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ABSTRACT
The main goal of this paper is to introduce a new solution concept: the optimal compromise 
value. We propose two kinds of complaint criteria based on which the optimistic complaint 
and the pessimistic complaint are defined. Two optimal compromise values are obtained by 
lexicographically minimizing the optimistic maximal complaint and the pessimistic maximal 
complaint, respectively. Interestingly, these two optimal compromise values coincide with the 
ENSC value and the CIS value, respectively. Moreover, these values are characterized in terms of 
equal maximal complaint property and efficiency. As an adjunct, we reveal the coincidence of 
the Nucleolus and the ENSC value of 1-convex games.

1. Introduction

A central question in Game Theory is how to share the 
joint surplus fairly and reasonably among players when 
they cooperate. For games in characteristic form where 
the worth of a coalition depends only on the composi-
tion of this coalition, Gillies (1953) uses efficiency and 
group rationality to characterize the Core. The Core of a 
cooperative game (N , v) is a setvalued solution concept 
being proposed as a division of v(N) among the play-
ers under which no coalition has a worth greater than 
the sum of its members’ payoffs. Therefore, no coalition 
has incentive to leave the grand coalition and receive a 
larger payoff. Such a payoff imputation has an inherent 
stability. The development of the theory in this paper 
is based on the complaint related to the upper bound 
and the lower bound of the Core. The involved upper 
bound of the Core is given in terms of the worth of the 
player set itself and the (n – 1) person coalitions called 
marginal contribution, and the lower bound of the Core 
is described as the individual worth vector.

For the cooperative game (N , v) of which the Core is 
not empty, from the Core’s point of view, the marginal 
contribution is the player’s ideal payoff, but in fact, the 
overall worth v(N) is weakly insufficient to cover all 
these marginal contributions. Thus, at least one player 
i, i ∊ N, cannot obtain his marginal contribution, yielding 
the complaint of player i. On the other, any coalition S 
is totally satisfied if the outsiders in N∖S only obtain 

their individual worths, by observing that the individual 
worth vector is the lower bound of the Core. However, 
for the non‐essential cooperate game, at least one player 
can get more than his individual worth, which will cause 
the complaint of other players.

The excess proposed by Davis and Maschler (2010) 
is one criterion to characterize the complaint with 
respect to the payoff vector. A nonnegative (non‐pos-
itive, respectively) excess of coalition S at the payoff 
vector x in the game v represents the gain (loss) to the 
coalition S if its members withdraw from the payoff 
vector x in order to form their own coalition. The idea 
of excess forms the basis of several solution concepts 
for cooperative games in characteristic function form, 
such as the (pre‐)Kernel, the (pre‐)Nucleolus and the 
τ value (Branzei, Dimitrov, & Tijs, 2005). Beyond the 
excess criterion, there are other criteria to characterize 
the complaint with respect to the payoff vector. In our 
paper, for every payoff vector x, x ∊ Rn, two types of 
new criteria are proposed to measure the complaint of 
coalition S, S⊆N, with respect to the payoff vector x, by 
observing the fact that the marginal contribution vector 
and the individual worth vector are the upper bound 
and the lower bound of the Core, respectively. One is 
proposed from the perspective of coalitional insiders 
and to measure the amount (the size of the inequity) 
by which coalition falls short of its potential marginal 
contribution, while the other is based on the surplus 
of the complementary coalition, and the complaint is 
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measured by the gap between the real payoff and the 
least potential payoff of the complementary coalition.

Instead of applying a general axiomatization of 
fairness to a value function defined on the set of all 
characteristic functions, we look at a fixed character-
istic function v and try to find a payoff vector x that 
minimizes the maximal complaint under certain com-
plaint criteria. Precisely, we look first at those coalitions 
S whose complaint, for a fixed payoff vector x, is the 
largest. Then we adjust x, if possible, to make this larg-
est complaint smaller. When the largest complaint has 
been made as small as possible, we concentrate on the 
next largest complaint and adjust x to make it as small 
as possible, and so on.

At the first sight, the internal relationship between 
the ENSC value, the CIS value and the (pre)Nucleolus 
is not obvious. Driessen and Funaki (1991) revealed the 
coincidence of the ENSC value and the (pre‐)Nucleolus 
in 1991. In this paper, by minimizing the maximal com-
plaint under different complaint criteria paralleling the 
characterizing of the (pre)Nucleolus, we obtain various 
significant solutions of the game, respectively. In the case 
coalition S‘s complaint is measured by the gap of the sum 
of the marginal contributions and the payoff x involved, 
i.e., 

∑
i∈S(v(N) − v(N�{i})) −

∑
i∈S xi, and the ENSC 

value, proposed by Moulin (1985), is achieved by mini-
mizing the optimistic maximal complaint. Alternatively, 
the coalition S may take the surplus of his complemen-
tary coalition N∖S into consideration, which yields the 
other complaint criterion. To be precise, from a coalition 
point of view, since the players outside S do notjoin S, 
it is assumed that any player i in N∖S does not coop-
erate and obtains his least potential payoff v(i), which 
generates a gap between the proposed allocation xj and 
the individual value v(i). When coalition S’s complaint 
is measured by the gap of his complementary coalition 
N∖S’s least potential payoff and the payoff  

∑
i∈N�S xi, 

i.e., 
∑

i∈N�S xi −
∑

k∈N�S v({k}), by minimizing the pes-
simistic maximal complaint, we achieve the CIS value, 
which is proposed by Driessen and Funaki (1991). In 
this way, our result could also be regarded as a kind of 
coincidence between the (pre)Nucleolus and the single‐
valued solution. Moreover, inspired from the notion of 
the (pre)Kernel, we introduce two new properties called 
equal optimistic maximal complaint property and equal 
pessimistic maximal complaint property, which can be 
used to characterize the optimal compromise values 
involved. On the domain of special games, the ENSC 
value and the CIS value can be represented by the same 
manner as in the (pre‐)Kernel.

The 1‐convex game is initiated by Driessen and Tijs 
(1983). For the 1‐convex game, its Core is non‐empty 
and the Nucleolus is the center of the Core. Moreover, 
the intersection of the Core with the Kernel contains only 
one point (Driessen, 1985). The first practical example 
of a 1‐convex game, and the 1‐convex complementary 

unanimity basis for the entire space of cooperative 
games are introduced in Driessen, Khmelnitskaya, and 
Jordi (2010). In this paper we show that the Nucleolus 
and the ENSC value coincide with each other in the 1‐
convex games.

The paper is organized as follows: Section 2 treats the 
relevant game theoretic notions and solution concepts, 
e.g., the ENSC value and the CIS value, in Section 3, we 
determine the ENSC value and the CIS value by lexi-
cographically minimizing the optimistic maximal com-
plaint and the pessimistic maximal complaint, Section 
4 presents another representation of the ENSC value 
and the CIS value in terms of equal maximal complaint 
property, and the paper concludes with a brief summary 
and discussion of further research.

2. Notions and solution concepts

A cooperative game on player set N is a characteristic 
function v: (N) → R defined on (N) satisfying v(∅) 
= 0. Here (N) denotes the power set of the finite player 
set N, given by (N) = {S|S ⊆ N}, and in short called a 
game v on N. Denote all cooperative games in player set 
N by Γ. With the characteristic function v and suppos-
ing that some type of understanding is arrived at by the 
players, they have to divide the grand value v(N). A dis-
tribution of the amount v(N) among the n players is rep-
resented by an n‐tuple vector x = (x1, x2,… , xn), which 
are real numbers satisfying the efficiency principle, i.e., ∑

i∈N x
i
= v(N). For notation convenience, throughout 

this article, denote Σi∊S xi by x(S), S ⊆ N.
Given the distribution xi to any player i is not less than 

his individual worth, i.e., xi ≥ v({i}) for all i ∊ N, then 
the payoff vector x satisfies the individual rationality. 
Moreover, the group rationality is defined as x(S) ≥ v(S), 
for all S ⊆ N. Based on these principles, we review three 
set solutions of n person game v, the pre‐imputation set 
I*(v), the imputation set I(v) and the Core C(v). 

I*(v) : {x ∊ Rn|x(N) = v(N)},
I(v) : {x ∊ Rn|x(N) = v(N), xi ≥ v(i) for all i ∊ N},
C(v) = {x|x ∊ I*(v), x(S) ≥ v(S) for all S ⊆ N}.

It is left to the reader to verify that

In this paper, we denote the class of game (N , v) of which 
I(v) ≠ ∅ by Γ2.

The Core of an n‐person game was first accurately 
defined by Gillies through group rationality and effi-
ciency (Gillies, 1953). The Core gives rise only to non‐
positive excesses. Here the excess of coalition S with 
respect to the payoff vector x of the game v is defined to 
be ev(S) = v(S) – x(S). The idea of excess forms the basis of 
several solution concepts for cooperative games such as 
the Core, the (pre)‐Nucleolus and the (pre‐)Kernel. The 

I(v) ≠ � if and only if
∑
j∈N

v({j}) ≤ v(N).
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excess vector can be used to measure the complaint of 
players about the payoff vector x. The larger the excess is, 
the more unsatisfied the players in coalition would feel.

The purpose of this paper is to illustrate other two 
kinds of complaint criteria, based on which the ENSC 
value and the CIS value are obtained by lexicographically 
minimizing the optimistic maximal complaint and the 
pessimistic maximal complaint, respectively. The CIS 
value is a solution that concerns about the worths of 
the individuals and the grand coalition. It first gives 
every player its individual worth and then distributes the 
remaining worth of the grand coalition equally among 
all players, i.e., for any game v, 

As an anti‐dual value of the CIS value, the ENSC value 
is a single value based on the separable contributions. 
For k‐coalitional n‐person game, Shapley value can be 
written as a combination of the ENSC value and the CIS 
value (Driessen & Funaki, 1991). A standard principle 
requires that the payoff to any player i ∊ N in the game v 
is at most the marginal contribution bvi = v(N) − v(N�i) 
of player i with respect to the formation of the grand 
coalition N. The ENSC value is characterized by the 
fact that the remaining non‐separable contribution 
NSC(v) = v(N) −

∑
j∈N bvj  is equally charged by the n 

players in the game v. That is,

Thus, the ENSC value can be regarded as a well‐known 
separable contributions remaining benefits method 
which is a widely used payoff in the water resources field 
(Young, Okada, & Hashimoto, 1982).

3. The determination of the optimal 
compromise value

The Nucleolus introduced by Schmeidler (1969) consists 
of imputations that minimize the complaint of excess 
in the lexicographic order over the non‐empty com-
pact convex imputation set. In this view of point, the 
Nucleolus is a one‐ point compromise value of which 
the corresponding complaint vector is the smallest under 
the criterion of excess. In this section we introduce one 
class of optimal compromise value and determine the 
optimistic optimal compromise value and the pessi-
mistic optimal compromise value under two different 
complaint criteria, respectively.

For any n‐tuple x ∊ Rn, let θ(x) be the 2n‐tuple whose 
components are the complaints of coalition S, S ⊆ N, 
arranged in non‐increasing order. Thus,

CISi(v) = v({i}) +
1

n

[
v(N) −

∑
j∈N

v({j})

]
, for all i ∈ N .

ENSCi(v) = bvi +
1

n

[
v(N) −

∑
j∈N

bvj

]
, for all i ∈ N .

�i(x) ≥ �j(x), if 1 ≤ i ≤ j ≤ 2n.

For x, y ∊ Rn we have x ≤ Ly, i.e., x is lexicographically 
smaller than (or equal to) y, if x = y or if there exists 
an s ∈ {1, 2,… , 2n − 1} such that xk = yk for all k ∊ 
{1, 2,… , s − 1} and xs < ys.
Definition 3.1 The optimal compromise value of a 
balanced game (N , v) is the unique pre‐imputation vec-
tor y of which the corresponding complaint vector θ(y) 
satisfies the lexicographic order θ(y) ≤ Lθ(x) for any pre‐
imputation vector x.

Obviously, under the complaint criterion of excess 
v(S) – x(S), the optimal compromise value and the 
Nucleolus of the balanced game coincide with each other. 
The question is: Are there any other kinds of complaint 
criteria? Under different kinds of complaint criteria, 
what are the presentations of the optimal compromise 
values? By answering these questions, we consider the 
bounds of the Core.

To begin with, we focus on the balanced game 
(N , v), for which game the Core is not empty and 
the elementary fact holds that for all x ∊ Core(v), 
v({i}) ≤ xi ≤ v(N) − v(N�i)   . Based on this, we can 
conclude that for the balanced game, the marginal con-
tribution vector and the individual worth vector are 
upper bound and lower bound of the Core, respectively. 
The so‐called optimal compromise value is based on the 
idea of minimizing the maximal complaint vector, while 
the optimistic optimal compromise value and the pes-
simistic optimal compromise value are related to the 
complaint vectors with respect to (bvi )i∈N and (v({i}))i∊N.
Definition 3.2 For each balanced game (N , v), given 
player i‘s ideal payoff and the least potential payoff are bvi  
and v({i}), respectively, the optimistic complaint and the 
pessimistic complaint of coalition S are given by

 

 

In this paper, we define these two complaint criteria by 
“optimistic” and “pessimistic”, because in the optimistic 
terms, players always take the surplus of themselves into 
consideration, while the pessimist always departs from 
the other players’ extra payoff. The optimistic complaint 
e(S, x, bv) of coalition S at the payoff vector x with respect 
to the marginal contribution vector bv of the balanced 
game (N , v) represents the amount of the complaint 
about the payoff distribution x, assuming the member 
i in coalition S is willing to obtain the monetary util-
ity of which is measured by his marginal contribution 
bvi = v(N) − v(N�{i})   . In the case coalition S, S ⊆ N, 
complains his complementary coalition N∖S‘s payoff by 
observing that the least potential payoff of player j ∈ N�S 
is his individual worth v({j}). Thus, the difference of the 

(3.1)

e(S, x, bv) = bv(S) − x(S), S ⊆ N , where bv(S) =
∑
i∈S

bvi ,

(3.2)
e(S, x, v(.)) = x(N�S) −

∑
j∈N�S

v({j}), � ≠ S ⊆ N .
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be covered by v(N), i.e., v(N) ≤ bv(N). Let Γ1 denote this 
class of games. Interestingly, on the domain of this class 
of games, the conclusion in Theorem 3.4 still holds.
Remark 3.5 Let (N , v) ∈ Γ

1
. Then the optimistic opti-

mal compromise value x is upper bounded by the mar-
ginal contribution vector bv, i.e., x

i
≤ b

v

i
, i ∊ N.

The proof is immediate which is similar to that of 
Theorem 3.4.
Lemma 3.6 Given x is the optimistic optimal compromise 
value of a game (N , v) ∈ Γ

1
, denote W = {T|e(T , x, bv) 

> bv(N�m) − x(N�m)}. Then for any player m such that 
bvl − xl > bvm − xm ≥ 0, l, m ∊ N, it holds that: for any T 
∊ W, m, l ∊ T.
Proof Suppose m ∉ T, thus, T ⊆ N�{m} yielding 
e(T , x, bv) = bv(T) − x(T) ≤ bv(N�{m}) − x(N�{m}), 
since bv

i
≥ x

i
 by Remark 3.5. Therefore, T ∉ W which 

contradicts with T ∊ W. Thus, m ∊ T. For any T ∊ W, 
suppose l ∉ T, on the one hand, it holds that T ⊆ N�{l} 
which yields bv(T) − x(T) < bv(N�{l}) − x(N�{l}). On 
the other, bv(T) − x(T) > bv(N�m) − x(N�m) which 
holds by the definition of W and Theorem 3.4. Thus, 
bv(N�{l}) − x(N�{l}) > bv(N�m) − x(N�m) which is 
equivalent to bvm − xm > bvl − xl, and this contradicts 
with the assumption bvm − xm < bvl − xl. Thus, T ∋ l. 
Lemma 3.7 Given optimistic complaint criterion, the 
payoff vector x of the game (N , v) ∈ Γ

1
 and any player 

m such that bvl − xl > bvm − xm ≥ 0, l, m ∊ N, where x 
∊ I*(v), denote ▵= bvl −xl−(b

v
m−xm)

2
. Then for the new payoff 

vector x* constructed in the form of (3.3), the following 
five statements hold.

(i)    for any S, S ⊆ N, S ∌ m, l, e(S, x∗, bv) = e(S, x, bv).
(ii)   for any S, S ⊆ N, S ∋ m, l, e(S, x∗, bv) = e(S, x, bv).
(iii)  for any S, S  ⊆  N, S  ∌  m, S ∋ l, e(S, x∗, bv) < 

e(S, x, bv).
(iv)  for and S, S ⊆ N, S ∋ m, S ∌ l, given e(S ∪ {l}� 

{m}, x*, bv) ≠ e(S∪{l}�{m}, x, bv), it is redun-
dant to compare e(S, x, bv) and e(S, x∗, bv).

(v)  θ(x) > θ(x*).

Proof 

(i)  It is trivial that for any S, S  ⊆  N, S  ∌  m, l, 
e(S, x, bv) = e(S, x∗, bv) holds.

(ii)  for any S, S ⊆ N, S ∋ m, l,

(iii)  for any S, S ⊆ N, S ∌ m, S ∋ l,

The last inequality holds because Δ > 0.

(iv)  for any S, S ⊆ N, S ∋ m, S ∌ l,

e(S, x∗, bv) = bv(S) − x∗(S)

e(S, x∗, bv) = bv(S) − x∗(S) = bv(s�{l}) − x∗(s�{l})

+(bvl − x∗l ) = bv(S�{l}) − x(S�{l})

+[bvl − (xl + Δ)] = bv(S) − x(S)

−Δ = e(S, x, bv)− ▵< e(S, x, bv)

e(S, x, bv) = bv(S) − x(S)

sum of the N∖S’s payoff and the sum of the individual 
worth, i.e., x(N�S) −

∑
j∈N�S v({j}), is an alternative way 

to measure the complaint of coalition S. The pessimistic 
complaint e(S, x, v(·)) represents the complaint of a non‐
empty coalition S at the payoff vector x with respect to the 
least potential payoff of his complementary coalition in 
the game v, assuming coalition S only wants the outsiders 
get their individual worths.

The Nucleolus minimizes the maximal complaint 
under the complaint criterion of excess v(S) − x(S). One 
may wonder which payoff vector can minimize the com-
plaint under other complaint criteria. In next subsections, 
we will determine the optimistic optimal compromise 
value and the pessimistic optimal compromise value by 
the same manner as in the Maschler and Peleg (1966).

3.1. The determination of the optimistic optimal 
compromise value

Definition 3.3 The optimistic optimal compromise 
value of a balanced game (N , v) is the unique pre‐impu-
tation vector x of which the corresponding upper com-
plaint vector θ(x) satisfies the lexicographic order θ(x) 
≤ Lθ(y) for any preimputation vector y.

Theorem 3.4 Let (N , v) be a balanced game. The opti-
mistic optimal compromise value x is bounded by the mar-
ginal contribution vector bv, i.e., xi ≤ bvi , i ∊ N.

Proof Suppose xi ≤ bvi  does not hold for all i ∊ N.
Case 1 If xi ≥ bvi  holds for all i ∊ N and there exists at 
least one player j, j ∊ N such that xj > bvj , then

The last inequality holds because the marginal vector 
bv is the upper bound of the Core. Thus, x(N) > v(N), 
which contradicts with the efficiency of the upper opti-
mal compromise value.

Case 2 If there exist at least two players, i, j ∊ N, such 
that xi > bvi , xj < bvj . Denote ▵= min {bvj − xj, xi − bvi }, 
then Δ > 0 and for the new payoff x*, where

 

It holds θ(x) > θ(x*) by observing that the first coor-
dinates of θ(x) and θ(x*) are 

∑
bvj >xj ,j∈N

(bvj − xj) and ∑
bvj >xj ,j∈N

(bvj − xj) − Δ, respectively, contradicting with 
the claim that x is the optimistic optimal compromise 
value. Therefore, xi ≤ bvi , i ∊ N.  

The critical inequality in the proof of Theorem 3.4 
gives rise to look at the class of n‐person game (N , v) 
of which the sum of the marginal contributions cannot 

∑
i∈N

xi >
∑
i∈N

bvi ≥ v(N).

(3.3)x∗k =

⎧
⎪⎨⎪⎩

xk for all k ≠ i, j

xj+ ▵ k = j,

xi− ▵ k = i.
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The last inequality holds because individual worth is 
the lower bound of the Core. Thus, x(N) < v(N), which 
contradicts with the efficiency of the pessimistic optimal 
compromise value.

Case 2 If there exist at least two players, i, j ∊ N, such 
that xi < v({i}), xj > v({j}). Denote ▵= min {xj − v({j}), 
v({i}) - xi}, then Δ > 0 and for the new payoff x∗ con-
structed in the form of (3.3), it holds 𝜃(x) > 𝜃(x∗),  
because the first coordinates of θ(x) and �(x∗) 
are 𝜃1(x) =

∑
xj>v({j}),j∈N

(xj − v({j}))  and 

𝜃
1
(x∗) =

∑
x
j
>v({j}),j∈N (xj – v({j})) − Δ, respectively, yield-

ing 𝜃1(x) > 𝜃1(x
∗). This contradicts with the claim that x 

is the pessimistic optimal compromise value. Therefore, 
xi ≥ v({i}), i ∊ N.  

The key inequality in the proof of Theorem 3.10 
inspires us to pay attention to the class of n‐person game 
(N , v) of which the sum of the individual worths can be 
covered by v(N), i.e., v(N) ≥

∑
k∈N v(k). Let Γ2 denote this 

class of games. Interestingly, on the domain of this class 
of games, the conclusion in Theorem 3.10 is also justified.
Remark 3.11 Let (N , v) be a game in Γ2. Then the pes-
simistic optimal compromise value is lower bounded by 
the individual worth vector.

The proof is immediate which is similar to that of 
Theorem 3.10.
Lemma 3.12 Given x is the pessimistic optimal 
compromise value of a game (N , v) ∈ Γ

2
, denote 

W = T�e(T , x, v(⋅)) > x(N�m) −
∑

i∈N�m v({i})}. Then 
for any player m such that xl − v({l}) > xm − v({m}), l, m 
∊ N, It holds that for any T ∊ W, m, l ∉ T.

Lemma 3.13 Given pessimistic complaint criterion, the 
imputation payoff vector x of the game (N , v) ∈ Γ

2
 and 

any player m such that xl − v({l}) > xm − v({m}), l, m ∊ 
N, denote Δ =

xl−v({l})−(xm−v({m}))

2
, then for the new payoff 

vector x∗ constructed in the form of (3.3), it holds that 
θ(x) > θ(x*).

Theorem 3.14 If x is the pessimistic optimal compro-
mise value of the game (N , v) ∈ Γ

2
, then the following 

statements hold.

(i)  xi − v({i}), i ∊ N is constant, i.e., xi − v({i}) = 
xm − v({m}),∀i,m ∈ N .

(ii)  xj = CISi(v) = v({i}) + 1

n
[v(N) −

∑
j∈N v({j})] 

for all i ∊ N.

The proof of Lemmas 3.12, 3.13 and Theorem 3.14 
is similar to that of Lemmas 3.6, 3.7 and Theorem 3.8, 
respectively, based on the fact that the CIS value and 
the ENSC value are anti‐dual to each other (Oishi, 

x(N) <
∑
i∈N

v({i}) ≤ v(N).
Therefore, for any S ∋ m, S  ∌  1, there 
always exists coalition S∪{l}�{m}, such that 
e(S∪{l}�{m}, x, bv) > e(S, x, bv). On the other, note 
that bvl − x∗l = bvm − x∗m, thus,

Because e(S ∪ {l}�{m}, x∗, bv) < e(S ∪ {l}�{m}, x, bv) 
by (iii), it is redundant to compare e(S ∪ {l}�{m}, x∗, 
bv) and e(S ∪ {l}�{m}, x, bv) given they do not equal to 
each other. Therefore, (iv) holds.

(iv) It is trivial (v) holds by (i), (ii), (iii) and (iv). 
Theorem 3.8 Given x is the optimistic optimal com-
plaint value of the game (N , v) ∈ Γ

1
, then it holds:

(i)  bvi − xi, i ∊ N, is constant, i.e., bvi − xi = bvm − xm, 
∀i,m ∈ N .

(ii)  xi = ENSCi(v), for all i ∊ N.

Proof 

(i)  Suppose that bvi − xi, i ∊ N, is not constant, then 
there exist l, m such that bvl − xl ≠ bvm − xm. Without 
loss of generality, let bvl − xl > bvm − xm   . By Lemma 
3.7, there exists x∗ such that 𝜃(x) > 𝜃(x∗), which 
is in contradiction with that x is the optimistic 
optimal compromise value. Therefore, bvi − xi, i 
∊ N, is constant.

(ii)  It is easy to obtain that xi = ENSCi(v) = 
bvi +

1

n
[v(N) −

∑
j∈N

bj(v)] by (i) together with effi-
ciency. 

3.2. The determination of the pessimistic optimal 
compromise value

In Section 3.1, we represent the ENSC value by minimiz-
ing the maximal complaint under the optimistic com-
plaint criterion. In this section, we will deal with the CIS 
value which is anti‐dual to the ENSC value.
Definition 3.9 The pessimistic optimal compromise 
value of a balanced game (N , v) is the unique pre‐impu-
tation vector x of which the corresponding pessimistic 
complaint vector θ(x) satisfies the lexicographic order 
θ(x) ≤ Lθ(y) for any pre‐imputation vector y.

Theorem 3.10 Let (N , v) be a balanced game. The pes-
simistic optimal compromise value x is bounded by indi-
vidual vector, i.e., xi ≥ v({i}), i ∊ N. That is, the pessimistic 
optimal compromise value belongs to the imputation set.

Proof Suppose xi ≥ v({i}) does not hold for all i ∊ N.

Case 1 If xi ≤ v({i}) holds for all i ∊ N and there exists 
at least one player j such that xj < v({j}), then

e(S, x∗, bv) = b
v(S) − x

∗(S) = b
v(s�{m}) − x

∗(s�{m})

+ (bv
m
− x

∗
m
) = b

v(S�{m}) − x(S�{m})

+ (bv
l
− x

∗
l
) = b

v(S ∪ {l}�{m}) − x
∗(S ∪ {l}�{m})

= e(S ∪ {l}�{m}, x∗, bv)
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4. A characterization of the optimal 
compromise value

The pre‐kernel was introduced in Maschler, Peleg 
and Shapley in 1972 based on the ideas of excess and 
maximum surplus (Maschler, Peleg, & Shapley, 1971). 
Analogously to this notion, we introduce equal optimis-
tic maximal complaint property and equal pessimistic 
maximal complaint property, by which we characterize 
the ENSC value and the CIS value.

4.1. A characterization of the optimistic optimal 
compromise value

Before we characterize the optimistic optimal compro-
mise value, we define the optimistic maximal complaint 
of player i over j, i, j ∊ N.
Definition 4.1 Given optimistic complaint criterion, 
the optimistic maximal complaint mv

ij(x) of player i ∊ N 
over another player j ∊ N at payoff vector x of any game 
(N , v) ∈ Γ

1
 is given by the maximal complaint among 

coalitions containing player i, but not containing player j. 
That is,

 
Definition 4.2 A payoff vector x of a game (N , v) ∈ Γ

1
 

is said to satisfy efficiency and equal optimistic maximal 
complaint property if

(i)  efficiency: 
∑

i∈N x
i
(v) = v(N).

(ii)  equal optimistic maximal complaint property: 
for any i, j ∊ N, mv

ij(b
v , x) = mv

ji(b
v , x).

Theorem 4.3 The optimistic optimal compromise value 
x of the game (N , v) ∈ Γ

1
 possesses (i) efficiency and (ii) 

equal optimistic maximal complaint property.

Proof 

(i)  It is trivial that the optimal compromise value is 
efficient.

(ii)  By Remark 3.5, xi ≤ bvi , i ∊ N; thus,

Therefore, mv
ij(b

v , x) = mv
ji(b

v , x).  

Lemma 4.4 Given optimistic complaint criterion, if x 
is the value of the game (N , v) ∈ Γ

1
 satisfying efficiency 

and equal optimistic maximal complaint property, it holds 
that bvi ≥ xi, i ∊ N.

Proof We prove the lemma by proposing the following 
two claims do not hold.
Claim 1 bvi < xi, for all i ∊ N.

Since bvi < xi, i ∊ N, 
 

(4.1)mv
ij(b

v
, x) = max [e(S, bv , x)|S ⊆ N , i ∈ S, j ∉ S].

mv
ij(b

v , x) = bv(N�{j}) − x(N�{j}) = n−1

n
[bv(N) − v(N)],

mv
ji(b

v , x) = bv(N�{i}) − x(N�{i}) = n−1

n
[bv(N) − v(N)].

(4.2)
∑
i∈N

b
v

i
<

∑
i∈N

x
i
= v(N).

Nakayama, Hokari, & Funaki, 2016). From this obser-
vation, one may explain why these conclusions about the 
CIS value are similar with that of the ENSC value. The 
proof is left to the reader to check.

The validity of Theorem 3.14 can also be shown by 
introducing the anti‐dual of cooperative game, which is a 
useful tool to analyze the relationship between the proper-
ties and the solutions (Oishi et al., 2016). Next we explore 
the alternative proof of Theorem 3.14 by Oishi’s approach.
Definition 3.15 For any cooperative game (N , v),  

the anti-dual of v, denoted by v⋆, is defined by

 v⋆ = −[v(N) − v(N�S for all S ⊆ N.
The value −v⋆ indicates the amount that the comple-

ment coalition N∖S cannot prevent S from obtaining 
in (N , v). By applying this “anti” operator, we reveal the 
relationship between the optimistic optimal compromise 
value and the pessimistic optimal compromise value.
Theorem 3.16 If x is the pessimistic optimal compromise 
value of the game (N , v) ∈ Γ

2
, then

(i)  x⋆ is the optimistic optimal compromise value of the 
anti‐dual game (N , v⋆), where x⋆ = −x.

(ii)  xi − v({i}), i ∊ N is constant, and xi = CISi(v) = 
v({i}) +

1

n
[v(N) −

∑
j∈N v({j})], i ∈ N .

Proof 
(i)  Since x is the pessimistic optimal compromise value 

of the game (N , v) ∈ Γ
2
, i.e., �(x, v) ≤L �(y, v), for 

any y ∊ I*(v). Since v⋆(S) = −[v(N) − v(N�S)]  
then by 

∑
i∈N v(i) ≤ v(N) and v(i) = −bv

⋆

i , it holds 
∑

i∈N b
v
⋆

i
= v

⋆(N). On the other, note that

Therefore,  𝜃(x⋆, v⋆) ≤L 𝜃(y
⋆
, v⋆)     for all 

y⋆ = −y ∈ I⋆(v⋆),  i.e., x⋆ is the optimistic optimal com-
promise value for game (N , v⋆). 

(ii)  As shown in (i), x⋆ is the optimistic optimal 
compromise value for game (N , v⋆). Hence, 
by Theorem 3.8(i), bv

⋆

i − x⋆i  is constant, and 
x⋆i = bv

⋆

i + 1

n
[v(N) −

∑
k∈N b

v
⋆

k
]. On the other, 

notice v(i) = −bv
⋆

i  and x⋆ = −x. Hence, 
b
v
⋆

i
− x

⋆

i
= x

i
− v({i}), i ∊ N is constant. And 

x
i
= −x⋆

i
= v({i}) +

1

n
[v(N) −

∑
j∈N v({j})], 

which holds by replacing bv
⋆

i  and v⋆(N) with − 
v({i}) and − v(N), respectively. 

Theorem 3.16 indicates the intimate connection 
between the optimal values of the game and its dual 
game and provide an alternative proof of Theorem 3.8, 
thanks to the work conducting on the duality and anti‐
duality in cooperative games from Oishi et al. (2016).

e(N�S, x⋆, bv
⋆

) = bv
⋆

(N�S) − x⋆(N�S)

= x(N�S) −
∑

i∈N�S

v(i) = e(S, x, v(⋅)).
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4.2. A characterization of the pessimistic optimal 
compromise value

The equal maximum surplus property is proposed 
to characterize the pre‐Kernel in Machler and Peleg. 
Inspired by the equal maximum complaint property, we 
introduce equal pessimistic maximum complaint prop-
erty and give another representation of the CIS value.
Definition 4.7 Given pessimistic complaint criterion, 
the pessimistic maximal complaint mv

ij(x) of player i ∊ N 
over another player j ∊ N at payoff vector x of any game 
(N , v) ∈ Γ

2
 is given by the maximal complaint among 

coalitions containing player i, but not containing player j. 
That is,

 

Definition 4.8 A payoff vector x of the game (N , v) ∈ Γ
2
 

is said to satisfy efficiency and equal pessimistic maximal 
complaint property if

(i)  efficiency: 
∑

i∈N xi(v) = v(N).
(ii)  equal pessimistic maximal complaint property:

Theorem 4.9 The pessimistic optimal compromise value 
x of the game (N , v) ∈ Γ

2
 possesses (i) efficiency and (ii) 

equal pessimistic maximal complaint property.

Proof 

(i)  It is trivial that the pessimistic optimal compro-
mise value is efficient.

(ii)  By Theorem 3.10, xi ≥ v({i}), i ∊ N; thus,

Therefore, mv
ij(b

v , x) = mv
ji(b

v , x). 

Lemma 4.10 Given pessimistic complaint criterion, if x 
is the value of the game (N , v) ∈ Γ

2
 satisfying efficiency 

and equal pessimistic maximal complaint property, it 
holds that xi ≥ v({i}), i ∊ N.

Proof We prove the lemma by proposing the following 
two claims do not hold.
Claim 1 xi < v({i}), for all i ∊ N.

Since xi < v({i}), i ∊ N, 

Nu
i
(N , v) = ENSC

i
= b

v

i
−

b
v(N) − v(N)

n
, i ∈ N .

(4.3)
mv

ij(v(⋅), x) = max[e(S, v({⋅}), x)|S ⊆ N , i ∈ S, j ∉ S].

mv
ij(v({⋅}), x) = mv

ji(v({⋅}), x).

mv
ij(v({⋅}, x) = x(N�{j}) −

∑
k∈N�{j}

v({k})

=
n−1

n

�
v(N) −

∑
k∈N

v({k})

�
,

mv
ji(v({⋅}, x) = x(N�{i}) −

∑
k∈N�{i}

v({k})

=
n−1

n

�
v(N) −

∑
k∈N

v({k})

�
.

The last equation holds by efficiency. On the other hand, 
for (N , v) ∈ Γ1, bv(N) ≥ v(N), which contradicts with 
(4.2). Therefore, Claim 1 does not hold.

Claim 2 There exist two players i, j ∊ N, such that bvi < xi 
and bvj > xj, i, j ∊ N.

By (4.1),

Since bvj > xj and bvi < xi, it holds that mv
ij(b

v , x) 
< mv

ji(b
v , x) contradicting with the equal maximal com-

plaint property. Therefore, Claim 2 does not hold.
By the above claims, bvi ≥ xi, i ∊ N.  

Theorem 4.5 The optimistic optimal compromise value 
is the unique value with the following two properties: (i) 
efficiency and (ii) equal optimistic maximal complaint 
property.

Proof It remains to prove the uniqueness part. Suppose 
that x is a value with the two mentioned properties under 
optimistic complaint criterion. For all i ∊ N, it holds that 
xi ≤ bvi  by Lemma 4.4; thus,

Similarly,

By property (ii), it holds bv(N�{i}) − x(N�{i}) = 
bv(N�{j}) − x(N�{j}) yielding the significant equation 
bvi − xi = bvj − xj for any i, j ∊ N. Therefore, it is easy to 

obtain xi = bvi −
bv(N)−v(N)

n
 by applying efficiency to the 

systems.
An n‐person game (N , v) is called 1‐convex if it sat-

isfies bv(N) ≥ v(N) and v(S) ≤ v(N) − bv(N�S), S ⊆ N, 
S ≠ ∅. The 1‐convex condition states that the amount 
which remains in the game v for a coalition S, when 
the total amount v(N) is distributed in such a way that 
all the players outside S obtain their marginal con-
tributions, is at least its worth v(S). For the 1‐convex 
game, the Core is not empty, i.e., the 1‐convex game 
is balanced. The Nucleolus of an 1‐convex n‐person 
game has already been determined by Driessen (1985) 
as Nuv

i = bvi −
bv(N)−v(N)

n
. Hence, it is easy to obtain the 

following remark. 
Remark 4.6 Let (N , v) be a 1‐convex game. Then the 
optimistic optimal compromise value x coincides with 
the Nucleolus. That is,

mv
ij(b

v
, x) = max[e(S, bv , x)�� ≠ S ⊆ N , i ∈ S, j ∉ S]

=
∑

bvk≥xk ,k∈N�{i,j}

(bvk − xk) + bvi − xi,

mv
ji(b

v
, x) = max[e(S, bv , x)�S ⊆ N , j ∈ S, i ∉ S]

=
∑

bvk≥xk ,k∈N�{i,j}

(bvk − xk) + bvj − xj.

mv
ij(b

v , x) = bv(N�{j}) − x(N�{j}).

mv
ji(b

v , x(v)) = bv(N�{i}) − x(N�{i}).
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which yields ϕ satisfies equal optimistic maximal com-
plaint property. Hence, by Theorem 4.5, ϕ is the opti-
mistic optimal compromise value for game (N , v⋆). That 
is, 𝜙i = ENSCi(N , v⋆) = bv

⋆

i +
1

n
[v⋆(N) −

∑
k∈N bv

⋆

k ]  . Note 
that ϕi = − φi, v

⋆(N) = −v(N) and bv⋆i = −v({i}); thus, φ is 
determined and �

i
= v({i}) +

1

n
[v(N) −

∑
k∈N v({k})], 

i ∊ N. 
As a generalization of the conclusions in this paper, 

we can represent the other optimal compromise val-
ues, i.e., the α-ENSC value and the α‐CIS value, by 
the same manner as in the (pre)Kernel. To do that, the 
α‐optimistic complaint and α-pessimistic complaint 
are proposed such that the coalition S’s complaints 
are given by e(S, x, �bv) = �bv(S) − x(S), S ⊆ N and 
e(S, x, �v = x(N�S) − �

∑
j∈N�S v({j}), respectively. And 

the corresponding α‐optimistic and α‐pessimistic maxi-
mal complaints are defined by respectively.

Remark 4.13 

(i)  The α‐ENSC value is the unique value with the 
following two properties: efficiency and equal α‐
optimistic maximal complaint property.

(ii)  The α‐CIS value is the unique value with the 
following two properties: efficiency and equal 
α‐pessimistic maximal complaint property.

The proof is similar with that of Theorems 4.5 and 
4.11. Here we omit it.

5. Concluding remarks

In this paper, the optimal compromise value and two 
kinds of complaint criteria are introduced. The com-
promise value can be regarded as the solution of one 
optimization problem. Under the optimistic complaint 
criterion, the optimal compromise value coincides with 
the ENSC value, while the optimal compromise value is 
the CIS value given the pessimistic complaint criterion. 
Moreover, a characterization of the value is given with 
the aid of equal maximal complaint property and effi-
ciency. As an adjunct, we reveal the coincidence of the 
Nucleolus and the ENSC value in 1‐convex games. The 
determination of this optimal compromise value under 
different complaint criterion is still going on.

max[e(S, v({⋅}),𝜑)�S ⊆ N , i ∈ S, j ∉ S]

= max[e(S, v({⋅}),𝜑)�S ⊆ N , j ∈ S, i ∉ S]

⇔ max[𝜑(N�S) −
∑

k∈N�s v(k)�i ∈ S, j ∉ S]

= max[𝜑(N�S) −
∑

l∈N�s v(l)�j ∈ S, i ∉ S]

⇔ max[−𝜙∕(N�S) +
∑

k∈N�s b
v⋆

k �i ∈ S, j ∉ S]

= max[−𝜙(N�S) +
∑

l∈N�s b
v⋆

l �j ∈ S, i ∉ S]

⇔ mv⋆

ij (b
v⋆ ,𝜙) = mv⋆

ji (b
v⋆ ,𝜙),

mv
ij(𝛼b

v
, x) = max[𝛼bv(S) − x(S) � S ⊆ N , i ∈ S, j ∉ S] and

mv
ij(𝛼v(⋅), x) = max[x(N�S) − 𝛼

∑
k∈N�S

v(k) � S ⊆ N , i ∈ S, j ∉ S]

 

By efficiency, we conclude that 
v(N) =

∑
i∈N x

i
<

∑
i∈N v({i}). On the other hand, for 

(N , v) ∈ Γ2, 
∑

i∈N v({i}) ≤ v(N), which contradicts with 
(4.4). Therefore, Claim 1 does not hold.
Claim 2 There exist two players i, j ∊ N, such that xi < 
v({i}) and xj > v({j}), i, j ∊ N.

By (4.3),

Since xj > v({j}) and xi < v({i}), it holds that 
mv

ij(v({⋅}), x) < mv
ji(v({⋅}), x) contradicting with prop-

erty (ii). Therefore, Claim 2 does not hold.
By the above claims, xi ≥ v({i}), i ∊ N. 
Theorem 4.11 The pessimistic optimal compromise 
value is the unique value with the following two prop-
erties: (i) efficiency and (ii) equal pessimistic maximal 
complaint property.

Proof It remains to prove the uniqueness part. Suppose 
that x is a value with the two mentioned properties.

For any players i ∊ N, xi ≥ v({i}) by Lemma 4.10; thus,

Similarly,

By property (ii), it holds 
x(N�{i}) −

∑
k∈N�{i} v({k}) = x(N�{j}) −

∑
k∈N�{j} v({k}) 

yielding the significant equation xi − v({i}) = xj − 
v({j}) for any i, j ∊ N. Therefore, it is easily to obtain 
xi = v({i}) −

v(N)−
∑

k∈N v({k})

n
 by applying efficiency to the 

systems. 
Remark 4.12 The uniqueness part of Theorem 4.11 
can also be proved by constructing the anti‐dual game 
v⋆.

Alternative Proof or Theorem 4.11 It remains to prove 
the uniqueness part. Given φ is a value for game (N , v) 
satisfying efficiency and the equal pessimistic maximal 
complaint property. Let v⋆ be the anti‐dual of game v 
and construct ϕ = −φ, then it is easy to obtain ϕ(N) = 
−φ(N) = −v(N) = v*(N), i.e., ϕ satisfies the efficiency for 
game (N , v⋆). Next we prove that for (N , v⋆), the equal 
optimistic maximal complaint property holds for ϕ.

Clearly, by equal pessimistic maximal complaint 
property, mv

ij(v({⋅}),�) = mv
ji(v({⋅}),�). Therefore,

(4.4)
∑
i∈N

x
i
<

∑
i∈N

v({i}).

mv
ij(v({⋅}), x) = max[e(S, v({⋅}), x)�S ⊆ N , i ∈ S, j ∉ S]

=
∑

xk≥v({k}),k∈N�{i,j}

(xk − v({k})) + xi − v({i}),

mv
ji(v({⋅}), x) = max[e(S, v({⋅}), x)�S ⊆ N , j ∈ S, i ∉ S]

=
∑

xk≥v({k}),k∈N�{i,j}

(xk − v({k})) + xj − v({j}).

mv
ij(v({⋅}), x) = x(N�{j}) −

∑
k∈N�{j}

v({k}).

mv
ji(v({⋅}), x) = x(N�{i}) −

∑
k∈N�{i}

v({k}).
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