
Understanding challenging situations in agile quality
requirements engineering and their solution strategies:

insights from a case study

Wasim Alsaqaf
University of Twente

Enschede, The Netherlands
w.h.a.alsaqaf@utwente.nl

Maya Daneva
University of Twente

Enschede, The Netherlands
m.daneva@utwente.nl

Roel Wieringa
University of Twente

Enschede, The Netherlands
r.j.wieringa@utwente.nl

Abstract— In the last few years, agile development methods are
getting increasingly popular in large-scale distributed contexts.
Despite this popularity, empirical studies have reported several
challenges that large-scale distributed agile projects face regard-
ing the implementation of quality requirements. However, there
is little known about the mechanisms behind those challenges and
the practices currently used by agile practitioners to adequately
assure the implementation of quality requirements in distributed
context. To look deeper into this, we performed a qualitative mul-
ti-case study in six different organizations in the Netherlands.
Our multi-case study included seventeen semi-structured open-
ended in-depth interviews with agile practitioners of different
background and expertise. The analysis of the collected data re-
sulted in identifying eleven mechanisms that could be associated
with the previously published list of challenges. Moreover, the
analysis uncovered nine practices used by agile practitioners as
solutions to the challenges, in order to ensure the implementation
of quality requirements. Last, we have mapped the identified
mechanisms and practices to the previously identified challenges
to get insight into the possible cause and mitigation of those chal-
lenges.
Index Terms— Empirical research method, Quality

requirements, Agile, Requirements engineering, Interviews, Case
study.

I. INTRODUCTION

The need for organizations to keep up with the rapidly
changing environment and preserve their competitive position
forces them to move from a heavyweight traditional approach
of software delivery to a more flexible lightweight agile ap-
proach. Despite the original context that Agile Development
Methods (ADMs) were sketched for – small and single co-
located teams – more and more organizations scale up their
ADM to fit their globalization and distribution context [1].
Scaling up ADMs does not only mean stretching agile practices
to generate the intended benefits in large-scale distributed set-
tings but also deals with aggravated challenges reported in their
original context. One of these challenges concerns the engi-
neering of non-functional requirements – or, as we call them
here, quality requirements, in agile projects. Several studies
have reported the neglect of quality requirements (QRs) in
ADMs [2][3][4][5]. In our most recent paper [6] we have re-

ported results of an exploratory multi-case study which indicat-
ed 13 QRs challenges that distributed agile teams face in agile
large-scale development (ALSD). However, to be able to cor-
rectly understand the challenges and critically evaluate the pos-
sible solutions to them, we need to look at the underlying
mechanisms behind those challenges and how the agile distrib-
uted teams currently cope with them. Therefore, we extended
our qualitative analysis activities of the data collected in our
previously presented exploratory study [6] in order to answer
two research questions (RQ): (RQ1) What are the mechanisms
behind the reported challenges? (RQ2) What are the practices
that agile teams currently use to mitigate the impact of the re-
ported challenges? The answers to these RQs form the contri-
bution of this paper. By answering RQ1, we will get insights
into the processes by which the reported challenges took place.
These insights are useful not only to understand the environ-
ments where the challenges could take place but also to predict
future challenges that agile teams could face when particular
process (e.g. mechanism) is in place. The answer to RQ2 will
help us to grasp the current practices used in distributed agile
projects to engineer the QRs. By mapping those practices to the
identified challenges we will get insight in practices that dis-
tributed agile teams could use to mitigate the reported chal-
lenges.

The remainder of this paper is structured as follows: Sect. II
presents related work and Sect. III – our research process [6].
Sect. IV is about our results. Sect. V discusses them. Sect. VI
treats limitations. Sect. VII concludes and Sect. VIII points to
future work.

II. RELATED WORK

Several evidence-based studies [3][7][8][9][10][11] have
reported requirements-related challenges and practices in large-
scaled agile projects. However, not all of the aforementioned
studies described the extent of “distributedness” of their studied
project. The case study of Käpyaho et al. [3] involved approx-
imately 30 agile practitioners and investigated the effectiveness
of prototyping in solving reported agile requirements engineer-
ing (RE) challenges. The study reported that while prototyping
can help with solving some agile RE challenges such as lack of

RE 2018, Banff, Canada
Research Paper 274

2018 IEEE 26th International Requirements Engineering Conference

2332-6441/18/$31.00 ©2018 IEEE
DOI 10.1109/RE.2018.00035

documentation, motivation for RE work and poor quality
communication, it does not help with quality requirements
challenges without complementary practices. Dikert et al. [7]
performed a systematic literature review (SLR) on industrial
large-scale agile transformation. The median size of the organi-
zations discussed in the review was 300 people. The study re-
ported QR and global distribution as agile large-scale challeng-
es among others. QR and team distributions were also reported
as challenges in agile projects in another recent SLR [8]. Fur-
thermore, Kasauli et al. [9] studied RE challenges in large-scale
agile projects, in each of which approximately 30 sub-teams
were involved. These authors concluded that companies are
facing challenges when trying to address QR, such as safety
and security. Petersen and Wohlin [10] investigated the effect
of moving from plan-driven approach to incremental software
development with agile practices. The authors described their
case-study as large. Their study identified requirements quality
assurance practices and requirements prioritization as challeng-
es remaining for agile after migration to incremental software
development. Finally, Rolland [11], an agile practitioner, re-
ported his own experiences in large-scale agile projects regard-
ing the challenges of verifying the importance of the identified
requirements and getting the big picture of those requirements
and their interdependencies. The investigated projects involved
13-14 teams and more than 200 participants.

III. OUR EMPIRICAL RESEARCH PROCESS

ADMs as well as RE depend in their application on human
interactions and interpretations. Therefore, in our view the only
way to understand how ADMs treats QRs is to explore the sub-
ject in real life settings [6]. To this end, we carried out a quali-
tative exploratory multi-case study that followed by the meth-
odological guidelines of R. Yin [12]. We make the note that
our research design was first presented in our 2018 publication
[6]. Here, we further elaborate on those research-methodology-
related aspects of our research process that help understand the
results reported in this paper.

Our multi-case study [6] used semi-structured open-ended
in-depth interviews designed according to the guidelines of
Boyce and Neale [13]: First, we made a plan describing (1) the
kind of information we intended to collect, (2) the kind of prac-
titioners who could provide us with the sought-after infor-
mation and (3) the kind of project settings that would be an
appropriate candidate for inclusion in the multi-case study.

The unit of analysis in our empirical research process is the
project in ALSD context. As we wanted to gain a solid under-
standing of the challenges of engineering QRs in ALSD pro-
jects from different perspectives, we decided to include practi-
tioners with various backgrounds (e.g. different expertise and
roles, e.g. architects, testers, different years of experience, dif-
ferent application domains). This choice for a multi perspective
research (MPR) [14] design is motivated by our desire to get as
broad understanding of the QRs challenges as possible. As per
research methodologists (e.g. [12][13]), MPR allows qualita-
tive researchers to include accounts of related individuals, e.g.
developers, scrum masters, architects, product owners, in order
to gain a more nuanced and more comprehensive understand-

ing of the functioning of interactional systems or groups (like
an ALSD project organization) or professional circumstances
of individuals from different perspectives (like an agile soft-
ware architect and a product owner in ALSD). As Eisikovits
and Koren [14] suggest, covering possibly ccontrasting views
on a phenomenon of research interest allows for insights re-
garding the underlying mechanisms characterizing the phe-
nomenon, and can, in turn, stimulate theories that have more
explanatory power than the sum of theories based on individual
perspectives.

Second, we developed an interview protocol with instruc-
tions to be followed by each interview. The interview questions
were developed by the first author based on the information we
planned to collect and validated by the senior researchers (the
other two authors). The interview questions were improved and
finalized based on the feedback received from the senior re-
searchers. Moreover, a pilot interview with an agile practitioner
was done in order to check the applicability of the questions in
real-life context. No changes were made to the interview ques-
tions after this stage. We make the note that we did not include
the pilot interview in the case study because the respective pro-
ject setting did not meet the requirement of project distribut-
edness. Interested readers can find our interview questions by
clicking the following link:
https://wasimalsaqaf.files.wordpress.com/2017/07/interview-
questions.docx. Our interview questions are organized in two
parts. The first explores the organizational context of the inter-
viewee, while the second focuses on the practices experienced
by the participants while engineering the QRs in one particular
project of their choice.

Third, for the purpose of our data collection, the first author
interviewed seventeen agile practitioners (participants) from
different organizations. The interviews were conducted in
Dutch since all the organizations and participants were located
in the Netherlands. The term ‘organization’ used in this paper
refers to the organization that employs the participant and not
the organization where the participant performed the project
under investigation. The organizations included in the case
study all claimed to follow agile development methodologies.
Three of the organizations have a long history in IT consulting.
They employ highly skilled consultants and IT coaches special-
ized in ADMs, among other subjects. Two organizations pro-
vide customized IT services. One of them is specialized in
providing transport services and the other provides administra-
tive software packages. Both organizations have been develop-
ing their software using an ADM for several years. The sixth
organization in our study is a big government agency that
adopted an agile large-scale framework several years ago. The
anonymized information about the organizations is summarized
in Table 1. Due to confidentiality agreements with the partici-
pants all data that refers to the participants and/or to the organi-
zations employing them, is anonymized. The second column of
Table 1 indicates the approximate size of each organization
based on the number of its employees. The third column shows
how many projects from each organization we have included in
our study. The rightmost column shows how many participants
from each organization joined our study.

275

TABLE 1. MULTI-CASE STUDY ORGANIZATIONS

Organization Size in employee’s
number

of projects # of partici-
pants

O1 Medium (51 – 200) 2 4

O2 Medium (51 – 200) 1 2

O3 Large (200 – 500) 1 1

O4 Large (300 – 700) 3 3

O5 Enterprise (10000 – 30000) 3 3

O6 Enterprise (50.000 –
100.000) 4 4

Table 2 presents the studied projects’ settings. All the stud-
ied projects used Scrum [15] as their ADM. The second col-
umn of Table 2 shows the total number of team members and
the number of agile teams in the project, e.g. project P1 had 21
team members that formed 3 distributed teams. The third col-
umn shows which scaled-framework is used by each project. A
cell with ‘none’ means that no framework was used. The
rightmost column indicates the application domain.

TABLE 2. MULTI-CASE STUDY PROJECTS

Project # members /
teams

Scaled-
Framework

Domain

P1 21 / 3 none Public sector

P2 24 / 2 none Public sector

P3 117 / 13 SAFe [16] Government

P4 30 / 3 none Commercial

P5 50 / 5 Scrum of
Scrums [17] Banking

P6 175 / 25 SAFe [16] Commercial navigation

P7 56 / 7 none Public sector

P8 12 / 2 none Public sector

P9 28 / 4 none Government

P10 40 / 6 none Health care

P11 27 / 3 SAFe [16] Government

P12 24 / 3 SAFe [16] Government

P13 14 / 2 none Insurance

P14 200 / 22 Spotify [18] Telecom

As we could see from Table 2, the participating organiza-
tions employ a variety of agile approaches for their projects.
Some of the organizations use large-scale frameworks such as
Scaled Agile Framework (SAFe) [16] and Scrum-of-Scrums
[17].

We note that some participants performed more than one
role in the respective project, so the number of roles (20) is
larger than the number of interviewees (17). Next, Table 3 in-
dicates the years of work experience each participant has in
general in the field of Software Engineering and the role(s)
(s)he performed in her/his respective projects which were de-
scribed in Table 2. As indicated earlier, we included a broad
variety of backgrounds, in order to explore the phenomenon of
interest from multiple perspectives.

TABLE 3. YEARS OF EXPERIENCE AND ROLES OF THE PARTICIPANTS

Participant Years of
experience

Project Role

PA1 4 P1 Software Developer

PA2 20 P1 Software Developer &
Software Architect

PA3 15 P2 Scrum Master

PA4 36 P2 Software Tester

PA5 21 P3 Scrum Master & Soft-
ware Tester

PA6 6 P4 Scrum Master

PA7 20 P5 Agile Coach

PA8 22 P6 Agile Coach & Product
Owner

PA9 10 P7 Software Architect

PA10 29 P8 Delivery Manager

PA11 25 P9 Software Architect

PA12 22 P10 DevOps Manager

PA13 17 P11 Scrum Master

PA14 15 P12 Software Designer

PA15 18 P7 Information Analyst

PA16 5 P13 Software Developer

PA17 7 P14 Agile Coach

The interviews were conducted between February and April
2017. The length of the interviews varied from 50 to 95
minutes. Each interview started with introduction of the re-
search objective and the structure of the interview. The re-
searcher informed the participants further about their rights and
responsibilities towards the research. All interviews were au-
dio-recorded to avoid loss of data.

Our last step was the data analysis. The audio files were
transcribed to a written version by a professional external or-
ganization. We chose not to do the transcription ourselves to
avoid any interpretation bias that could be passed into the tran-
scripts by the researchers involved in preparing and taking the
interviews. The analysis process in this paper was done based
on the grounded theory method of Charmaz [19]. We chose it,

276

because it is suitable for qualitative exploratory research where
theory should emerge from the data. Thereafter the first two
researchers read the transcripts separately and inductively ap-
plied descriptive labels (called codes) to segments of texts of
each transcript. Table 4 provides two examples of the process
of coding a segment of text. In the next step, the researchers
involved in the analysis stage came together and discussed the
descriptive codes they derived. Similar descriptive codes were
combined in higher-level categories. Different descriptive
codes were resolved by conducting an argumentative discus-
sion [20] between the researchers to reach a shared rationally
supported position and then combined in higher-level catego-
ries. No unresolved different descriptive codes remained after
this step. The results of this process were reviewed by the third
researcher. Concerning our use of Charmaz’ grounded theory
method, we make the note that we employed the coding and the
code-comparison practices of grounded theory to the qualita-
tive interview data for the purpose of analysis only. We did not
aim at a full-blown grounded theory study which includes the
processes of theoretical sampling and saturation. Our choice of
using grounded theory practices for data analysis only agrees
with Matavire and Brown [21] who profiled the use of ground-
ed theory in information system research, and Ramesh et al. [5]
who also used grounded theory coding for data analysis exclu-
sively.

TABLE 4.TEXTS AND CODES

Original text Codes

PA8: “To avoid any conflicts and useless
discussions with the business representa-
tive we decided to divide the cake. Hence,
we maintained three product backlogs”

Division of requirements
documentation

PA4: “We wanted to make the software
modular, so we wanted to have the
frontend and the backend really well sepa-
rated. So we said: you know what, we force
that by assigning them to two different
teams. One team has to implement the
frontend and the other the backend. Hard
agreements need then to be made regard-
ing the interfaces”

Components’ teams

IV. RESULTS

A. RQ1 – What are the mechanisms behind the reported
challenges?

1) Implementing QRs based on unstated assumptions
In our multi-case study we observed that agile teams un-

consciously make assumptions about the feasibility of QRs,
especially when those QRs’s implementation depends on re-
sources of the customer that the system was built for. For ex-
ample, in project P1, agile teams were supposed to implement a
highly available system for public use (e.g. 24/7 days). The
system depended on collecting its data on a customer’s data
source which was located behind a proxy firewall. The agile
teams did not know about the proxy firewall and assumed the
customer’s data source would be made available for use. Late
in the development cycle, the agile teams discovered that due

to other QRs (security) the customer’s data source was only
available during working hours. The teams were forced then to
ad-hoc rearchitect the system by introducing a copy of the cus-
tomer’s data source with higher availability. However, this ad-
hoc work-around caused the emergence of data consistency
requirements.

Moreover, in multiple agile projects it turned out that new
QRs could and did emerge during the development cycle.
However, those requirements remained ambiguous until the
Product Owner (PO) acknowledged the need for their imple-
mentation and hence specified them clearly and unambiguous-
ly. In situations where the PO could not specify those QRs,
agile teams had to proceed with implementing them based on
their judgment. PA2 explains:“after a while I saw a pattern in
how different versions of maps were generated. We could not
verify this versioning pattern with the PO, since nor the PO,
nor the customer could answer our questions clearly. We de-
cided to implement this versioning’s pattern in our software
anyway. Fortunately, there was no need to rollback our imple-
mentation”.

2) Priority assigned to conflicting QRs turns out to be
suboptimal

QRs are often related to specific functional requirements
(FRs) and rarely act upon the entire set of FRs for a project
[22] . In agile context, uunrecognized and conflicting QRs can
land on the Product Backlog (PB) [15] with different priorities
because of their related FRs. The implementation of a QR re-
lated to a FR with a higher priority could result in limiting the
implementation of a QR related to a FR with a lower priority or
eliminating it at all. In project P7 the agile teams had two im-
portant QRs among others, namely security and performance.
The security requirements were related to authentication and
authorization functions which were of high priority. Whereas,
the performance requirements (e.g. no longer than three second
response time) were related to end-users data retrieval func-
tions with lower priority. The security requirements were im-
plemented by one agile team and resulted in implementing sev-
eral security filters the data had to go through before being
submitted to the end users. Another agile team had to retrieve
the data and made it within three seconds available to the end
users. However, by the time the performance related FR got a
higher priority, it was not possible to retrieve the data within
three seconds. At the end, the performance requirement was
dropped since enforcing its implementation would result in
unaffordable costs.

3) Emerging QRs are hard or impossible to implement in
the chosen architecture

Architecting software is a solution-related activity, while
discovering and specifying the requirements is a problem-
related activity [23]. Agile development encourages Just-In-
Time (JIT) requirements analysis and implementation which
lead to JIT software architecture activities [24]. Therefore, ag-
ile teams should be continuously looking for appropriate solu-
tions (e.g. re-architecting the software) when understanding of
the problem domain changes (e.g. the emerge of new require-
ments). We observed that ALSD teams defined and agreed on
the overall system architecture early in the development cycle

277

based on limited requirements knowledge. This approach could
result in QRs to be infeasible at the time the needs for them
emerge. In project P7, agile teams agreed at the beginning of
the project on using an event-driven architecture. The choice
for this architecture was motivated by the number of existing
systems that the new system needs to communicate with. Be-
sides, the teams agreed on making the events as small as possi-
ble to avoid network overhead and gain extra performance. In
an advanced stage of the project the need for more complex
events with more data grew but couldn’t be fulfilled due to
architectural limitations. As a work-around, the teams queried
the database multiple times to retrieve the needed data in se-
quential small chunks which negatively affected the perfor-
mance as one of the most important QR’s of the project.

4) Focusing on one’s own component and losing the big
picture
QRs are by nature cross-cutting requirements. Therefore, the
right implementation of QRs could require a well-structured
interaction of different system components (Fig.1). Agile teams
responsible for implementing specific components take full
ownership of the respective components but may take a care-
less attitude toward the overall characteristics of the system.
PA15 explains: “We had a software architect responsible for
designing the financial component. He overdesigned the system
to make it as generic and flexible as possible which resulted in
very complex architecture. We could not integrate this compo-
nent with other parts of the system because we did not under-
stand what goes through it. Therefore, we were forced to re-
architecture the component to be able to integrate it”.

5) Uninformed choice of an inappropriate communication
model impedes the implementation of QRs

The agile philosophy − in contrast to waterfall − encourages
interaction over following processes [25]. Therefore, agile
teams need to establish well-structured and unambiguous
communication channels to ensure the right implementation of
the required QRs. The maturity of the involved teams is crucial
for establishing and leading their own communication chan-
nels. [26] defines two models to coordinate the communication
between teams: 1) Coordination between teams is done by a
higher authority and 2) Coordination between teams is done by
the involved teams themselves. The first option assumes that
the teams maturity is not enough to coordinate the communica-

tion effectively and therefore a higher authority in the form of
managers is required. PA6 explained: “There was no one who
banged his fist on the table and said: this is it. There were a lot
of opinions, all of which were considered equally important”.
The teams’ maturity should be examined up-front to determine
the appropriate coordination model. In our multi-case study we
did not observe any systematic process used by the agile organ-
ization to determine the appropriate coordination model.
Choosing sporadically a coordination model that did not match
the maturity levels of the teams, in turn, could result in missing
QRs. In project P1, text documents had to be made available
for end-users to search through. The documents were devel-
oped by one team and made available for end-users by another
team. This is on the assumption that the documents were cor-
rect and accurate. PA1: “We had agreements about, for exam-
ple, the validity of the documents. We agreed to put the word
“expired” in the name of the document when a document is no
longer valid. If the communication between the teams has not
gone well – what actually happened- the end-users could con-
sult document which did not reflect the reality at that moment”.

6) Customers are not interested in internal QRs
When it comes to requirements that are not visible to the

end users, the PO as well as the customer are not interested.
This moves the focus of the teams from invisible QRs to visible
requirements. Besides, the pressure that organizations put on
agile teams to deliver functionality together with the lack of
interest of the customer in internal QRs gives agile teams a
licence to neglect the internal QRs. PA2: “It doesn’t interest
the PO, the customer at all, how you solve internal technical
requirements”. PA14: “To enhance maintainability we had the
possibility to switch to a newer version of the currently used
framework. However, the customer rejected our suggestion
since maintainability had in his perspective a lower priority”.
PA8: “What you also saw in agile projects, that when the pres-
sure on the teams is high to deliver functionalities, you saw that
the teams remove invisible QRs from the PB to let FR get high-
er priority. They thought nobody will care about invisible
QRs ”.

7) Project-wise thinking prevents the right implementation
of QRs

In our multi-case study we observed that those agile organi-
zations that are responsible both for the implementation of the
software and for its maintenance, pay much more attention to
internal QRs than agile organizations that were only hired to
implement the desired system. This mentality was described by
PA8 as ‘project company versus product company’, which in
fact is translated into keeping a short-term perspective on the
project versus a long-term perspective: “What you actually try
to do in agile, is to move on from project company to product
company. In product company you think more in the future and
determine early how you will treat QRs, since every crap you
deliver will return back to you again. While project-wise work-
ing is more like after me the deluge. When the deadline is ap-
proaching, teams have the tendency to compromise QRs in
favour of finishing the project in time”.

Component A Component B Component C Component D

QR 1

QR3

QR2

Team A Team B Team C Team D

Fig. 1. Cross-cutting QRs

278

8) Not clearly specifying test criteria
To ensure the right implementation of QRs, teams have to

verify at some point the existence of the desired QRs. Howev-
er, to verify the satisfaction of QRs, they need to be unambigu-
ously specified. In agile projects where (conflicting) require-
ments emerge, agile teams together with the customer fail to
specify clearly the scope of the desired QRs. In those cases,
verifying the satisfaction of QRs became a matter of feeling
instead of measurement. PA4: “QRs are not specified, neither
the happy flow, nor the alternative flows. I try to test both
based on my knowledge and experience”. Besides, the impact
of conflicting QRs should be examined to specify the accepta-
ble level of satisfaction of each QRs for the customer. By not
doing that, agile teams actually leave the testers in the dark. In
project P12 where security and capacity were conflicted, PA14
explains: “after delivering the software we got calls from end-
users telling us they could not log in. Investigating the log da-
tabase showed that our security component was not able to
handle the login of more than 50.000 users simultaneously.
This issue was not tested, since it was not clearly specified.
Hereafter we decided to limit the number of users that simulta-
neously can login to 50.000”.

9) Focusing on QRs of a specific viewpoint and neglecting
those of other viewpoints

Agile teams get their prioritised requirements from the PO.
The PO is in the most cases a business representative with par-
ticular domain knowledge in his/her area. However, the PO is
tasked to speak on behalf of all users from multiple domains, in
a project. As the PO may not know all those domains equally
well, he/she can pass bias into the prioritization:(s)he could
prioritize the QRs of the viewpoint (s)he represents higher than
those of other viewpoints. In this way, the PO could put pres-
sure on the team to drop any QRs that (s)he did not request
personally, especially in the face of a deadline. Hence, im-
portant QRs of different viewpoints could turn out to be in an
impasse. P13 had to build a mobile native application for an
insurance company. The PO formulated security and usability
as the most important QRs. Since mobile devices had limited
capacities, the agile teams chose to keep the data alive as a
background mobile process for maximum five minutes (e.g.
usability) after that a new login should be performed (e.g. secu-
rity). The PO was satisfied enough with this solution, since the
solution met the requirements of the viewpoint (s)he represent-
ed. However, users of old mobile devices were less happy since
old devices claimed always the memory of applications as soon
as they get in the background. Which meant that users of old
devices lost their data and had to login repeatedly and more
frequently then users of new devices had. Neglecting QR’s of
other viewpoints can also happen due to overlooking important
stakeholders as indicates by P7: “We had to identify the opera-
tional team early in the project as a stakeholder. In our project,
the operational team got involved at the end of the project.
That was a mistake in my opinion, since a lot of the operational
requirements were actually QRs”.

10) Adopting legacy architectural decisions complicate the
implementation of QRs of the new system

Distributed agile teams who are re-implementing a legacy
system get advised by the PO to collect important QRs from
the existing legacy system. From the PO’s point of view, since
the new system needs to provide among others the same func-
tionalities as the old one, agile teams have to collect the re-
quirements -including QRs- from the existing system. The PO
provides them only with new requirements for functionality
that does not exist in the legacy system. By lack of documenta-
tion, collecting old requirements is sometimes interpreted by
the PO as well as by the agile teams as cloning the current ar-
chitecture and design. Cloning the legacy architecture could
complicate the implementation of the new QRs of making them
even infeasible. Project P13 was supposed to move a cross-
platform mobile application to new platform-dependent (na-
tive) application. The old system used cloud storage to enhance
security and reusability. The data on the cloud should be syn-
chronised with that on the mobile application based on compar-
ing hash codes. In the new native application, recalculating the
hash codes to synchronize the data by every login resulted in a
long login process which reduced the usability of the native
system. The agile teams were forced to introduce a work-
around solution since re-architecting the system was prohibi-
tively expensive.

11) Moving to agile with a waterfall mind-set
In the waterfall approach, requirements (FRs and QRs) are

collected up-front, documented and handed to the software
developers to implement them. It is not up to the developers to
discover the needed requirements nor to verify them. As R.
Davies [27] describes the behaviour of waterfall developers:
“When requirements come from someone else and someone
else tests my work, I don't need to know the environment that
my software will be running in”. On the other hand, agile does
not make any differences between the kind of requirements
(FRs and QRs) and defines both as user stories (the most used
documentation technique as in [28]). Agile developers are ex-
pected to collect the needed requirement, elaborate them fur-
ther in face-to-face communication sessions and implement
them just in time. In our participants’ projects, we observed
that some of the agile developers still had the waterfall mind-
set. They implement the user stories that the PO ask for, but do
not bother themselves with figuring out what QRs might be
needed unless the system begins to expose rigidity. PA1: “It
was not known to the developers that there is a system in be-
tween”. PA8: “I requested the test manager to give us more
days to test the software. I told her the tests we run right now
are more waterfall-like while we are doing scrum”.

B. Mapping mechanisms to challenges.
We mapped the identified mechanisms in Sect. IV to the

challenges reported in our previous study [6] by using
Conklin’s Dialog Mapping technique for qualitative data struc-
turing [29]. It helped us organize the results of our data analysis
from each interviewee, by forming challenge-mechanism-
arguments structures. The challenges are those reported in [6],
the mechanisms are those reported in the previous sub-section
and the arguments are the interviewee’s facts and reasoning
that supported the mechanisms. Table 5 presents our mapping.

279

TABLE 5:MAPPING CHALLENGES TO UNDERLYING MECHANISMS

Challenges Mechanisms

Teams coordination and
communication
challenges

-Implementing QRs based on unstated
assumptions.

-Priority assigned to conflicting QRs turns out
to be suboptimal

-Uninformed choice of an inappropriate
communication model impedes the
implementation of QRs

-Focusing on one’s own component and losing
the big picture.

Quality Assurance
challenges

-Customers are not interested in internal QRs

-Not clearly specifying test criteria

-Focusing on QRs of specific viewpoint and
neglect those of other viewpoints

-Moving to agile with a waterfall mind-set

QRs elicitation
challenges

-Customers are not interested in internal QRs

-Focusing on QRs of specific viewpoint and
neglect those of other viewpoints

-Project-wise thinking prevents the right
implementation of QRs

Conceptual challenges of
QRs

-Implementing QRs based on unstated
assumptions

-Uninformed choice of an inappropriate
communication model impedes the
implementation of QRs

-Customers are not interested in internal QRs

-Focusing on QRs of specific viewpoint and
neglect those of other viewpoints

-Moving to agile with a waterfall mind-set

Architecture
challenges

-Priority assigned to conflicting QRs turns out
to be suboptimal

-Focusing on one’s own component and losing
the big picture.

-Emerging QRs are hard or impossible to
implement in the chosen architecture

-Adopting legacy architectural decisions
complicate the implementation of QRs of the
new system

Therein, the first column shows the categories of challenges
as reported in [6]. The second column reports the mechanisms
which could result into the challenges of the respective catego-
ry in the first column. Each mechanism could produce one or
more challenges. For example: the lack of interest of the cus-
tomer regarding QRs (e.g. Customers are not interested in in-
ternal QRs) can lead to QRs test specifications and user ac-
ceptance challenges (e.g. Quality Assurance challenges). Be-
sides, it also can produce QRs elicitation challenges since the
customer does not pay enough attention to internal QRs. More-
over, it can further produce a mix of different QRs specifica-
tion approaches (e.g. Conceptual challenges of QRs). On the
other hand, each challenge can be produced by one or more
mechanisms. For example, architectural challenges could be
produced by insufficient prioritizing of conflicted QRs, having
the agile teams focus on their own components, and losing the
big picture of what the whole system needs to be. Furthermore,
adopting architectural decisions of legacy system in the new
system and making unchangeable architectural choices based
on limited knowledge early in the development cycle could
also produce architectural challenges.

C. RQ2 – What are the practices agile teams currently use to
mitigate the impact of the reported challenges.

1) Maintaining an assumption wiki-page
In situations where the PO cannot provide clarity about the

specification of QRs, agile teams make their own assumptions.
These assumptions are also made when the teams think that a
QR is self-evident and not worth to be verified. Those assump-
tions are collected in an accessible wiki-page and implemented
together with FRs in different sprints. PA2: “Halfway through
the project we created a wiki-page where we put our assump-
tions about what might have been QRs. Those were user stories
that the PO could not specify enough like how specific the per-
formance should be, whether we have to integrate the current
system with other systems already used by the customer, or
how to treat versioning. Those were specific technical issues
which did not interest the PO”. The assumed QRs could be
rolled back if the PO or the customer did not accept them after
implementation.

2) Use multiple product backlogs to include requirements of
different viewpoints

In the experience of our participants, some agile teams ex-
plicitly acknowledge that different viewpoints have different
interests and QRs. Distributed teams could use different PBs to
document the requirements of different viewpoints. Project P6
had three different PBs. One was the responsibility of the PO
and was filled up with user stories that represented the custom-
er’s business desires. Another was filled up by the software
architect and represented architectural related QRs and the last
one was the responsibility of the operation manager and filled
up with FR and QRs related to the process of continuous deliv-
ery. PA8 explains: “To avoid any conflicts and useless discus-
sions with the business representative we decided to divide the
cake. Hence, we maintained three PBs. The sprint velocity was
also divided to reflect the three PBs”.

280

3) Use automated monitoring tools
Agile teams make use of tooling (e.g. SONAR1) to monitor

the quality of their software under development. QRs that are
related to the internal operation of the software were imple-
mented as rules in the monitor tool. The tool then raises a
warning when the defined rules are overridden. PA11: “We
tried to automate the Definition Of Dones (DoDs) [15] as much
as possible and implement them in Sonar. For example we
agreed to use where possible in our code the java keyword
Final. It is a small technical detail that can improve the per-
formance. Hence, we implement a Sonar rule that checks de
code and gives a sign if it finds no Final in a place where it
should”. PA9: “We used Sonar as quality application. Code
quality rules were implemented in Sonar and any violations of
those rules was reported by Sonar”.

4) Reserve part of the sprint for important QRs
QRs which in the opinion of the PO do not have business

value could turn out to be neglected more easily than others.
The neglect of those QRs may result in inflexible and difficult
to maintain system. In project P1, agile teams found a way to
work around this PO behaviour. They collected the internal
QRs in a different PB and agreed with the PO to implement
one of those QRs each sprint as long as time permits. PA2: We
said to the PO, you have to give the teams the space to imple-
ment one technical QRs each sprint. The teams did use this
space to improve the quality of the software. The PO doesn’t
even know which QRs we were implementing. Other agile
teams reserved part of the sprint velocity to be dedicated to
important QRs. PA14:” We have reserved 30% of each sprint
for important QRs, such as Maintainability, Performance and
Security”.

5) Sprint allocation based on multiple PBs
Distributed agile teams could use multiple PBs to include

QRs of different viewpoints. Hence, they divide the sprint ac-
cording to the number and importance of the different PBs.
Project P6 had three PBs representing the business require-
ments, architectural QRs and continuous delivery requirements.
The sprint capacity was distributed among the different PBs,
respectively (40%, 40% and 20%). For example if an agile
team has a sprint velocity of 20 story points then the sprint will
have 8 story points of business requirements, 8 story points of
architectural related QRs and 4 story points of continuous de-
livery requirements. PA8 explains: “40 % of the sprint velocity
was devoted to business user stories, 40% was dedicated to
architectural QRs and 20% for the pipeline requirements”.

6) Establishing preparation team
A preparation team is a team that consists of senior infor-

mation analysts, senior software architecture and business rep-
resentatives. This team works in parallel to the other distributed
agile teams and is responsible for drafting the PB, making the
PB items ready for implementation, defining the overall soft-
ware architecture (e.g. big design up-front [30]) and assigning
ready items from the PB to the distributed agile teams. The
preparation team begins from a so-called ‘sprint zero’ with
gathering the most important requirements and defining the

1 https://www.sonarqube.org/

overall architecture. The team continues with collecting the
needed requirements, making them ready to implement and
refining the software architecture during all the sprints after.
The team distributes the defined user stories among the distrib-
uted teams based on the nature of the user stories and the avail-
able skillsets within the different teams. PA9 explains: “We
had specialized teams. Every team was responsible for a spe-
cific component (e.g. user screens team, end-user’s letters
team). Besides, we worked with scenarios that touch every
component of the system”. The preparation team made the user
stories outflew from the scenarios ready to implement and as-
signed them to the right team with the needed skills. PA12 used
in project P10 the same approach, however, they called it
‘Readiness Team’ instead of ‘preparation team’.

7) Establishing components teams
As we already indicated, the ALSD projects in our multi-

case study organize distributed teams around particular compo-
nents. In our participants’ experience, component’s teams de-
velop an ownership feeling about the components that they are
responsible for. This feeling enhances the internal quality of the
individual component and hence the quality of the whole sys-
tem. PA9: “At the beginning of the project we assigned a com-
plete scenario to each team to implement. We saw that each
component suffered from ambiguity and poor internal quality,
since each component could be modified by each team. Then
we decided to assign components to teams and make each team
owner of a particular component. The internal quality of the
components significantly improved”.

8) Establishing QR specialists’ teams
We have observed that ALSD projects dedicate the owner-

ship of important QRs to teams with solid knowledge about
that particular QR. For example, if security is an important QR
for the project, a team with security specialists will be put to-
gether and will be assigned the ownership of security require-
ments. This team should ensure the implementation of the se-
curity requirements across the distributed teams. PA13: “Per-
formance and usability were dedicated to other teams within
the organization. security was dedicated to an external team”.
Moreover, in cases that the system fails to meet the customer
expectation regarding a particular QR, a team with solid exper-
tise in that particular QR could be set up in an ad-hoc manner
to resolve the failure. PA5: “The previous version of the pro-
ject did not meet the performance expectation of the customer.
We put together a performance team who should analyze and
resolve the problem”.

9) Innovation and Planning Iteration (IP)
IP is a term that is used in SAFe [16]. It is a time period

equal to one sprint that an agile team can request in order to
work on activities other than delivering user stories with busi-
ness value. In our study, we have observed that distributed
teams request IP to resolve technical debts introduced in previ-
ous sprints. PA14 explains: “Important QRs which had busi-
ness values (e.g. security, performance) were implemented,
other QRs were neglected. We had to fight for an IP to resolve
technical debts”.

281

D. Mapping practices to challenges
We mapped each of the reported practices in Sect. IV, to

the reported challenges in our previous study [6]. For this pur-
pose, we used the data structuring technique [29] mentioned in
Sect. IV.B. Table 6 summarizes this mapping. The first column
of the table represents the reported categories of challenges as
in [6]. The second column shows the currently used agile prac-
tices in distributed context.

TABLE 6. MAPPING PRACTICES TO CHALLENGES

Challenges Practices

Teams coordination and
communication
challenges

-Maintain an assumption wiki-page

-Establish preparation team

Quality Assurance
challenges

-Use automated monitoring tools

-Establish QR specialists’ teams

-Innovation and Planning Iteration (IP)

QRs elicitation
challenges

-Establish components teams

-Establish preparation team

-Reserve part of the sprint for important QRs

Conceptual challenges of
QRs

-Use automated monitoring tools

-Use multiple product backlogs to include
requirements of different viewpoints

-Maintain an assumption wiki-page

-Sprint allocation based on multiple PBs

Architecture challenges -Establish preparation team

-Establish QR specialists’ teams

-Innovation and Planning Iteration (IP)

Each of the reported practices in Table 6 could (partially)
mitigate the impact of one or more of the reported challenges.
For example, the practice of establishing a preparation team is
used to solve coordination issues. It helps coordinating the col-
laboration between the distributed teams by eliminating any
ambiguity that could originated by team’s miscommunication.
Moreover, establishing a preparation team is used to control
architectural changes and to prevent unmanaged architectural
changes from being happened. Besides, the impact of the re-
ported challenges could be mitigated by implementing one or
more practices. For example: the challenges of the category
“QRs elicitation challenges” can be mitigated by implementing
different practice namely 1) Establishing component’s teams to
enhance the internal quality of the different components, 2)
Establishing a preparation team to collect the requirements and

release the PO from being the only source of the requirements,
and 3) Reserve part of the sprint to be used for implementing
important QRs.

V. DISCUSSION

We have observed that though currently used agile practic-
es could mitigate the challenges reported in distributed ALSD
[6], they could also introduce other challenges. In our multi-
case study, the ALSD projects with multiple distributed teams
organize the teams around defined subsystems or components
(e.g. payment component, registration component). This ap-
proach to the organization of the work was perceived as “some-
thing new” in the organizational settings where our participants
were employed. In the experiences of our participants, when a
particular team has the ownership over a particular component,
the team also takes actions to guard the quality of its own com-
ponent. This is because the technical debt detected in a particu-
lar component will eventually return back to the responsible
team. Plus, each component will show stability and clarity
since only one team is allowed to touch the code belonging to
that particular component. Therefore components’ teams [31]
could be an effective mitigation against poor internal quality
and ambiguity. However, the customer who requested the sys-
tem, is not interested in the individual components but in the
business values delivered by the whole system (made up of
these components). If the delivered business value fails to meet
the expectation of the customer, the component’s teams would
not take the responsibility of the failure since each of them is
only responsible for a particular component (and no one is re-
sponsible for the system as a whole). Moreover, the compo-
nent’s teams need together to agree on well-defined communi-
cation protocols to ensure the delivery of the desired business
values (e.g. inter-faces). In our multi-case study we have ob-
served that teams are not always capable to steer the communi-
cation between component’s teams in the right direction espe-
cially if the teams suffer from lack of maturity. In case of lack
of maturity within component’s teams, a higher management
role is needed to coordinate the collaboration between the
teams [26]. Feature’s teams [31] is another approach to organ-
ize distributed agile teams. The idea behind the feature’s teams
is to organize the teams around requested business values (e.g.
system features). A feature team is allowed to touch all existing
components to ensure the right implementation of the required
feature. Feature’s team could be the answer to the challenges of
using component’s teams [31]. However, according to our par-
ticipants feature’s teams lack the responsibility over individual
components which could result in delivering subsystems of
poor internal quality. PA9 explains: “When we started the pro-
ject we divided the teams into scenario teams. Each team was
responsible for the implementation of a whole scenario from
the user interface through the database layer. We saw then that
each component suffered from ambiguity and unclear guide-
lines. Because each team had its own way of working and there
was no ownership for the components, spaghetti code began to
arise and it was difficult to understand the structure of the dif-
ferent components”.

282

We have also observed that agile teams, specially less ma-
ture ones, still need a higher management role that coordinate
the collaboration between the distributed teams which is totally
against the spirit of agility [15][25]. The agile spirit advocates
the self-organizing team concept which should be capable to
organize the needed activities itself to perform the required
work. In our multi-case study we found that agile teams use
practices that move the elements of self-organizing to a higher
management team (e.g. preparation team, ready team). This
results in agile teams that are not self-organized anymore. Es-
tablishing a preparation team mitigates some challenges, e.g.
unmanaged architectural changes, coordinating the communi-
cation between the distributed teams and improve the require-
ments elicitation and specification processes. However, estab-
lishing a preparation team takes the flexibility of agile a step
backward toward waterfall since the distributed agile teams are
stripped out from their self-organizing elements. Besides, the
use of a preparation team could introduce other challenges such
as making definitive architectural choices early in the process
that prevent emerged QRs from being implemented. P7 ex-
plains this challenge: “We made at the beginning of the project
an architectural choice. This choice include the use of small
massages in an even-driven architecture to enhance the per-
formance. I think it was not a very good choice. However, now
we cannot change it anymore and we just have to work with
it”.

An interesting observation from Table 1 is that some of the
mechanisms are not specific to ALSD projects, but are known
from waterfall projects, e.g. that customers have less interest in
internal QRs, which in turn create QRs elicitation challenges
(see the third raw in Table 1). However, the solution practices
that agile teams come up with in order to counter these chal-
lenges are different compared to those in waterfall projects.
While waterfall projects may resort to increasing the number of
documentation (e.g. using standards, checklists and explicitly
defined QRs-specific terminology [32]), ALSD projects put
emphasis on people and propose solution practices that are
organizational in nature – e.g. establish component teams, and
preparation teams.

Another interesting observation is that agile teams use dif-
ferent approaches to document QRs (e.g. assumption’s wiki,
multiple PBs, rules in monitoring tools, etc.). This observation
exposes the struggle that agile teams experience when it comes
to QR’s specification and documentation. It also shows that
agile teams find creative solutions to cope with the inability of
user stories to document QRs [33][34].

VI. LIMITATIONS OF THIS STUDY

We are aware of a few important limitations of our multi-
case study, which we examine below by using Yin’s checklist
[12] concerning generalizability, reliability and construct valid-
ity. Because our research does not seek to establish any causal
relationships, we do not discuss threats to internal validity.

Generalizability. Would the mechanisms be observed if
we would interview other practitioners in other countries? And
would the practices resolving the challenges experienced by
our participants, be observable in other contexts? We can only

claim that the reported mechanisms and possible solutions oc-
curred in the projects reported by our participants and that it
might well be possible that they occur elsewhere too − if there
are contextual similarities between our participating organiza-
tions and other organizations. But it could be the case that other
organizations’ political contexts may differ from those in this
multi-case study, which in turn put at play different mecha-
nisms compared to those in this paper. It could be also possible
that organizations experiencing the present mechanisms come
up with completely different solution practices that are working
equally well in countering the challenges. Therefore our list of
mechanisms for the challenges and our list of possible solutions
are living documents that may change with future case studies.
We do expect that similar contexts in similar organizations [35]
(e.g. in the same business sector in the same country) may cre-
ate the same mechanisms, which in turn might bring agile
teams to come up with similar solution practices to the experi-
enced challenges. Our generalization is not that the mecha-
nisms we identified occur in all ALSD projects, but that they
may occur more often in ALSD, and are important to under-
stand, prevent and mitigate. Our research provides evidence
that these mechanisms are important, because practitioners
reported them as such; whether they occur more often requires
more research.

Reliability. It might be possible that the researchers passed
occupational bias [38] into the research process due to their
own business experience (that they accumulated prior to their
academic careers). We countered this threat by taking four spe-
cific actions: (1) we had the interview protocol and questions
reviewed by experienced and senior researchers; (2) a pilot
interview was done to test the applicability of the interview
questions; (3) all the interviews were audio-recorded and
shared with the senior researchers; and (4) the audio files were
transcribed by a professional agency.

Another reliability threat is our participants’ bias due to a
possible lack of honesty [36]. We countered this limitation by
taking three actions: (1) we assured that all the participants
were volunteers and had the right to refuse answering any ques-
tion at any time or even leave the interview at any stage with-
out giving a reason; (2) we assured the participants that all in-
formation remains confidential and anonymous; (3) the inter-
viewer started each interview by explaining the objective of the
research to the participants and the importance of giving accu-
rate and honest answers to the validity and reliability of the
research.

Construct validity. We used four measures to mitigate
construct validity threats: (1) triangulation of “multiple sources
of evidence” (as recommended by Yin [12]), (2) member-
checking [12], e.g., during the interviews, the interviewing
researcher restated or summarized the information provided by
the interviewee and then used follow-up questions to the re-
spective practitioner in order to determine accuracy; (3) peer
debriefing [37], which happened through the involvement of
senior researchers, and (4) disclosure of researcher bias [37],
which was achieved by maintaining a reflective journal. After
every interview, the interviewing researcher spent time noting

283

his immediate observations, thoughts and interpretations before
he subjected the data to coding.

VII. CONCLUSION

In our previous study [6], we have identified 13 challenges
which were divided into five categories that distributed teams
in ALSD projects face regarding the engineering of QRs. In
this paper we have identified 11 mechanisms behind those
challenges and nine practices currently used by ALSD teams to
mitigate the impact of the reported challenges. Furthermore, we
have mapped the identified mechanisms and practices to the
reported challenges. Based on this mapping we have found that
each mechanism can produce one or more challenges and each
challenge can be the result of one or more mechanisms.

This study shows also that a particular practice could miti-
gate some challenges but also could introduce other challenges.
Therefore we advise agile teams to carefully evaluate the used
practices and get insight in the challenges that could be miti-
gated or introduced by the use of that particular practice. Only
then agile teams could benefit optimally form the reported
practices.

We want also to advise agile organizations to get insight in
the maturity of their involved agile teams as early as possible.
This insight will actually help an organization to define an ap-
propriate communication model as described in [26]. Agile
teams that lack maturity need a higher management role to co-
ordinate the collaboration between the teams, while mature
agile teams are self-organized teams, and would be less produc-
tive if a management role is involved to supervise their work.

This paper also shows that it is well possible that agile
teams have the waterfall approach in their minds. Agile teams
have to be careful when moving from waterfall to agile philos-
ophy, since the wrong implementation of both will prevent the
teams from gaining the benefits of either approach.

VIII. FURTHER RESEARCH

In this paper we have identified the mechanisms behind the
challenges we have reported in our previous work [6] and the
practices agile practitioners use to cope with the challenges. To
identify these, we have analysed the data collected previously
[6]. This analysis enabled us to map the identified mechanisms
and solution practices to the previously identified challenges.
However, we think that it is also worthwhile investigating the
possible mapping between the solution practices and the mech-
anisms. We assume that multiple mechanisms might lead to the
use of a particular practice. Also, it might be possible that one
mechanism might call for a combination of multiple solution
practices. To realize this mapping however more interviews
with agile practitioners need to be done since the current data
does not provide enough evidence for establishing a reliable
and credible mapping. This is the focus of our immediate future
research.

REFERENCES

[1] M. Paasivaara and C. Lassenius, “Scaling Scrum in a Large
Distributed Project,” ESEM 2011 pp. 363–367, 2011.

[2] W. Alsaqaf, M. Daneva, and R. Wieringa, "Quality requirements in
large-scale distributed agile projects - A systematic literature

review", REFSQ'17 pp. 219-234, 2017.
[3] M. Käpyaho and M. Kauppinen, “Agile Requirements Engineering

with Prototyping: A Case Study,” RE2015, pp. 334–343, 2015.
[4] V. Sachdeva and L. Chung, “Handling non-functional requirements

for big data and IOT projects in Scrum,”. Cloud Comput. Data Sci.
Eng., pp. 216–221, 2017.

[5] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements
engineering practices and challenges: an empirical study,” Inf. Syst.
J., vol. 20, no. 5, pp. 449–480, 2010.

[6] W. Alsaqaf, M. Daneva, and R. Wieringa, “Quality Requirements
Challenges in the Context of Large-Scale Distributed Agile: An
Empirical Study,” REFSQ2018, pp. 1–16, 2018.

[7] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and
success factors for large-scale agile transformations: A systematic
literature review,” J. Syst. Softw., vol. 119, pp. 87–108, 2016.

[8] W. R. Fitriani, P. Rahayu, and D. I. Sensuse, “Challenges in Agile
Software Development : A Systematic Literature Review,” Icacsis,
pp. 155–164, 2016.

[9] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, and B. Kanagwa,
“Requirements Engineering Challenges in Large-Scale Agile
System Development,” REFSQ 2018, pp. 6–8, 2018.

[10] K. Petersen and C. Wohlin, “The effect of moving from a plan-
driven to an incremental software development approach with agile
practices: An industrial case study,” Empir. Softw. Eng., vol. 15, no.
6, pp. 654–693, 2010.

[11] K. H. Rolland, “‘Desperately’ Seeking Research on Agile
Requirements in the Context of Large-Scale Agile Projects,”
XP2015, 2015.

[12] R. K. Yin, Case Study Research Design and Methods, Sage, 2013.
[13] C. Boyce and P. Neale, “Conducting in-depth interviews: A Guide

for designing and conducting in-depth interviews,” Evaluation, vol.
2, no. May, pp. 1–16, 2006.

[14] Z. Eisikovits and C. Koren, “Approaches to and outcomes of dyadic
interview analysis,” Qual. Health Res., vol. 20 12, pp. 1642–55,
2010.

[15] K. Schwaber and J. Sutherland, “The Scrum Guide,” Scrum.Org. p.
17, 2016.

[16] D. Leffingwell and R. Knaster, SAFe 4.0 Distilled: Applying the
Scaled Agile Framework for Lean Software and Systems
Engineering, 1st ed. Pearson Education, 2017.

[17] C. Larman and B. Vodde, Practices for Scaling Lean & Agile
Development. Addison-Wesley Professional, 2010.

[18] H. Kniberg and A. Ivarsson, “Scaling Agile @ Spotify - with Tribes,
Squads, Chapters & Guilds,” 2012.

[19] K. Charmaz, Constructing grounded theory: a practical guide
through qualitative analysis, Sage, 2006.

[20] D. Hitchcock, “The Practice of Argumentative Discussion,”
Argumentation, vol. 16, no. 3, pp. 287–298, 2002.

[21] R. Matavire and I. Brown, “Profiling grounded theory approaches in
information systems research,” Eur. J. Inf. Syst., vol. 22, no. 1, pp.
119–129, 2013.

[22] M. Kassab, O. Ormandjieva, and M. Daneva, “An ontology based
approach to non-functional requirements conceptualization,” ICSEA
2009, pp. 299–308, 2009.

[23] T. E. Fægri and N. B. Moe, “Re-conceptualizing requirements
engineering: Findings from a large-scale, agile project,” XP2015 -
XP ’15 Work., pp. 1–5, 2015.

[24] C. M. Robert and M. Micah, Agile Principles, Patterns and
Practices in C#. Prentice Hall, 2006.

[25] Agile Alliance., Manifesto for Agile software development. 2001.
[26] J. Apperlo, Management 3.0 Leading agile Developers, Developing

agile Leaders. Pearson Education, 2011.
[27] R. Davies, “Non-Functional Requirements: Do User Stories Really

Help?,” DevOpsDays, 2009. [Online]. Available:
http://www.methodsandtools.com/archive/archive.php?id=113.

[28] J. D. R. V Medeiros, D. C. P. Alves, A. Vasconcelos, C. Silva, and
E. Wanderley, “Requirements engineering in agile projects: A
systematic mapping based in evidences of industry,” CibSE, pp.
460–473, 2015,.

[29] J. Conklin, “Dialog Mapping: Reflections on an Industrial Strength
Case Study,” Vis. argumentation, pp. 1–15, 2003.

[30] M. A. Babar, P. Kruchten, and P. Abrahamsson, “Agility and

284

Architecture: Can the coexist?”, IEEE Software, vol. 27, no. 2,
pp.16-22, 2010

[31] D. Leffingwell, Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise, First Edit.
Pearson Education, 2011.

[32] M. Daneva, A. Herrmann, and L. Buglione, “Coping with Quality
Requirements in Large, Contract- Based Projects,” IEEE Softw., no.
6, pp. 84–91, 2015.

[33] M. Daneva et al., “Agile requirements prioritization in large-scale
outsourced system projects: An empirical study,” J. Syst. Softw., vol.
86, no. 5, pp. 1333–1353, 2013.

[34] J. Nawrocki, M. Ochodek, J. Jurkiewicz, S. Kopczyńska, and B.

Alchimowicz, “Agile Requirements Engineering: A Research
Perspective,” in SOFSEM, 2014, vol. 8327, pp. 40–51.

[35] S. Ghaisas, P. Rose, M. Daneva, K. Sikkel, and R. J. Wieringa,
“Generalizing by Similarity : Lessons Learnt from Industrial Case
Studies,” CESI, 2013, pp. 37–42.

[36] N. King and C. Horrocks, Interviews in Qualitative Research.
SAGE Publications Ltd, 2010.

[37] S. B. Merriam, Qualitative Research and Case Study Applications
In Education. Jossey-Bass Publishers, 1998.

[38] P. N. Adler, Membership roles in field research, First edit. SAGE
Publications Inc, 1987.

285

