
est cost possible (i.e., combination of high-capacity modes and hired trucks), and, 
if there is capacity left in the high-capacity mode, it schedules freights that do not 
add extra costs, such as freights with the same destination. The drayage heuristic 
uses the logic from Caris and Janssens (2009): first, it pairs drayage requests that are 
close to each other (i.e., assign closest terminal), second it adds the pairs to a route 
using cheapest insertion, and finally schedules all remaining requests using cheapest 
insertion.

We evaluate the savings in the eight instances obtained by the combination of 
network characteristics from Table 1. Furthermore, for each of the eight instances, 
we test two additional cost setups: (1) low drayage-cost, where drayage costs make 
up, on average, 20% of the total costs instead of the 40% in the normal setup, and (2) 
high drayage-cost, where drayage costs make up, on average, 80% of total costs. The 
results for the normal, low and high drayage-cost setup are shown in Tables 2, 3, and 
4 respectively.

In Table  2, we observe that our approach achieves total costs savings between 
2 and 6% in 7 out of the 8 instances. Two interesting observations arise. First, the 
relative savings are larger in instances with clustered drayage locations (C). In 
these instances, all drayage freights are closer to Terminal 3 than any other termi-
nal. However, this might not always be the departure terminal. Hence, we observe 
that with larger total costs savings there are increased drayage costs due to pre-
haulage freights not being brought to their closest terminal. Second, we observe 
that instances with end-haulage dominant drayage types (E) have a lower long-haul 
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Table 2   Percentage difference with the benchmark in normal drayage-cost setup

Instance Costs Long-haul utili-
zation (%)

Pre-haulage to 
closest terminal 
(%)Total (%) Long-haul (%) Drayage (%)

R–P–U − 2 − 10 17 4 − 21
R–P–B − 5 − 14 18 1 − 27
R–E–U 1 1 2 − 4 − 17
R–E–B − 1 − 5 2 − 2 − 14
C–P–U − 5 − 14 16 5 − 37
C–P–B − 6 − 13 12 0 − 35
C–E–U − 4 1 − 7 − 5 − 14
C–E–B − 6 − 4 − 6 − 3 − 21

Table 3   Percentage difference with the benchmark in low drayage-cost setup

Instance Costs Long-haul utili-
zation (%)

Pre-haulage to 
closest terminal 
(%)Total (%) Long-haul (%) Drayage (%)

R–P–U − 6 − 11 20 3 − 23
R–P–B − 10 − 16 19 2 − 28
R–E–U 1 0 2 − 4 − 15
R–E–B − 2 − 6 2 − 3 − 22
C–P–U − 8 − 14 19 4 − 40
C–P–B − 11 − 16 13 2 − 35
C–E–U − 3 0 − 6 − 4 − 31
C–E–B − 5 − 5 − 6 − 3 − 37

Table 4   Percentage difference with the benchmark in high drayage-cost setup

Instance Costs Long-haul utili-
zation (%)

Pre-haulage to 
closest terminal 
(%)Total (%) Long-haul (%) Drayage (%)

R–P–U 3 − 12 6 4 5
R–P–B 5 − 5 7 0 4
R–E–U − 1 1 − 1 − 4 25
R–E–B 0 1 0 − 3 16
C–P–U − 9 50 − 20 − 30 18
C–P–B − 12 38 − 23 − 27 21
C–E–U − 8 − 4 − 9 − 4 29
C–E–B − 9 − 3 − 9 − 3 21
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utilization (of barges and trains). These instances have significantly less pre-haulage 
freights compared to the others. Our approach seems to postpone more freights for 
their long-haul transport than the benchmark. Although it is intuitive to postpone as 
long as possible to seek a larger number of freights per barge or train when not many 
pre-haulage freights arrive, it may result in poor long-haul utilization during the 
postponement periods and higher costs when there are suddenly more freights than 
barge/train capacity available at a terminal (e.g., Instances R–E–U and C–E–U).

In Table 3 with the low drayage-cost setup, similar observations to those from 
Table 2 arise. The only difference is in the magnitude, with larger savings and less 
pre-haulage freights assigned to their closest terminal being the intuitive result of 
drayage operations not contributing significantly to the total costs. In such a cost 
setup, the choice of transporting pre-haulage freights to the best departure terminal 
is certainly more important than transporting it to the closest departure terminal.

In Table 4, showing the results of the experiments with high drayage-cost setup, 
we observe two important differences. First, we observe that the total cost sav-
ings in all clustered drayage origin instances (C) are significantly larger than in the 
other cost setups. These savings seem to arise due to the increased assignment of 
closer departure terminals to the pre-haulage freights. On the one hand, since more 
freight are being brought to the same departure terminal (Terminal 3 in this case), 
the chances of not having enough capacity in the long-haul service of that terminal, 
and thus having to use the expensive truck, are higher. This explains the increased 
long-haul costs in the C–P instances. On the other hand, if not so many freights 
arrive, as in the case of the end-haulage dominant drayage instances C–E, savings 
for the long-haul are still possible. Second, our approach achieves total cost sav-
ings in only 1 out of the 4 random drayage origin (R) instances tested, in instance 
R–E–U, which was the instance where no savings were achieved in the previous 
cost setups. The savings are a result of drayage improvement, where significantly 
more pre-haulage freights were brought to their closest departure terminal than in 
the other R instances. Although these observations may be due to the drayage costs 
being much higher than the long-haul costs (e.g., the drayage operations should have 
a stronger emphasis than in our approach), one can argue that if our approach would 
properly learn the VFA, and a reasonable policy for the drayage scheduling using 
the VFA, then it would not perform worse than the non-integrated benchmark. In 
Sect. 5.5, we discuss these observations and their implications.

In the exploratory experiments above, we observed that the network-wide relative 
savings of our integrated approach have different implications for different network 
characteristics. In the following phase, we study in more detail what these implica-
tions are in absolute terms.

5.3 � Phase II: evaluation experiments

In the evaluation experiments, we analyze the specific consequences of our inte-
grated approach towards drayage operations and long-haul transport, and compare 
them to those of the non-integrated benchmark heuristic of the previous section. To 
further analyze the impact of our integrated approach on the individual scheduling 
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of drayage operations or of long-haul transport, we compare to the scheduling case 
when only one of the two policies of our approach is being used, and in the other 
part, the benchmark heuristic. In Table 5, we show the two-letter notation used for 
each scheduling method, where the first letter denotes the scheduling method of 
the drayage operations and the second one the scheduling method for the long-haul 
transport. We use H to denote the individual non-integrated heuristics described in 
the previous section, M for matheuristic policy from our integrated approach (i.e., 
drayage part), and A for the ADP policy from our integrated approach (i.e., long-
haul part).

Similar to the previous experiments, we use the eight instances obtained by the 
combination of network characteristics from Table 1 under the normal drayage-cost 
setup. For each instance, we test the four scheduling methods of Table 5. Methods 
H–A, M–H, and M–A require our integrated approach to learn the two output poli-
cies, even if only one will be used for the actual scheduling, i.e., H–A and M–H. In 
all three cases, we must learn the VFA of the long-haul transport: in H–A we use it 
for the long-haul decisions, in M–H we use it in drayage decisions, and in M–A we 
use it in both.

In Fig. 7, we observe the average costs of each scheduling method for the pre-
haulage dominant instances. In the exploratory experiments of these instances (pre-
vious section), we saw that our integration method (M–A) achieved savings between 
2 and 6% compared to the benchmark (H–H). In these evaluation experiments, we 
observe similar savings with two additional observations on which of the policies 
helps the most. First, we observe that for the instances with random drayage loca-
tions (R), the methods with the ADP policy for the long-haul (i.e., H–A and M–A) 
are performing the best; whereas in the instances with clustered drayage locations 
(C), the methods with the matheuristic policy for the drayage (i.e., M–H and M–A) 
are performing the best. In the R instances, it seems that more emphasis should be 
put on when to use the long-haul services once a freight is brought to a departure 
terminal, since pre-haulage freight arrivals are evenly distributed among the depar-
ture terminals. In the C instances, choosing the best departure terminal is more 
important for a good long-haul and network-wide costs, even at the expense of the 
drayage costs, since pre-haulage freight arrivals are clustered in one terminal.

In Table  6, we observe further implications of the emphasis on the drayage 
and long-haul policies of our integrated approach. Two implications stand out. 
First, in all instances, having a long-haul policy that is good (i.e., low number 

Table 5   Different scheduling 
methods for evaluation

In between parenthesis, we show the number of methods that make 
use of the VFA produced by our integrated approach

Scheduling methods Long-haul

Heuristic ADP

Drayage
 Heuristic H–H (0) H–A (1)
 Matheuristic M–H (1) M–A (2)
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of long-haul trucks and low cost per freight) is crucial for the best network-wide 
performance. In fact, in three out of the four instances, the scheduling method 
achieving the lowest network-wide costs used the lowest number of long-haul 
trucks. Second, in the R instances, both the drayage and long-haul policy should 
achieve low costs per freight for their part to achieve the best network perfor-
mance; whereas in the C instances, the emphasis is on organizing the drayage in 
a way to allow the long-haul transport to have a better performance. This result is 
intuitive when considering that myopic drayage decisions in the C instances will 
most of the time bring pre-haulage freight to the closest terminal, resulting in 
overflow of freight and high use of trucks when long-haul (barge or train) capac-
ity is exceeded. Finally, Table 6 also indirectly provides insight into the utiliza-
tion of the long-haul services through the number of trucks required for the long-
haul and the number of requests assigned to the closest terminal. For example, in 
Instance C–P–B, our integrated approach (M–A) uses three times less long-haul 
trucking compared to the benchmark (H–H) at the expense of choosing further 
terminals in the drayage (i.e., smaller number of requests to closest terminal). 
This implies a “distributed” preference to terminals (and thus long-haul services) 
instead of the closest one to the cluster, which results in better consolidation 

Fig. 7   Average total (drayage+long-haul) costs for the pre-haulage dominant (P) instances
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opportunities, less postponement of freight in terminals, and better long-haul 
costs.

In the case of end-haulage dominant (E) instances, whose results are shown in 
“Appendix 5”, there are no significant differences among the total cost performance 
of the scheduling methods. Similar to the P instances, the scheduling methods with 
the matheuristic (M) drayage policy are assigning less freights to their closest ter-
minal, or in other words, trying to achieve better future consolidation by bringing 
freight to a further terminal. In contrast to the P instances, a lower cost per freight of 
the long-haul policy does not relate to a lower number of long-haul trucks used. A 
possible explanation for this might be the excessive postponement of freight, as dis-
cussed previously. A critical point and improvement could be the use of thresholds 
(such as when operators call to see if there is space or not in a terminal) to balance 
more things and avoid the postponement or too-crowded terminal. Finally, in the 
end-haulage dominant (E) instances, the relative savings of the integrated approach 
are smaller than in the pre-haulage dominant instances. In instances R–E–U and 
C–E–U, the benchmark heuristic seems to slightly outperform our approach. Since 
the integrated approach typically steers drayage decisions towards efficient consoli-
dation for the long-haul, instances where drayage cost dominate do not benefit as 
much from an integrated approach.

Overall, our sequential integrated approach, when used with the best scheduling 
method (displayed in bold in Table 6), results in total cost savings with respect to 

Table 6   Performance of different scheduling methods for the pre-haulage dominant (P) instances

Results corresponding with the best scheduling method for a given instance are given in bold. We sepa-
rate the average costs per request in costs for drayage operations and costs for long-haul transport

Instances Sched-
uling 
method

Total cost Drayage operations Long-haul transport

Cost per request Nr. assigned to 
closest terminal

Cost per request Nr. trucks 
for long-haul

R–P–U H–H 25,333.49 108.30 44.73 271.34 8.16
H–A 23,298.69 108.30 44.73 240.75 5.33
M–H 28,838.76 126.90 33.57 305.30 11.40
M–A 25,880.77 126.80 33.50 258.95 7.30

R–P–B H–H 26,900.57 108.29 44.73 297.16 8.27
H–A 25,878.86 108.29 44.73 281.71 7.69
M–H 28,082.03 124.94 34.18 296.17 9.26
M–A 26,599.43 124.92 34.17 273.42 7.64

C–P–U H–H 33,803.87 79.31 51.25 440.00 24.90
H–A 32,698.22 79.31 51.25 422.21 24.92
M–H 28,668.08 116.88 30.68 314.62 12.85
M–A 26,794.79 117.21 30.59 284.91 10.92

C–P–B H–H 34,219.72 79.32 51.24 447.94 24.93
H–A 33,447.23 79.32 51.24 435.00 24.89
M–H 28,059.79 117.12 30.74 305.54 10.19
M–A 26,100.24 117.03 30.75 275.00 8.11
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a non-integrated approach (scheduling method H–H) between 4 (R–P–B) and 24% 
(C–P–B) in the P instances. The savings in the long-haul cost per freight in these 
instances range between 5 (R–P–B) and 39% (C–P–B), without any increase in dray-
age cost in both instances with random drayage locations (R–P–U and R–P–B) but 
with a 48% increase in drayage cost in both instances with clustered drayage loca-
tions (C–P–U and C–P–B). In the following section, we explore the use of our itera-
tive integrated approach to overcome some of the limitations of the sequential one.

5.4 � Phase III: convergence test

In this convergence test, we study the behavior of our iterative integrated approach 
throughout the iterations. For the iterative approach, depicted in Fig. 5, we start by 
using the same sequential approach of the previous experimental phases and use 100 
iterations ( M = 100 ), with the difference that, from iteration m = 2 onwards, we ini-
tialize the long-haul policy (i.e., basis function weights of the ADP) at each iteration 
with the long-haul policy from the previous iteration. Furthermore, throughout the 
iterations we need a probability updating function �  , which we describe next.

We define the long-haul probabilities �L
m

 at every iteration m based on the 
observed distribution of arrivals across the departure terminals and the network-
wide distribution of arrivals to the entire network. The intensity of arrivals to Ter-
minal i ∈ � at iteration m|1 < m < M is updated to be a right-truncated Poisson 
distribution with mean �i,m and truncated at 25. The mean �i,m is defined by Eq. 10, 
where ai,m−1 represents the total arrivals to Terminal i at iteration m − 1 . The prob-
ability pD

i,d,m
 of an arrival at Terminal i ∈ ℋ having destination d ∈ �L at iteration 

m is defined by Eq. 11, where oSD
i,d,m−1

 represent the scaled arrivals to Terminal i at 
iteration m − 1 that had destination d and is defined by Eq. 12. The probability of an 
arrival at a terminal having a long-haul time-window length l is computed similarly 
to that of the destination.

Similar to the previous phases, we use the eight instances obtained by the combina-
tion of network characteristics from Table  1 under the normal drayage-cost setup. 
In Table  7, we show the initial ( m = 1) and final ( m = 100 ) performance indica-
tors of the iterative method and their percentage difference. Two observations stand 

(10)�i,m =20
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=
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out. First, in the end-haulage dominant (E) instances, the iterative method always 
improves the total cost, and in the pre-haulage dominant (P) not. Second, although 
all E instances have lower total costs and long-haul cost per freight at the end of the 
iterations, the closest terminal assigned decreases in the random drayage location (R) 
instances and increases in the clustered drayage location (C) instances. In the previ-
ous phases, E instances were the instances where we observed the lowest savings and 
where the combination of scheduling policies did not differ much. The results of this 
phase show that with an iterative method, the performance of our integrated approach 
can be improved further. We now analyze two of the instances in more detail.

In Figs. 8 and 9, we show two indicators throughout the iterations for Instance 
R–E–U and C–P–B, respectively. We show the long-haul cost per freight, which 
is an indicator of the long-haul policy, and the assignments of pre-haulage 

Table 7   Initial and final performance indicators of the iterative method

Instance Closest terminal assigned Long-haul cost per freight Total cost

Initial Final Diff. (%) Initial Final Diff. (%) Initial Final Diff. (%)

R–E–U 9.07 7.91 − 13 407.21 382.73 − 6 17,348.87 17,015.74 − 2
R–E–B 8.88 6.25 − 30 465.84 451.08 − 3 18,296.47 17,786.21 − 3
C–E–U 8.50 11.54 36 417.58 405.85 − 3 16,538.74 15,996.46 − 3
C–E–B 8.57 10.92 27 428.86 420.53 − 2 16,670.89 16,270.53 − 2
R–P–U 37.41 30.87 − 17 256.13 303.15 18 25,772.01 28,763.43 12
R–P–B 36.07 30.78 − 15 274.65 314.44 14 26,890.64 29,901.77 11
C–P–U 43.23 41.03 − 5 329.13 330.15 0 28,286.58 28,421.97 0
C–P–B 33.90 49.52 46 277.90 397.78 43 26,308.27 32,075.98 22

Fig. 8   Iterative method in R–E–U
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freights to their closest terminal, which is an indicator of the drayage policy. In 
Fig.  8, the R–E–U instance, we observe that our approach gradually improves 
over the iterations in terms of long-haul cost and that it converges in terms of 
pre-haulage freights assigned to the closest terminals. In this instance, cost are 
more heavily fluctuating than assignments. In Fig.  9, the C–P–B instance, we 
observe that the costs significantly deteriorate with the iterations and that the 
fluctuations of the long-haul cost per freight (i.e., long-haul policy), and the 
closest terminal assigned (i.e., drayage policy) are significantly larger than in 
the R–E–U instance. Particularly, we see that large fluctuations in a small range 
of iterations (e.g., 35–40 and 90–95) are present. A possible explanation of this 
lies in the interaction between the long-haul and drayage policy in our approach. 
Adjusting the long-haul policy a little bit might have a huge impact on the dray-
age policy. For example, a small increase in the assignment cost to a Terminal 
at one iteration (i.e., VFA being updated at each iteration) may result in most 
freights not being assigned to that terminal in the following one. We might need 
a mechanism to actually avoid this continuous switching of departure terminals 
and in this way reduce the drastic fluctuations in the resulting policy. For exam-
ple, at each iteration m, the initial weights of the basis functions in the ADP 
approach for each terminal can be defined considering the final ADP weights of 
all other terminals during the previous iteration m − 1.

5.5 � Discussion

The results of our numerical experiments raised a series of discussion points about 
the integrated scheduling of drayage operations and long-haul transport. In this 

Fig. 9   Iterative method in C–P–B
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section, we elaborate on these points, distinguishing between experimental limita-
tions, modeling limitations, and guidelines for further research.

5.5.1 � Experimental limitations

We observed that our integrated approach is capable of achieving significant sav-
ings even when used in “sequential” mode (Phase I and II of the experiments). In 
instances with high drayage-costs, where we did not achieve significant savings in 
3 out of the 8 instances tested, the influence of the initial probability distribution 
is likely the cause for under-performance. The initial probability distribution of the 
long-haul made the ADP algorithm learn a VFA not accurately representing the 
expected (i.e., downstream) costs in the long-haul and therefore resulting in wrong 
decisions for the scheduling of both parts. In addition, we observed larger percent-
age savings in the total costs of instances with end-haulage dominance. In these 
instances, our approach significantly reduced the long-haul costs, percentage wise 
and compared to the non-integrated benchmark, but significantly increased the dray-
age costs. One might argue that the scale, or weight, of the costs for the two different 
parts may influence the conclusion, and hence for the possible implementation in 
practice by an LSP, additional performance measurements are needed.

5.5.2 � Modeling limitations

In our experiments, we observed that our model and solution approach performed 
best in instances with clustered drayage locations and with pre-haulage dominance. 
This may be a result of our method of integration, where the drayage scheduling 
decisions have an explicit (i.e., direct) link to the long-haul performance but long-
haul decisions only have an implicit link to the drayage. Although we did not cali-
brate the implicit link (i.e., probability distributions for the long-haul through the 
function �  ), and this might be the reason of the under-performance in instances with 
other configurations, it is possible that our approach requires an explicit link for 
instances with random drayage locations and end-haulage dominance.

5.5.3 � Further research

The first guideline for further research is to improve the iterative integrated 
approach. This involves three challenges: (1) how to make the computational burden 
smaller, (2) how to improve the function �  in Step (A) such that it avoids the heavy 
fluctuations in drayage policy, and (3) how to decide whether to continue to the next 
iteration in Step (D) analyzing the convergence of probabilities, costs, and policy. 
The second guideline is to explore other characteristics that may have an influence 
on the cost saving opportunities of our integrated approach. In our experiments, the 
ratio between pre-haulage or end-haulage jobs had a larger influence than the loca-
tion of the requests or the destination of the long-haul. Perhaps other time-related 
characteristics, which we assumed fixed in our study, have an important influence on 
the savings that our integrated scheduling approach can achieve.
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6 � Conclusions

In this paper, we designed a simulation-based approach to integrate a MILP model 
for scheduling drayage operations and an MDP model for scheduling long-haul 
transport. With our approach, we studied the relation between scheduling decisions, 
timing, and network-wide performance of drayage and long-haul operations in syn-
chromodal transport considering stochastic demand and multiple freight charac-
teristics. In addition, we tested how our integrated scheduling approach performed 
compared to a benchmark heuristic over various network configurations and cost 
structures. Furthermore, we analyzed the impact of our approach on the individual 
scheduling policies of drayage operations and long-haul transport, and how the per-
formance of our approach can iteratively be improved.

In extensive numerical experiments, we showed that our integrated approach 
results in significant savings compared to a non-integrated approach, ranging 
between 4 and 24% in instances with a majority of pre-haulage freights. However, 
we also showed that under certain network characteristics, such as a majority of end-
haulage freights, our approach performs approximately the same as non-integrated 
heuristics. These experiments helped us identify two areas for further research. 
First, the calculation of the long-haul probabilities for the ADP algorithm must be 
improved, such that the right emphasis is given on the drayage operations. Second, 
time and cost characteristics of the freight demand must be studied in more detail to 
provide insight into the applicability of our method in practice. We observed that the 
savings of our approach had significant implications to either the drayage operations 
or the long-haul transport. Studying these implications further will achieve improve-
ments for the practice of synchromodal transport through the integrated scheduling 
of drayage operations and long-haul transport.
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Appendix 1: Notation

In this appendix we present all mathematical notation used throughout the paper. In 
all of the notation, a superscript ‘D’ at the end indicates that the parameter or vari-
able is related to drayage scheduling, while the superscript ‘L’ at the end indicates 
a relation to long-haul scheduling. We divide the notation into four categories: (1) 
sets, (2) probabilities, (3) parameters and variables for the long-haul part of the net-
work, and (4) parameters and variables for the drayage part of the network (Tables 8, 
9, 10 and 11).   

http://creativecommons.org/licenses/by/4.0/
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Table 8   Sets and their elements/indices ( ∗indicates miscellaneous elements)

Set Indices Description

� t, t′ Long-haul scheduling periods (i.e., planning horizon)
ℱt fN Freights that arrived between the drayage scheduling of t − 1 and t
ℛ r, rD Drayage request types of freights
� o, oD Drayage origins of freights
�D dD Drayage destinations of freights

�L dL Long-haul destinations of freights

�D eD, lD Drayage time-windows, where eD is earliest arrival and lD is latest arrival
�L lL Long-haul time-window lengths of freights

�D Misc.∗ Set of all probabilities describing the arrival of freight for drayage

�L Misc.∗ Set of all probabilities describing the arrival of freight to the long-haul terminals
� k Set of drayage trucks
�r k Set of drayage trucks that can carry our drayage request type r ∈ ℛ

ℋ h Set of all terminals available in the network
�D i, j Set of all locations in the drayage

�L i, j Set of all locations in the long-haul
� d Subset of long-haul destinations
�L

t
xL
t

Decision space of the MDP
� sL

t
State space of the MDP

� � Policy space of the MDP
� sL

t
,� Exogenous information space of the MDP

ℬ b Set of features for the VFA of the ADP algorithm
N n Replications of the simulation in the iterative integration method
M m Iterations in the iterative integration method

Table 9   Probabilities

Probability Description

pF
f

f ∈ ℕ freights arriving to the drayage between two consecutive periods

pR
r

Freight having drayage request type rD ∈ ℛ

pO
o

Freight having drayage origin oD ∈ �

pDD
r,dD

Freight having drayage destination dD ∈ �D , given request type rD ∈ ℛ

pDL
r,dL

Freight having long-haul destination dL ∈ �L , given request type rD ∈ ℛ

pETD
r,eD

Freight having earliest drayage truck arrival eD ∈ �D , given request type rD ∈ ℛ

pLTD
r,lD

Freight having latest drayage truck arrival lD ∈ �D , given request type rD ∈ ℛ

pLTL
r,lL

Freight having long-haul time-window length lL ∈ � , given request type rD ∈ ℛ

�D Set of all probabilities affecting the drayage arrivals

pF’
f ,j,t

f ∈ ℕ freights arriving to terminal j ∈ �L

pDL’
d,j,t

Freight arriving in terminal j ∈ �L at time t ∈ � having long-haul destination d ∈ �L

pLTL’
l,j,t

Freight arriving in terminal j ∈ �L at time t ∈ � having time-window length l ∈ �L

�L Set of all probabilities affecting the long-haul arrivals
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Table 10   Parameters and variables of the MDP model for the long-haul transport

Parameter/variable Description

Qi,j Capacity, in freights, of the long-haul service going from location i to j
TTL

i,j
Duration of the long-haul service going from location i to j

CFL

i,j
Fixed cost of using the long-haul service going from location i to j

CVL

i,j,d
Variable cost of using the long-haul service going from location i to j for a freight 

with destination d ∈ �L

CGL

i,j,�
Setup cost of using the long-haul service going from location i to j for a freight 

whose destination d is in group � ⊆ �L

xL
i,j,d,l,t

Number of freights consolidated at time t in the service from i to j (both in �L ), 
which have long-haul destination d ∈ �L and long-haul time-window length 
l ∈ �

yL
i,j,d,t

Binary variable which gets a value of 1 if there is a freight with destination d ∈ �L 
consolidated at time t in the service from i to j, both in �L , and 0 otherwise

zL
t

Long-haul costs of a long-haul schedule

f L
j,d,l,t

Number of freights at terminal j ∈ ℋ at time t that have long-haul destination 
d ∈ �L and long-haul time-window length l ∈ �

sL
t

State of the MDP: vector of variables f L
j,d,l,t

 for all j ∈ ℋ, d ∈ 𝒟L, l ∈ 𝒯

f̂ L
j,d,l,t

Number of freights that arrived at terminal j ∈ ℋ , between time t − 1 and time t, 
that have long-haul destination d ∈ �L and long-haul time-window length l ∈ �

wL

t Exogenous information of the MDP: vector of variables f̂ L
j,d,l,t

 for all 
j ∈ ℋ, d ∈ 𝒟L, l ∈ 𝒯

SM Transition function to capture the long-haul evolution
Vt Optimal expected costs function of the Bellman’s equations

s
L,x

t
Post-decision state of the MDP

w
L,x

t
New freights that arrive to the MDP based on the MILP solution in the iterative 

integration method
� Function to define the long-haul probabilities from the drayage decisions in the 

iterative integration method
�b Basis function of feature b ∈ ℬ in the VFA of the ADP algorithm
�b Weight of the feature b ∈ ℬ in the VFA of the ADP algorithm
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Appendix 2: Cost setup

The drayage and long-haul cost setups are shown in Tables  12 and  13, respec-
tively. The drayage fixed cost CFD

k
 and variable cost CVD

k,i,j
 are the same for all vehi-

cles k ∈ � . The drayage variable costs CVD
k,i,j

 are multiplied by the traveling time 

Table 11   Parameters and variables of the MILP model for the drayage operations

Parameter/variable Description

TSD

r,k
Time to execute a drayage request type rD ∈ ℛ

Bk ∈ ℋD Starting location of truck k ∈ �

Fk ∈ ℋD Starting location of truck k ∈ �

TSH

h
Service time at terminal h ∈ ℋ

TTD

i,j
Traveling time between locations i and j in �D

CFD

k
Fixed cost for using truck k ∈ �

CVD

k,i,j
Variable cost of truck k ∈ � for traveling between locations i and j in �D

xD
k,i,j,t

Binary variable which gets a value of 1 if truck k ∈ � moves from location i to 
location j in �D at time t ∈ �

zD
t

Drayage traveling costs at time t ∈ � (i.e., fixed plus variable traveling costs) of a 
drayage schedule

CAD

i,j,t
Cost of assigning a freight with origin i ∈ � to terminal j ∈ ℋ at time t ∈ �

z̃D
t

Drayage traveling and terminal assignment cost of a drayage schedule

f L
j,d,l,t

Number of freights at terminal j ∈ ℋ at time t that have long-haul destination 
d ∈ �L and long-haul time-window length l ∈ �

f L
t

Vector of variables f L
j,d,l,t

 for all j ∈ ℋ, d ∈ 𝒟L, l ∈ 𝒯

xD
k,i,j,t

Vector of variables xD
k,i,j,t

 for all k ∈ �, i ∈ �D, j ∈ �D

CL

t
(f L
t
, xD

t
) Terminal assignment cost function

Table 12   Drayage cost setups Drayage cost Normal Low High

Fixed CFD

k
200 100 2000

Variable CVD

k,i,j
0.2 0.1 2

Table 13   Long-haul costs per terminal, for all instances

d ∈ �L � Terminal 1 Terminal 2 Terminal 3

CVL

1,4,d
CGL

1,4,�
CVL

1,d,d
CVL

2,5,d
CGL

2,5,�
CVL

2,d,d
CVL

3,6,d
CGL

3,6,�
CVL

3,d,d

7 1 37 322 750 53 460 667 53 460 799
8 1 37 322 751 53 460 656 53 460 780
9 2 66 425 756 46 298 651 66 425 766
10 2 66 425 766 46 298 651 66 425 756
11 3 66 391 780 66 391 656 46 274 751
12 3 66 391 799 66 391 667 46 274 750
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TTD
i,j

 . There are two long-haul variable costs CVL
i,j,d

 per terminal i ∈ ℋ : the cost for 
using the high-capacity service (i.e., barge or train) to terminal j and the cost for 
hiring an additional truck directly to destination d. Furthermore, there are three 
groups � , with a group setup cost of CGL

i,j,�
 only for the high-capacity services 

(i,  j). This group setup costs captures the fixed cost component, hence we use 
CFL
i,j

= 0.

Appendix 3: Initial long‑haul probability distributions

In this appendix, we show the “even” and “cost-oriented” initial probability distribu-
tions for the long-haul terminals. network-wide, new drayage freights arrive to the 
system according to a right-truncated Poisson distribution with mean 20 and trun-
cated at 25. In both, the even and cost-oriented initial distributions, we use as initial 
arrival distribution for terminals a right-truncated Poisson distribution with mean 20

3
 

and truncated at 25. The network-wide destination distribution for pre-haulage 
freights, for the unbalanced and balanced instances, is shown in Table 14. For the 
even initial probability distribution pDL

d,j,t
 per terminal j per time t, we use the same 

values of the unbalanced and balanced network-wide distributions, depending on the 
instance naturally. For the cost-oriented initial probability distribution, in contrast to 
the even, we use the distribution shown in Table 14, for all instances.

Table 14   Long-haul destination probabilities

Desti-
nation 
d ∈ �L

Unbalanced 
network-wide 
pDL
r,d

Balanced 
network-wide 
pDL
r,d

Cost-oriented

Terminal 1 pDL
d,1,t

Terminal 2 pDL
d,2,t

Terminal 3 pDL
d,3,t

7 0.05 0.166 0.4 0.025 0.025
8 0.05 0.167 0.4 0.025 0.025
9 0.05 0.167 0.025 0.4 0.075
10 0.05 0.167 0.025 0.4 0.075
11 0.4 0.167 0.075 0.075 0.4
12 0.4 0.166 0.075 0.075 0.4
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Appendix 4: Calibration experiments

In this appendix, we study the relation between the tunable parameters of our inte-
grated scheduling approach and the total costs. We do not strive to find the best set-
ting possible for each parameter, but strive to study the sensitivity of the total costs 
for each parameter, under different network characteristics. Before presenting the 
results, we describe the tunable parameter values tested.

We test a total of 72 combinations of tunable parameters as follows. For the initial 
probability distributions for each terminal, we test two possible settings: an even dis-
tribution, where the number of freights are split evenly among the terminals and all 
other characteristics are the same as the network-wide distributions, and a “cost-ori-
ented” distribution, which differs from the even distribution only in the distribution 
of destinations per terminal. We describe this distribution as cost-oriented because 
destinations closer to the end of the long-haul service of a terminal, i.e., cheapest 
destination to visit from a terminal, obtain 80% of the probability mass. These dis-
tributions can be found in “Appendix  3”. For the ADP time horizon, we use two 
settings: equal time horizon (i.e., equal to the problem horizon of 5 days), or a larger 
time horizon of 7 days. For the initial weights of the VFA in ADP, we use a “slope-
oriented” setting, where all weights are equal to 1, or an “intercept-oriented” setting, 
where all weights are equal to 0 except for the constant, which is equal to 1.2 × 104 . 
For the step size � used by ADP in the non-stationary least square updating method, 
we test 9 values, equally distributed between 0.1 and 0.9. These tunable parameters, 

Table 15   Tunable parameters 
and their values

Tunable parameters Values (code)

ADP initial probability distributions Even, Cost-oriented
ADP time horizon Equal (T5), Longer (T7)
ADP initial weights Slope-oriented (W1), 

Intercept-oriented 
(W2)

ADP update step size 0.1, 0.2, ..., 0.9

Fig. 10   Total costs, per instance, 
for the best ADP settings of 
the even and cost-oriented 
probability distributions among 
terminals
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and the notation we use to refer to them in the results, are shown in Table 15. The 
ADP algorithm runs for a total of 500 internal-iterations and the matheuristic runs 
for a single internal-iteration with the additional operator described in Sect. 4. Note 
that this iterations are from the heuristic themselves, and not with the iterations M of 
the iterative integration method.

For each instance combination in Table 1, we test the 72 combinations of tunable 
parameters using the sequential integration method. First, we run the ADP algorithm 
with a given set of parameters, and learn the weights of the basis functions. Second, 
we run a simulation of 100 replications of the time horizon and include the so-called 
“end effects”, which are costs for the long-haul freights that were postponed at each 
terminal at the end of the horizon, when running each replication of a given policy. 

Fig. 11   Total Costs R–P–U

Fig. 12   Individual Costs R–P–U
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Each step uses common random numbers across parameter combinations in order 
for performance differences to arise from the difference in tunable parameters. We 
measure three performance indicators: drayage costs, long-haul costs, and total costs 
(i.e., the sum of the last two). In the following, we summarize the results of these 
8 × 72 experiments. We refer to an instance using three letters, e.g., R–P–U stands 
for an instance with random drayage locations, pre-haulage dominant drayage types, 
and unbalanced long-haul destinations.

In Fig. 10, we show the differences between the initial probability distributions 
for ADP. For each instance, we show the best settings of the remaining three tunable 
parameters, i.e., the combination of parameters that achieves the lowest total costs. 
Two important observations arise. First, the differences between the two initial 

Fig. 13   Total Costs C–P–U

Fig. 14   Individual Costs C–P–U
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probability distributions is not large. However, the even distribution is slightly bet-
ter in 5 out of the 8 instances. It seems that, given that all other ADP parameters are 
tuned, the initial distribution does not play a significant role in achieving the lowest 
total costs. We come back to this issue in Sect. 5.5. Second, total costs are signifi-
cantly larger, on average 49%, in instances with pre-haulage dominant drayage types 
than in end-haulage drayage types. Naturally, pre-haulage dominant instances have 
larger long-haul costs than the end-haulage dominant instances because of the longer 
paths of freights (see Fig. 1). To study the relation between tunable parameters of 
ADP for the long-haul cost and for the drayage cost, we look at three individual 
instances with the even initial distribution: Instance R–P–U, C–P–U, and C–E–U. 

Fig. 15   Total Costs C–E–U

Fig. 16   Individual Costs C–E–U
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We look into the relation of all other tunable parameters to the drayage, long-haul, 
and total costs in Figs. 11, 12, 13, 14, 15 and 16.

For Instance R–P–U, we observe in Fig. 11 that having an equal ADP time hori-
zon (T5) and constant initial weights (W1) are the best settings to achieve lower 
total costs. In Fig. 12, we observe that T5W1 obtain the lowest total costs in R–P–U 
by achieving significantly lower long-haul costs than the other settings without 
increasing the drayage costs. In a similar way, settings T5W1 achieve the lowest 
total costs for Instance C–P–U, as shown in Fig. 13. However, in contrast to R–P–U, 
we observe that T5W1 obtains the lowest total costs by increasing drayage costs 
compared to other settings. This behavior is to be expected, considering that this 
instance has clustered drayage locations around Terminal 3, while freights to some 
long-haul destinations are transported cheaper in other terminals. In other words, 
drayage operations have to incur additional travel costs to bring freight to other ter-
minals in order to have lower costs for the long-haul of some destinations.

For Instance C–E–U, in Fig. 15, we observe that differences in total cost among 
different tunable parameters are not as large as in the previous instances (around 
1000 rather than 5000) and that the best settings are those with equal time horizon 
(T5) and slope-oriented initial weights (W2). In Fig. 16, we observe that the savings 
in total costs come again from the long-haul costs without significantly increasing 
drayage costs. Furthermore, we observe that long-haul costs are lower than drayage 
(which is to be expected due to more end-haulage requests), explaining the smaller 
total costs differences across settings than in the previous instances. In the remain-
ing instances, we observe similar behavior with respect to long-haul and drayage 
cost relation and best settings to achieve the lowest total costs. For all instances, 
having an equal ADP time horizon (T5) was the best setting. For instances with pre-
haulage dominant drayage types, the constant initial weights (W1) and a step-size of 
0.4 were the best settings; while for instances with end-haulage dominant types, the 
slope-oriented initial weights (W2) and a step-size of 0.1 were the best settings.     

Appendix 5: Results evaluation experiments for the end‑haulage 
dominant (E) instances

In this appendix, we show the results of the evaluation phase of experiments for 
the end-haulage dominant instances (Fig. 17; Table 16).
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Fig. 17   Average total (drayage+long-haul) costs for the end-haulage dominant (E) instances

Table 16   Performance of different scheduling methods for the end-haulage dominant (E) instances

Instances Sched-
uling 
method

Total cost Drayage operations Long-haul transport

Cost per request Nr. assigned to 
closest terminal

Cost per request Nr. trucks 
for long-haul

R–E–U H–H 16,547.73 139.50 10.05 408.07 0.02
H–A 16,781.95 139.50 10.05 423.27 0.08
M–H 16,714.29 141.83 8.55 406.34 0.06
M–A 16,920.29 141.78 8.59 419.93 0.13

R–E–B H–H 17,189.61 139.49 10.05 450.92 0.02
H–A 17,375.79 139.49 10.05 462.26 0.06
M–H 17,187.68 141.71 8.70 438.01 0.06
M–A 17,353.30 141.71 8.71 448.22 0.07

C–E–U H–H 15,604.02 128.27 10.50 399.34 0.23
H–A 15,711.32 128.27 10.50 407.36 0.30
M–H 15,762.04 129.99 7.68 402.72 0.08
M–A 15,978.28 130.03 7.66 416.57 0.16
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