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Abstract 

Calibration of an item bank for computer adaptive testing requires substantial resources. In this 

study, we investigated whether the efficiency of calibration under the Rasch model could be en-

hanced by improving the match between item difficulty and student ability. We introduced tar-

geted multistage calibration designs, a design type that considers ability-related background vari-

ables and performance for assigning students to suitable items. Furthermore, we investigated 

whether uncertainty about item difficulty could impair the assembling of efficient designs. The 

results indicated that targeted multistage calibration designs were more efficient than ordinary 

targeted designs under optimal conditions. Limited knowledge about item difficulty reduced the 

efficiency of one of the two investigated targeted multistage calibration designs, whereas tar-

geted designs were more robust.  

Keywords: item calibration, test design, Rasch models, simulation 
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Efficiency of Targeted Multistage Calibration Designs under Practical Constraints:  

A Simulation Study 

Computer adaptive tests (CAT) have become increasingly common in educational assess-

ment owing to substantial technological improvements in computers in recent years. CAT pro-

vide a tailored selection of items to a student, thereby measuring his or her ability more effi-

ciently than linear tests (e.g., Lord, 1980; van der Linden & Glas, 2010; Wainer, 2000; Weiss, 

1982). Tailored test administration is especially suitable for monitoring the development of stu-

dent ability over time (Weiss & Kingsbury, 1984; Wright, 1977). In such longitudinal settings, 

students differ not only in their current ability levels but also in the growth of their ability over 

time. CAT consider these differences by selecting the most suitable and informative items based 

on students’ performance during test taking. 

A calibrated item bank is required to administer CAT. Item calibration involves determin-

ing item parameters, such as item difficulty or discrimination before test administration. Such 

preliminary knowledge about items is essential in CAT to select the most suitable items for a 

given student during test taking. In the context of CAT, item response theory (IRT) is a common 

methodological approach to calibrating item banks, as well as for administering CAT (e.g., van 

der Linden & Glas, 2010; Wainer, 2000). To simplify matters, we limit our study to the Rasch 

model, an IRT model that includes only one item parameter, namely, item difficulty (Rasch, 

1960; Rost, 1996). The Rasch model is used with several operational CAT, such as the National 

Council Licensure Examination for Registered Nurses (NCLEX-RN; e.g., O'Neill, Marks, & 

Reynolds, 2005), the Measures of Academic Progress (MAP; Northwest Evaluation Association, 

2011) and the STAR Math, Reading, and Early Literacy tests (Renaissance Learning, 2015). 
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A CAT item bank often consists of several hundred items, particularly if it intends to 

cover a broad ability range in a longitudinal setting. From a practical perspective, it is very un-

likely that a single group of students will respond to all items in the item bank for calibration 

purposes because doing so would considerably increase the testing time per student (Lord, 1980). 

Therefore, incomplete calibration designs are very common for calibrating broad item banks 

from scratch. In such designs, an item bank is divided into several subsets of items, and different 

subsamples work on these different subsets (Eggen & Verhelst, 2011; Mislevy & Wu, 1996). In-

complete calibration designs reduce testing time per student to a manageable duration. However, 

such designs require a larger sample than that required by complete calibration designs to 

achieve the same number of observations per item. 

Unfortunately, it is often difficult to find sufficient numbers of students for calibrating 

items. Thus, there is a need for data collection designs that calibrate items efficiently with a lim-

ited number of students. Item calibration under the Rasch model is the most efficient if the abil-

ity of the students in a calibration sample matches the difficulty of the items needing calibration 

(Berger, 1991). Hence, efficient incomplete calibration designs consider students’ ability for 

building subsamples and item difficulty for assembling item subsets. Subsamples with relatively 

high ability are assigned to relatively more difficult item sets, while subsamples with relatively 

low ability are assigned to relatively easier item sets (Eggen & Verhelst, 2011).  

However, the development of efficient incomplete calibration designs presents two major 

challenges. On the one hand, it is difficult to build homogenous subsamples for different ability 

levels. Usually, ability-related background variables, such as grades in school, are used to group 

students by ability. This is the basic idea of targeted calibration designs (Eggen & Verhelst, 

2011; Mislevy & Wu, 1996). Nevertheless, students within such subsamples still vary in their 
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ability, which results in a loss of efficiency. On the other hand, difficulty of the items is often 

only vaguely known prior to calibration, which makes it challenging to assemble item sets of 

similar difficulty and to assign the items to students of corresponding abilities. The lack of 

knowledge about item difficulty prior to calibration has been considered in a few studies that 

have investigated the calibration of a small number of field-test items during the administration 

of operational CAT (e.g., Ali & Chang, 2014; Kingsbury, 2009). Furthermore, Makransky and 

Glas (2010) have explored different strategies for automatic online calibration of new item pools 

with unknown item parameters. However, this study focused on ability estimation during the cal-

ibration phase and not on item parameter estimation itself (cf. Ali & Chang, 2014). Studies that 

have compared the efficiency of incomplete calibration designs for calibrating an item pool from 

scratch have neglected the practical constraint of unknown item parameters by assuming that the 

difficulty of the items is known (e.g., Berger, 1991; Stocking, 1988). 

We address this gap by extending previous research on the efficiency of incomplete cali-

bration designs in two ways: first, we investigate the extent to which it is possible to improve the 

match between student ability and item difficulty and, therefore, calibration efficiency under the 

Rasch model, by narrowing subsamples based on students’ performance. To this end, we intro-

duce the concept of targeted multistage calibration designs as an extension of targeted calibration 

designs. Second, we explore how uncertainty about the items’ difficulty affects the efficiency of 

targeted calibration designs, as well as that of targeted multistage calibration designs.  

Accuracy and Efficiency in Rasch Model-based Item Calibration 

The efficiency of any item calibration design depends largely on the underlying methodo-

logical approach. IRT refers to a family of models that express the probability of a student solv-

ing an item correctly as a function of student ability and item difficulty (Lord, 1980). For the 
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Rasch model—the simplest unidimensional IRT model—the probability of a student solving a 

specific item correctly is given by 

 𝑃(𝑋𝑖𝑗 = 1|θi, βj) =
exp⁡(θi − βj)

1 + exp⁡(θi − βj)
= 𝑝𝑖𝑗, (1) 

where⁡θi represents the ability of student i, βj is the difficulty of item j, and pij corresponds to the 

probability that student i solves item j correctly (Rasch, 1960; Rost, 1996; Strobl, 2012). Within 

this framework, item calibration refers to establishing model fit and estimating the item difficulty 

parameter βj (Eggen & Verhelst, 2011; Vale & Gialluca, 1988). Item difficulty can be estimated 

by following various maximum likelihood estimation procedures, and the resulting standard error 

𝑆𝐸(β̂j)⁡serves as a measure of the accuracy of the estimate. The standard error of the estimated 

difficulty of item j can be approximated as (Rost, 1996) 

 𝑆𝐸(β̂j)⁡~√
1

∑ 𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)
𝑁
𝑖=1

. (2) 

On the one hand, we can infer from Equation 2 that the calibration sample size is a key factor for 

calibrating item parameters accurately according to the Rasch model (e.g., Rost, 1996; Wright, 

1977). The larger the number of students N who provide responses for a specific item, the greater 

is the accuracy of item difficulty estimation. According to Equation 2, we can conclude that the 

standard error 𝑆𝐸(β̂j) is inversely proportional to the square root of the number of students N: 

 𝑆𝐸(β̂j)⁡~
1

√𝑁
⁡. (3) 

Thus, a reduction of 50% in the standard error⁡𝑆𝐸(β̂j) requires quadrupling the sample size sub-

ject to the constraint that the properties of the sample, as well as those of the item pool, remain 

constant. 
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On the other hand, we can deduce from Equation 2, that the accuracy of item difficulty 

estimation depends on the relationship between item difficulty and ability of the students in a 

calibration sample (Berger, 1991; Eggen & Verhelst, 2011; Stocking, 1988; Wright, 1977). Item 

difficulty can be estimated most accurately under the Rasch model if the mean ability of the sam-

ple is close to the difficulty of the items and if the standard deviation of the students’ ability is 

small (Berger, 1991; Rost, 1996; van der Linden, 1988). If θ is equal to β, we have a probability 

of 50% for solving item i correctly, which in turn, results in minimization of 𝑆𝐸(β̂j).  

In sum, we can calibrate item difficulty most accurately under the Rasch model if the cal-

ibration sample is large and if it includes students with abilities that correspond to the items’ dif-

ficulty. Enhancing the calibration sample is often difficult in practical settings, which leaves op-

timization of the relationship between item difficulty and student ability as the only option for 

improving the accuracy of item difficulty estimation. As shown by Berger (1991), the fit between 

these two variables depends largely on the calibration design.  

Designs for Item Calibration 

We distinguish three different types of calibration designs that take item difficulty and 

student ability into account in optimizing item calibration: (1) targeted calibration designs, (2) 

multistage calibration designs, and (3) targeted multistage calibration designs, which refer to a 

combination of the first two designs. We describe all three designs based on an example and dis-

cuss the extent to which the designs allow for efficient item calibration under ideal conditions; 

that is, if the difficulty of all items in the design is known. Practical constraints of limited 

knowledge about difficulty of the items in an item pool will be discussed in the subsequent sec-

tion. 
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Targeted calibration designs. Test designs for targeted testing consist of several test 

booklets of varying mean difficulty, and students are assigned to the most suitable booklet by 

means of ability-related background variables, such as grades in school (Eggen & Verhelst, 

2011; Mislevy & Wu, 1996). Students can be classified and, therefore, sampled based on such 

background variables before test administration. The main goal of targeted testing is to estimate 

student ability more precisely and to prevent students from getting discouraged by items that are 

not suited to their ability level. However, the same mechanism, that is, assigning students to test 

booklets based on background variables, can also be used to improve the accuracy of item diffi-

culty estimation during calibration.  

Figure 1 shows a basic example of a targeted design on the left. In the example, students 

are grouped by a background variable y (e.g., grades in school) such that the first subsample with 

y = 1 is assumed to have lower mean ability than the second subsample consisting of students 

with y = 2. This results in two subsamples with greater homogeneity in terms of abilities than the 

overall sample. Similarly, the item pool is divided into two test booklets such that the first book-

let contains mainly items that are easier than those in the second booklet. The overlap between 

the two booklets (i.e., linking items of intermediate difficulty) ensures that all items can be cali-

brated on the same scale by using IRT calibration methods (Eggen & Verhelst, 2011; Kolen, 

2007; Kolen & Brennan, 2014). Variance in item difficulty is lower within a single booklet than 

in the total item pool.  

According to the example design, students from group y = 1 are assigned to the easier test 

booklet, while students from group y = 2 are assigned to the more difficult test booklet. This op-

timization of the relationship between item difficulty and student ability allows for more accurate 
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estimation of item difficulty over the entire item pool than random assignment of students to ran-

dom sets of items from the same item pool. However, this simple example design has one signifi-

cant disadvantage: linking items that are included in both booklets have twice as many observa-

tions as the other items in the design. Consequently, item difficulty of the linking items is esti-

mated much more accurately than that of the remaining items (see Equation 3). This imbalance 

can be corrected by using more complex designs, as we will show later. 

Multistage calibration designs. Multistage tests consist of several parts (i.e., stages), 

which, in turn, include multiple item sets—called modules—of varying difficulty (Yan, von Da-

vier, & Lewis, 2014; Zenisky, Hambleton, & Luecht, 2010). Students’ performance in the first 

stage determines whether they receive an easier or a more difficult module in the second stage. 

The decision is based on predefined routing rules. Several studies have shown that multistage 

tests are more efficient than linear tests in estimating student ability owing to closer alignment 

between item difficulty and student ability (e.g., Yan et al., 2014). Such an alignment is also ad-

vantageous from the viewpoint of estimating item difficulty more precisely (Eggen & Verhelst, 

2011; Glas & Geerlings, 2009; Zwitser & Maris, 2015).  

To define modules and routing rules that lead to an optimal match between items and stu-

dents, knowledge is required about ability distribution in the sample, as well as about item diffi-

culty. The routing rules control which and how many students reach a certain module in the sec-

ond or any subsequent stage. Thus, they determine the ability distributions of the subsamples, as 

well as the number of observations per item for the modules. For calibration designs, it is desira-

ble to control the number of observations per item such that the difficulty parameters of all items 

can be estimated with comparable accuracy (Glas & Geerlings, 2009). 
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Figure 1 shows a basic example of a multistage design on the right. In the first stage, all 

students start with the same module. This routing module comprises items of intermediate diffi-

culty, and it establishes a link between the two modules in the subsequent stage. Module selec-

tion in stage 2 depends on the student’s score s in the routing module and on the cut-off score c. 

Students with a low score (i.e., s < c), and thus low ability, are directed to the easy module in 

stage 2, while students with a high score (i.e., s ≥ c) are directed to the difficult module. This 

ability-based routing leads to closer alignment between item difficulty and student ability in the 

second stage, and—under the condition of an equal number of observations per item—it in-

creases the accuracy of item difficulty estimates.  

Again, one complication of this simple example design is that the number of observations 

per item varies among different groups of items. The items in the first stage are solved by the en-

tire sample, but the sample is divided between the two modules in the second stage. This imbal-

ance can be corrected by using more complex designs with parallel modules (i.e., including two 

equally difficult modules in stage 1), as we will elaborate later. 

Targeted multistage calibration designs. Targeted multistage calibration designs refer 

to a combination of the two previously presented designs. Figure 2 shows an example of such a 

design that considers two different subsamples and includes two stages. Again, knowledge about 

item difficulty is an essential precondition for defining modules characterized by different mean 

difficulty, as well as for specifying appropriate routing rules. In the first stage, students are either 

assigned to an easier or a more difficult routing module based on the background variable y (i.e., 

targeted assignment). Assignment in the second stage depends on performance within the first 

modules and on the routing rules related to each module. According to the example design in 

Figure 2, students from group y = 1 with a low score in the easy routing module are guided to the 
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easy module within stage 2. Students from group y = 1 with a high score in the easy routing 

module (i.e., s1 ≥ c1) and students from group y = 2 with a low score in the difficult routing mod-

ule (i.e., s2 < c2) are both directed to a module of intermediate difficulty, which allows for a link 

among all modules in the design. Last, but not least, students from group y = 2 with a high score 

in the difficult routing module are directed to the difficult module of stage 2.  

Targeted multistage calibration designs have the advantage that they consider preliminary 

background information, as well as performance information, for optimizing the fit between item 

difficulty and student ability. In the first stage, background information is used to select the most 

suitable routing module, which results in an improved alignment between item difficulty and stu-

dent ability compared to traditional multistage designs. In the second stage, the assignment no 

longer depends on background variables as in targeted designs, but rather on the performance of 

the students. Performance is most likely a better predictor of the students’ true ability than an 

ability-related background variable such as grades in school.  

Similar to multistage calibration designs, it is important to control the number of observa-

tions per item in targeted multistage calibration designs because this factor has a large influence 

on the accuracy of item difficulty estimation. From this viewpoint, the design in Figure 2 is not 

ideal for calibration purposes because the number of observations is higher for the items in the 

two modules of stage 1 (half of the total sample) than for the items in the three modules of stage 

2 (one-third of the total sample). As for the other two designs, we will present options for con-

trolling the number of observations per item by developing more complex targeted multistage 

calibration designs.  
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Uncertainty of Item Difficulty during Test Construction 

When arranging items within a given calibration design, test developers need to know the 

item difficulties to locate items optimally within the design (Glas & Geerlings, 2009). For exam-

ple, when implementing a targeted calibration design, as shown in Figure 1, a test developer 

would need items from three different difficulty levels, namely, easy items for group 1, difficult 

items for group 2, and intermediate items for linking. Knowledge about item difficulty is even 

more relevant when constructing modules for multistage designs and for defining the related 

routing rules. However, usually, no empirical information about item difficulty is available be-

fore item calibration. Therefore, the decision about item distribution within the calibration design 

and the definition of the routing rules depend mainly on the expertise and experience of the test 

developer and/or other involved experts.  

Several studies have investigated the accuracy with which experts, such as test develop-

ers, content experts, or item authors, can rate item difficulty, and they have found moderate to 

high correlations between the ratings and the empirical item difficulties (e.g., Bejar, 1983; Ham-

bleton & Jirka, 2006; Sydorenko, 2011; Wauters, Desmet, & van den Noortgate, 2012). The ac-

curacy of difficulty ratings depends on several factors, such as the content, item type, training of 

the judges, and number of judges (Hambleton & Jirka, 2006, pp. 407–408). 

We conclude from these findings that the distribution of items across modules of different 

target difficulties might deviate in a practical setting from the optimal distribution in a theoretical 

setting (i.e., optimal condition), where the difficulty of all items is known. Owing to missing em-

pirical data, test developers might fail to assign all items to the most suitable location within a 

calibration design. Instead, they might include some easy items in test booklets or modules with 
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high target difficulty or vice versa, owing to over- or underestimation of item difficulty. This re-

sults in more heterogeneous item sets than those under the optimal condition. The number of 

misplaced items depends on the accuracy with which experts can predict item difficulty.  

The Present Study 

The aim of this study is to answer two research questions: first, we investigate whether 

we can achieve higher efficiency in item calibration with targeted multistage calibration designs 

than with targeted calibration designs. If item difficulty is known during test construction, it is 

possible to optimize the positions of items within the design and to assemble item sets of homog-

enous difficulty. For this optimal condition, we assume that a targeted multistage calibration de-

sign improves the fit between item difficulty and student ability and, therefore, increases the ac-

curacy of item difficulty estimation. Furthermore, we hypothesize that the efficiency gain of a 

targeted multistage calibration design depends on the exact design specification (i.e., composi-

tion of the different modules and the related routing rules).  

Second, we examine how limited a priori knowledge about item difficulty affects the effi-

ciency of both targeted calibration designs and targeted multistage calibration designs. If a priori 

knowledge about item difficulty is limited, we expect that misplaced items impair the efficiency 

of all calibration designs. In addition, we hypothesize that targeted multistage calibration designs 

are impaired to a greater extent by misplaced items than targeted calibration designs because 

knowledge about item difficulty is needed not only to construct the modules but also to specify 

the routing rules. Finally, we assume that the degree of vulnerability of targeted multistage de-

signs to misplaced items depends on the exact design specifications. 
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All hypotheses are addressed in a simulation study in which we vary the calibration de-

sign, as well as the accuracy of item distribution, across the different booklets or modules within 

each design (i.e., number of misplaced items).  

Method 

To highlight the practical constraints to item calibration, we embedded our simulation 

study in a practical context, namely, the development of an adaptive online item bank for forma-

tive assessment in northwestern Switzerland (Berger, Moser, Verschoor, & Eggen, 2015; Berger, 

Verschoor, Moser, & Oostlander, 2014). The aim of this online item bank is to assess students’ 

ability and to monitor their progress throughout compulsory school.  

Ability Distributions and Item Pool 

For each simulation run, two samples of 1,300 simulees were drawn randomly from two 

normal distributions, θ ~ N1(0,1) and θ ~ N2(0.8,1), to simulate students from two successive 

grades in school. The selected sample size represented 10% of the total student population from 

two successive school years in northwestern Switzerland (Berger, Moser et al., 2015), which re-

fers to the expected response rate for a calibration study. The performance progress between the 

two grades in school was modeled on selected results from a longitudinal study that investigated, 

among other variables, the performance progress of Swiss students during primary school (i.e., 

progress in mathematics from grades 3 to 6; Angelone, Keller, & Moser, 2013, p. 35). 

We generated an artificial item pool of 180 dichotomous Rasch items with equally spaced 

difficulty parameters βj ranging from –1.5 to 2.3 to provide items that cover the range of +/–1.5 

standard deviations from the means of both samples. Thus, the ability of approximately 16% of 

the simulees from the two samples lay outside of this range, which ensured variation in the re-

sponse patterns for all items. We ensured uniform distribution of item difficulty to investigate the 
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efficiency of calibration in relation to item difficulty. The size of the item pool was adjusted to 

the sample size to achieve a reasonable number of observations per item (i.e., approximately 400 

observations per item; cf. Wright, 1977, p. 106). Furthermore, we selected an item pool size that 

allowed us to construct balanced designs for all investigated design types, given a practically rel-

evant test length (see next paragraph for further details). The same item pool was used for all 

conditions within the simulation study.  

Test Designs 

The simulation study included three different calibration designs (i.e., a targeted calibra-

tion design and two variations of a targeted multistage calibration design) with a multi-matrix 

structure, which is often used in large calibration studies, as well as a random condition as a 

baseline. In all four design conditions, the item pool described above was used, and test length 

was fixed to 30 items, which refers to the number of items that we expect students to solve 

within one school lesson (i.e., 45 minutes). All designs aimed to achieve an equal number of ob-

servations per item. Keeping this factor constant allowed us to focus on the effect of the match 

between item difficulty and student ability on the efficiency of the different designs.  

Targeted calibration design. In the targeted calibration design, the 180 items were di-

vided into six easy and six difficult booklets with 30 items each (see Figure 3). To construct 

equally difficult booklets for each difficulty level, the items were sorted by difficulty and split 

into three equally large categories: an “easy” category (items 1–60), “intermediate” category 

(items 61–120), and “difficult” category (items 121–180). Each category was further divided into 

six equally difficult modules of 10 items, which resulted in a total of 18 modules (i.e., six mod-

ules per category). All modules were included in two different booklets for linking purposes. The 

six easy booklets contained two easy and one intermediate module each, while the six difficult 
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booklets included one intermediate and two difficult modules. Each simulee from the low ability 

group was assigned randomly to one of the six easy booklets, and each simulee from the high 

ability group was assigned randomly to one of the six difficult booklets. 

Targeted multistage calibration designs. We investigated two different targeted multi-

stage calibration designs in our simulation study to analyze the effect of different design specifi-

cations on calibration efficiency. Both designs were specified as simply as possible given the 

item pool size of 180 items, test length of 30 items, and requirement of an equal number of ob-

servations per item. The designs consisted of two stages, and each stage included half of the total 

item pool (i.e., 90 items). In general, items with more extreme difficulty were included in the 

second stage, where simulees were assigned to the different modules based on their performance 

in the first stage. Within each stage, the 90 items were divided into six modules of 15 items, re-

sulting in 12 modules in total. The modules were not linked, and each item was included in one 

module only. Instead, links between the different modules were established by overlapping paths 

(i.e., various combinations of different modules from both stages).  

The two designs differed in terms of module composition and routing. Figure 4 shows the 

targeted multistage calibration design A (TMST A). In this design, we grouped the 180 items 

into five difficulty categories. The easiest, intermediate, and most difficult categories were as-

signed to the second stage and included 30 items each: items 1–30, items 76–105, and items 

151–180, respectively. The relatively easy and relatively difficult categories were assigned to the 

first stage and included 45 items each: items 31–75 and items 106–150, respectively. Within 

each category, we further divided the items into equally difficult modules of 15 items. In the first 

stage, simulees from the low ability group were assigned randomly to one of the three relatively 

easy modules, and simulees from the high ability group were assigned randomly to one of the 



TARGETED MULTISTAGE CALIBRATION DESIGNS 17 

 

three relatively difficult modules. The score in the first stage determined module selection in the 

second stage. Simulees from the low ability group could reach either an easy or an intermediate 

module (c1 = 11); simulees from the high ability group were guided to either an intermediate or a 

difficult module (c2 = 5). The two cut-off scores were determined in preceding simulations to 

achieve an equal number of observations per module in the second stage. The aim was to guide 

one-third of each sample to the intermediate modules and to guide the remaining two-thirds of 

each sample to the easy or the difficult modules. The design was linked in two ways: first, simu-

lees from both samples could reach the intermediate modules. Second, the random assignment of 

students to modules of equal difficulty resulted in multiple combinations of the modules over the 

two stages (i.e., overlapping paths). 

In the second targeted multistage design (TMST B, see Figure 5), we distinguished four 

instead of five different difficulty levels and split the item pool into four categories of 45 items: 

items 1–45, items 46–90, items 91–135, and items 136–180. Each category was further divided 

into three equally difficult modules of 15 items. Simulees from the low ability group started with 

one of the three relatively easy modules, and simulees from the high ability group were assigned 

randomly to one of the three relatively difficult modules. Simulees’ scores in the first stage deter-

mined the selection of difficulty level in the second stage. In both samples, the simulees were di-

rected to one of the three easy modules if they scored lower than the sample-specific cut-off 

score (c1 = 11; c2 = 5). Simulees with equal or higher scores were directed to one of the three dif-

ficult modules. Again, the two cut-off scores were determined by preceding simulations to 

achieve equal numbers of observations per module in the second stage. The aim was to guide 

three-fourths of the low ability group to the easy modules and one-fourth to the difficult mod-
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ules. For the high ability group, the goal was to route one-fourth of the simulees to the easy mod-

ules and three-fourths to the difficult modules. Similar to TMST A, the different modules in 

TMST B were linked in two ways: first, all modules in the second stage could be reached by 

both samples, and, second, the random assignment of students to modules of equal difficulty re-

sulted in multiple combinations of the modules over the two stages (i.e., overlapping paths). 

Random test. We included a random test as a baseline in our simulation study. In this 

condition, each simulee was assigned to a random selection of 30 items out of the entire item 

pool. Hence, neither the ability of the target sample nor its performance during test taking was 

considered during item selection.  

Simulation with Limited Knowledge about Item Difficulty during Test Development 

To simulate the case with limited knowledge about item difficulty during test develop-

ment, we manipulated the order of the items in relation to item difficulty and, therefore, the dis-

tribution of the items across the different modules in the designs. In the optimal condition with 

complete knowledge about item difficulty, the items were ordered by difficulty, as described ear-

lier, which resulted in a correlation of r = 1.0 between item order and item difficulty. In addition 

to this full knowledge condition, we investigated two additional conditions in our simulation 

study. In the first condition, item order and item difficulty were correlated at r = 0.4 to simulate a 

low amount of knowledge during test construction following results reported by Berger, 

Oostlander, Verschoor, Eggen, and Moser (2015). This condition resulted in a high number of 

misplaced items. In the second condition, item order and item difficulty were correlated higher (r 

= 0.6) to represent a condition with a medium amount of knowledge during test construction and 

a resulting medium number of misplaced items. Both conditions were applied to the targeted cal-

ibration design, as well as to the two targeted multistage calibration designs, meaning that the 
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manipulated item order was used as a basis to distribute the items within the designs. Owing to 

the manipulated item order, item categories were no longer homogenous, but included a few 

items that exceeded or fell below the envisaged difficulty range. This, in turn, affected the diffi-

culty range and the mean difficulty of the booklets and modules.  

Item Response Generation and Calibration 

Altogether, the simulation study included 10 different conditions: the three calibration de-

signs (i.e., targeted calibration design and two versions of targeted multistage calibration de-

signs) were combined with the three variations of item distribution (i.e., full, medium, and low 

knowledge) and completed by the random condition that served as a baseline. For each condi-

tion, we generated 20,000 datasets according to the Rasch model. For each dataset, we drew new 

samples from the two ability distributions described and generated new response patterns con-

sisting of 30 × 2,600 responses. The Multidimensional Item Response Theory (MIRT) software 

application (Glas, 2010) was used to generate marginal maximum likelihood (MML) estimates 

of the item parameters from the Rasch model. All designs were estimated using two marginal 

proficiency distributions, that is, one marginal distribution per sample (cf. Eggen & Verhelst, 

2011). 

Evaluation Criteria 

Distribution of item difficulty per booklet or module. As a descriptive evaluation crite-

rion, we explored the distribution of item difficulty within and among the different booklets and 

modules. This distribution was predefined under the full knowledge condition, where the item 

difficulty of each item was known. For the conditions with limited knowledge, the distribution of 

item difficulty depended on manipulation of the item order. 
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Bias and root mean square error. To determine the accuracy of item parameter estima-

tion in the different calibration designs, the bias and the root mean square error (RMSE) of each 

item in each condition were computed. That are, 

 Bias(β̂j) =
∑ (β̂kj − βj)
20000
𝑘=1

20000
⁡⁡    and (4) 

 RMSE(β̂j) =
√∑ (β̂kj − βj)

220000
𝑘=1

20000
⁡⁡, (5) 

where k and j represent replications and items, respectively, and β̂ denotes the estimate of item 

difficulty β.  

Mean number of observations per item. As an additional criterion for the efficiency of 

the different calibration conditions, we investigated the mean number of observations per item 

over 20,000 simulation runs within each simulation condition. That is, 

 𝑁𝑗 = √
∑ 𝑁𝑘𝑗
20⁡000
𝑘=1

20000
, (6) 

where k and j represent replications and items, respectively, and N denotes the number of obser-

vations. As described earlier, the higher the number of observations per item, the higher is the 

accuracy of item difficulty estimation. The intention in our setting was to asymptotically achieve 

equal mean numbers of observations for all items (i.e., SDN = 0) to ensure that the influence of 

this factor on calibration efficiency was constant for all items. 

Results 

Distribution of Item Difficulty per Booklet or Module 

Figure 6 shows the distribution of item difficulty within the different booklets and mod-

ules for each design and knowledge condition by means of boxplots. For the full knowledge con-

dition (dark gray boxplots), this distribution was given by the design specifications. Independent 
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of the design, the booklets and modules representing different difficulty levels differed clearly in 

terms of difficulty range and median (e.g., B06 vs. B07). Meanwhile, the booklets and modules 

that represented one difficulty level had comparable item difficulty distributions (e.g., B01 vs. 

B02). The range of item difficulty within a single booklet or module was larger in the targeted 

design than in the two targeted multistage designs. This result is directly related to the number of 

difficulty categories defined for each design (i.e., two difficulty categories for the targeted de-

sign, five for TMST A, and four for TMST B). 

By contrast, the simulation with limited knowledge about item difficulty during test con-

struction (i.e., medium and low knowledge) resulted in more heterogeneous booklets and mod-

ules (see medium and light gray boxplots in Figure 6). The range of item difficulty within the 

booklets and modules increased under these conditions, and the medians shifted towards the 

mean difficulty of the total item pool (M = 0.400). Consequently, differences between booklets 

and modules intended to be equally difficult increased, and differentiation between booklets and 

modules intended to represent different difficulty levels decreased. These effects were generally 

more prominent under the low knowledge condition than under the medium knowledge condi-

tion. From these findings, we conclude that our manipulation led to the envisaged misplacement 

of items in the different designs. 

Bias(𝛃̂), Mean RMSE(𝛃̂) and Mean Number of Observations per Simulation Condition 

This section provides a general overview of the efficiency of the different simulation con-

ditions. Table 1 presents the range of Bias(β̂), the mean of RMSE(β̂) and the related standard er-

ror based on the first 1,000 simulation runs under each condition as an indicator of overall effi-

ciency. As indicators of the relative efficiency of the different designs, on the one hand, Table 1 
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reports the relative decrease or increase in RMSE(β̂) compared to the random condition and tar-

geted design within the corresponding knowledge condition; on the other hand, the table includes 

for each condition the differences in the number of students needed to achieve the same overall 

efficiency with the random condition and targeted design (absolute number and percentage of to-

tal sample, i.e., 2,600) given Equation 3. This information serves as an indicator of the practical 

relevance of the reported differences. Also, Table 1 lists the standard deviation of the mean num-

ber of observations under each simulation condition, as well as the mean number of observations 

per difficulty category (i.e., design specific categorization of the modules’ difficulty levels). 

In all conditions, we observed very little bias and the highest absolute value of Bias(β̂) 

was found in the Random condition (i.e., Bias(β̂) = 0.012). Independent of the design, the mean 

RMSE(β̂) was generally lower under the full knowledge condition than under the random or the 

limited knowledge conditions. The lowest mean RMSE(β̂) was found for TMST B under the full 

knowledge condition (M = 0.110). The efficiency gain of TMST B was 7% compared to the ran-

dom condition and 4% compared to the targeted design. To achieve the same efficiency with the 

baseline designs, we would need to increase sample size by 336 and 200 students, respectively. 

The overall efficiency gain of TMST A under the full knowledge condition was slightly lower 

(M = 0.112), yet the design outperformed the targeted design (M = 0.115), which, in turn, yielded 

lower mean RMSE(β̂) than the random condition (M = 0.119). All differences were statistically 

significant, as can be derived from the small standard errors of RMSE(β̂) in Table 1. 

Under the medium knowledge condition, the efficiency gain of TMST B (M = 0.116) and 

the targeted design (M = 117) were considerably smaller than that under the full knowledge con-

dition. Nevertheless, the gain of TMST B was still statistically significant and practically rele-

vant in terms of the number of students: 114 (4%) additional students would be required to 
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achieve the same efficiency with the random condition, and 52 (2%) additional students would 

be required for the targeted design. The mean RMSE(β̂) of TMST A was even higher than that of 

the two related baselines (M = 0.120), thereby indicating a significant efficiency loss. Similar but 

more prominent results were found for the low knowledge condition: TMST B (M = 0.118) was 

slightly more efficient than the two baseline conditions, which showed a comparable mean 

RMSE(β̂) (M = 0.119), whereas TMST A resulted in a considerable efficiency loss (i.e., –6%; M 

= 0.125). To compensate for this loss, we would need to increase the sample size by more than 

300 students or 12% of the total sample. 

The standard deviations of the mean number of observations displayed in column 7 of 

Table 1 provide some insights into the roots of efficiency differences among the different condi-

tions. The mean numbers of observations were well balanced in the random and the targeted de-

signs for all three knowledge conditions. On average, all items were assigned to approximately 

433 simulees, which corresponded to one-sixth of the total sample (i.e., 2,600 simulees). Moreo-

ver, variations in TMST B were very small under all simulation conditions (SDfull = 0.114; SDMe-

dium = 6.315; SDLow = 2.925), so only the modules in stage 2 differed slightly in their mean num-

ber of observations per item (i.e., M1 and M4). However, for TMST A, the number of observa-

tions per item depended largely on the available knowledge about item difficulty. Low 

knowledge was associated with a considerable increase in the standard deviation of the mean 

number of observations per item (SD = 90.950) compared to the medium (SD = 60.958) and the 

full knowledge conditions (SD = 0.114). Although the modules of stage 1 showed the expected 

mean numbers of observations (M2 = M4 = 433), the mean number of observations varied consid-

erably among modules of different difficulty levels in stage 2 (i.e., M1, M3, and M5). 
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In sum, these general findings were consistent with our hypothesis that targeted multi-

stage calibration designs calibrate item difficulty more accurately than targeted designs if item 

difficulty is known. Furthermore, the results support our hypothesis that limited a priori 

knowledge about item difficulty impairs the efficiency of all calibration designs. In line with our 

expectations, the results suggest that limited knowledge does not affect all designs to the same 

extent. However, counter to our hypothesis, one of the two targeted multistage designs outper-

formed the targeted design under the limited knowledge conditions. 

RMSE(𝛃̂) and Mean Number of Observations per Item 

Optimal condition with full knowledge. Figure 7 shows RMSE(β̂) for each item in rela-

tion to its true difficulty β for all four designs under the full knowledge condition. For the ran-

dom baseline condition, RMSE(β̂) was the lowest for items with a difficulty of β ≈ 0.400, which 

corresponded to the mean difficulty of the item pool, as well as to the mean ability of the entire 

sample (Mβ = Mθ = 0.400). For items with more extreme difficulty, RMSE(β̂) increased, which 

resulted in a U-shaped relationship between RMSE(β̂) and β over the entire item pool. Given the 

normal distribution of ability in the two samples, the number of simulees with abilities that 

matched the difficulties of the extreme items was limited. Therefore, the difficulty of these items 

was estimated less precisely than that of the items close to the mean abilities of the two samples 

(𝑀𝜃1 = 0.000; 𝑀𝜃2 = 0.800). 

The curves related to the other three designs showed a similar tendency to a U-shaped 

course, but they were characterized by a few kinks (i.e., rapid increase or decrease in RMSE(β̂) 

between two items). These kinks divided the curves into multiple sections, which corresponded 

to the difficulty categories that were part of the design specifications. The gray curve represent-

ing the targeted design included two kinks that divided the curve into three sections. The first 
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section included all items from the “easy” category that were only administered to sample 1, the 

second section corresponded to the linking items (“intermediate” difficulty category), and the 

third section represented the items from the “difficult” category that were administered only to 

sample 2. Thus, the three categories of items were administered to three different groups of sim-

ulees with different ability distributions, which resulted in differences in the accuracy of item 

difficulty estimation. The RMSE(β̂) values of the items in the intermediate difficulty category 

were comparable to those found in the random condition. For the easy and difficult items, how-

ever, targeted assignment of simulees led to lower RMSE(β̂) values than random assignment. 

These results suggest that the targeted design outperformed the random condition by improving 

the calibration of easy and difficult items. 

For TMST A, the item pool was divided into five difficulty categories, which resulted in 

a curve consisting of five sections. Categories 2 and 4 corresponded to the items in stage 1 (i.e., 

relatively easy and relatively difficult items). The RMSE(β̂) of these items were comparable to 

the outcomes of the random and the targeted conditions. However, TMST A provided more ac-

curate item difficulty estimates for the items in stage 2. On the one hand, a reduction in 

RMSE(β̂) was achieved for easy and difficult items (i.e., categories 1 and 5). These items were 

administered to low performing simulees from sample 1 or high performing simulees from sam-

ple 2. On the other hand, RMSE(β̂) was also lower for intermediate items from category 3, which 

were administered to high performing simulees from sample 1 and to low performing simulees 

from sample 2. The efficiency gain in this intermediate category could be explained partly by the 

enhanced mean numbers of observations per item caused by the slightly unbalanced routing (M3 

= 447; M1 = M5 = 426). Given the composition of the modules in stage 1 and the limited score 
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range of 0–15, this outcome represented the best approximation of a balanced number of obser-

vations over the entire design.  

Finally, TMST B included four difficulty categories. However, the curve was only di-

vided into three sections such that the two middle categories related to stage 1 were not visually 

distinguishable. Similar to TMST A, TMST B provided more accurate item difficulty estimates 

for easy and difficult items (i.e., categories 1 and 4) than the targeted design or the random con-

dition. These two difficulty categories corresponded to stage 2 of TMST B, where the simulees’ 

assignment was determined by their performance in stage 1. 

Taken together, the item-level findings provided further insights into the efficiency of the 

different designs under the full knowledge condition. The targeted design outperformed the ran-

dom condition owing to greater accuracy in item difficulty estimation for the easy and the diffi-

cult items. The two targeted multistage designs further improved the item difficulty estimation 

for the easy and the difficult items compared to the targeted design by means of the performance-

based assignment of simulees to items in stage 2.  

Conditions with limited knowledge. Figure 8 shows six charts. Each chart presents 

RMSE(β̂) in relation to the true difficulty β for one of the three designs in combination with one 

of the two limited knowledge conditions. The random condition is included as the baseline in all 

six charts (black line). As an additional orientation, RMSE(β̂) under the full knowledge condi-

tion is displayed for each design as a gray line.  

The two charts in the first row of Figure 8 refer to the targeted design, where we distin-

guished three difficulty categories. Within each difficulty category, the relationship between 

RMSE(β̂) and β was represented by a U-shaped curve. Differences in RMSE(β̂) were found 

mainly for easy and difficult items, but not for the items in the intermediate difficulty range. 
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Items that were assigned correctly to their corresponding difficulty category achieved similar 

RMSE(β̂) values as under the full knowledge condition. However, easy or difficult items that 

were placed wrongly in the intermediate category showed RMSE(β̂) values comparable to those 

under the random condition. Moreover, the placement of difficult items in the easy category and 

easy items in the difficult category resulted in RMSE(β̂) values that exceeded the values under 

the random condition. The number of misplaced items and, therefore, the number of items with 

high RMSE(β̂) values were lower under the medium knowledge condition (left chart) than under 

the low knowledge condition (right chart).  

The two charts in the second row of Figure 8 refer to TMST A, where we distinguished 

five difficulty categories. Within each difficulty category, the relationship between RMSE(β̂) 

and β was again represented by a U-shaped curve. However, variations in RMSE(β̂) were clearly 

larger for TMST A under the limited knowledge conditions than for the targeted design. Consid-

erable differences emerged in all five difficulty categories. In particular, the RMSE(β̂) values of 

the items in the intermediate difficulty category (i.e., category 3) were high. Even items of inter-

mediate difficulty, which were assigned correctly to this category, showed RMSE(β̂) values 

greater than those under the random condition. 

These findings were related to large variations in the mean number of observations in 

stage 2 of TMST A (see Table 1). Under the limited knowledge conditions, a substantial number 

of observations shifted away from the intermediate modules in stage 2 toward the easy and the 

difficult modules, which resulted in considerably lower mean numbers of observations for the 

items in the intermediate modules (medium knowledge: M3 = 312; low knowledge: M3 = 252). 

This shift was caused by the shift in the mean module difficulty in stage 1, as shown in Figure 6. 
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The relatively easy modules in stage 1 became more difficult due to misplaced items, which re-

sulted in a lower percentage of simulees surpassing the cut-off score and reaching the intermedi-

ate modules in stage 2. Simultaneously, the relatively difficult modules became easier, such that 

a greater number of simulees surpassed the cut-off score and reached the difficult modules. Thus, 

the impaired overall efficiency of TMST A under the conditions of limited knowledge seems to 

be triggered mainly by the misplacement of a few items in stage 1 and the related impact on rout-

ing.  

Finally, the two charts in the third row of Figure 8 refer to TMST B, where we distin-

guished four difficulty categories. In line with previous results, the relationship between 

RMSE(β̂) and β was represented by a U-shaped curve for each difficulty category. Similar to the 

targeted design, differences in RMSE(β̂) values were larger for easy and difficult items than for 

relatively easy or difficult items. Easy items assigned to the relatively easy category and difficult 

items assigned to the relatively difficult category were estimated more efficiently with TMST B 

than with the random condition. However, easy items assigned to one of the two difficult catego-

ries and difficult items assigned to one of the two easy categories resulted in RMSE(β̂) values 

higher than those observed under the random condition. For items assigned to the appropriate 

difficulty category, again, we found similar RMSE(β̂) values as under the full knowledge condi-

tion, with one exception: slightly higher RMSE(β̂) values were reported for items in the difficult 

category under the medium knowledge condition. This difference was caused by a slightly lower 

mean number of observations for the items in the difficult category. Nevertheless, we concluded 

that limited knowledge resulted in similar effects for TMST B and the targeted design, namely, 

lower accuracy for misplaced items.  
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Discussion 

In this paper, we introduced the concept of targeted multistage calibration designs for cal-

ibrating CAT item pools dedicated to multiple ability groups and, thus, allowing for the measure-

ment of ability over a broad range. We investigated the efficiency of this design type for calibrat-

ing items under the Rasch model by means of simulations. As expected, the two targeted multi-

stage calibration designs were more efficient in calibrating the item pool than the targeted design 

or the random condition, given that complete knowledge about item difficulty was available dur-

ing construction of the calibration designs. The reported improvements in overall RMSE corre-

sponded to statistically significant, as well as practically relevant, efficiency gains in terms of the 

number of students. Namely, additional time and financial resources would be required to recruit 

up to 200 additional students for calibrating the items with the traditional targeted design in order 

to compensate for the gain of the targeted multistage calibration designs. 

Differences in the accuracy of item difficulty between the targeted design and the two tar-

geted multistage designs were found especially for easy and difficult items. Reliable item diffi-

culty estimates for these groups of items are highly relevant in the context of CAT, where each 

student is assessed based on a different subset of items from the overall item pool (see also van 

der Linden & Glas, 2000). The performance-based routing in the targeted multistage designs al-

lowed for identification of low and high performing students including students with extreme 

and, thus, rare abilities within both samples, and for assigning them specifically to the easy and 

difficult items. Therefore, the multistage procedure improved the match between item difficulty 

and ability for those items that clearly differed from the mean abilities of the two samples. In 

practice, such improved alignment between item difficulty and student ability is not only benefi-

cial for calibrating items, but it also provides more reliable estimates of ability. Moreover, it 
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might prevent low and high ability students from getting discouraged or bored by items that do 

not fit their ability level (Asseburg & Frey, 2013). Sustaining student motivation during test tak-

ing is, in turn, an important basis for producing reliable calibration outcomes (e.g., Finn, 2015; 

Mittelhaëuser, Béguin, & Sijtsma, 2015; Zwitser & Maris, 2015).  

However, the construction of efficient calibration designs requires knowledge not only 

about the abilities of calibration samples but also about item difficulty. Unfortunately, empirical 

knowledge about item difficulty is often not available in practical settings prior to calibration. 

Instead, difficulty ratings from experts are used as approximations of real item difficulty and as a 

basis for distributing items within a design. Several studies have reported medium-to-high corre-

lations between such ratings and real item difficulties (e.g., Bejar, 1983; Hambleton & Jirka, 

2006; Sydorenko, 2011; Wauters et al., 2012). Therefore, we investigated the extent to which 

misclassification of items in terms of their difficulty could impair the efficiency of the different 

calibration designs considered in this study. In line with our expectations, limited knowledge 

about item difficulty was related to a considerable decrease in the efficiency of the traditional 

targeted design as well as of the two targeted multistage calibration designs.  

Furthermore, we hypothesized that targeted multistage calibration designs are more vul-

nerable to misplaced items than targeted calibration designs because knowledge about item diffi-

culty is crucial for specifying appropriate routing rules. This hypothesis was only partly sup-

ported by the results of our simulation study. In line with our expectations, we found a severe 

loss of efficiency for one of the two targeted multistage calibration designs under the conditions 

of limited knowledge and misplaced items. The efficiency loss of TMST A was caused by a mis-

match between the specified routing rules based on predicted item difficulties and the real mean 

difficulties of the routing modules. This mismatch led to inefficient distribution of simulees over 
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the modules of stage 2, considerably low mean numbers of observations for certain items, and, 

finally, relatively inaccurate item difficulty estimates of the affected items.  

However, the second multistage calibration design was more robust for limited 

knowledge and misplaced items. Contrary to our expectations, TMST B outperformed the tar-

geted design, regardless of the amount of available knowledge, even though the advantage of 

TMST B over the targeted design was greater under the full knowledge condition. The specific 

combination of routing module composition and routing rules in TMST B managed to compen-

sate for changes in routing due to misplaced items. Nevertheless, the minor differences in the 

mean numbers of observations under the medium knowledge condition suggest that overlapping 

routing paths do not guarantee a stable targeted multistage calibration design. In our study, the 

mean difficulty of the routing modules shifted toward the mean of the item pool under the lim-

ited knowledge conditions. However, experts might also systematically under- or overestimate 

the difficulty of all items, leading to under- or overrepresentation of the numbers of observations 

for the easy and the difficult modules in stage 2. In contrast, targeted calibration designs provide 

full control over the assignment of students to test booklets and, thereby, over the number of ob-

servations per item—independent of the amount of knowledge about the difficulty of the items.  

As in any simulation study, our study covered a limited set of conditions, which limits 

generalizability of the findings in some ways (Davey, Nering, & Thompson, 1997; Feinberg & 

Rubright, 2016). First, we investigated the efficiency of item calibration under the Rasch model. 

Different results might be found if the response patterns do not fit the Rasch model perfectly as 

they did in our simulation study. Our results could serve as a starting point for investigating the 

efficiency of targeted multistage calibration designs in combination with more complex IRT 

models. Based on previous studies, we hypothesize that targeted multistage designs allow for the 
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efficient estimation of item difficulty parameters independent of the IRT model (Berger, 1991; 

Stocking, 1988). However, further research is needed for investigating the extent to which the 

limited ability variation within each subsample could impair efficient estimation of other item 

parameters, such as discrimination or guessing.  

Second, we focused on improving the match between item difficulty and student ability 

for enhancing calibration efficiency. However, Eggen and Verhelst (2006), as well as Verschoor 

(2010), found that the efficiency of incomplete calibration designs also depends on the strength 

of the links between the modules within a design so that designs with a larger number of linking 

items provide more accurate estimates of item difficulty. However, given the test length of 30 

items and the use of MML estimation procedures, we expect only small improvements through 

such adaptations.  

A third limitation of our study is that the size of the samples was relatively small. In 

alignment to a practical setting, we included 2,600 simulees in each simulation run. An enhance-

ment of sample size would significantly increase the accuracy of item difficulty estimates under 

all conditions and decrease the practical relevance of efficiency gain through better alignment of 

item difficulty and student ability (Wright, 1977, p. 105). On the other hand, recruiting samples 

that are large enough for item calibration is often challenging, which underlines the practical rel-

evance of this constraint. Moreover, it would be interesting to investigate in further studies 

whether the current results are replicable with more complex designs, different item pools, and 

different samples. Based on our findings, we hypothesize that targeted multistage designs will 

always outperform targeted designs under optimal conditions. However, we assume that the risk 

of efficiency loss in targeted multistage calibration designs depends not only on the amount of 
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available knowledge about item difficulty, but also on the particular combination of design speci-

fications, item pool, and sample. Thus, further studies should analyze the factors that can contrib-

ute to the stability of targeted multistage calibration designs. Furthermore, it would be interesting 

to examine whether step-by-step adaption of the routing rules or of the composition of modules 

during calibration (cf. Ali & Chang, 2014; Kingsbury, 2009) could reduce the risk of efficiency 

loss due to imbalanced distribution of the number of observations per item.  

Efficient calibration designs are crucial in practice because it is often difficult to recruit 

sufficient numbers of students for calibrating CAT item pools. With our simulation study, we ex-

tended previous research on the efficiency of calibration designs by introducing targeted multi-

stage calibration design as a new design type and by investigating a practically relevant con-

straint, namely, the influence of limited knowledge during test development. We conclude from 

our findings that targeted multistage calibration designs are an option for enhancing the effi-

ciency of calibration under the condition that reliable knowledge about item difficulty is availa-

ble. However, these theoretically superior designs come at a certain price in practice if a priori 

knowledge about item difficulty is limited. Therefore, we recommend practitioners to use tar-

geted designs instead of targeted multistage designs for calibration whenever there are doubts 

about the accuracy of predicted item difficulty.  
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Figure 1. Examples of targeted (left) and multistage calibration designs (right). y = ability-re-

lated background variable (e.g., grades in school); s = student’s score in stage 1, c = cut-off 

score. 
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Figure 2. Example of targeted multistage calibration design. y = ability-related background vari-

able (e.g., grades in school); s1 and s2 = student’s scores in stage 1, c1 and c2 = cut-off scores. 
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Figure 3. Targeted calibration design. B1–B6 = easy booklets; B7–B12 = difficult booklets. 

Each column represents one module of ten items. The 18 modules are classified into three diffi-

culty categories: cat1 = “easy,” cat2 = “intermediate,” and cat3 = “difficult.” 

  



TARGETED MULTISTAGE CALIBRATION DESIGNS 43 

 

 

Figure 4. Targeted multistage calibration design A (TMST A). M1/M2 = easy modules (diffi-

culty category 1); M3–M5 = relatively easy modules (category 2); M6/M7 = intermediate mod-

ules (category 3); M8–M10 = relatively difficult modules (category 4); M11/M12 = difficult 

modules (category 5); s1 = score of low ability group; s2 = score of high ability group. 
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Figure 5. Targeted multistage calibration design B (TMST B). M1–M3 = easy modules (diffi-

culty category 1); M4–M6 = relatively easy modules (category 2); M7–M9 = relatively difficult 

modules (category 3); M10–M12 = difficult modules (category 4); s1 = score of low ability 

group; s2 = score of high ability group. 

  



TARGETED MULTISTAGE CALIBRATION DESIGNS 45 

 

 

Figure 6. Boxplots of item difficulty per design, booklet/module, and knowledge condition. 
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Table 1. 

Range of Bias(𝛽̂), Mean and Standard Error of RMSE(𝛽̂), Related Gain per Simulation Condition, and Distribution of Mean Number 

of Observations 

 Bias(β̂)a 
 

RMSE(β̂)  

Gain over  

Random  

Gain over  

Targetedc  N 

Condition Min Max  M SEb  % N (%)  % N (%)  SD M1 M2 M3 M4 M5 

Random –0.011 0.012  0.119 0.00028  -- --  -- --  0.549 433 -- -- -- -- 

Full Knowledge                   

Targeted –0.007 0.007  0.115 0.00027  3 159 (6)  -- --  0.222 433 433 433 -- -- 

TMST A –0.005 0.005  0.112 0.00026  6 267 (10)  2 122 (5)  6.958 426 433 447 433 426 

TMST B –0.006 0.007  0.110 0.00026  7 336 (13)  4 200 (8)  0.114 433 433 433 433 -- 

Med. Knowledge                   

Targeted –0.007 0.007  0.117 0.00028  1 64 (2)  -- --  0.175 433 433 433 -- -- 

TMST A –0.007 0.007  0.120 0.00029  –1 –67 (–3)  –3 –138 (–5)  60.958 492 433 312 433 496 

TMST B –0.007 0.006  0.116 0.00027  2 114 (4)  1 52 (2)  6.315 442 433 433 424 -- 

Low Knowledge                   

Targeted –0.006 0.007  0.119 0.00028  0 4 (0)  -- --  0.145 433 433 433 -- -- 

TMST A –0.010 0.010  0.125 0.00030  –6 –315 (–12)  –6 –321 (–12)  90.950 519 433 252 433 529 

TMST B –0.008 0.007  0.118 0.00028  1 48 (2)  1 43 (2)  2.925 429 433 433 437 -- 

Note. The numbers in bold represent efficiency loss compared to the baseline condition; gray numbers represent mean numbers of 

observations equal to the overall mean of M = 433. N(%) = number of additional students needed to achieve the same efficiency with 

the baseline design, 100% = 2,600 students; M1–M5 = mean numbers of observations per difficulty category (i.e., design-specific cate-

gorization of modules’ difficulty levels). 
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aMean of Bias(β̂) was zero in all conditions. 

bStandard error of RMSE(β̂) based on the first 1,000 simulation runs. 

cGain over targeted design within a specific knowledge condition. 
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Figure 7. RMSE(β̂) per item in relation to item difficulty for the four different designs under the 

full knowledge condition.  
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Figure 8. RMSE(β̂) per item in relation to item difficulty for the three different designs under the 

medium (left) and low knowledge (right) conditions. The solid black line denotes the random 

condition (baseline) and the solid gray line the optimal condition specific to each chart. The 

white dots refer to the limited knowledge conditions (LK = low knowledge, MK = medium 

knowledge), and the related dotted lines cat1 to cat5 indicate the regressed trends of each diffi-

culty category under the limited knowledge conditions. 


