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Abstract In budget games, players compete over resources with finite budgets. For
every resource, a player has a specific demand and as a strategy, he chooses a subset
of resources. If the total demand on a resource does not exceed its budget, the utility
of each player who chose that resource equals his demand. Otherwise, the budget is
shared proportionally. In the general case, pure Nash equilibria (NE) do not exist for
such games. In this paper, we consider the natural classes of singleton and matroid
budget games with additional constraints and show that for each, pure NE can be
guaranteed. In addition, we introduce a lexicographical potential function to prove
that every matroid budget game has an approximate pure NE which depends on the
largest ratio between the different demands of each individual player.
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1 Introduction

Resource allocation problems are widely considered in theory and practice. In com-
puting centers, for example, resources such as processing power and available data
rate have to be divided such that the overall performance is optimized. In our paper, we
consider the problem that service providers often cannot satisfy the needs of all clients.
Here, the total payoff obtainable from a system is often independent of the number of
its participants. For example, the computational capacity of a server is usually fixed
and does not grow with the number of requests. In a different use case, the overall
size of connections between a service provider and all clients may be limited by the
amount of data the provider can process. In our model, this is reflected by a limited
budget for each resource.

Now, different clients may have different agreed target uses with a provider, which
we model by different weights, also called demands throughout the paper. In case a
provider cannot fulfill the requirements of all clients, the available resource needs to be
split, resulting in clients not being supplied with their full demand. In video streaming,
for example, this may lead to a lower quality stream for certain clients. Additionally,
we allow part of a resource to be reserved by some external party, which we model as
offsets in our setting.

Weconsider thismodel in a game theoretic setting called budget games.Here,we are
interested in the effects of rational decision making by individuals. In our context, the
clients act as the players, who compete over resources with a finite budget. We assume
that clients can choose freely among different strategies, with each available strategy
being a subset of resources. A player has a specific demand on every resource. For
example, in cloud computing, we view each strategy as a distribution of the necessary
computing power ondifferent computing centers.Now, eachplayer strives tomaximize
the overall amount of resource capacities that is supplied to him.

Our main interest lies in states in which no client wants to deviate from his current
strategy, as this would yield no or only amarginal benefit for him in the given situation.
These states are called pure Nash equilibria, or approximate pure Nash equilibria,
respectively. Instead of a global instance enforcing such stable states, they occur as
the result of player-induced dynamics. At every point in time, exactly one player
changes his strategy such that the amount of received demand is maximized, assuming
the strategies of the other players are fixed. It is known that in general, pure Nash
equilibria do not exist in budget games. In our earlier research, we considered pure
Nash equilibria in ordered budget games (Drees et al. 2014), where the order of the
players arriving at a resource influences the distribution of its budget. In Drees et al.
(2015), we further discussed approximate pure Nash equilibria in standard budget
games, where the resource is distributed proportionally between the players based
on their demands. However, the question whether there are pure Nash equilibria for
certain restricted instances of standard budget games remained open. In this paper,
we focus on budget games with restrictions on the strategies of the players and show
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that there are indeed certain properties under which pure Nash equilibria always exist.
Matroid budget games capture the natural assumption that for any player, the value of
a resource is independent of which other resources he has chosen. A special case are
singleton budget games in which each player can only choose one resource at a time.

1.1 Our contribution

For matroid budget games, we show that under the restriction of fixed demands per
player, they possess the finite improvement property. This implies that the player-
induced dynamic mentioned above always leads to a pure Nash equilibrium. On the
other hand, we also show that even under this restriction, the matroid property is
still required for the existence of pure Nash equilibria. Without any extra conditions
on the demands, we can guarantee approximate pure Nash equilibria with a small
approximation ratio depending on themaximum ratio between the demands of a single
player. By further limiting the structure of the strategies to singleton, we can loosen
the restriction on the demands and still obtain positive results regarding equilibria. In
some cases, singleton budget games are weakly acyclic, i. e., there is an improving
path from each initial state to a pure Nash equilibrium. For the additional class of
offset budget games we can guarantee the existence of pure Nash equilibria under
some additional restrictions.

1.2 Related work

Budget Games share many properties with congestion games. Although the specific
structure of the utility functions makes budget games a special case, the fact that the
demand of a player can vary between resources also qualifies them as a more general
model for representing different impacts of players on resources. In congestion games,
players choose among subsets of resources while trying to minimize personal costs. In
the initial (unweighted) version (Rosenthal 1973), the cost of each resource depends
only on the number of players choosing it and it is the same for each player using that
resource. They are exact potential games (Monderer and Shapley 1996) and therefore
always possess pure Nash equilibria. In the weighted version (Milchtaich 1996), each
player has a fixed weight and the cost of a resource depends on the sum of weights.
For this larger class of games, pure Nash equilibria can no longer be guaranteed.
Ackermann et al. (2009) determined that the structure of the strategy spaces is a
crucial property in this matter. While a matroid congestion game always has a pure
Nash equilibrium, every non-matroid set system induces a game without it. Harks and
Klimm (2010) gave a complete characterization of the class of cost functions for which
everyweighted congestion gamepossesses a pureNash equilibrium.The cost functions
have to be affine transformations of each other as well as be affine or exponential.
Another extension considers player-specific payoff functions for the resources, which
only depend on the number of players using a resource, but are different for each
player (Milchtaich 1996). For singleton strategy spaces, these games maintain pure
Nash equilibria. Ackermann et al. (2009) showed that, again, every player-specific
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matroid congestion game has a pure Nash equilibrium, while this is also a maximal
property.

In a model similar to ours, each player does not only choose his resources, but
also his demand on them (Harks and Klimm 2015). In contrast, the players in our
model cannot influence their demands. These games have pure Nash equilibria if the
cost functions are either exponential or affine. Mavronicolas et al. (2007) combined
the concepts of weighted and player-specific congestion games and gave a detailed
overview of the existence of pure Nash equilibria. In these games, the cost function ci,r
of player i for resource r consists of a base function cr , which depends on the weights
of all players using r , as well as a constant ki,r , both connected by abelian group
operations. Later, Gairing and Klimm (2013) characterized the conditions for pure
Nash equilibria in general player-specific congestion games with weighted players.
Pure Nash equilibria exist, if and only if, the cost functions of the resources are affine
transformations of each other as well as affine or exponential. Another generalization
of congestion games is given by Byde et al. (2009) and Voice et al. (2009). They
introduce the model of games with congestion-averse utility functions. They show
under which properties pure Nash equilibria exist and identify the matroid as required
property for the existence in most cases. Although they consider more general utility
functions than standard congestion games, their model does not consider players’
weights or demands.

Instead of assigning the whole cost of a resource to each player using it, it can also
be shared between those players, so that everyone only pays a part of it. Such games
are known as cost sharing games (Jain and Mahdian 2007). One method to determine
the share of each player is proportional cost sharing, in which the share increases
with the weight of a player. This is exactly what we are doing with budget games, but
with utilities instead of costs. Under proportional cost sharing which corresponds to
our utility functions, pure Nash equilibria again do not exist in general (Anshelevich
et al. 2008). Kollias and Roughgarden (2015) took a different approach by consid-
ering weighted games in which the share of each player is identical to his Shapley
value (Shapley 1952). Using this method, every weighted congestion game yields a
weighted potential function. However, we do not approach this from a mechanism
design angle. Instead, we consider this system and especially the structure of the util-
ity functions as given by the scenarios we introduced. Negative results regarding both
existence and complexity of pure Nash equilibria lead to the study of approximate pure
Nash equilibria (Chien and Sinclair 2011). Caragiannis et al. (2015) and Hansknecht
et al. (2014) showed the existence of approximate pure Nash equilibria for weighted
congestion games.

2 Model

A budget game B is a tuple (N ,R, (br )r∈R, (Si )i∈N , (Di )i∈N ) where the set of
players is denoted by N = {1, . . . , n}, the set of resources by R = {r1, . . . , rm},
the budget of resource r by br ∈ R>0, the strategy space of player i by Si and the
demands of player i by Di = (di (r1), . . . , di (rm)). Each strategy si ⊆ 2R is a subset
of resources. We call di (r j ) > 0 the demand of i on r j and say that a strategy si uses a

123



624 J Comb Optim (2019) 37:620–638

resource r j if r j ∈ si . The set of strategy profiles is denoted byS := S1×· · ·×Sn . Each
player i has a private utility function ui : S → R≥0, which he strives to maximize. For
a strategy profile s = (s1, . . . , sn), let Tr (s) := ∑

i∈N :r∈si di (r) be the total demand
on resource r . The utility of player i from resource r is denoted by ui,r (s) ∈ R≥0
and defined as ui,r (s) = 0 if r /∈ si and ui,r (s) := di (r) · cr (s) if r ∈ si , where
cr (s) := min (1, br/Tr (s)) denotes the utility per unit demand. The total utility of i is
ui (s) := ∑

r∈R ui,r (s). When increasing the demand on a resource by some value
d, we write cr (s) ⊕ d := min (1, br/(Tr (s)+d)). If Mi = (R, Ii ) is a matroid with
Ii = {x ⊆ s | s ∈ Si } for every player i , we call B a matroid budget game. A
matroid budget game is called a singleton budget game if every strategy uses exactly
one resource.

Let s ∈ S and i ∈ N . We denote with s−i := (s1, . . . , si−1, si+1, . . . , sn) the
strategy profile excluding i . For any s′

i ∈ Si , we can extend this to (s−i , si ) :=
(s1, . . . , si−1, s′

i , si+1, . . . , sn) ∈ S. The best-response of i to s−i is denoted by
sbi ∈ Si , i.e. ui (s−i , sbi ) ≥ ui (s−i , si ) for all si ∈ Si . We call the switch from si
to s′

i with ui (s−i , si ) < ui (s−i , s′
i ) an improving move for player i . Sequential exe-

cution of best-response improving moves creates a best-response dynamic. A strategy
profile s is called an α-approximate pure Nash equilibrium if α · ui (s) ≥ ui (s−i , s′

i )

for every i ∈ N and s′
i ∈ Si . For α = 1, s is simply called a pure Nash equilib-

rium. For the rest of this paper, we mostly omit the prefix pure. If from any initial
strategy profile, there is a path of improving moves which reaches an (α-approximate)
Nash equilibrium, then the game is said to be weakly acyclic. If from any initial
strategy profile, each path of improving moves reaches an (α-approximate) Nash
equilibrium, then the game possesses the finite improvement property. For a strat-
egy profile s, the lexicographical potential function φ : S → R

m
>0 is defined as

φ(s) := (
cr1(s), . . . , crm (s)

)
with the entries crk (s) being sorted in ascending order.

The augmented lexicographical potential functionφ∗ : S → R
m+1
>0 extends this defini-

tion with φ∗(s) := (
T (s), cr1(s), . . . , crm (s)

)
, whereas T (s) := ∑

i∈N
∑

r∈si di (r)
is the total demand by all players under s.

3 Matroid budget games

By definition, all strategies of player i in a matroid budget game have the same size
mi . This results from the fact that each strategy space consists of bases of a matroid
over the resources and any two bases of the same matroid have the same size. In
addition, in any strategy profile s, a strategy change of player i from si to s′

i can be
decomposed into a sequence si = s0i , s

1
i , . . . , s

mi
i = s′

i of lazy moves which satisfy
ski ∈ Si , |ski \ sk+1

i | = 1 and ui (s−i , ski ) < ui (s−i , s
k+1
i ) for 0 ≤ k ≤ mi (see

Ackermann et al. 2009). In other words, a lazy move is a valid improving strategy
change which exchanges exactly one resource for another. In this context, valid means
that the resulting strategy is actually part of the corresponding player’s strategy space.
Any non-lazy move can be decomposed into a sequence of lazy ones.

We start by analyzing matroid budget games in which the demands of each player
are fixed, i.e. there exists a constant di ∈ R>0 for every player i such that di (r) = di
for all r ∈ R.
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Fig. 1 The budget game B0
with fixed demands and no pure
Nash equilibrium

Theorem 1 A matroid budget game with fixed demands reaches a pure Nash equilib-
rium after a finite number of improving moves.

Proof We show that a single lazy move already increases the lexicographical potential
function φ. Let player i perform a lazy move in strategy profile s, switching resource
r1 for r2. Let s′ be the resulting strategy profile. We get ui,r1(s) = di · cr1(s) <

di · cr2(s′) = ui,r2(s
′) or simply cr1(s) < cr2(s

′). Since cr1(s) < cr1(s
′) also holds

due to Tr1(s
′) = Tr1(s) − di , we get φ(s) <lex φ(s′) and see that φ is strictly

increasing regarding the lexicographical order for every improving lazy move. Since
the number of different values of φ is finite, the best-response dynamic eventually
reaches a strategy profile without any further improving move. By definition, this is a
pure Nash equilibrium. 
�
For this result, the structure of the strategy spaces is a crucial property. Consider
the budget game B0 shown in Fig. 1 which is defined as follows: N = {1, 2, 3},
R = {r1, r2, r3, r4}, br = 2 for all r , S1 = {s11 = {r1, r2}, s21 = {r3, r4}}, S2 = {s12 =
{r1, r3}, s22 = {r2, r4}}, S3 = {s3 = {r1, r4}} and d1 = 2, d2 = d3 = 1. Note that B0 is
a matroid budget game with fixed demands. Its existence leads to the following result.

Theorem 2 There is a budget game with fixed demands which is not a matroid budget
game and does not have a pure Nash equilibrium.

Proof We analyze the gameB0. Player 3 has only one strategy, so we focus only on the
four different strategy profiles which result from the strategy choices of player 1 and
2. The resulting utilities are stated in Table 1. We see that in each strategy profile, one
of the two players is able to increase his utility through a unilateral strategy change.
Therefore, no pure Nash equilibrium exists. 
�
When considering singleton budget games with fixed demands, a pure Nash equilib-
rium can also be computed efficiently. In order to prove this, we the following technical
result.

Lemma 1 Let d1, d2 ∈ R>0 with d1 ≤ d2 and br , Tr (s) ∈ R≥0 with Tr (s)+d1 ≥ br .

Then d1 · min
(
1, br

Tr (s)+d1

)
≤ d2 · min

(
1, br

Tr (s)+d2

)
.

Proof by case distinction. Due to d1 ≤ d2, we only need to consider three cases:

– for min
(
1, br

Tr (s)+d1

)
= min

(
1, br

Tr (s)+d2

)
= 1, the statement becomes trivial.
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Table 1 Overview of the different strategy profiles and the corresponding utilities of the budget game B0

Players Strategy profiles

(s11 , s12 ) (s11 , s22 ) (s21 , s12 ) (s21 , s22 )

1 2 + 1 = 3 4
3 + 2

3 = 2 4
3 + 2

3 = 2 2 + 1 = 3

2 1 + 1
2 = 3

2
2
3 + 1 = 5

3
2
3 + 1 = 5

3 1 + 1
2 = 3

2

Since player 3 has only one strategy, we abuse notation and restrict the strategy profiles to the strategies of
the two players 1 and 2

– for min
(
1, br

Tr (s)+d1

)
= 1 and min

(
1, br

Tr (s)+d2

)
= br

Tr (s)+d2
,

we get d1 ≤ br − Tr (s) while
br−Tr (s)

d2
≤ br−Tr (s)+Tr (s)

d2+Tr (s)
= br

d2+Tr (s)
, which can be

transformed to br − Tr (s) < d2 · br
d2+Tr (s)

.

– for min
(
1, br

Tr (s)+d1

)
= br

Tr (s)+d1
and min

(
1, br

Tr (s)+d2

)
= br

Tr (s)+d2
,

we get d1
d2

≤ d1+Tr (s)
d2+Tr (s)

(since d1
d2

≤ 1) and therefore d1
Tr (s)+d1

≤ d2
Tr (s)+d2

.


�
In the context of budget games, this lemma implies that a player with a higher demand
always receives a higher utility from a resource than a player with lower demandwould
from the same resource. In other words, if choosing r is an attractive option for player
i , then so it is for any player j with di (r) ≤ d j (r) (not taking the current utilities of
the players into account).

Theorem 3 For a singleton budget game with fixed demands, pure Nash equilibria
can be computed in time O(n).

Proof We start with an empty strategy profile where si = ∅ for every player i .
The players then choose their actual strategy sequentially in ascending order of
their demands. We show that a strategy choice made by player j does not change
the best-response of any player i with di ≤ d j . Let s j be the strategy profile the
moment before j chooses his strategy. If j picks the same resource r as i , then
d j · (cr (s j ) ⊕ d j ) ≥ d j · (cr ′(s j ) ⊕ d j ) ≥ di · (cr ′(s j ) ⊕ di ) for any r ′ ∈ R due to
Lemma 1, meaning that r is still a best-response for i . 
�
We now turn our attention to approximate Nash equilibria in matroid budget games
without fixed demands. In order to give an upper bound on their existence, we again
use the potential function φ. Starting with an arbitrary strategy profile s0, we only
allow improving moves which also strictly increase φ. For player i , let dmax

i :=
max{di (r) | r ∈ R} and dmin

i := min{di (r) | r ∈ R}. We give an upper bound on α

depending on the ratio between these two values.

Theorem 4 A matroid budget game has an α-approximate pure Nash equilibrium for
α = max

{
dmaxi /dmini | i ∈ N }

.

123



J Comb Optim (2019) 37:620–638 627

Proof Let s be a strategy profile of a matroid budget game B in which player i
can switch resource r1 for r2 to increase his utility. We restrict the best-response
dynamic such that we only allow this lazy move if it also satisfies di (r1) · cr1(s) <

di (r1) · (cr2(s) ⊕ di (r1)). If this condition holds, player i would still profit from the
lazy move if his demands on both r1 and r2 were the same. Such a lazy move would
also increase φ as shown in the proof of Theorem 1. Therefore, the number of such
improvingmoves is finite and this restricted best-response dynamic arrives at a strategy
profile sα . Let s be a strategy profile which originates from sα through a unilateral
improving move by player i to si and let Δα = |si \ sα

i |. We assign an index k to every
rα
k ∈ sα

i and every rk ∈ si . If a resource r is used by both sα
i and si , then it has the

same index � for both strategies, where � ≥ Δα . The improving move from sα
i to si

consists only of lazy moves with di (rα
k ) < di (rk) and crα

k
(sα) ≥ (crk (s

α) ⊕ di (rk)).

Since di (rk )
di (rα

k )
≤ dmax

i
dmin
i

holds for all resources, we get

ui (s) =
∑

r∈si
ui,r (s) =

Δα∑

k=1

di (rk) · (crk (s
α) ⊕ di (rk)) +

mi∑

k=Δα+1

di (r
α
k ) · crα

k
(sα)

≤
Δα∑

k=1

dmax
i

dmin
i

· di (rα
k ) · crα

k
(sα) +

mi∑

k=Δα+1

dmax
i

dmin
i

· di (rα
k ) · crα

k
(sα)

= dmax
i

dmin
i

·
mi∑

k=1

di (r
α
k ) · crα

k
(sα) = dmax

i

dmin
i

· ui (sα)

The theorem follows. 
�

4 Singleton budget games with two demands

We now consider singleton budget games with only two demands, i.e. every demand
di (r) of any player i on any resource r satisfies di (r) ∈ {d−, d+}, with both d− and
d+ being constant values. We assume d− < d+. Also, all budgets are uniform, i.e.
br = br ′ for all resources r, r ′. Finally, every resource r is available to every player
i , i.e. there is a strategy si ∈ Si using r . This variation models situations in which
each player partitions the resources into two sets such that he prefers the resources
from the first set over those in the second and he regards all resources from the same
set as equally good. In our model, a more preferred resource is identified by a higher
demand. Note that the preferences of two different players do not have to be the
same. We show that Algorithm 1 always computes a Nash equilibrium by using the
best-response dynamic, which proves Theorem 5 stating that such games are weakly
acyclic. The algorithm utilizes the best-response dynamic and only controls the order
of the improving moves. Since we are only considering singleton games, a player
can be associated with his current demand, i.e. the demand he has on the resource
which he is currently using. For the following discussion, we separate the improving
moves into different types. The type depends on the demand of the corresponding
player before and after his strategy change. Since we consider only two demands,
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Algorithm 1 ComputeNE
s ← arbitrary initial strategy profile
Phase 1:
while there is a player in s with best-resp. improving move of type d+ → d− do

perform best-response improving move of type d+ → d−
s ← resulting strategy profile

Phase 2:
while current strategy profile s is not a pure Nash equilibrium do

if there is a player with best-resp. improving move of type d+ → d− then
perform best-response improving move of type d+ → d−

else if there is a player i with b.-r. improving move of type d+ → d+ then
N ′ ← { j ∈ N | j has best-response improving move of type d+ → d+}
choose i ∈ N ′ such that Tsi (s) ≥ Ts j (s) for all j ∈ N ′
perform best-response improving move of i

else
perform any best-response improving move � d− → d− or d− → d+

s ← resulting strategy profile

return s � s is pure Nash equilibrium

there are only four different types: d+ → d+, d+ → d−, d− → d+ and d− → d−.
Looking at Algorithm 1, we immediately see that in the intermediate strategy profile
right after Phase 1 of the algorithm, no improving move of type d+ → d− exists.
In addition, we now introduce the concepts of pushing and pulling strategy changes.
Let B be a singleton budget game with, among others, players i, j , resources r1, r2
and strategy profile s. In s, let si = {r1} and s j = {r2} with ui (s) < ui (s−i , r2) and
u j (s) ≥ u j (s− j , r) for all r ∈ R. Denote s′ = (s−i , r2). If u j (s′) < u j (s′− j , r3) for
some r3 ∈ R, then the strategy change by i from r1 to r2 is called a pushing strategy
change for j . Player j is being pushed away from r2 by player i . In the same scenario,
let ui (s) ≥ ui (s−i , r) for all r ∈ R and u j (s) < u j (s− j , r3) for some r3 ∈ R.
Denote s∗ = (s− j , r3). If ui (s∗) < ui (s∗−i , r2), then the strategy change by j from
r2 to r3 is called a pulling strategy change for i . Player i is being pulled towards r2
by the strategy change of player j . Both strategy changes are illustrated in Fig. 2. If a
strategy change is both pushing and pulling for the same player, we always regard it
as the former.

Based on these characterizations, we analyze the effects of different strategy
changes between the players and formulate our results in three lemmas.

Fig. 2 Examples for pushing (left) and pulling (right) strategy changes
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Lemma 2 Let s be a strategy profile during Phase 2 of Algorithm 1 in which no best-
response improving move of type d+ → d− exists. In s, no best-response improving
move of type d+ → d− is created by a pushing strategy change.

Proof Let s be a strategy profile with si = {r1} and s j = {r2} and in which player i
can increase his utility by moving to resource r2:

ui (s) = di (r1) · cr1(s) < di (r2) · (cr2(s) ⊕ di (r2)) = ui (s−i , r2)

Set s′ = (s−i , r2). Now assume that this pushes player j by creating an improving
move of type d+ → d−:

u j (s′) = d+ · (cr2(s) ⊕ di (r2)) < d− · (cr3(s) ⊕ d−) = u j (s′− j , r3).

This would imply

di (r1) · cr1(s) < di (r2) · (cr2(s) ⊕ di (r2)) ≤ d+ · (cr2(s) ⊕ di (r2))

< d− · (cr3(s) ⊕ d−) ≤ di (r3) · (cr3(s) ⊕ di (r3)).

or simply

ui (s−i , r2) < di (r3) · (cr3(s) ⊕ di (r3)) = ui (s−i , r3).

Therefore, player i would have chosen resource r3 instead of r2. If di (r3) = d−, then
a strategy change of type d+ → d− would have already existed in s. Note that

di (r3) · (cr3(s) ⊕ di (r3)) < di (r3) · cr3(s),

which covers the case r1 = r3. 
�
Lemma 3 Let s be a strategy profile during Phase 2 of Algorithm 1. In s, no best-
response improving move of type d+ → d− is created by a pulling strategy change of
type d− → d−.

Proof by contradiction. Let s be a strategy profile with si = {r2} and s j = {r1},
di (r2) = di (r3) = d−, d j (r1) = d+, d j (r2) = d− and both ui (s) < ui (s−i , r3) and
u j (s′) < u j (s′− j , r2) for s

′ = (s−i , r3). According to the structure of the algorithm,
the current strategy profile s is an equilibrium for j if i is allowed to change his
strategy. From

ui (s) = d− · cr2(s) < d− · (cr3(s) ⊕ d−) = ui (s−i , r3)

and

u j (s) = d+ · cr1(s) < d− · (cr2(s) ⊕ (d− − d−)) = d− · cr2(s) = ui (s)
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we can conclude that

u j (s) = d+ · cr1(s) < d− · (cr3(s) ⊕ d−) ≤ u j (s− j , r3).

If r2 is the best-response of j after the strategy change of i , then r3 had to be his best-
response before it, which contradicts our assumption that j is in an equilibrium. For
both possible values of d j (r3), j would have performed this strategy change before i .


�

Lemma 4 Let s be a strategy profile during phase 2 of Algorithm 1. In s, no best-
response improving move of type d+ → d− is created by a pulling strategy change of
type d+ → d+.

Proof by contradiction. Let s be a strategy profile with si = {r2} and s j = {r1},
di (r2) = di (r3) = d+, d j (r1) = d+, d j (r2) = d− and both ui (s) < ui (s−i , r3) and
u j (s′) < u j (s′− j , r2) for s

′ = (s−i , r3). According to the structure of the algorithm,
u j (s) ≥ u j (s− j , r2) has to hold. From

ui (s) = d+ · cr2(s) < d+ · (cr3(s) ⊕ d+) = ui (s−i , r3)

we get cr2(s) < cr3(s) ⊕ d+, which can be written as

min

(

1,
b

Tr2(s)

)

< min

(

1,
b

Tr3(s) + d+

)

and finally gives us Tr3(s) < Tr2(s) − d+. Also

u j (s) = u j (s′) = d+ · cr1(s) < d− · (cr2(s) ⊕ (d+ − d−)) = u j (s′− j , r2).

The rest of the proof is done via case distinction.

– d j (r3) = d−

First we show that

u j (s) = d+ · cr1(s) ≥ d− · (cr3(s) ⊕ d−) = u j (s− j , r3). (1)

If this would be false, then there has to be some resource r4 with d j (r4) = d+ and

u j (s− j , r3) < u j (s− j , r4) = d+ · (cr4(s) ⊕ d+),

otherwise the algorithmwould choose j instead of i to performan improvingmove.
Since both players would perform the same type of best-response improving move
(d+ → d+) in s but i is chosen over j , the relation Tr1(s) ≤ Tr2(s) has to hold.
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However, this leads to a contradiction with u j (s′) < u j (s′− j , r2), which can be
written as

d+ · min

(

1,
b

Tr1(s

)

< d− · min

(

1,
b

Tr2(s) + d− − d+

)

≤ d+ · min

(

1,
b

Tr2(s)

)

⇒ Tr2(s) < Tr1(s).

For this, also note that cr1(s) = cr1(s
′). So Eq. 1 has to hold and we get

u j (s′− j , r2) > u j (s′) = u j (s) ≥ u j (s− j , r3)

which in combination with Tr3(s) < Tr2(s) − d+ leads to

d− · (cr2(s) ⊕ (d− − d+)) > d− · (cr3(s) ⊕ d−)

= d− · min

(

1,
b

Tr3(s) + d−

)

≥ d− · min

(

1,
b

Tr2(s) − d+ + d−

)

= d− · (cr2(s) ⊕ (d− − d+)),

the final contradiction.
– d j (r3) = d+

We can write u j (s′) < u j (s′− j , r2) as

d+ · min

(

1,
b

Tr1(s)

)

< d− · min

(

1,
b

Tr2(s) − d+ + d−

)

< d+ · min

(

1,
b

Tr2(s) − d+ + d+

)

= d+ · min

(

1,
b

Tr2(s)

)

,

which implies both

min

(

1,
b

Tr1(s)

)

< min

(

1,
b

Tr2(s)

)

⇒ Tr1(s) > Tr2(s)

and (together with Tr3(s) < Tr2(s) − d+)

u j (s) = d+ · min

(

1,
b

Tr1(s)

)

< d+ · min

(

1,
b

Tr2(s)

)

< d+ · min

(

1,
b

Tr3(s) + d+

)

= u j (s− j , r3).

If r2 is a best-response of j in s′, after the strategy change of i , then r3 would have
been a best-response of j before, in s. According to how the algorithm works,
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Fig. 3 Example for a macro
strategy change. This sequence
of strategy changes is equivalent
to the strategy change of a
virtual player k from r1 to r3

both players have the same priority when choosing the next improving move, but
since Tr1(s) > Tr2(s), j would have been chosen before i .

This concludes our proof. 
�
In order to show that the best-response dynamic controlled by our algorithm actually
results in a pure Nash equilibrium, we use the augmented lexicographical potential
function φ∗ Together with the three lemmas above, we see that during Phase 2, any
best-response improvingmove of type d+ → d− has to be created by a pulling strategy
change of type d− → d+. We can combine these two strategy changes into a single
one, a macro strategy change. In this combination, both individual strategy changes
are executed right after another. In a macro strategy change, two players i, j change
their resources, with r being both the old resource of i and the new resource of j and
di (r) = d j (r). As a result, the total demand on r does not change during a macro
strategy change. An example can be seen in Fig. 3. Although not associated with an
actual player, we say that a macro strategy change is performed by a virtual player.
The following lemma shows that this virtual player would actually benefit from his
strategy change.

Lemma 5 Let s be a strategy profile in which a macro strategy change of type d+ →
d+ from r1 to r3 is executed. Then d+ · cr1(s) < d+ · (cr3(s) ⊕ d+).

Proof Due to the underlying strategy changes and Lemma 1, we get

d+ · cr1(s) < d− · (cr2(s) ⊕ (d− − d+)) < d+ · (cr2(s) ⊕ (d+ − d+))

< d− · (cr3(s) ⊕ d−) < d+ · (cr3 ⊕ d+)


�
With this lemma, we conclude that a macro strategy change strictly increases φ∗. Its
type is d+ → d+ and from the results in the previous section, we know that such a
strategy change already strictly increases φ. Since the total demand of all players does
not change, this holds for φ∗ as well.

Theorem 5 A singleton budget gamewith two demands and uniformbudgets isweakly
acyclic.

Proof Byconstruction, the output ofAlgorithm1 is a pureNash equilibrium. It remains
to show that the algorithm actually terminates at some point. The number of improving
moves in the first phase is at most n, as every player changes his strategy at most once.
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For the second phase, we use the augmented lexicographical potential function φ∗.
This function is strictly increasing regarding <lex for all strategy changes of type
d− → d− and d+ → d+, since φ is strictly increasing for these types and the total
demand of all players does not change. For strategy changes of type d− → d+, φ∗ is
also strictly increasing because the total demand is always the first entry in φ∗(s) and
it increases with strategy changes of this type. The value of φ∗ can only decrease as
the result of improving moves of type d+ → d−.

Let s1 be the strategy profile right after Phase 1 has terminated. Then s1 contains
no best-response improving moves of type d+ → d−. According to Lemmas 2, 3
and 4, such moves can only appear as the result of a pulling strategy change of type
d− → d+. In this case, both the resulting strategy change of type d+ → d− as well
as its creator can be regarded as a single macro strategy change of type d+ → d+.
Because of Lemma 5 and the fact that such a macro strategy change does not change
the total demand, φ∗ strictly increases due to such amacro strategy change. If a pulling
strategy change creates multiple best-response improving moves of type d+ → d−
to a resource r , then the algorithm executes one of them, chosen by some arbitrary
tie-breaker. Afterwards, the total demand on r is the same as it was before the pulling
strategy change. Hence, the other best-response moves of type d+ → d− cease to
exist.

φ∗ strictly increases after at least every second strategy change, so our algorithm
has to terminate at some point. The resulting strategy profile is a Nash equilibrium.
During its execution, the algorithm performs only best-response improving moves
and only controls the order in which they are executed. Therefore, the game is weakly
acyclic. 
�
At this point, we do not know if this result carries over to matroid budget games
under the same restrictions. Regarding budget games with two demands and uniform
budgets, but an arbitrary structure on the strategy spaces, we already know that Nash
equilibria do not exist in general (Drees et al. 2015).

5 Singleton offset budget games

In this section, we introduce a new variant of budget games in which we allow a fixed
offset to the total demand on a resource. As already mentioned in the introduction,
this enables us to model reserved instances for specific users in our games. An offset
σr ∈ R≥0 for resource r ∈ R changes the utility of any player i from r in strategy
profile s to ui,r (s) = di (r) · min (1, br/(Tr (s)+σr )).

It is easy to see that by setting σr = 0 for every r ∈ R, an offset budget game
becomes a regular budget game. We now start by considering budget games with
two additional restrictions: a total order on the players based on their demands and
increasing demand ratios. Let i, j be players with di (r) ≤ d j (r) for some resource
r . Our first restriction states that although the demands of an individual player can
differ between resources, the order between the demands of all players is the same for
every resource. In other words: di (r ′) ≤ d j (r ′) for all resources r ′. This is a natural
assumption, as bigger players (like global companies) normally have a higher demand
than smaller ones on all resources.
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The second restriction requires larger players to have larger deviations between their
demands, i.e. di (r ′)/di (r) ≤ d j (r ′)/d j (r) for di (r) ≤ di (r ′). Again, this assumption is only
natural, as larger players (e. g. jobs on servers) offer more room for optimization and
are more influenced by their choice of resource (e. g. servers with better support for
certain kinds of operations) than smaller ones, which are already quite compact. For
the class of offset budget games which satisfy these two restrictions and only allow
singleton strategies, we can guarantee the existence of pure Nash equilibria.

Theorem 6 Singleton offset budget games with ordered players and increasing
demand ratios always have a pure Nash equilibrium.

Proof by induction over the number of players. For a game with n players, we denote
the offset of resource r by σn(r). For n = 2, the statement becomes trivial. For
n > 2, we assume without loss of generality that dn(r1) ≥ di (r1) for all i ∈ N and
dn(r1) ≥ dn(r) for all r ∈ R. Fix the strategy of n to {r1}. The resulting game is
identical to one with n − 1 players and σ n−1

r1 = σ n
r1 + dn(r1) and σ n−1

r = σ n
r for all

r ∈ R \ {r1}. By induction hypothesis, this sub-game has a Nash equilibrium s′. Let
s := (s′, r1) and assume that s is not already a Nash equilibrium for n. Then

un(s) = dn(r1) · (cr1(s) ⊕ σ n
r1) < dn(r2) · (cr2(s) ⊕ (σ n

r2 + dn(r2)) = un(s−n, r2)

for some r2 ∈ R. Let i be another player on r1, i.e. si = {r1}. Since r1 is the best-
response of i , we get

ui (s) = di (r1) · (cr1(s) ⊕ σ n
r1) ≥ di (r2) · (cr2(s) ⊕ (σ n

r2 + di (r2)) = ui (s−i , r2).

Combining these two inequalities, we get

di (r2)

di (r1)
· (cr2(s) ⊕ (σ n

r2 + di (r2)) <
dn(r2)

dn(r1)
· (cr2(s) ⊕ (σ n

r2 + dn(r2)). (2)

Since the players are ordered, we know that dn(r2) ≥ di (r2) and therefore (cr2(s) ⊕
(σ n

r2 +di (r2)) ≥ (cr2(s)⊕ (σ n
r2 +dn(r2)). Equation 2 thus implies di (r1)

di (r2)
>

dn(r1)
dn(r2)

. This
contradicts our restriction that the demand ratios are increasing, hence player i cannot
exist. So n is the only player on resource r1 and since this is his preferred resource
(the one where he has the highest demand), it also has to be his best-response. We
conclude that s has to be a Nash equilibrium for all n players. 
�
As mentioned before, this result also holds for regular budget games in particular by
setting every offset to 0.

Corollary 1 Singleton budget games with ordered players and increasing demand
ratios always have a pure Nash equilibrium.

For singleton (offset) budget games with only two resources, this result can be
improved even more. In this case, we can drop both restrictions regarding ordered
players and increasing demand ratios. In addition, besides always having a pure equi-
librium, such games are also weakly acyclic.
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Lemma 6 Every singleton offset budget game with two resources is weakly acyclic.

Proof The proof is similar to the one of Theorem 6 and uses induction over the number
of players. For a game with n players, we denote the offset of resource r by σn(r). For
n = 2, the statement becomes trivial. For n > 2, we assume without loss of generality
that dn(r1) ≥ di (r1) for all i ∈ N and dn(r1) ≥ dn(r2). Fix the strategy of n to {r1}.
The resulting game is identical to one with n−1 players and σ n−1

r1 = σ n
r1 +dn(r1) and

σ n−1
r2 = σ n

r2 . By induction hypothesis, this game is weakly acyclic and the remaining
players can reach a pureNash equilibrium s1 after a finite number of improvingmoves.
By the same arguments, the game has a pure Nash equilibrium s2 in which we fix the
strategy of player n to {r2}. If at least one of these two strategy profiles, s1 or s2, is an
actual equilibrium (in which the strategy of n is not fixed), then the lemma has been
proven. So now we assume that this is not the case, i.e. un(s1) < un(s1−n, r2) and
un(s2) < un(s2−n, r1). From each of these two assumptions, we obtain one inequality:

dn(r1) · (cr1(s
1) ⊕ σ n

r1) < dn(r2) · (cr2(s
1) ⊕ (σ n

r2 + dn(r2)))

dn(r2) · (cr2(s
2) ⊕ σ n

r2) < dn(r1) · (cr1(s
2) ⊕ (σ n

r1 + dn(r1))) (3)

which can be combined to

cr1(s
1) ⊕ σ n

r1

cr1(s2) ⊕ (σ n
r1 + dn(r1))

<
cr2(s

1) ⊕ (σ n
r2 + dn(r2))

cr2(s2) ⊕ σ n
r2

We now make a crucial observation: there has to be at least one common player i who
is located on the same resource as player n in both s1 and s2, i.e. r1 in s1 and r2 in
s2. To see this, first consider the case that n could be the only player on resource r1 in
s1, with all other players on r2. Equation 3 states that n is still willing to switch over
to r2, contradicting dn(r1) ≥ dn(r2). So there has to be at least one additional player
i on r1 in s1. For any strategy profile s, let nr (s) be the set of all players located on
resource r . If nr1(s

1)∩nr2(s
2) = {n}, then nr2(s2)\ {n} ⊆ nr2(s

1), which contradicts
n’s preference of r2 over r1 in (s1−n, r2) but not in s

2: the set of competing players on
r2 is bigger in s1. So at least one common player i shares the same resource as n in
both s1 and s2.

By definition, player i cannot improve his utility in neither s1 nor s2, so

di (r1) · (cr1(s
1) ⊕ σ n

r1) ≥ di (r2) · (cr2(s
1) ⊕ (σ n

r2 + di (r2)))

⇒ cr1(s
1) ⊕ σ n

r1

(cr2(s1) ⊕ (σ n
r2 + di (r2)))

≥ di (r2)

di (r1)

and

di (r2) · (cr2(s
2) ⊕ σ n

r2) ≥ di (r1) · (cr1(s
2) ⊕ (σ n

r1 + di (r1)))

⇒ (cr1(s
2) ⊕ (σ n

r1 + di (r1)))

cr2(s2) ⊕ σ n
r2

≤ di (r2)

di (r1)
.
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Combining these two inequalities with those above yields the final contradiction that
di (r2)/di (r1) < di (r2)/di (r1). Therefore, at least one of the two strategy profiles, s1 or s2,
has to be a pure Nash equilibrium for all n players. 
�
Note that the proof above indeed shows that such budget games are weakly acyclic.
Starting from an arbitrary initial strategy profile, (recursively) create either s1 or s2 via
improving moves of the first n − 1 players, depending on whether player n is located
on r1 or r2. If the result is not already a pure Nash equilibrium, let player n switch his
resource, which increases his utility. Afterwards, from the opposite strategy profile (e.
g. s2 instead of s1). Because at least one of the two has to be a pure Nash equilibrium,
this method produces the desired state.

Since every budget game is also an offset budget game, we can immediately draw
the following conclusion.

Corollary 2 Every singleton budget game with two resources is weakly acyclic.

This last result also holds for matroid budget games with only two resources. Let i
be a player whose strategy space does not consist solely of singleton strategies. By
definition, he then can only have a single strategy which uses both resources and his
existence simply introduces a fixed offset to them. This holds for all players with non-
singleton strategy spaces and their demands can be summed up to a single offset value
for each resource. According to Lemma 6, the remaining players who only possess
singleton strategies can create a pure Nash equilibrium through improving moves.

Corollary 3 Every matroid (offset) budget game with two resources is weakly acyclic.

6 Conclusion

The model of budget games enables us to analyze different effects which appear
specifically in, but are not limited to, cloud computing. In emerging markets with
shared resources, the question of resource allocation gets more and more important.
In our current work, we focus on a specific method of distributing resources among
the market participants.

This article gives a first insight into the existence of pureNash equilibria in restricted
instances of budget games. In our previous research, we already considered approxi-
mate pure Nash equilibria in general budget games (Drees et al. 2015) and gave both
upper and lower bounds for the approximation factor as well as an algorithm to com-
puter such equilibria. These bounds depend on the relative size of the demands, i.e.
how much of a resource’s budget can be claimed by a single strategy. The higher this
value, the larger the approximation factor of the resulting equilibria. Our new result
fromTheorem4 uses a different approach, with the approximation factor depending on
a different criteria: the ratio between the different demands of each individual player.
In a matroid budget game where the various demands of each player are close to each
other, this new approach can yield a better solution than our old method, especially
if at least one demand is relatively high compared to the budget of the corresponding
resource (e. g. di (r) = br ).
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While we managed to characterize some classes of budget games with pure Nash
equilibria, our initial question is still left unanswered:what is the fundamental property
which guarantees the existence of pure Nash equilibria. If we look at existing work in
the field of congestion games (e. g. Ackermann et al. 2009), we see that the matroid
structure of the strategy spaces can be a promising candidate. In fact, it is our believe
that any matroid budget game features at least one equilibria. For future works, it
would be very interesting to either prove or refute this proposition.

Finally, we propose two modifications of our model. On the one hand, strategies
can extended by (fixed) prices, which makes the choice of each player even more
interesting. In that case, he is no longer interested just in his incoming utilities, but
his total revenue (= utilities − prices). This extension would bring the model even
closer to the setting of cloud computing, for example. On the other hand, the cur-
rent model allocates the budget of a resource in a proportional fashion (based on the
demands and only if the the total demand exceeds the budget). It would be interesting
to analyze other allocation mechanisms. We already did this in Drees et al. (2014) and
produced completely different results regarding existence and complexity of Nash
equilibria. It therefore seems promising that these problems can also be approached
from a mechanism design angle instead of restricting the structure of the strategy
spaces.
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