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Abstract. The Quadratic Knapsack Problem (QKP) is a well-known
optimization problem aimed to maximize a quadratic objective function
subject to linear capacity constraints. It has several applications in differ-
ent fields such as telecommunications, graph theory, logistics, hydrology
and data allocation, among others. In this paper, we propose the applica-
tion of a novel population-based metaheuristic referred to as Multi-leader
Migrating Birds Optimization (MMBO), which exploits the concepts of
cooperation and communication along the search leading to a collective
learning, to solve a wide range of well-known QKP instances.

1 Introduction

The Quadratic Knapsack Problem (QKP) is a knapsack problem introduced by
Gallo et al. [5] that includes the relationship among the items within a quadratic
objective function. Formally, we are given a set of items N = {1, ..., n}, where
each item i has a given weight wi > 0, and an n×n profit matrix B with entries
bi,j that indicates the benefit obtained when an item is packed with respect to
itself and other items. In other words, if an item i is selected, then the profit
obtained is equal to bii +

∑
j∈N\{i} bij . Note that matrix B is symmetric, i.e.,

bij = bji. The goal of the QKP is thus determining the items to be packed in the
knapsack taking into account the weight capacity c such that the total profit of
the items packed is maximized. The selection of the items is ruled by the binary
variable xi which is equal to 1 if item i is selected and 0 otherwise. The formal
definition of the QKP is as follows.

max z(QKP ) =
∑

i∈N

∑

j∈N

bijxixj (1)
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∑

i∈N

wixi ≤ c (2)

xi ∈ {0, 1}, i ∈ N (3)

Note that, if bij = 0 for i �= j then the QKP can be reduced to the Knapsack
Problem. Moreover, the Clique Problem can be treated as a particular case of
the QKP, where the Max Clique can be solved by a QKP algorithm by using a
binary search [2].

In this work, we propose the application of a novel population-based meta-
heuristic, called Multi-leader Migrating Birds Optimization (MMBO) [6]. This
approach exploits the communication among a population of individuals during
the search, thus enabling cooperative learning. We test our method for the lat-
est benchmark suite proposed for the QKP [3]. We attain competitive results, in
terms of the objective function value obtained at the end of the runs in compar-
ison to the best-performing state-of-the-art approaches used in those problem
instances.

2 Multi-leader Migrating Birds Optimization

For solving the QKP, we propose the use of MMBO (Algorithm1), which is
a decentralized cooperative search approach inspired by the flight formation of
migratory birds. In MMBO, the population is denoted as P = {1, 2, ..., p}, where
p is the number of individuals representing solutions of the optimization prob-
lem at hand. During the search, individuals are distributed in a line formation,
i.e., (1, 2, ..., p), where individual 1 is directly connected to individual 2, and
individual 2 is connected to individuals 1 and 3, and so on. Based on that line
formation, a relationship structure is established according to a given relation-
ship criterion, for instance, in terms of the objective function value associated
with each member of the population. By means of that criterion, the role of
each pair of individuals is determined, i.e., which individual provides and which
individual receives information during the search.

Starting from each individual in P , k feasible neighbors are generated through
a predefined neighborhood structure. In this work, two decision variables of
a given individual are uniformly selected at random and their corresponding
binary values are flipped in order to produce a novel neighbor. Depending on the
relationship criterion and how information is shared among individuals, different
roles arise:

– Leader. It is that individual with the best objective function value when
compared to its adjacent individuals. Hence, it does not receive information
from any individual, but shares it, in the form of δ neighbors, with its adjacent
individuals. Each leader generates k neighbors. The set of leaders is denoted
as PL.
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– Follower. It is that individual which explores the search space considering its
own information and the information received from the individuals in front of
it within the relationship structure. It generates k − δ neighbors and receives
δ neighbors. The set of followers is denoted as PF .

– Independent. It is that individual which is not included into any of the above
categories because it has associated the same objective function value than its
adjacent individuals. Hence, it does not exchange information with any other
individual, but generates k neighbors. The set of independent individuals is
denoted as PI .

Algorithm 1 Pseudocode of MMBO
Require: p, K, k, and δ
1: Initialize the population P , which consists of p individuals generated at random
2: while (K neighbors have not been generated) do
3: Determine the interaction among the individuals of P and establish the relationship structure

4: while (the stopping criterion associated with the relationship structure is not met) do
5: Generate k neighbors starting from each individual included within PL ∪ PI

6: Replace each individual included within PL ∪PI by its fittest neighbor if the latter is fitter
than the former

7: Replace each individual included within PI by its fittest neighbor
8: for all (individual f ∈ PF ) do
9: Generate k − δ neighbors starting from f
10: Get the best unused δ neighbors from the previous individuals of f in the relationship

structure
11: Replace f by its fittest neighbor if the latter improves the former
12: end for
13: end while
14: end while
15: Return the fittest individual in P

3 Numerical Results

The proposed approach has been implemented in Java and executed on a com-
puter equipped with an Intel i7 CPU 3.5 GHz and 16 GB of RAM. By preliminary
experiments, we identified the following parameters p = 20, δ = 1, and k = 5
with a stopping criterion K = |n|2 neighbors. The problem instances used are
those proposed in [3] by following the guidelines of previous works. The instances
are generated for different density values, i.e., different percentage of non-zero
cross benefits in B = {bij : i, j ∈ N, i < j}, where each bij is chosen from the
interval [1, 100]. The knapsack capacity c is selected from [50,

∑n
j=1 wj ].

Table 1 shows the computational results for instances with n = 100 items,
which were generated by considering different density values (dst). The methods
selected for comparison purposes are the best-performing ones in the related lit-
erature for the instances proposed in [3]. They are based on a Dynamic Program-
ming Heuristic (DPH) and a Non-Delayed Relax-and-Cut (CSL) [4]. We should
note that execution times are measured as integer values in [3]. Hence, some
execution times are reported as 0 when the time invested is lower than 1 second.
Therefore, we report the upper bound of the said times to avoid those cases. Our
approach is able to reduce considerably the execution time with respect to the
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best approach in terms of the objective function value (CSL) while reporting a
new best solution considering one of the instances (id = 4). Finally, it is worth
mentioning that MMBO is able to reach the optimal solution in those problem
instances proposed in [1] and solved to optimality.

4 Conclusions

In this work, we have proposed a MMBO approach for the Quadratic Knapsack
Problem. Due to its self-organization and cooperation dynamics, it allows indi-
viduals to learn along the search process in a collective way. The collaborative
relationship structure enhances the diversification of the search as individuals
can be distributed over the search space. Intensification is addressed by the sum
of efforts of the individuals belonging to the same group located in a particular
region of the search space. Our algorithm reports high-quality solutions in terms
of the objective function value while investing shorter computational times com-
pared to state-of-the-art approaches. In this regard, we even attained a new best
solution for one of the instances tested.

Table 1. Numerical results for instances of n = 100 items. Bold represents a new best
solution

Instance CSL DPH MMBO

n dst id Obj Time Obj Time Max Avg. Min. σ2 Time

100 25 1 53774 3 53757 2 53774 53759.6 53723 371.64 0.08

2 7082 5 7076 1 7082 7079.6 7076 8.64 0.06

3 60875 2 60875 1 60875 60875 60875 0.00 0.09

4 18386 6 18386 2 18386 18273.4 18224 2651.24 0.04

5 43014 4 43014 1 43014 43002.2 42896 1253.16 0.08

6 50484 4 50484 1 50484 50479.6 50473 29.04 0.06

7 21769 4 21769 2 21769 21755.4 21701 739.84 0.07

8 30687 5 30687 1 30687 30652.4 30555 2724.84 0.06

9 28719 6 28719 1 28719 28666.4 28585 2037.44 0.13

10 5463 4 5421 2 5463 5461 5443 36.00 0.08

100 50 1 34653 5 34653 1 34653 34653 34653 0.00 0.08

2 43178 5 43169 1 43178 43170.9 43156 70.69 0.06

3 46243 6 46243 2 46243 46232.5 46138 992.25 0.09

4 48894 5 48992 1 49030 49004.7 48894 1666.41 0.04

5 41515 6 41515 1 41515 41515 41515 0.00 0.08

6 71982 4 71982 2 71982 71982 71982 0.00 0.06

7 69146 6 69177 1 69177 69091.8 68985 7414.56 0.07

8 83085 3 83085 1 83085 83057.5 82948 2045.85 0.06

9 9772 4 9772 2 9772 9772 9772 0.00 0.13

10 62465 6 62407 1 62465 62415 62081 12918.4 0.08

Average 41559.30 4.65 41559.308 1.35 41567.65 41544.95 41483.75 1748 0.07
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As future work, we aim to extend the results provided herein to analyze the
different features provided by the approach to solve the QKP in more detail.
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