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Abstract. Simple heuristics often show a remarkable performance in
practice for optimization problems. Worst-case analysis often falls short
of explaining this performance. Because of this, “beyond worst-case anal-
ysis” of algorithms has recently gained a lot of attention, including prob-
abilistic analysis of algorithms.

The instances of many optimization problems are essentially a dis-
crete metric space. Probabilistic analysis for such metric optimization
problems has nevertheless mostly been conducted on instances drawn
from Euclidean space, which provides a structure that is usually heav-
ily exploited in the analysis. However, most instances from practice are
not Euclidean. Little work has been done on metric instances drawn
from other, more realistic, distributions. Some initial results have been
obtained by Bringmann et al. (Algorithmica, 2013), who have used ran-
dom shortest path metrics on complete graphs to analyze heuristics.

The goal of this paper is to generalize these findings to non-complete
graphs, especially Erdős–Rényi random graphs. A random shortest path
metric is constructed by drawing independent random edge weights for
each edge in the graph and setting the distance between every pair of
vertices to the length of a shortest path between them with respect to
the drawn weights. For such instances, we prove that the greedy heuris-
tic for the minimum distance maximum matching problem, the nearest
neighbor and insertion heuristics for the traveling salesman problem,
and a trivial heuristic for the k-median problem all achieve a constant
expected approximation ratio. Additionally, we show a polynomial upper
bound for the expected number of iterations of the 2-opt heuristic for
the traveling salesman problem.

1 Introduction

Large-scale optimization problems, such as the traveling salesman problem
(TSP), show up in many applications. These problems are often computation-
ally intractable. However, in practice often ad-hoc heuristics are successfully used
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that provide solutions that come quite close to optimal solutions. In many cases
these, often simple, heuristics show a remarkable performance, even though the
theoretical results about those heuristics are way more pessimistic.

In order to explain this difference, probabilistic analysis has been widely used
over the last decades. However, the challenge in probabilistic analysis is to come
up with a good probabilistic model: it should reflect realistic instances, but also
be sufficiently simple to make the analysis tractable.

So far, in almost all cases, either Euclidean space has been used to gener-
ate instances of metric optimization problems, or independent, identically dis-
tributed edge lengths have been used (e.g. [1,6]). However, both approaches have
considerable shortcomings to explain the average-case performance of heuristics
on general metric instances: the structure of Euclidean space is heavily used in
the probabilistic analysis, but realistic instances are often not Euclidean. The
independent, identically distributed edge lengths do not even yield a metric in
the first place. In order to overcome these shortcomings, Bringmann et al. [3]
have proposed and analyzed the following model to generate random metric
spaces, which had already been proposed by Karp and Steele in 1985 [12]: given
an undirected complete graph, start by drawing random edge weights for each
edge independently and then define the distance between any two vertices as the
total weight of the shortest path between them, measured with respect to the
random weights.

1.1 Related Work

Bringmann et al. called the model described above random shortest path metrics.
This model is also known as first-passage percolation, introduced by Hammersley
and Welsh as a model for fluid flow through a (random) porous medium [7,9].

For first passage percolation in complete graphs, the expected distance
between two fixed vertices is approximately ln(n)/n and the expected dis-
tance from a fixed vertex to the vertex that is most distant is approximately
2 ln(n)/n [3,10]. Furthermore, it is known that the expected diameter of the
metric is approximately 3 ln(n)/n [8,10]. There are also some known struc-
tural properties of first passage percolation on the Erdős–Rényi random graph.
Bhamidi et al. [2] have shown asymptotics for both the minimal weight of the
path between uniformly chosen vertices in the giant component and for the hop-
count, the number of edges, on this path. Bringmann et al. [3] used this model
on the complete graph to analyze heuristics for matching, TSP, and k-median.

1.2 Our Results

As far as we know, no heuristics have been studied in this model for non-complete
graphs yet. However, we believe that random shortest path metrics on non-
complete graphs will bring us a step further in the direction of realistic input
model.

This paper provides a probabilistic analysis of some simple heuristics in the
model of random shortest path metrics on non-complete graphs. First, we provide
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some structural properties of generalized random shortest path metrics (Sect. 3),
which can be seen as a generalization of the structural properties found by
Bringmann et al. [3]. Although this generalization might seem straightforward
at first sight, it brings up some new difficulties that need to be overcome. Most
notably, since we do not restrict ourselves to the complete graph, we cannot make
use anymore of its symmetry and regularity. This problem is partially solved by
introducing two graph parameters, which we call the cut parameters of a graph
(Definition 1).

Then, we use these structural insights to perform a probabilistic analysis for
some simple heuristics for combinatorial optimization problems (Sect. 4), where
the results are still depending on the cut parameters of a graph. Finally, we
use these results, to show our main results, namely that these simple heuristics
achieve constant expected approximation ratios for random shortest path metrics
applied to Erdős–Rényi random graphs (Sect. 5).

2 Notation and Model

We use X ∼ P to denote that a random variable X is distributed using a proba-
bility distribution P . Exp(λ) is being used to denote the exponential distribution
with parameter λ. In particular, we use X ∼ ∑n

i=1 Exp(λi) to denote that X
is the sum of n independent exponentially distributed random variables having
parameters λ1, . . . , λn.

For n ∈ N, we use [n] as shorthand notation for {1, . . . , n}. We denote the
nth harmonic number by Hn =

∑n
i=1 1/i. Sometimes we use exp to denote the

exponential function. Finally, if a random variable X is stochastically dominated
by a random variable Y , i.e., we have FX(x) ≥ FY (x) for all x (where X ∼ FX

and Y ∼ FY ), we denote this by X � Y .

Generalized Random Shortest Path Metrics. Given an undirected graph
G = (V,E) on n vertices, we construct the corresponding generalized random
shortest path metric as follows. First, for each edge e ∈ E, we draw a random
edge weight w(e) independently from an exponential distribution1 with param-
eter 1. Second, we define the distances d : V × V → R≥0 ∪ {∞} as follows: for
every u, v ∈ V , d(u, v) denotes the length of the shortest u, v-path with respect
to the drawn edge weights. If no such path exists, we set d(u, v) = ∞. By doing
so, the distance function d satisfies d(v, v) = 0 for all v ∈ V , d(u, v) = d(v, u) for
all u, v ∈ V , and d(u, v) ≤ d(u, s) + d(s, v) for all u, s, v ∈ V . We call the com-
plete graph with distances d obtained from this process a generalized random
shortest path metric. If G = Kn (the complete graph on n vertices), then this
generalized random shortest path metric is equivalent to the random shortest
path metric as defined by Bringmann et al. [3]
1 Exponential distributions are technically easiest to handle due to their memoryless-
ness property. A (continuous, non-negative) probability distribution of a random
variable X is said to be memoryless if and only if P(X > s+ t | X > t) = P(X > s)
for all s, t ≥ 0. [15, p. 294].
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We use the following notation within generalized random shortest path met-
rics: Δmax := maxu,v d(u, v) denotes the diameter of the graph. Note that
Δmax < ∞ if and only if G is connected. BΔ(v) := {u ∈ V | d(u, v) ≤ Δ}
denotes the ‘ball’ of radius Δ around v, i.e., the set containing all vertices at
distance at most Δ from v. τk(v) := min{Δ | |BΔ(v)| ≥ k} denotes the distance
to the kth closest vertex from v (including v itself). Equivalently, one can also
say that τk(v) is equal to the smallest Δ such that the ball of radius Δ around
v contains at least k vertices.

Now, Bτk(v)(v) denotes the set of the k closest vertices to v. During our
analysis, we make use of the size of the cut induced by this set, which we denote
by χk(v) := |δ(Bτk(v)(v))|, where δ(U) denotes the cut induced by U .

Erdős–Rényi Random Graphs. The main results of this work consider ran-
dom shortest path metrics applied to Erdős–Rényi random graphs. An undi-
rected graph G(n, p) := G = (V,E) generated by this model has n vertices
(V = {1, . . . , n}) and between each pair of vertices an edge is included with
probability p, independent of every other pair.

Working with the Erdős–Rényi random graph introduces an extra amount
of stochasticity to the probabilistic analysis, since both the graph and the edge
weights are random. In order to avoid this extra stochasticity as long as possible,
in Sects. 3 and 4 we start our analysis using an arbitrary fixed (deterministic)
graph G. Later on, in Sect. 5 we will consider Erdős–Rényi random graphs again.

3 Structural Properties

In order to analyze the structural properties of generalized random shortest path
metrics, we first introduce the notion of what we call the cut parameters of a
simple graph G.

Definition 1. Let G = (V,E) be a finite simple connected graph. Then we define
the cut parameters of G by

α := min
∅ �=U⊂V

|δ(U)|
μU

and β := max
∅ �=U⊂V

|δ(U)|
μU

,

where μU := |U | · (|V |− |U |) is the maximum number of possible edges in the cut
defined by U .

It follows immediately from this definition that 0 < α ≤ β ≤ 1 for any finite
simple connected graph G. Moreover, for any such graph the following holds for
all ∅ 	= U ⊂ V : α · μU ≤ |δ(U)| ≤ β · μU . We observe that the cut parameters
of the complete graph are given by α = β = 1.

Distribution of τk(v). Now we have a look at the distribution of τk(v). For
this purpose we use an arbitrary fixed undirected connected simple graph G (on
n vertices) and let α and β denote its cut parameters.
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The values of τk(v) are then generated by a birth process as follows. (Amongst
others, a variant of this process for complete graphs has been analyzed by Davis
and Prieditis [5] and Bringmann et al. [3].) For k = 1, we have τk(v) = 0. For
k ≥ 2, we look at all edges (u, x) with u ∈ Bτk−1(v)(v) and x 	∈ Bτk−1(v)(v). By
definition there are χk−1(v) such edges. Moreover the length of these edges is
conditioned to be at least τk−1(v) − d(v, u). Using the memorylessness of the
exponential distribution, we can now see that τk(v) − τk−1(v) is the minimum
of χk−1(v) (standard) exponential variables, or, equivalently, τk(v) − τk−1(v) ∼
Exp(χk−1(v)). We use this result to find bounds for the distribution of τk(v).

Lemma 2. For all k ∈ [n] and v ∈ V we have,

αk(n − k) ≤ χk(v) ≤ βk(n − k).

Lemma 3. For all k ∈ [n] and v ∈ V we have,

k−1∑

i=1

Exp(βi(n − i)) � τk(v) �
k−1∑

i=1

Exp(αi(n − i)).

Exploiting the linearity of expectation, the fact that the expected value of
an exponentially distributed random variable with parameter λ is 1/λ and the
fact that

∑k−1
i=1 1/(i(n− i)) = (Hk−1 +Hn−1 −Hn−k)/n, we obtain the following

corollary.

Corollary 4. For all k ∈ [n] and v ∈ V we have,

Hk−1 + Hn−1 − Hn−k

βn
≤ E(τk(v)) ≤ Hk−1 + Hn−1 − Hn−k

αn
.

From this result, we can derive the following extensions of two known results.
First of all, if we randomly pick two vertices u, v ∈ V , then averaging over k
yields that the expected distance E[d(u, v)] between them is bounded between
Hn−1

β(n−1) ≈ ln(n)/βn and Hn−1
α(n−1) ≈ ln(n)/αn, which is in line with the known result

for complete graphs, where we have E[d(u, v)] ≈ ln(n)/n [3,5,10]. Secondly, for
any vertex v, the longest distance from it to another vertex is τn(v), which in
expectation is bounded between 2Hn−1

βn ≈ 2 ln(n)/βn and 2Hn−1
αn ≈ 2 ln(n)/αn,

which also is in line with the known result for complete graphs, where we have
an expected value of approximately 2 ln(n)/n [3,10].

It is also possible to find bounds for the cumulative distribution function of
τk(v). To do so, we define Fk(x) = P(τk(v) ≤ x) for some fixed vertex v ∈ V .

Lemma 5. [3, Lemma 3.2] Let X ∼ ∑n
i=1 Exp(ci). Then, for any a ≥ 0 we

have P(X ≤ a) = (1 − e−ca)n.

Lemma 6. For all x ≥ 0 and k ∈ [n] we have,

(1 − exp(−α(n − k)x))k−1 ≤ Fk(x) ≤ (1 − exp(−βnx))k−1
.
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We can improve this result slightly.

Lemma 7. For all x ≥ 0 and k ∈ [n] we have,

Fk(x) ≥ (1 − exp(−αnx/4))n
.

Using this improved bound for the cumulative distribution function of τk(v),
we can derive the following tail bound for the diameter Δmax.

Lemma 8. Let Δmax = maxu,v∈V {d(u, v)}. For any fixed c we have P(Δmax >
c ln(n)/αn) ≤ n2−c/4.

Clustering. In this section we show that we can partition the vertices of gen-
eralized random shortest path metrics into a small number of clusters with a
given maximum diameter. Before we prove this main result, we first provide a
tail bound for |BΔ(v)|.
Lemma 9. For n ≥ 5 and for any fixed Δ ≥ 0 we have,

P

(

|BΔ(v)| < min
{

exp(αΔn/5),
n + 1

2

})

≤ exp(−αΔn/5).

We use the result of this lemma to prove our main structural property for
generalized random shortest path metrics.

Theorem 10. For any fixed Δ ≥ 0, if we partition the vertices into clusters,
each of diameter at most 4Δ, then the expected number of clusters needed is
bounded from above by O(1 + n/ exp(αΔn/5)).

4 Analysis of Heuristics

In this section we bound the expected approximation ratios of the greedy heuris-
tic for minimum-distance perfect matching, the nearest neighbor and insertion
heuristics for the traveling salesman problem, and a trivial heuristic for the k-
median problem. For this purpose we still use an arbitrary fixed undirected con-
nected simple graph G (on n vertices) and let α and β denote its cut parameters.
The results in this section will depend on α and β.

Greedy Heuristic for Minimum-Distance Perfect Matching. The mini-
mum-distance perfect matching problem has been widely analyzed throughout
history. We do for instance know that the worst-case running-time for finding a
minimum distance perfect matching is O(n3), which is high when considering a
large number of vertices. Because of this, simple heuristics are often used, with
the greedy heuristic probably being the simplest of them: at each step, add a
pair of unmatched vertices to the matching such that the distance between the
added pair of vertices is minimized. From now on, let GR denote the cost of the
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matching computed by this heuristic and let MM denote the value of an optimal
matching.

The worst-case approximation ratio of this heuristic on metric instances is
known to be O(nlog2(3/2)) [13]. Furthermore, for random shortest path metrics
on complete graphs (for which the cut parameters are given by α = β = 1) the
heuristic has an expected approximation ratio of O(1) [3]. We extend this last
result to general values for α and β and show that the greedy matching heuristic
has an expected approximation ratio of O(β/α).

Theorem 11. E[GR] = O (1/α).

Lemma 12. [11, Theorem 5.1(iii)] Let X ∼ ∑n
i=1 Xi with Xi ∼ Exp(ai) inde-

pendent. Let μ = E[X] =
∑n

i=1(1/ai) and a∗ = mini ai. For any λ ≤ 1,

P(X ≤ λμ) ≤ exp(−a∗μ(λ − 1 − ln(λ))).

Lemma 13. Let Sm denote the sum of the m lightest edge weights in G. For all
φ ≤ (n − 1)/n and c ∈ [0, 2φ2] we have

P

(

Sφn ≤ c

β

)

≤ exp
(

φn

(

1 + ln
(

c

2φ2

)))

.

Furthermore, TSP ≥ MM ≥ Sn/2, where TSP and MM are the total distance of
a shortest TSP tour and a minimum-distance perfect matching, respectively.

Theorem 14. The greedy heuristic for minimum-distance perfect matching has
an expected approximation ratio on generalized random shortest path metrics
given by E

[
GR
MM

]
= O (β/α).

Nearest Neighbor Heuristic for TSP. The nearest-neighbor heuristic is a
greedy approach for the TSP: start with some starting vertex v0 as current vertex
v; at every step, choose the nearest unvisited neighbor u of v as the next vertex
in the tour and move to the next iteration with the new vertex u as current
vertex v; go back to v0 if all vertices are visited. From now on, let NN denote the
cost of the TSP tour computed by this heuristic and let TSP denote the value
of an optimal TSP tour.

The worst-case approximation ratio of this heuristic on metric instances is
known to be O(ln(n)) [14]. Furthermore, for random shortest path metrics on
complete graphs (for which the cut parameters are given by α = β = 1) the
heuristic has an expected approximation ratio of O(1) [3]. We extend this last
result to general values for α and β and show that the nearest-neighbor heuristic
has an expected approximation ratio of O(β/α).

Theorem 15. For generalized random shortest path metrics, we have E[NN] =
O (1/α) and E

[
NN
TSP

]
= O (β/α).
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Insertion Heuristics for TSP. The insertion heuristics are another greedy
approach for the TSP: start with an initial optimal tour on a few vertices chosen
according to some predefined rule R; at every step, choose a vertex according to
the same predefined rule R and insert this vertex in the current tour such that
the total distance increases the least. From now on, let INR denote the cost of
the TSP tour computed by this heuristic (with rule R) and let TSP still denote
the value of an optimal TSP tour.

The worst-case approximation ratio of this heuristic for any rule R on metric
instances is known to be O(ln(n)) [14]. Furthermore, for random shortest path
metrics on complete graphs (for which the cut parameters are given by α = β =
1) the heuristic has an expected approximation ratio of O(1) [3]. We extend this
last result to general values for α and β and show that the insertion heuristic
for any rule R has an expected approximation ratio of O(β/α).

Theorem 16. For generalized random shortest path metrics, we have E[INR] =
O (1/α) and E

[
INR

TSP

]
= O (β/α).

Running Time of 2-opt Heuristic for TSP. The 2-opt heuristic is an often
used local search algorithm for the TSP: start with an initial tour on all vertices
and improve the tour by 2-exchanges until no improvement can be made any-
more. In a 2-exchange, the heuristic takes ‘edges’ {v1, v2} and {v3, v4}, where
v1, v2, v3, v4 are visited in this order in the tour, and replaces them by {v1, v3}
and {v2, v4} to create a shorter tour.

We provide an upper bound for the expected number of iterations that 2-
opt needs. In the worst-case scenario, this number is exponential. However, for
random shortest path metrics on complete graphs (for which the cut parameters
are given by α = β = 1) an upper bound of O(n8 ln3(n)) is known for the
expected number of iterations [3]. We extend this result with a similar proof to
general values for α and β and show an upper bound for the expected number
of iterations of O(n8 ln3(n)β/α).

We first define the improvement obtained from a 2-exchange. If {v1, v2} and
{v3, v4} are replaced by {v1, v3} and {v2, v4}, then the improvement made by
the exchange equals the change in distance ζ = d(v1, v2)+ d(v3, v4)− d(v1, v3)−
d(v2, v4). These four distances correspond to four shortest paths (P12, P34, P13,
P24) in the graph G = (V,E). This implies that we can rewrite ζ as the sum
of the weights on these paths. We obtain ζ =

∑
e∈E γew(e), for some γe ∈

{−2,−1, 0, 1, 2}.
Since we are looking at the improvement obtained by a 2-exchange, we have

ζ > 0. This implies that there exists some e = {u, u′} ∈ E such that γe 	= 0.
Given this edge e, let I ⊆ {P12, P34, P13, P24} be the set of all shortest paths of
the 2-exchange that contain e. Then, for all combinations e and I, let ζe,I

ij be
defined as follows:

– If Pij /∈ I, then ζe,I
ij is the length of the shortest path from vi to vj without

using e.
– If Pij ∈ I, then ζe,I

ij is the minimum of
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• the length of a shortest path from vi to u without using e plus the length
of a shortest path from u′ to vj without using e and

• the length of a shortest path from vi to u′ without using e plus the length
of a shortest path from u to vj without using e.

Define ζe,I = ζe,I
12 + ζe,I

34 − ζe,I
13 − ζe,I

24 .

Lemma 17. For every outcome of the edge weights, there exists an edge e and
a set I such that ζ = ζe,I + γw(e), where γ ∈ {−2,−1, 1, 2} is determined by e
and I.

Lemma 18. Let e and I be given with γ = γe 	= 0. Then P(ζe,I + γw(e) ∈
(0, x]) ≤ x. Moreover, P(ζ ∈ (0, x]) = O(βn2x).

Theorem 19. The expected number of iterations of the 2-opt heuristic until a
local optimum is found is bounded by O(n8 ln3(n)β/α).

Trivial Heuristic for k-Median. The goal of the (metric) k-median problem
is to find a set U ⊆ V of size k such that

∑
v∈V minu∈U d(v, u) is minimized. The

best known approximation algorithm for this problem achieves an approximation
ratio of 2.675 + ε [4].

Here, we consider the k-median problem in the setting of generalized random
shortest path metrics. We analyze a trivial heuristic for the k-median problem:
simply pick k vertices independently of the metric space, e.g., U = {v1, . . . , vk}.
The worst-case approximation ratio of this heuristic is unbounded, even if we
restrict ourselves to metric instances. However, for random shortest path metrics
on complete graphs (for which the cut parameters are given by α = β = 1) the
expected approximation ratio has an upper bound of O(1) and even 1 + o(1) for
k sufficiently small [3]. We extend this result to general values for α and β and
give an upper bound for the expected approximation ratio of O(β/α) for ‘large’
k and β/α + o(β/α) for k sufficiently small.

For our analysis, let U = {v1, . . . , vk} be an arbitrary set of k vertices. Sort
the remaining vertices {vk+1, . . . , vn} in increasing distance from U . For k +1 ≤
i ≤ n, let ρi = d(vi, U) equal the distance from U to the (i−k)-th closest vertex
to U . Let TR denote the cost of the solution generated by the trivial heuristic
and let ME be the cost of an optimal solution to the k-median problem.

Observe that the random variables ρi are generated by a simple growth pro-
cess analogously to the one described in Sect. 3 for τk(v). Using this observation,
we can see that

i−1∑

j=k

Exp(βj(n − j)) � ρi �
i−1∑

j=k

Exp(αj(n − j)),

which in turn implies that cost(U) =
∑n

i=k+1 ρi is stochastically bounded by

n−1∑

i=k

Exp(βi) � cost(U) �
n−1∑

i=k

Exp(αi).
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From this, we can immediately derive bounds for the expected value of the k-
median returned by the trivial heuristic.

Lemma 20. Fix U ⊆ V of size k. Then, we have E[TR] = E[cost(U)] and

1
β

(

ln
(

n − 1
k − 1

)

− 1
)

≤ E[TR] ≤ 1
α

(

ln
(

n − 1
k − 1

)

+ 1
)

.

Before we provide our result for the expected approximation ratio of the
trivial heuristic, we first provide some tail bounds for the distribution of the
optimal k-median ME and the trivial solution TR.

Lemma 21. Fix U ⊆ V of size k. Then the probability density function f of∑n−1
i=k Exp(βi) is given by

f(x) = βk ·
(

n − 1
k

)

· exp(−βkx) · (1 − exp(−βx))n−k−1
.

Lemma 22. Let c > 0 be sufficiently large and let k ≤ c′n for c′ = c′(c) > 0
sufficiently small. Then we have

P
(
ME ≤ (

ln
(

n−1
k

) − ln ln
(

n
k

) − ln(c)
)
/β

)
= n−Ω(c).

Lemma 23. Let k ≤ (1 − ε)n for some constant ε > 0. For every c ∈ [0, 2ε2),
we have

P (ME ≤ c/β) ≤ cΩ(n).

Lemma 24. For any c ≥ 4 we have P (TR > nc) ≤ exp(−nc/4).

Now we have obtained everything needed to provide an upper bound for the
expected approximation ratio of the trivial heuristic.

Theorem 25. Let k ≤ (1−ε)n for some constant ε > 0. For generalized random
shortest path metrics, we have E

[
TR
ME

]
= O (β/α). Moreover, if we have k ≤ c′n

for some fixed c′ ∈ (0, 1) sufficiently small, then we have

E
[
TR
ME

]
= (β/α) ·

(
1 + O

(
ln ln(n/k)
ln(n/k)

))
.

5 Application to the Erdős-Rényi Random Graph Model

So far, we have analyzed random shortest path metrics applied to graphs based
on their cut parameters (Definition 1). In this section, we first use a well-known
result to show that instances of the Erdős–Rényi random graph model have ‘nice’
cut parameters with high probability. We then use this to prove our main results.

Lemma 26. Let G = (V,E) be an instance of the G(n, p) model. For constant
ε ∈ (0, 1) and for any p ≥ c ln(n)/n (as n → ∞), in which c > 9/ε2 is constant,
the cut parameters of G are bounded by (1 − ε)p ≤ α ≤ β ≤ (1 + ε)p with
probability at least 1 − o

(
1/n2

)
.
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Recall that from the result of Corollary 4 we could derive (approximate)
bounds for the expected distance E[d(u, v)] between two arbitrary vertices in a
random shortest path metric. Combining this with the result of the foregoing
lemma, we can see that, for the case of the application to the Erdős–Rényi
random graph model, w.h.p. over the random graph E[d(u, v)] is approximately
bounded between ln(n)/((1 + ε)np) and ln(n)/((1 − ε)np) for any constant ε ∈
(0, 1). This is in line with the known result E[d(u, v)] ≈ ln(n)/np for p sufficiently
large [2].

5.1 Performance of Heuristics

In this section, we provide the main results of this work. We use the results from
Sect. 4 and Lemma 26 to analyze the performance of several heuristics in random
shortest path metrics applied to Erdős–Rényi random graphs.

When a graph G = (V,E) is created by the G(n, p) model, there is a non-
zero probability of G being disconnected. In a corresponding random shortest
path metric this results in d(u, v) = ∞ for any two vertices u, v ∈ V that are
in different components of G. Observe that, if this is the case, then the identity
of indiscernibles, symmetry and triangle inequality still hold. Thus we still have
a metric and we can bound the expected approximation ratio for such graphs
from above by the worst-case approximation ratio for metric instances.

Using this observation, we can prove the following results.

Theorem 27. Let ε ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε2 satisfies), and consider the corresponding random shortest
path metric. Then, we have

E

[
GR

MM

]

= O(1).

Theorem 28. Let ε ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε2 satisfies), and consider the corresponding random shortest
path metric. Then, we have

E

[
NN

TSP

]

= O(1) and E

[
INR

TSP

]

= O(1).

For the last two results, we need the assumption that G is connected.

Theorem 29. Let ε ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε2 satisfies), and consider the corresponding random shortest
path metric. If G is connected, then the expected number of iterations of the
2-opt heuristic for TSP is bounded by O(n8 ln3(n)).
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Theorem 30. Let ε̃ ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε̃2 satisfies), and consider the corresponding random shortest
path metric. Let E ′ denotes the event that G is connected. Let k ≤ (1 − ε′)n for
some constant ε′ > 0, then we have E

[
TR
ME

∣
∣ E ′] = O (1). Moreover, if we have

k ≤ c′n for c′ ∈ (0, 1) sufficiently small, then E
[
TR
ME

∣
∣ E ′] = 1 + ε + o(1).

6 Concluding Remarks

We have analyzed heuristics for matching, TSP, and k-median on random short-
est path metrics on Erdős–Rényi random graphs. However, in particular for
constant values of p, these graphs are still dense. Although our results hold for
decreasing p = Ω(ln n/n), we obtain in this way metrics with unbounded dou-
bling dimension. In order to get an even more realistic model for random metric
spaces, it would be desirable to analyze heuristics on random shortest path met-
rics on sparse graphs. Hence, we raise the question to generalize our findings to
sparse random graphs or sparse (deterministic) classes of graphs.
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