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Abstract This paper devotes to the study of the equal allocation of nonseparable
costs value for cooperative games. On the one hand, we show that the equal allocation
of nonseparable costs value is the unique optimal solution that minimizes the total
complaints for individual players over the pre-imputation set. On the other hand,
analogously to the way of determining the Nucleolus, we obtain the equal allocation
of nonseparable costs value by applying the lexicographic order over the individual
complaints. Moreover, we offer alternative characterizations of the equal allocation of
nonseparable costs value by proposing several new properties such as dual nullifying
player property, dual dummifying player property and grand marginal contribution
monotonicity.
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1 Introduction

Cooperative game theory provides practical mathematical tools to model situations
of cooperation, and it is widely used in economics and political science. The main
subject of cooperative game theory is that of determining the allocation rule which
defines what portion of the societal benefit is to be shared with each participating
player. Various allocation rules for cooperative games have been proposed concerning
different criteria of a fair payoff.

Several allocation rules for cooperative games have been studied based on the con-
cept of excess which is the gap between the worth of a coalition and what it can obtain
from the proposed payoff. The notion of excess usually is taken as a measurement of
complaints for coalitions toward a given payoff. TheNucleolus, introduced by Schmei-
dler [1], is the outcome of a lexicographic minimization procedure over the excess
vectors which are associated with allocations. More specifically, the Nucleolus is the
only allocation rule that minimizes the maximal complaint among all coalitions over
the imputation set, which contains all the payoff vectors that completely distribute the
total benefit and assign to every single player at least his individual worth. Instead of
pushing down the highest excess, Ruiz et al. [2–4] introduced the so-called least square
value as the unique minimizer of the variance of the total excesses for coalitions.

In this paper, we implement the equal allocation of nonseparable costs value (the
ENSC value for short), proposed by Moulin [5], as the unique optimal solution to sev-
eral optimization problems that involve the complaints for individual players instead
of the coalitions. Recall that cooperative game theory deals with the mathematical
models of cooperative situations in which the grand coalition forms. Thus, every sin-
gle player plays a significant role in the formation of the grand coalition, suggesting
that the ideal payoff for players is the grand marginal contribution. Given any alloca-
tion, there always exists a gap between the ideal payoff and the proposed allocation,
resulting in the complaints of the players. With the same method applied in the deter-
mination of the least square value, we select the unique payoff vector that minimizes
the summation of the variance of the total complaints for individual players. It will be
shown that the optimal solution coincides with the ENSC value.

Alternatively, inspired by the interpretation of the Shapley value [6] both in [7]
and [8], another ideal payoff for individual players is proposed. Suppose that players
join the game one by one and every new entrant charges the marginal contribution
he creates to the formed coalition as his payoff, then the Shapley value is defined
by averaging the marginal vectors over all possible orders. The Shapley value can be
treated as an egoistic allocation in the sense that every newentrant takes all hismarginal
contributions without sharing with others. In this context, we deal with the situation in
which players are totally egoistic. That is, every new entrant claims his grand marginal
contribution rather than the marginal contribution of the formed coalition and what’s
left is shared equally among the preceding players. Notice that in the formation of the
grand coalition, every player obtains his grand marginal contribution as a new entrant
but also has to undertake a portion of gaps generated by his successors, yielding the
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so-called compromised ideal payoff. In this paper, it will be proved that the ENSC
value is the unique pre-imputation that minimizes the summation of the variance of
the total compromised complaints for individual players. By analyzing the involved
procedure, we could conclude that the ENSC value is a more egoistic value than the
Shapley value. In fact, Marcin [8] elaborated that the equal division value is more
altruistic than the solidarity value [9] by proposing the so-called “Procedural” value.
And the Shapley value is in some sense egoistic compared with the solidarity value,
while our work reveals the fact that the ENSC value is more egoistic than the Shapley
value. Moreover, analogously to the way of obtaining the Nucleolus, we implement
the ENSC value by lexicographically minimizing the individual excess vector over the
pre-imputation set. From the perspective of optimization, the conclusion indicates a
coincidence between these two values, which was first studied by Driessen and Funaki
[10].

In order to explain the rationality and fairness of the ENSC value for cooperative
games, it entails characterization of this allocation rule. There exists a lot of literature
concentrating on the characterization of the ENSC value. For instance, Xu [11] and
Hwang [12] both characterized the ENSC value with the aid of associated consis-
tency, which was inspired by Hamiache’s [13] characterization of the Shapley value.
The associated consistency of an allocation rule implies that it gives the same payoff
to each participating agent in the original game and in the imaginary associated game,
which reflects the expectations elaborated by the agents. Ju andWettstein [14] charac-
terized the ENSC value as the implementation result of a bidding mechanism through
noncooperative viewpoint. In this paper, we provide two alternative characterizations
of the ENSC value: the first as the unique solution to an optimization problem, the
second as the unique satisfier of a particular collection of axioms. Several new proper-
ties are proposed including the dual nullifying player property, the dual dummifying
player property and grand marginal contribution monotonicity. The dual nullifying
player property and dual dummifying player property are inspired by the concepts
of the nullifying and dummifying player property, which were introduced by Brink
[15] and André [16], respectively. The dual nullifying player property states that any
player that brings nullifying influence to coalitions containing him through an indi-
rect way will get nothing. The dual dummifying player property guarantees the grand
marginal contribution for players who carry out dummifying influence to coalitions. In
addition, grand marginal contribution monotonicity ensures that players with a larger
grand marginal contribution can obtain a larger portion of the total benefit.

The paper is organized as follows: in Sect. 2, we recall necessary definitions of
cooperative games. Then we present the optimization models that lead to the ENSC
value. In Sect. 3, characterizations of the ENSC value with several new properties are
presented and we end this paper with a short conclusion in Sect. 4.

2 Optimization Implementation of the Equal Allocation of Nonseparable
Costs Value

A cooperative game is a pair (N , v), where N is the finite player set and v:2N → R

is the characteristic function on the set 2N of all subsets of N such that v(∅) = 0. For
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any S ⊆ N , v(S) is the worth that S can earn by acting alone and the cardinality of S
is denoted by s. Denote Γn as the class of all cooperative n-person games with player
set N . Player i’s grand marginal contribution v(N ) − v(N\i) is denoted by bv

i . Any
x ∈ Rn is called a payoff vector. A pre-imputation [3] is a payoff vectorwith efficiency,
i.e., x(N ) = v(N ), where x(N ) = ∑

i∈N xi . An imputation is a pre-imputation with
individual rationality, i.e., xi ≥ v(i),∀i ∈ N . For any v ∈ Γn , I ∗(v) and I (v) denote
the pre-imputation set and the imputation set [17], respectively.

A value ϕ:Γn → Rn is a function that maps every v ∈ Γn to an n tuple. The ENSC
value, introduced byMoulin [5] under the full name “equal allocation of nonseparable
costs,” allocates to each player his grandmarginal contribution and then evenly divides
the remaining benefit among all players, i.e.,

ENSCi (v) := bv
i + 1

n

⎡

⎣v(N ) −
∑

j∈N
bv
j

⎤

⎦ , ∀i ∈ N . (1)

Ruiz [2] defined the least square value as the unique pre-imputation that minimizes
the variance of the excess of coalitions. Tijs [18] explained that the grand marginal
contribution bv ∈ Rn is an upper bound for the core of game v ∈ Γn . The core,
introduced by Gillies [19], is the set of all pre-imputations that cannot be improved
upon by any coalition, that is, the core is always internally stable. Based on this fact,
any player i ∈ N in a game v will regard bv

i as his ideal payoff and certainly prefer
an allocation which is closest to the vector bv . Inspired by Ruiz, our aim is to select a
payoff vector that has the least Euclidean distance to the marginal contribution vector
bv . The following optimization problem is taken into account.

Problem 1 Minimize
∑

i∈N (bv
i − xi )2, s.t. x ∈ Rn and

∑
i∈N xi = v(N ).

Theorem 2.1 For any v ∈ Γn, there exists a unique optimal solution x∗ of Problem 1,
which coincides with the ENSC value, i.e.,

x∗
i = bv

i + 1

n

⎡

⎣v(N ) −
∑

j∈N
bv
j

⎤

⎦ , ∀i ∈ N . (2)

Proof It is not difficult to verify that the objective function of Problem 1 is strictly
convex by calculating the Hessian matrix. Together with the convexity of the feasible
set, we conclude that the optimal solution is unique if it exists. Thus, in order to find
the optimal solution, it is necessary and sufficient to verify the Lagrange conditions.
The Lagrange function of Problem 1 is

L(x, λ) =
∑

i∈N

(
bv
i − xi

)2 + λ

(
∑

i∈N
xi − v(N )

)

. (3)

The Lagrange conditions are then

Lxi (x, λ) = 2
(
x∗
i − bv

i

) + λ = 0, i ∈ N . (4)
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Therefore, it holds that

x∗
i − bv

i = x∗
j − bv

j , ∀i, j ∈ N . (5)

Further, by the constraint equation
∑

i∈N xi = v(N ), the solution for Eq. (5) is

x∗
i = bv

i + 1

n

⎡

⎣v(N ) −
∑

j∈N
bv
j

⎤

⎦ = ENSCi (v). (6)

	

Remark 2.1 One may reasonably deduce that if every player aspires to get the worth
of the grand coalition v(N ), then the gap between the worth of the grand coali-
tion and proposed payoff can be regarded as complaints for players. By minimizing∑

i∈N (v(N )−xi )2, x ∈ Rn over the pre-imputation set, one could find that the optimal
solution coincides with the equal division value.

As stated in the Introduction, the Shapley value is in some sense an egoistic value
which assigns to every new entrant his marginal contribution to the formed coalition.
In this paper, we deal with the situation where players are totally egoistic, that is, all
the newcomers will charge the grand marginal contributions as their ideal payoff.

Definition 2.1 For any v ∈ Γn and π ∈ Π(N ), where Π(N ) denotes the set of all
permutations on N , a player i ∈ N is totally egoistic if he claims Cπ

i when he joins
the game, where

Cπ
i :=

{
v(i), if i = π(1),
bv
i , otherwise.

(7)

The gap v
(
Siπ

) − v
(
Siπ\i) − Cπ

i generated by player i is shared among the players.
The portion for player k ∈ N is Gπ

ik , i.e.,

Gπ
ik :=

{
v
(
Siπ

)−v
(
Siπ\i)−Cπ

i
π(i)−1 , if k ∈ Siπ\{i},

0, otherwise.
(8)

Here Siπ := { j ∈ N :π( j) ≤ π(i)} denotes the set that consists of player i and all his
predecessors under permutation π .

For any dynamic coalitional formation order, a totally egoistic player will claim his
grand marginal contribution, while what’s left is equally shared among the preceding
participants. Particularly, a player who takes up the first position only obtains his
individual value since there are no predecessors.

In order to illustrate the above procedure, we consider the following three-person
game v ∈ Γn under the assumption that all players are totally egoistic and the dynamic
coalitional formation order is (3, 1, 2).
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Table 1 Payoff for players
when 3 joins

Players Player 1 Player 2 Player 3

Payoff 0 0 v(3)

Table 2 Payoff for players
when 1 joins

Players Player 1 Player 2 Player 3

Payoff bv
1 0 v(1, 3) − v(3) − bv

1

Table 3 Payoff for players
when 2 joins

Players Player 1 Player 2 Player 3

Payoff
v(N )−v(1,3)−bv

2
2 bv

2
v(N )−v(1,3)−bv

2
2

Table 4 Payoff for players under the formation order (3, 1, 2)

Formation of N Payoff in every step Player’s final payoff

Player 3 v(3), v(1, 3) − v(3) − bv
1 ,

v(N )−v(1,3)−bv
2

2 −bv
1 + v(N )+v(1,3)−bv

2
2

Player 1 bv
1 ,

v(N )−v(1,3)−bv
2

2 bv
1 + v(N )−v(1,3)−bv

2
2

Player 2 bv
2 bv

2

At the beginning, player 3 joins the game. As the sole present player, player 3
obtains his individual worth v(3), while players 1 and 2 obtain nothing at the moment.
The payoff for players in this stage is shown in Table 1.

Then player 1 joins, and he obtains his grand marginal contribution bv
1. The only

preceding player 3 achieves an extra payoff, the amount of which equals to the new
entrant’s marginal contribution to the preceding player 3 minus his grand marginal
contribution, i.e., v(1, 3) − v(3) − bv

1. The payoff for players in this stage is shown in
Table 2.

Finally player 2 joins the game and obtains bv
2. The remaining v(N )− v(1, 3)− bv

2
is shared equally among the preceding players 1 and 3. The payoff for players in the
final stage is shown in Table 3.

By summing the payoffs in these three stages, we get the final payoff as shown in
Table 4.

In the formation of the grand coalition, each new entrant first obtains his grand
marginal contribution and then bears the gaps generated by his successors, which
somehow reflects a compromise between the ideal payoff bv and the gaps. As shown
in the above example, the final payoff for player 1 consists of two parts, his ideal

payoff bv
1 and the compromised part

v(N )−v(1,3)−bv
2

2 generated by his successor 2.

Definition 2.2 For any v ∈ Γn and π ∈ Π(N ), let all players be totally egoistic. The
compromised ideal payoff for player i under coalitional formation order π is defined
as
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ηvπ
i :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(i) +
n∑

k=π−1(i)+1

v
(
Sπ(k)
π

)
−v

(
Sπ(k)
π \π(k)

)
−bv

π(k)

k−1 , if i = π(1),

bv
i +

n∑

k=π−1(i)+1

v
(
Sπ(k)
π

)
−v

(
Sπ(k)
π \π(k)

)
−bv

π(k)

k−1 , otherwise.

(9)

Here

n∑

k=n+1

v
(
Sπ(k)
π

)
− v

(
Sπ(k)
π \π(k)

)
− bv

π(k)

k − 1
= 0.

Definition 2.3 For any v ∈ Γn and π ∈ Π(N ), let all players be totally egoistic. The
compromised complaint of player i toward the payoff vector x ∈ Rn with respect to
the compromised ideal payoff ηvπ

i is

e
(
i, x, ηvπ

) := ηvπ
i − xi , i ∈ N . (10)

The expression e(i, x, ηvπ ) indicates the gap between player’s compromised ideal
payoff and the proposed payoff. The larger e(i, x, ηvπ ) is, the more dissatisfied player
i feels. By minimizing the summation of the variance of the compromised complaints
over the pre-imputation set, a unique optimal solution is obtained. This solution can
be seen as the least unsatisfied payoff by the fact that it is the vector closest to the
compromised ideal payoff vector under Euclidean distance. Formally, the following
optimization problem is considered.

Problem 2 Minimize
∑

i∈N
∑

π∈Π(N )(η
vπ
i − xi )2, s.t. x ∈ Rn and

∑
i∈N xi = v(N ).

Theorem 2.2 For any v ∈ Γn, there exists a unique optimal solution x∗ for Problem 2,
which coincides with the ENSC value.

In order to show the validity of Theorem2.2, the following lemma is taken into account.

Lemma 2.1 For any game v ∈ Γn, the average compromised ideal payoff coincides
with the ENSC value, i.e.,

1

n!
∑

π∈Π(N )

ηvπ
i = ENSCi (v), (11)

where ηvπ
i is defined as in (9).

See the proof of this lemma in “Appendix.”

Proof of Theorem 2.2 The objective function and the feasible set of Problem 2 are
both convex; hence, there is only one optimal solution if it exists. It is necessary and
sufficient to verify the Lagrange conditions so as to find the optimal solution. Formally,
the Lagrange function of Problem 2 is
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L(x, λ) =
∑

i∈N

∑

π∈Π(N )

(
ηvπ
i − xi

)2 + λ

(
∑

i∈N
xi − v(N )

)

. (12)

Taking the derivative of this function, the Lagrange conditions are obtained as

Lxi (x, λ) = −2
∑

π∈Π(N )

(
ηvπ
i − xi

) + λ = 0, ∀i ∈ N . (13)

Thus for all i, j ∈ N , we have

∑

π∈Π(N )

(
ηvπ
i − xi

) =
∑

π∈Π(N )

(
ηvπ
j − x j

)
. (14)

By Lemma 2.1 and the constraint equation
∑

i∈N xi = v(N ), we may straightforward
to get that the optimal solution x∗ is

x∗
i = 1

n!
∑

π∈Π(N )

ηvπ
i = ENSCi (v). (15)

	

The foregoing optimization problems both characterize the ENSC value as the

unique allocation rule that minimizes the total complaints for individual players under
the least square criterion.We now turn to explore the optimal solution that pushes down
themaximal complaints for individual players under the lexicographic criterion, which
is similar to the method of obtaining the Nucleolus. Given v ∈ Γn and x ∈ Rn , the gap
between v(S) and x(S) is known as the excess ev(S, x) = v(S)− x(S), which in some
sense reflects the loss or complaint for coalition S toward the allocation x . Let θ(x)
be a 2n tuple whose components are the excesses ev(S, x) arranged in nonincreasing
order.

Definition 2.4 The Nucleolus of a cooperative game v ∈ Γn is the set of all imputa-
tions x ∈ I (v) satisfying

θ(x) ≤L θ(y), ∀y ∈ I (v), (16)

where ≤L represents the lexicographic order.
Instead of considering the complaints for coalitions, we select the pre-imputation

that minimizes the maximal average compromised complaint for the individual
players. For any x ∈ I ∗(v), let θ∗(x) be the n tuple whose components are the
average compromised complaint, i.e., θ∗

i (x) = 1
n!

∑
π∈Π(N ) e(i, x, η

vπ ), arranged
in nonincreasing order. The next theorem states that the ENSC value is the unique
pre-imputation that lexicographically minimizes the average compromised complaint
vector θ∗(x) over I ∗(v).
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Theorem 2.3 For any v ∈ Γn, the ENSC value is the unique pre-imputation x ∈ I ∗(v)

satisfying

θ∗(x) ≤L θ∗(y), ∀y ∈ I ∗(v). (17)

Proof Given any v ∈ Γn , let x be the pre-imputation satisfying

θ∗(x) ≤L θ∗(y), ∀y ∈ I ∗(v). (18)

Now we assert that θ∗
i (x) = θ∗

j (x) for all i, j ∈ N . Otherwise, there must exist
i, j ∈ N such that θ∗

i (x) �= θ∗
j (x). Without loss of generality, let θ∗

i (x) < θ∗
j (x).

Define the n-tuple x̂ by

x̂k :=
⎧
⎨

⎩

xk, k ∈ N\{i, j},
xk − δ, k = i,
xk + δ, k = j.

(19)

Here δ = θ∗
j (x)−θ∗

j (x)

2 . It is obvious that x̂ ∈ I ∗(v). Then, the average compromised
complaint vector of x̂ is

θ∗
k (̂x) =

⎧
⎨

⎩

θ∗
k (x), k ∈ N\{i, j},

θ∗
k (x) + δ, k = i,

θ∗
k (x) − δ, k = j.

(20)

Moreover, since δ > 0, we have

θ∗
j (x) > θ∗

j (̂x) = θ∗
i (̂x) > θ∗

i (x).

This implies θ∗(̂x) <L θ∗(x), which is contradiction with that x lexicographically
minimizes the average compromised complaint vector over the pre-imputation set.
Hence, θ∗

i (x) = θ∗
j (x) for all i, j ∈ N . By the efficiency of x and Lemma 2.1, it is

not difficult to obtain that xi = ENSCi (v) for all i ∈ N . 	

We conclude this section with a simple example to illustrate the involved optimiza-

tion models.

Example 2.1 Given a 3-person game v ∈ Γn with N = {1, 2, 3}. Let the characteristic
functionv begivenbyv(1) = 1,v(2) = 2,v(3) = 3,v(12) = 4,v(23) = 9,v(13) = 9
and v(N ) = 10. Then we have bv

1 = 1, bv
2 = 2 and bv

3 = 6. It is easy to figure out that
the ENSC value is ENSC(v) = ( 4

3 ,
7
3 ,

19
3

)
.

As to Problem 1, the following problem is taken into account

Minimize (x1 − 1)2 + (x2 − 2)2 + (x3 − 6)2, s.t. x1 + x2 + x3 = 10.

The Lagrange function of this problem is

L(x, λ) = (x1 − 1)2 + (x2 − 2)2 + (x3 − 6)2 + λ(x1 + x2 + x3 − 10),
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which gives the Lagrange conditions

2(x1 − 1) + λ = 0; 2(x2 − 2) + λ = 0; 2(x3 − 6) + λ = 0. (21)

Together with x1 + x2 + x3 = 10, the optimal solution x∗ = ( 4
3 ,

7
3 ,

19
3

)
is exactly the

ENSC value, verifying the validity of Theorem 2.1.
As to Problem 2, we first denote the permutations on N by π1 = (1, 2, 3), π2 =

(1, 3, 2), π3 = (2, 1, 3), π4 = (2, 3, 1), π5 = (3, 1, 2) and π6 = (3, 2, 1). The
compromised ideal payoffs for the players are

η
vπ1
1 = η

vπ2
1 = 2, η

vπ3
1 = η

vπ4
1 = η

vπ5
1 = η

vπ6
1 = 1,

η
vπ3
2 = η

vπ4
2 = 3, η

vπ1
2 = η

vπ2
2 = η

vπ5
2 = η

vπ6
2 = 2,

η
vπ5
3 = η

vπ6
3 = 7, η

vπ1
3 = η

vπ2
3 = η

vπ3
3 = η

vπ4
3 = 6.

Thus, the explicit formulation of Problem 2 is

Minimize 2(x1 − 2)2 + 4(x1 − 1)2 + 2(x2 − 3)2 + 4(x2 − 2)2

+2(x3 − 7)2 + 4(x3 − 6)2, s.t.
3∑

i=1

xi = 10.

The Lagrange function is

L(x, λ) = 2(x1 − 2)2 + 4(x1 − 1)2 + 2(x2 − 3)2 + 4(x2 − 2)2 + 2(x3 − 7)2

+ 4(x3 − 6)2 + λ(x1 + x2 + x3 − 10),

which gives the Lagrange conditions

4(x1 − 2) + 8(x1 − 1) + λ = 0; 4(x2 − 3) + 8(x2 − 2) + λ = 0;
4(x3 − 7) + 8(x3 − 6) + λ = 0. (22)

Together with x1 + x2 + x3 = 10, the optimal solution x∗ = ( 4
3 ,

7
3 ,

19
3

)
coincides with

the ENSC value, which verifies the validity of Theorem 2.2.

3 Characterization of the Equal Allocation of Nonseparable Costs Value

In Sect. 2, we implement the ENSC value as the unique optimal solution to some
optimization problems. Alternative characterizations of the ENSC value will be shown
in this section by proposing several new properties. Before doing that, we first list
some usual principles that have been proposed to reflect the fairness and rationality
for values. A value ϕ:Γn → Rn satisfies

– Additivity: if ϕi (v + w) = ϕi (v) + ϕi (w) for any v,w ∈ Γn .
– Invariance: if for any a ∈ R and b ∈ R

n , it holds that ϕi (av + b) = aϕi (v) + b,
where (av + b) ∈ Γn is given by (av + b)(S) := av(S) + ∑

i∈S bi ,∀S ⊆ N .
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– Symmetry: if ϕi (v) = ϕ j (v), where i, j ∈ N are symmetric players in game
v ∈ Γn , that is, v(S ∪ i) = v(S ∪ j),∀S ⊆ N\{i, j}.

– Inessential game property: if ϕi (v) = v(i),∀i ∈ N for any inessential game
v ∈ Γn , that is, v(S) = ∑

i∈S v(i),∀S ⊆ N .

Brink [15] introduced the nullifying player property to characterize both the equal
division value and the center of gravity of the imputation set value [10]. A player is
nullifying if the worth of all coalitions containing him equals zero. The nullifying
player property implies that the nullifying players will obtain nothing due to their
nullifying influence to coalitions. Different from the nullifying players, we consider
the players who bring nullifying influence to coalitions in an indirect way.

Definition 3.1 For any v ∈ Γn , player i ∈ N is called a dual nullifying player in v if
v(N ) − v(N\S) = 0 for all S ⊆ N with i ∈ S.

Obviously, if a coalition S contains a dual nullifying player, then the remaining part
of the total worth v(N ) for it equals 0 whenever v(N ) is distributed in such a way
that players outside S receive the amount of v(N\S). In this case, an allocation rule
should assign nothing to the dual nullifying players. This yields the dual nullifying
player property. A value ϕ:Γn → Rn satisfies

– Dual nullifying player property: if ϕi (v) = 0, for any given v ∈ Γn such that i
is a dual nullifying player in game v.

By replacing the nullifying player property with dual nullifying player property in
the characterization of the equal division value proposed by Brink [15], we obtain a
new characterization of the equal division value.

Lemma 3.1 For all v ∈ Γn, the equal division value is the unique value that satisfies
efficiency, additivity, symmetry and the dual nullifying player property.

Proof Obviously, the equal division value satisfies efficiency, additivity and symmetry.
Nextwe verify the dual nullifying player property for the equal division value. Suppose
that player i ∈ N is dual nullifying in game v ∈ Γn . By the definition of the dual
nullifying player, we have v(N ) − v(N\N ) = v(N ) = 0, thus EDi (v) = v(N )

n = 0,
which means that the dual nullifying property holds for the equal division value.

Uniqueness will be proved in a similar way as for the Shapley value but using the
standard games instead of the unanimity games which are introduced by Harsanyi
[20].

For any T ⊆ N , T �= ∅, the standard game bT ∈ Γn is defined by

bT(S) :=
{
1, if S = T,

0, otherwise.
(23)

Now suppose that a value ϕ:Γn → Rn satisfies these four properties. For any T � N ,
all players in T are dual nullifying in game bT. According to the dual nullifying player
property, ϕi (bT) = 0 for all i ∈ T . By efficiency of ϕ, it holds that

∑
i∈N\T ϕi (bT) =

bT(N ) = 0.Moreover, all players in N\T are symmetric to each other, henceϕi (bT) =
0 for all i ∈ N\T .
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For T = N , ϕi (bN ) = bN
n = 1

n for all i ∈ N simply by efficiency and symmetry.
Recall that the set {bT}T⊂N ,T �=∅ forms a basis of Γn , yielding v = ∑

T⊆N ,T �=∅
v(T )bT for all v ∈ Γn . Therefore, additivity implies that ϕi (v) = ∑

T⊆N ,T �=∅
v(T )ϕi (bT) = v(N )

n for all i ∈ N , which completes the uniqueness part. 	


TheENSCvalue satisfies all the properties except the dual nullifyingplayer property
in Lemma 3.1. This property holds for the ENSC value only on the domain of games
of which the grand marginal contributions for all players equal 0.

Definition 3.2 A game v ∈ Γn is zero marginal normalized if bv
i = 0 for all i ∈ N .

A value ϕ:Γn → Rn satisfies

– Zero marginal normalized game property: if ϕi (v) = 0 for any zero marginal
normalized game v ∈ Γn in which i is a dual nullifying player.

Clearly, the zero marginal normalized game property is generated by restricting the
dual nullifying player property on zeromarginal normalized games. Adding the invari-
ance property and replacing the dual nullifying player property with the zero marginal
normalized game property in Lemma 3.1 give a new characterization of the ENSC
value.

Theorem 3.1 For all v ∈ Γn, the ENSC value is the unique value that satisfies
efficiency, additivity, symmetry, invariance and the zero marginal normalized game
property.

Proof It is not difficult to verify that the ENSC value satisfies all above properties. It
is sufficient to prove the uniqueness.

Let ϕ:Γn → Rn be a value satisfying these five properties. For any v ∈ Γn , we
define w ∈ Γn as w(S) := v(S) − ∑

j∈S bv
j , ∀S ⊆ N . It is obvious that w is a

zero marginal normalized game. Since ϕ satisfies all properties for zero marginal
normalized games in Lemma 3.1, ϕ coincides with the equal division value for such

games. Thus, ϕi (w) = EDi (v) = w(N )
n = v(N )−∑

j∈N bv
j

n , ∀i ∈ N .
Moreover, v = w + d, where d ∈ Rn with di = bv

i for all i ∈ N . Together with

invariance, it holds that ϕi (v) = ϕi (w) + di = w(N )
n + bv

i = v(N )−∑
j∈N bv

j
n + bv

i =
ENSCi (v) for all i ∈ N , which completes the uniqueness part. 	


Adual nullifying player not only neutralizes productiveness of coalitions containing
him, but also blocks cooperation within such coalitions. Discarding the neutralization
effect gives a new kind of players called the dual dummifying players.

Definition 3.3 For any game v ∈ Γn , player i ∈ N is a dual dummifying player in v

if v(N ) − v(N\S) = ∑
j∈S bv

j for all S ⊆ N with i ∈ S.

The remaining part of the total worth v(N ) for any coalition S that contains a dual
dummifying player is exactly the amount of all the grand marginal contributions of
its members whenever coalition N\S receives the worth v(N\S). Analogously to the
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dual nullifying player property, we define the dummifying player property as follows.
A value ϕ:Γn → Rn satisfies:

– Dual dummifying player property: if ϕi (v) = bv
i , for any v ∈ Γn such that i is

a dual dummifying player in v.

As we showed in Sect. 2, the grand marginal contributions can be regarded as
the ideal payoff for players which in general cannot be guaranteed. While the dual
dummifying player property requires this outcome for the dual dummifying player.

Theorem 3.2 For all v ∈ Γn, the ENSC value is the unique value that satisfies effi-
ciency, additivity, symmetry and the dual dummifying player property.

Proof It is easy to verify that the ENSC value satisfies efficiency, additivity and sym-
metry.We show that the ENSCvalue also has the dual dummifying player property. Let
i ∈ N be a dual dummifying player in game v ∈ Γn , then v(N ) = v(N )−v(N\N ) =∑

j∈N bv
j . According to the definition of the ENSC value, we have ENSCi (v) = bv

i ,∀i ∈ N , which completes the validity of the dual dummifying player property. Now
it remains to prove the uniqueness.

Let ϕ:Γn → Rn be a value that satisfies the mentioned properties. One may notice
that the dual dummifying player property implies the dual nullifying player property
restricted on zero marginal normalized games. In view of Theorem 3.1, it is sufficient
to show that invariance holds. For any v ∈ Γn and b ∈ Rn , it remains to prove
ϕi (v + b) = ϕi (v) + bi , where b(S) := ∑

i∈S bi , ∀S ⊆ N . By additivity, we have
ϕ(v + b) = ϕ(v) + ϕ(b). Moreover, since b is an inessential game, all players are
dual dummifying in b. The dual dummifying player property implies ϕi (b) = b(N )−
b(N\i) = bi , ∀i ∈ N . Thus, the invariance property holds. 	


Monotonicity is a quite general standard for reasonable allocation in cooperative
games. Young [21] characterized the Shapley value with strong monotonicity. The
strong monotonicity states that if a game evolves such that some players’ marginal
contributions to all coalitions that contain them increase or stay unchanged, then the
payoff to these players will not decrease. Instead of discussing a situation which
involves game changing, we introduce a new monotonicity named grand marginal
contribution monotonicity which reveals the relation between payoffs to players in a
given game. A value ϕ:Γn → Rn satisfies

– Grand marginal contribution monotonicity: if ϕi (v) ≥ ϕ j (v) for any v ∈ Γn

such that bv
i ≥ bv

j , where i, j ∈ N .

Grand marginal contribution monotonicity expresses the fact that players with larger
grand marginal contribution will be assigned with a larger portion of the total benefit.
Together with efficiency, additivity and inessential game property, we derive a new
characterization of the ENSC value.

Theorem 3.3 For all v ∈ Γn, the ENSC value is the unique value that satisfies
efficiency, additivity, inessential game property and grand marginal contribution
monotonicity.
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Proof It is trivial that theENSCvalue satisfies the propertiesmentioned in the theorem.
It remains to prove the uniqueness part.

Given a value ϕ:Γn → Rn that satisfies the four properties. For any v ∈ Γn , we
decompose v into two games, i.e., v = u + w, where u(S) := v(S) − ∑

j∈S bv
j and

w(S) := ∑
j∈S bv

j , ∀S ⊆ N . Obviously, w is an inessential game, thus ϕi (w) =
w(i) = v(N ) − v(N\i) = bv

i by applying inessential game property of ϕ.
For any i ∈ N , bui = u(N ) − u(N\i) = ∑

k∈N bv
k , which indicates that all

players have the same marginal contribution to the grand coalition in game u. Accord-
ing to grand marginal contribution monotonicity of ϕ, we have ϕi (u) = u(N )

n =
v(N )−∑

j∈N bv
j

n , ∀i ∈ N . Finally, additivity implies that ϕi (v) = ϕi (u + w) =
ϕi (u) + ϕi (w) = v(N )−∑

j∈N bv
j

n + bv
i = ENSCi (v). 	


Remark 3.1 To show the independence of the four axioms in Theorem 3.3, note:

1. The value ϕ1
i (v) := v(N ) − v(N\i) for all i ∈ N satisfies linearity, inessential

game property and grand marginal contribution monotonicity. But it does not
satisfy efficiency.

2. The value ϕ2
i (v) := v(N )−v(N\i)∑

j∈N (v(N )−v(N\ j)) v(N ) for all i ∈ N satisfies efficiency,

inessential game property and grand marginal contribution monotonicity. But it
does not satisfy linearity.

3. The value ϕ3
i (v) := v(N )

n for all i ∈ N satisfies efficiency, linearity and grand
marginal contribution monotonicity. But it does not satisfy inessential game prop-
erty.

4. Thevalueϕ4
i (v) := v(i)+ v(N )−∑

j∈N v( j)
n for all i ∈ N satisfies efficiency, linearity

and inessential game property. But it does not satisfy grand marginal contribution
monotonicity.

4 Conclusions

In this paper, we provide two alternative ways to characterize the equal allocation of
nonseparable costs value: one is the unique solution to an optimization problem, and
the other is the unique satisfier of a particular collection of axioms. We show that
the equal allocation of nonseparable costs value is the unique solution that minimizes
the variance of the complaints for individual players under the least square criterion.
Besides, the equal allocation of nonseparable costs value is the unique pre-imputation
that minimizes the maximal complaint for individual players under lexicographic
criterion. Several new properties are involved to characterize the equal allocation of
nonseparable costs value including the zero marginal normalized game property, dual
dummifyingplayer property andgrandmarginal contributionmonotonicity. For further
research, the determination of other allocation rules for cooperative games from the
perspective of optimization is expected, such as the solidarity value, the center of
gravity of the imputation set value [10], the Banzhaf value [22]. The supreme step to
achieve this is to figure out the corresponding complaint criteria.
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Appendix: The Proof of Lemma 3.1

∑

π∈Π(N )

1

n!η
vπ
i =

∑

π :π(1)=i

1

n!

⎡

⎣v(i) +
n∑

k=π−1(i)+1

mπ(k) − bv
π(k)

k − 1

⎤

⎦

+
∑

π :π(1) �=i

1

n!

⎡

⎣bv
i +

n∑

k=π−1(i)+1

mπ(k) − bv
π(k)

k − 1

⎤

⎦

= (n − 1)!
n! v(i) +

∑

π :π(1)=i

1

n!
n∑

k=π−1(i)+1

mπ(k) − bv
π(k)

k − 1

]

+ (n − 1)(n − 1)!
n! bv

i +
∑

π :π(1) �=i

1

n!
n∑

k=π−1(i)+1

mπ(k) − bv
π(k)

k − 1

= 1

n
v(i) + n − 1

n
bv
i +

∑

π

1

n!
n∑

k=π−1(i)+1

mπ(k) − bv
π(k)

k − 1

= 1

n
v(i) + n − 1

n
bv
i +

∑

π

1

n!
∑

l �=i

∑

π :Slπ�i

1

n!

(
v

(
Slπ

)
− v

(
Slπ\l

))
− bv

l

|Slπ | − 1

= 1

n
v(i) + n − 1

n
bv
i

+
∑

l �=i

∑

S�i,l

(v(S) − v (S\l)) − bv
l

s − 1
· (s − 1)!(n − s)!

n!

= 1

n
v(i) + n − 1

n
bv
i

+
∑

l �=i

∑

S�i,l

[
(v(S) − v (S\l)) − bv

l
] · (s − 2)!(n − s)!

n!

= 1

n
v(i) + n − 1

n
bv
i +

∑

l �=i

∑

S�i,l
v(S) · (s − 2)!(n − s)!

n!

−
∑

l �=i

∑

S�i,l
v (S\l) · (s − 2)!(n − s)!

n! −
∑

l �=i

∑

S�i,l
bv
l · (s − 2)!(n − s)!

n!

= 1

n
v(i) + n − 1

n
bv
i +

∑

S�i,|S|≥2

∑

l∈S\i
v(S) · (s − 2)!(n − s)!

n!

−
∑

l �=i

∑

T⊆N\l,T�i
v(T ) · (t + 1 − 2)!(n − (t + 1))!

n!

−
∑

l �=i

∑

S�i,l
bv
l · (s − 2)!(n − s)!

n!

= 1

n
v(i) + n − 1

n
bv
i +

∑

S�i,|S|≥2

(s − 1)v(S) · (s − 2)!(n − s)!
n!
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−
∑

T�i,|T |≤n−1

∑

l /∈T
v(T ) · (t − 1)!(n − t − 1)!

n!

−
∑

l �=i

n∑

s=2

bv
l · (s − 2)!(n − s)!

n!
(n−2
s−2

)

= 1

n
v(i) + n − 1

n
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∑

S�i,|S|≥2

v(S) · (s − 1)!(n − s)!
n!

−
∑
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(n − t)v(T ) · (t − 1)!(n − t − 1)!
n! −

∑
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bv
l · 1

n(n − 1)

= 1

n
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n
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i +

∑
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v(S) · (s − 1)!(n − s)!
n!

−
∑

T�i,|T |≤n−1

v(T ) · (t − 1)!(n − t)!
n! −

∑

l �=i

bv
l

n

= 1

n
v(i) + n − 1

n
bv
i − 1

n
v(i) + α

v(N )

n
−

∑

l �=i

bv
l

n

= bv
i + v(N ) − ∑

l∈N bv
l

n
= ENSCi (v).
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