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Abstract
This paper presents a geometrically nonlinear beam finite element that captures non-uniform torsion and flexural-
torsional coupling of shear deformable thin-walled beams with an open unsymmetrical cross-section. The beam model
is based on the generalized strain beam formulation. In this formulation, a set of independent deformation modes is
defined as generalized strains in a co-rotational frame which are related to dual stress resultants using Timoshenko-
Reissner’s beam formulation. Cross-sectional warping is accounted for by a single warping function. Geometric
nonlinearities are accounted for by additional second order terms in the expressions for the deformation modes. Some
benchmark examples illustrate the accuracy of the new beam element.
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1. Introduction
Thin-walled members found in multibody systems are often modelled as thin-walled beams. Beam models are com-
putationally efficient and convenient for parametric analysis and shape optimization of complex multibody geometries
such as large stroke flexure hinges and compliant mechanisms [31]. Due to their geometric characteristics thin-walled
beams with open cross-sections exhibit complex structural behaviour including cross-sectional warping and lateral-
torsional buckling. An analysis of these phenomena must include, at least the warping of the beam cross-section and a
second order approximation of the beam strain-displacement expressions for determining the buckling loads. Further-
more, the effect of shear deformation can gain importance in the buckling behaviour of thin-walled beams, especially
when materials with relatively low shear modulus are used.
The majority of beam models used in flexible multibody analysis are based on geometrically exact theories such as
those proposed by Reissner [34] and used as a basis for a computational approach by Simo and Vu-Quoc [35, 36].
These models are frame independent and capable of accounting for finite rotations and for arbitrarily large deforma-
tions including transverse shear and torsion warping of the cross-section; however the applied constitutive laws are
only valid for small strains. Several authors developed nonlinear geometrically exact beam finite elements incorporat-
ing torsion warping effects [37, 11, 9] and constitutive equations for composite material [13, 39] to mention just a few.
Since the dominant nonlinearity of flexible multibody systems is due to large rigid-body motions, the co-rotational
formulation where the rigid-body motions are separated from deformations (e.g. see references ( [3], [6], [1]) could
be attractive for modelling of flexible multibody systems. However, when modelling flexible multibody systems with
elastic and rigid bodies, conventional co-rotational formulations treat rigid bodies in the same way as elastic bodies
with large stiffness. Thus they are not able of to model rigid-body dynamics exactly, yielding a less efficient formula-
tion in terms of computational time and eliminating high frequency modes of deformation. For this reason conventional
co-rotational formulations are still rarely used in flexible multibody dynamic analyses.
Co-rotational beam formulations bear much resemblance to the generalized strain formulation proposed by Bessel-
ing [4]. This formulation refers to the use of deformation modes, which define elastic deformations as well as implic-
itly rigid-body motion of the element and serves as the basis for the development of a finite element based formulation
for rigid–flexible multibody system analysis [16, 18]. For each element, a fixed number of independent deformation
modes is defined which are invariant under arbitrary rigid-body motions of the element. The deformation modes are
characterized by generalized strains, which are expressed as analytical functions of the nodal coordinates referred to the
global coordinate system. The deformation modes include the specification of rigid-body motions as displacements and
rotations for which the deformations are zero, van der Werff [44]. Flexible elements are modelled by allowing non-zero
deformations. If the deformations remain sufficiently small, they can be described in a single co-rotational frame and
related to the dual stress-resultants using existing linear beam models at different levels of sophistication ranging from
elementary beam theory to relatively advanced formulations for shear deformable and composite thin-walled beams
with an open unsymmetrical cross-section [20, 38, 29, 30]. Discrete interpolation of finite rotations is avoided, leading
to an intrinsic objective description. Furthermore the nonlinear strain-displacement relationships can be approximated
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through its Taylor series expansion without noticeable inaccuracy. This formulation combines the advantages of the
co-rotational formulation with the consistency of the inertial frame approach, viz derivation of the inertia forces in
terms of absolute nodal velocities and accelerations. Recently some papers [32, 24] have been published which are
based on a similar formulation.
In this paper, the generalized strain beam formulation, presented in [18] is extended to thin-walled beams with an
open unsymmetrical cross-section. A first- and second order stiffness formulation is derived. The first order stiffness
formulation includes the derivation of the element stiffness matrix for a thin-walled beam element with distinct shear
centre and centroid. The kinematics of the cross-sectional deformations is based on Timoshenko’s bending theory and
Reissner’s torsion theory [33]. The stiffness matrix is derived by interpolating both flexure displacements and twisting
rotations by means of modified Hermitian polynomials [29], using parameters accounting for the influence of shear
deformations. Coupling effects between shear deformations due to the shear forces and the non-uniform torsion in two
orthogonal principal planes are included using a procedure outlined in Kollar and Springer [21, 22] and Kim at al. [20].
The second order stiffness formulation deals with the modelling of geometric nonlinearities arising from change in
configuration involving finite deflections and pre and post-buckling. These geometric nonlinearities are accounted for
by additional second order terms in the expressions for the deformation modes. For two-dimensional beams, Jen-
nings [14] and Visser and Besseling [41] derived a second order approximation for the axial shortening due to bending.
Meijaard [27] used a third order Taylor expansion of the strain energy to derive a set of modified deformation modes
which include additional quadratic terms that account for the geometrically nonlinear couplings among bending and
torsion of three dimensional beams. However the derivation of these second order terms is not easy for beams with
unsymmetrical cross-section since the elastic rotations are defined about different points [19]. Bending rotations are
defined about the (principal) axes through the centroid while twisting rotations are defined about the shear centre axis.
In order to circumvent these difficulties a new approach is proposed in this work which consists of two steps:

1. The coupling among bending and torsion due to a non-coinciding centroid and shear centre is incorporated at
the level of the first order stiffness formulation using a transformation matrix which accounts for the eccentric
location of the shear centre axis with respect to the line of centroids.

2. On the basis of the elastic line (line of centroids) a nonlinear displacement field is defined, in which each mate-
rial point is associated with a cross-section, whose orientation is specified by an attendant elastic rotation matrix
resulting from a 3-2-1 rotation sequence for three modified Euler angles. A Taylor series expansion is used to
expand the nonlinear curvature and strain-displacement equations into a polynomial form of second order. The
second order displacement and rotation fields are interpolated in the same way as in the linear case by means
of modified Hermitian polynomials. Integrating the interpolated second order curvature and strain-displacement
equations over the length of the beam using the second moment-area theorem [10], yields a set of modified defor-
mation modes which includes additional quadratic terms that account for the geometrically nonlinear couplings
such as extension-torsion, bending-torsion and bending-extension.

The outline of the paper is as follows: The basic assumptions and the deformation modes for the thin-walled beam
element with the dual stress resultants and the equilibrium equations are presented in Section 2. First and second
order stiffness formulations are presented in Section 3. The (linearized) equations of motion for the second order beam
element are derived in Section 4. Finally numerical examples illustrating the performance of the present beam element
are presented in Section 5.

2. Generalized Strain Beam Formulation
We consider a spatial beam element based on the generalized strain beam formulation. In the original description
developed for stability and post-buckling analysis of structures [4], Euler angles were used to parameterize global nodal
rotations. Van der Werff and Jonker [45] introduced a description including Euler parameters which is more appropriate
for computations in multibody system codes and made possible an implementation in the program SPACAR [15].

2.1. Description of Thin-Walled Beam Model
The kinematic model is based on the following assumptions:

1. The beam is prismatic and slender, i.e. the dimensions of the cross-sections are small with respect to the beam
length.

2. The cross-section remains plane and keeps its shape, but is subjected to an additional warping displacement
perpendicular to the displaced plane.

Figure 1 shows a thin-walled beam element which is represented by an elastic line which coincides with the centroid
of the cross-sections of the beam. The configuration of the element is described by the position vectors rrrp and rrrq of
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Figure 1: spatial beam element, reference and deformed state.

the centroid at the end (section) nodes p and q respectively, in the global inertial coordinate system (OXYZ). The
orientations are described by orthogonal triads of unit vectors (nnnp

X ,nnn
p
Y ,nnn

p
Z) and (nnnq

X ,nnn
q
Y ,nnn

q
Z) which are rigidly attached

to the nodes. In the undeflected reference configuration the triads coincide and are given by (nnnX ,nnnY ,nnnZ); the vector nnnX
points in the direction of the axis pq and nnnY and nnnZ are in the directions of the principal axes of the cross-section. The
rotations of the triads are described by rotation matrices RRRp and RRRq, so

nnn p
X = RRRpnnnX ,

nnn p
Y = RRRpnnnY ,

nnn p
Z = RRRpnnnZ,

nnnq
X = RRR qnnnX ,

nnnq
Y = RRR

q
nnnY ,

nnnq
Z = RRR

q
nnnZ .

(1)

If the beam is rigid then the rotation matrices RRRp and RRRq are identical and in the initial undeformed state they are equal
to the identity matrix. In the present description Euler parameters are used to parametrize the rotation matrices, but the
formulation can easily be transformed if a different choice is made. If the Euler parameters are denoted by (λ0,λλλ) with
the scalar part λ0 and the vector part λλλ = (λ1,λ2,λ3)

T, a rotation matrix can be expressed as [23]

RRR(λ0,λλλ ) = (λ 2
0 −λλλ Tλλλ )I+2λ0λ̃λλ +2λλλλλλ T, (2)

where I is a 3× 3 unitary matrix. Furthermore use has been made of the tilde notation to denote the skew symmetric
matrix associated with a vector,

λ̃λλ =

⎡⎣ 0 −λ3 λ2
λ3 0 −λ1

−λ2 λ1 0

⎤⎦ . (3)

By definition, the Euler parameters must satisfy the constraint equation

λ 2
0 +λλλ Tλλλ = 1. (4)

2.2. Deformation Modes
The nodal coordinates of the spatial beam element are the six Cartesian coordinates representing the position vectors
rrrp and rrrq, two sets of four Euler parameters (λ p

0 ,λλλ
p) and (λ q

0 ,λλλ
q) and two warping coordinates α p and αq, describing

the change of twist at the nodes p and q. If a redundant parametrization for the rotations is used, only three of them are
independent. Therefore, as the beam has six degrees of freedom as a rigid-body, eight independent deformation modes,
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specified by a set of generalized strains εi, can be expressed as analytical functions of the nodal coordinates Xk, referred
to the fixed global coordinate system

εi = Di(Xk); i = 1, . . . ,8; k = 1, . . . ,16 .

or

εεε = DDD(XXX),

(5)

where
XXX =
[
rrrpT,(λ0,λλλ pT), α p,rrrqT,(λ0,λλλ qT), αq]T . (6)

A suitable choice for the deformation functions is [18]

ε1 = l − l0 , (axial− elongation) (7a)

ε2 = l0
(
nnn pT

Z nnnq
Y −nnn pT

Y nnnq
Z
)
/2 , (torsion) (7b)

ε3 =−l0 nnnT
l nnn p

Z ,

ε5 = l0 nnnT
l nnn p

Y ,

ε4 = l0 nnnT
l nnnq

Z,

ε6 =−l0 nnnT
l nnnq

Y ,

}
(bending) (7c)

ε7 = l2
0 α p, ε8 = l2

0 αq , (warping) (7d)

where l0 is the reference length of the element, lll = rrrq − rrr p is the vector from node p to node q, l = ‖lll‖ is the
distance between the nodes and nnnl = (rrrq − rrr p)/l is the unit vector directed from node p to node q. The deformation
modes are frame-invariant, which means that they do not change if the element undergoes an arbitrary Euclidean
displacement. The first deformation mode ε1 describes the axial elongation, the second mode ε2 describes the torsional
deformation, ε3 − ε6 represent bending modes in the xz and xy-planes respectively and ε7,ε8 represent the warping
modes. The bending modes are defined in terms of inner products of unit vector nnnl and the global unit vectors nnnY ,
nnnZ attached at the element nodes. Note that ε3 − ε6 do not change if the beam undergoes an axial elongation with
fixed orientations of the nodes and fixed direction nnnl . The physical dimension of all generalized strains is length. The
generalized strains can be constrained by imposing conditions on εi; in particular, the element can be made rigid by
imposing eight conditions εi = 0 (i = 1, ...,8). The bending modes are visualized in Figure 2.

(a)
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ql0
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nl
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q
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(c)
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ε5
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q
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Figure 2: Visualization of bending modes: ε3,ε4 and ε5,ε6.

2.3. Generalized Stress Resultants and Equilibrium Equations
Let us consider an equilibrium force system defined by the forces FFF p, FFFq, the moments TTT p, TTT q and the bi-moments Bp,
Bq applied at the nodal points p and q of the free beam element, which are placed in a vector of element nodal forces

FFF =
[
FFF pT,TTT pT,B p,FFFqT,TTT qT,Bq]T . (8)

The bi-moments have the physical dimension of moment multiplied by length [42]. Furthermore, we consider virtual
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variations of the nodal positions δ rrrp , δ rrrq, rotations δϕϕϕ p, δϕϕϕq and warping coordinates δα p, δαq which are collected
in a vector of virtual nodal displacements

δuuu =

[
δuuu p

δuuuq

]
=
[
δ rrr pT,δϕϕϕ pT,δα p,δ rrrqT,δϕϕϕ qT,δαq]T . (9)

The variations δϕϕϕ p and δϕϕϕq define infinitesimally small rotations from a general configuration with components along
the axes of the inertial coordinate system. These are related to the variations of the Euler parameters by a 3× 4
transformation matrix ΛΛΛ(λ0,λλλ ), as

δϕϕϕ = 2ΛΛΛ
[

δλ0
δλλλ

]
= 2[−λλλ , λ0III + λ̃λλ ]

[
δλ0
δλλλ

]
. (10)

Because δRRRp = δ ϕ̃ϕϕ pRRRp and δRRRq = δ ϕ̃ϕϕqRRRq, the variations of the unit vectors in Eq.(1) can be expressed as

δnnnp
X = δϕϕϕ p ×nnnp

X ,

δnnnp
Y = δϕϕϕ p ×nnnp

Y ,

δnnnp
Z = δϕϕϕ p ×nnnp

Z ,

δnnnq
X = δϕϕϕq ×nnnq

X ,

δnnnq
Y = δϕϕϕq ×nnnq

Y ,

δnnnq
Z = δϕϕϕq ×nnnq

Z .

(11)

The virtual variations of the generalized strains δεεε are related to the virtual displacements δuuu by the relationship

δεεε = DDD,,,uuu δuuu, (12)

where the components of matrix DDD,,,uuu are derived using relations (11). For the generalized strains defined in
Eq.(7) we obtain

(δ rrr pT) (δϕϕϕ pT) (δα p) (δ rrrqT) (δϕϕϕ qT) (δαq)

DDD,,,uuu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−nnnT
l 000T 0 nnnT

l 000T 0

000T l0
2
[
nnnp

Z ×nnnq
Y −nnnp

Y ×nnnq
Z
]T 0 000T l0

2
[
nnnq

Y ×nnnp
Z −nnnq

Z ×nnnp
Y
]T 0

l0
l
[
nnnp

Z − (nnnT
l nnnp

Z)nnnl
]T −l0(nnn

p
Z ×nnnl)

T 0 − l0
l
[
nnnp

Z − (nnnT
l nnnp

Z)nnnl
]T 000T 0

− l0
l
[
nnnq

Z − (nnnT
l nnnq

Z)nnnl
]T 000T 0

l0
l
[
nnnq

Z − (nnnT
l nnnq

Z)nnnl
]T l0(nnnq

Z ×nnnl)
T 0

− l0
l
[
nnnp

Y − (nnnT
l nnnp

Y )nnnl
]T l0(nnnp

Y ×nnnl)
T 0

l0
l
[
nnnp

Y − (nnnT
l nnnp

Y )nnnl
]T 000T 0

l0
l
[
nnnq

Y − (nnnT
l nnnq

Y )nnnl
]T 000T 0 − l0

l
[
nnnq

Y − (nnnT
l nnnq

Y )nnnl
]T −l0(nnn

q
Y ×nnnl)

T 0

0 0 l2
0 0 0 0

0 0 0 0 0 l2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Generalized stress resultants σi are defined to be energetically dual to the generalized strains εi, that is, the virtual work
supplied by the generalized stress resultants is −σσσTδεεε . According to the principle of virtual work, the element will be
in a state of equilibrium if

FFFTδuuu − σσσTδεεε = 0 , (14)
holds for all δuuu and δεεε depending on δuuu by the relationship (12). Substitution Eq.(12) in Eq.(14) yields with the
transpose matrix DDDT

,,,uuu
DDDT

,,,uuu σσσ = FFF . (15)
These are the equilibrium equations formulated in the deformed configuration of the beam element. From these equa-
tions the equilibrium nodal force systems, expressed in terms of the generalized stress-resultant components σi, are
calculated and visualized in Fig.3(b)-(g). In all cases, perfect equilibrium is obtained for arbitrary large rigid-body
displacements of the element. This is a direct consequence of the invariance of the generalized strains under rigid-body
displacements, as the generalized stress resultants have no contribution to the virtual work in Eq.(14) for virtual rigid-
body displacements, so rigid-body displacements leaving the deformations unchanged can be described.
In order to identify the generalized stress resultant components of a beam element we consider the undeformed config-
uration of the beam element, in which the unit vectors (nnnp

X ,nnn
p
Y ,nnn

p
Z) and (nnnq

X ,nnn
q
Y ,nnn

q
Z) coincide with the global coordinate

axes X ,Y,Z as shown in Fig.3(a). Subsequently, the beam is loaded by an equilibrium force system FFF defined in Eq.(8).
The generalized stress resultants σi corresponding to the nodal point forces and moments can then be recognized as
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−nY
q
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Figure 3: (a) Equilibrium nodal force system FFF of nodal forces, moments and bi-moments defined by Eq.(8) and (b)-(g)
generalized generalized stress resultants σ1 −σ8 corresponding to Eq.(15), where cosθi = arcsin(εi/l).

σ1 =−F p
x = Fq

x , (normal force)
l0σ2 =−T p

x = T q
x , (twisting moment)

l0 σ3 =−T p
y ,

l0 σ5 =−T p
z ,

l0 σ4 = T q
y ,

l0 σ6 = T q
z ,

}
(bending moments)

l2
0 σ7 = Bp, l2

0 σ8 = Bq. (bi−moments)

(16)

3. Stiffness Properties
Flexible elements are modelled by allowing non-zero deformations and specifying constitutive equations relating gener-
alized strains and dual stress-resultants. In the present finite-element formulation, the generalized strains are described
in local frames which move with the element as it is translated and rotated. If the deformations remain sufficiently
small, they can be described in a single co-rotational frame and related to the dual stress-resultants using a linear thin-
walled beam model. In this section a first and second order stiffness formulation is derived. The first order stiffness
formulation includes the derivation of the stiffness matrix based on Timoshenko-Reissner’s thin-walled beam model
with distinct shear centre and centroid. The second order stiffness formulation deals with the derivation of modi-
fied definitions for the deformation modes in which geometric nonlinearities arising from change in configuration are
accounted for by additional quadratic terms.
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Figure 4: Local coordinate system and displacements.

3.1. First Order Analytical Formulation
We consider a typical cross-section of a thin-walled beam in a Cartesian co-rotational frame (x,y,z) with base vectors,
eeex, eeey, and eeez pointing along the respective positive directions of the coordinate axes as shown in Fig. 4. A plane
normal to the x-axis, cuts the middle surface in a line called contour of the cross-section. The origin coincides with
centroid c and the x-axis coincides with the centroid of the cross-sections. The y-axis and z-axis are the principal
axes; ys and zs are the coordinates of the shear centre s; uc, vs and ws are rigid-body translations of the cross-section in
the x-direction at the centroid c and the y and z-directions at the shear centre s respectively; ϕx is a rigid-body rotation
about the shear centre axis and ϕy, ϕz are rigid-body rotations about the principal axes y and z, respectively. According
to the second assumption of in-plane rigid cross-sections, see Section 2.1, the beam is deformed in a way such that the
shape of the cross-section remains plane and keeps its shape. Under this assumption the cross-section translates and
rotates as a rigid-body, i.e. three translations, two bending rotations and a twisting rotation are required to describe the
movement of the cross-section. An additional assumption is made that the deformations remain sufficiently small, so
that Timoshenko-Reissner beam kinematics is applicable. Let rrrP

0 (x,y,z) denote the position vector of an arbitrary point
P on the cross-section, in the initial undeformed configuration, i.e.

rrrP
0 = xeeex + yeeey + zeeez. (17)

Reissner’s beam theory considers the warping displacements due to torsion and Timoshenko’s beam theory includes
flexural shear deformation. Hence, the position of point P in the deformed configuration becomes

rrrP = (x+uc)eeex + vseeey +wseeez +(yR− ysA)eeey +(zR− zsA)eeez +ω α eeex , (18)

where R(x) and A(x) are small rotation matrices which are defined by [40]

R =

⎡⎣ 1 −ϕz ϕy
ϕz 1 −ϕx

−ϕy ϕx 1

⎤⎦ , A =

⎡⎣ 0 0 0
0 0 −ϕx
0 ϕx 0

⎤⎦ , (19)

ω(y,z) is a normalized warping function with respect to the shear centre and α(x) is the change of twist per unit of
length taken as an additional degree of freedom [12]. Note that α(x) is not equal to the derivative ϕx,x owing to the
inclusion of shear deformation in warping. Since the y and z-axes are principal axes of inertia of the cross-section, we
have ∫

A

ω dA =
∫
A

ω ydA =
∫
A

ω zdA = 0 . (20)

Substitution of the rotation matrices R and A into Eq.(18), the local displacement vector uuu = (u,v,w)T = rrrP− rrrP
0 can

be written as [7]
u = uc − yϕz+ zϕy +ω α,

v = vs − (z− zs)ϕx,

w = ws +(y− ys)ϕx .

(21)

From Eq.(21) it can be observed that the axial displacement u is expressed as the sum of the axial displacement of the
centroid, the cross-section displacement due to Timoshenko’s beam theory and by the axial warping due to Reissner’s
thin-walled beam theory. The transverse displacements v,w are given by the transverse displacements of the shear centre
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Figure 5: Stress-resultants.

and by the angle of twist ϕx of the whole cross-section about the shear centre. The non-vanishing strain components
are

εxx = u,x = uc,x − yϕz,x + zϕy,x +ω α,x ,

γxy = v,x +u,y = vs,x −ϕz − (z− zs)ϕx,x +ω,y α ,

γxz = w,x +u,z = ws,x +ϕy +(y− ys)ϕx,x +ω,z α .

(22)

In these relations, a comma followed by an index denotes differentiation with respect to the corresponding variable.
Based on equilibrium considerations the stress resultants on a cross-section are, see Fig. 5

N =

∫
A

σx dA, My =

∫
A

σxzdA, Mz =−
∫
A

σx ydA, B =

∫
A

σxω dA, (23a)

Qy =

∫
A

τyx dA, Qz =

∫
A

τzx dA, M ω
x =

∫
A

(τzx
∂ω
∂ z

+ τyx
∂ω
∂y

)dA, (23b)

Mx =

∫
A

[
τzx(y− ys)− τyx(z− zs)

]
dA, Tx = Mx +M ω

x , (23c)

where A represents the cross-sectional area, N, My, Mz and B are the axial force, bending moments about the y-axis
and z-axis and the bi-moment; Qy, Qz and M ω

x are the shear force components acting along the principal axes at the
shear centre and the twisting moment due to non-uniform torsion (warping torque) and finally Mx, Tx are De Saint
Venant twisting moment and the total twisting moment acting on the cross-section, respectively. For a linear elastic
and isotropic material with elastic modulus E and and shear modulus G, the components of the stresses σx, τxy and τxz
can be expressed as follows

σx = Eεxx, τxy = Gγxy, τxz = Gγxz. (24)

Substituting Eqs.(22) and(24) into expressions (23a) and making use of Eq.(20) we obtain⎡⎢⎢⎢⎣
N
My

Mz

B

⎤⎥⎥⎥⎦= E

⎡⎢⎢⎢⎢⎣
A

Iy

Iz

Iω

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

uc,x

ϕy,x

ϕz,x

α,x

⎤⎥⎥⎥⎦ (25a)

and
Mx = GIt ϕx,x (25b)

where
Iy =

∫
A

z2dA, Iz =
∫
A

y2dA, Iω =
∫
A

ω2dA, (26a)

are the second area and sectorial moments respectively. The torsional constant It is defined as [25]

It =
∫
A

[
(z− zs +

∂ω
∂y

)2 +(y− ys− ∂ω
∂ z

)2]dA . (26b)
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Substituting Eqs.(22) and (24) into the expressions (23b), the following equations relating shear forces Qy ,Qz and
twisting moment M ω

x with the shear deformations are obtained [21, 20]⎡⎢⎣ Qy

Qz

M ω
x

⎤⎥⎦= G

⎡⎢⎣ Dy Dyz Dyω

Dz Dzω

sym Dω

⎤⎥⎦
⎡⎢⎣ vs,x −ϕz

ws,x +ϕy

ϕx,x +α

⎤⎥⎦ . (27)

The off-diagonal shear rigidities represent the coupling effects between shear resultants into the principal planes (Dyz)
and between shear and non-uniform torsion (Dyω ,Dzω). Thus in a shear-deformable beam with unsymmetrical cross-
section, a shear force acting along the principal axis passing through the shear centre generates an orthogonal shear
centre displacement component and a twisting rotation. Alternatively, a twisting moment will produce shear centre
displacements into the principal planes. The off-diagonal terms vanish for double-symmetric cross-sections. A pre-
processing procedure [22, 20] is applied to evaluate the shear rigidities in Eq.(27) for simple cross-sectional shapes.
Finally, the linear elastic strain energy for a beam of length l can be written in the form

W e =
1
2

l∫
0

[
Nuc,x +Mxϕx,x +Myϕy,x +Mzϕz,x +Bα,x +Qy(vs,x −ϕz)+Qz(ws,x +ϕy)+M ω

x (ϕx,x +α)
]
dx. (28)

Substituting Eqs.(25) and (27) gives

W e =
1
2

l∫
0

E
[
Au2

c,x + Iyϕ2
y,x + Izϕ2

z,x + Iωα2
,x
]
dx

+
1
2

l∫
0

G
[
Itϕ2

x,x +Dy(vs,x −ϕz)
2 +Dz(ws,x +ϕy)

2 +Dω(ϕx,x +α)2

+2Dyz(vs,x −ϕz)(ws,x +ϕy)+2Dyω(vs,x −ϕz)(ϕx,x +α)+2Dzω(ws,x +ϕy)(ϕx,x +α)
]
dx.

(29)

The last three terms refer to coupling between the two shear resultants and between each shear resultant and the non-
uniform torsion component.

3.2. First Order Discrete Formulation
If the deformations remain sufficiently small the generalized strains (ε2, ...,ε6) specified in Eqs.(7) can be described in a
single co-rotational frame (x,y,z) with the origin at node p and base vectors eeex, eeey, and eeez pointing along the respective
positive directions of the coordinate axes as shown in Fig. 6. The centroidal axis of the beam is taken as the x-axis
which coincides with the line connecting the nodal points p and q and the y-axis and z-axis are principal axes of the
cross-section. By replacing the global unit vectors nnnp

Y , nnnp
Z and nnnq

Y , nnnq
Z in Eqs.(7) by the respective local unit vectors eeep

y ,
eeep

z and eeeq
y , eeeq

z we obtain
ε2 = l0

(
eeepT

z eeeq
y − eeepT

y eeeq
z
)
/2 , (torsion)

ε3 =−l0 eeeT
x eeep

z ,

ε5 = l0 eeeT
x eeep

y ,

ε4 = l0 eeeT
x eeeq

z ,

ε6 =−l0 eeeT
x eeeq

y ,

}
(bending)

(30)

Figure 6: Co-rotational frame (x,y,z).

�

Figure 7: Bending deformations εs
3/l0 and εs

4/l0.
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where
eeep

y = Rpeeey ,
eeep

z = Rpeeez ,
eeeq

y = Rqeeey ,
eeeq

z = Rqeeez .
(31)

The rotation matrices Rp and Rq are obtained by evaluating the small rotation matrix R from Eq.(19) at the nodes p
and q. In accordance with the definition of the co-rotational frame, the boundary conditions are

uc(0) = 0 ,
vc(0) = 0 ,
wc(0) = 0 ,
α(0) = α p,

uc(l0) = uq
c ,

vc(l0) = 0 ,
wc(l0) = 0 ,
α(l0) = αq,

ϕx(0) = ϕ p
x = 0 ,

ϕy(0) = ϕ p
y ,

ϕz(0) = ϕ p
z ,

ϕx(l0) = ϕq
x ,

ϕy(l0) = ϕq
y ,

ϕz(l0) = ϕq
z ,

(32)

where α p and αq are the nodal warping coordinates in Eq.(6). Substitution of Eq.(31) into Eq.(30), using boundary
conditions (32) and disregarding second and higher order terms yields the following first order approximations for the
generalized strains.

ε1 = uq
c , (axial elongation) (33a)

ε2 = l0ϕq
x , (torsion) (33b)

ε3 =−l0ϕ p
y ,

ε5 =−l0ϕ p
z ,

ε4 = l0ϕq
y ,

ε6 = l0ϕq
z ,

}
(bending) (33c)

ε7 = l2
0 α p, ε8 = l2

0 αq. (warping) (33d)

As seen in Eqs.(21), the transverse displacements are referred to the shear centre s, while the axial displacement is
referred to the centroid of the cross-section. In order to derive a stiffness matrix for a beam element with an unsym-
metrical cross-section, it is necessary that the bending deformations are defined with respect to the shear axis as is
illustrated for εs

3/l0 and εs
4/l0 in x-z plane, see Fig. 7. Let vq

s and wq
s be the transverse displacements of the cross-

section in the y and z-directions at the shear centre of the end-section q, respectively. Since ϕ p
x = 0 and vp

s = wp
s = 0,

we obtain
εs

3 =−wq
s − l0ϕ p

y , εs
4 = wq

s + l0ϕq
y ,

εs
5 = vq

s − l0ϕ p
z , εs

6 =−vq
s + l0ϕq

z ,
(34)

where wq
s = ysϕq

x , vq
s =−zsϕq

x . (35)

Substituting Eqs.(35) into (34) yields with Eq.(33b)

εs
3 = ε3 − ys ε2/l0 , εs

4 = ε4 + ys ε2/l0 ,

εs
5 = ε5 − zs ε2/l0 , εs

6 = ε6 + zs ε2/l0 .
(36)

From Eqs.(36) it can be observed that the transformation of bending deformations from the centroid coordinate system
to the system of parallel axes passing through the shear centre depends on the twist rotation angle ϕq

x = ε2/l0. The
remaining deformations will not change by this transformation. Consequently, the transformation for the generalized
strains can be expressed in the following matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε s
3

ε s
4

ε s
5

ε s
6

ε7

ε8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

−ys/l0 1
ys/l0 1

−zs/l0 1
zs/l0 1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(37a)

or εεεs = Eεεε , (37b)

where E is a transformation matrix which accounts for the eccentricity of the shear centre. The derivation of the stiffness
matrix is based on assumed displacement fields. We employ a linear displacement field for the axial displacement and
so-called modified Hermitian shape functions [29] for the twisting angle and bending displacements which allow to
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take the influence of shear deformations into account. The displacement and rotation fields can be approximated by the
following matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uc(ξ )
l0ϕx(ξ )

ws(ξ )
l0ϕy(ξ )

vs(ξ )
l0ϕz(ξ )
l0α(ξ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N ω
13 l0N ω

12 −l0N ω
14

N z
12 N z

14
N z

22 N z
24

N y
12 N y

14
N y

22 N y
24

N ω
23 −l0N ω

22 l0N ω
24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2

ε s
3

ε s
4

ε s
5

ε s
6

ε7
ε8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (38a)

The expressions for the interpolation functions are given by

N1 = ξ

N i
13 = ξ 2(3−2ξ )+Φi , N i

23 = 6ξ (1− ξ ) ,

N i
12 =

1
1+Φi

ξ
[
(1− ξ )2+

Φi

2
(1− ξ )

]
, Ni

14 =
1

1+Φi
ξ
[− ξ 2 + ξ +

Φi

2
(1− ξ )

]
,

N i
22 =

1
1+Φi

[−3ξ 2+4ξ −1+Φi(ξ −1)
]
, Ni

24 =
1

1+Φi
ξ
[
3ξ −2+Φi

]
.

(38b)

In these expressions ξ = x/l0 and coefficients Φi(i = y,z,ω) take the expressions

Φy =
12EIz
GDy l2 (bending in x-y plane) ,

Φz =
12EIy

GDz l2 (bending in x-z plane) , (38c)

Φω =
12EIω
GDω l2 (torsion/warping).

Note that the interpolation functions N ω
14 and N ω

22 for torsion/warping in Eq.(38a) take minus signs. By substituting
Eq.(38a) into expression (29) of the elastic strain energy and applying the principle of minimum potential energy, a set
of stiffness equations is obtained, which are expressed with respect to the coordinate axes parallel to the principal axes
trough the shear centre

σσσ s = SSS s εεε s. (39)

The components of matrix SSS s can be found in Appendix A. When shear deformations tend to vanish, i.e. Φi = 0
(i = y,z,ω) and consequently polynomials N i

1 j and N i
2 j(i = 2, ..,4) reduce to the classical Hermitian polynomials.

Correspondingly, equations (39) reduce to the stiffness equations of the Euler-Bernoulli-Vlasov beam model [2]. The
torsional stress resultant σ2 and the warping stress resultants σ7,σ8 are then calculated by the equations⎡⎢⎣ σ2

σ7

σ8

⎤⎥⎦=
GIt

30l3
0

⎡⎢⎣ 36 −3 −3
−3 4 −1
−3 −1 4

⎤⎥⎦
⎡⎢⎣ ε2

ε7

ε8

⎤⎥⎦+ EIω

l5
0

⎡⎢⎣ 12 −6 −6
−6 4 2
−6 2 4

⎤⎥⎦
⎡⎢⎣ ε2

ε7

ε8

⎤⎥⎦ . (40a)

Note that if Iω = 0, we obtain ε7 = ε8 = ε2, yielding σ2 = GIt/30l3
0 and σ7 = σ8 = 0.

For bending along the local shear principal ys and zs-axes, the generalized stress resultants are calculated by[
σ s

3
σ s

4

]
=

EIy

l3
0

[
4 −2

−2 4

][
ε s

3
ε s

4

]
,

[
σ s

5
σ s

6

]
=

EIz

l3
0

[
4 −2

−2 4

][
ε s

5
ε s

6

]
. (40b)

The vectors σσσ and σσσ s are related by
σσσ = ETσσσ s. (41)

By substituting Eqs.(39) with (37b) into Eq.(41) the element stiffness equations can be expressed in terms of centroidal
coordinates as

σσσ = SSSεεε , (42a)
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where
SSS = ETSSS s E, (42b)

in which E is the transformation matrix defined in Eq.(37a). With the stiffness matrix SSS the configuration of the elastic
line of a beam with unsymmetrical cross-section can be determined in the centroidal coordinate system.

3.3. Second Order Analytical Formulation
Once the configuration of the elastic line has been determined in the centroidal coordinate system it is straightforward
to derive a second order stiffness formulation. We again consider the two-node beam element in the local co-rotational
frame (x,y,z) with origin at node p and base vectors eeex, eeey, and eeez pointing along the respective positive directions
of the coordinate axes as shown in Fig. 8. The x-axis coincides with the line connecting the nodal points p and q in
the current configuration. The y-axis and z-axis coincide with the principal axes of the cross-section. An orientation
is attached to it, describing the rotation of the cross-section independent of the tangent to the elastic line. The total
displacement of the cross-section can be considered as the result of two successive motions: first, a rigid displacement
and rotation of each cross-section due to bending and warping free torsion; next, a warping displacement perpendicular
to the displaced cross-section. Let rrrP

0 (x,y,z) denote the position vector of an arbitrary point P on the cross-section in
the initial undeformed configuration and let rrrP(x,y,z) denote the position vector of point P in the current configuration.
These two vectors are given by

rrrP
0 = xeeex + yeeey + zeeez , (43a)

rrrP = (x+uc)eeex + vceeey +wceeez + yReeey + zReeez +ω(y,z)α Reeex , (43b)

where uc, vc and wc are the components of the displacement vector uuuc, ω(y,z) is a normalized warping function and
α(x) is the change of twist per unit of length taken as an additional degree of freedom. The elastic rotation matrix
R describes the rotation of a cross-section relative to the local frame due to flexural and torsional deformations of the
beam. Following Besseling [4], the matrix R(x) is defined as the product of three successive rotations about the rotated
coordinate axes parametrized by modified Euler angles (ϕx,ϕy,ϕz) as

R = R(ϕz)R(ϕy)R(ϕx) , (44)

where

R(ϕx) =

⎡⎣ 1 0 0
0 cosϕx −sinϕx
0 sinϕx cosϕx

⎤⎦ , R(ϕy) =

⎡⎣ cosϕy 0 sin ϕy
0 1 0

−sinϕy 0 cosϕy

⎤⎦ , R(ϕz) =

⎡⎣ cosϕz −sinϕz 0
sinϕz cosϕz 0

0 0 1

⎤⎦ .
In contrast with Euler angles, modified Euler angles avoid singularity problems for small rotations. Another reason
for taking modified Euler angles is that for small rotations they may be uniquely defined as components of a rotation
pseudovector. Expanding matrix R around the identity matrix up to second order terms yields

R =

⎡⎣ 1− 1
2 ϕ2

y − 1
2 ϕ2

z −ϕz +ϕxϕy ϕy +ϕxϕz
ϕz 1− 1

2 ϕ2
x − 1

2 ϕ2
z −ϕx +ϕyϕz

−ϕy ϕx 1− 1
2 ϕ2

x − 1
2 ϕ2

y

⎤⎦ . (45)

Figure 8: Configuration of the elastic line in a local, co-rotational frame (x,y,z).
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With the above kinematic description, six independent strains can be defined for each cross-section, one for the axial
elongation and warping deformation, two for the transverse shear deformations, one torsion and two bending curvatures.
A second order approximation of the torsion and bending curvatures of the elastic line is defined by three independent
components of the derivative of matrix R with respect to x [34]

κ̃κκ(x) = RTR,x (46a)

where

κ̃κκ =

⎡⎣ 0 −κz κy
κz 0 −κx

−κy κx 0

⎤⎦ . (46b)

Written out, the components of κ̃ are

κx = ϕx,x −ϕy ϕz,x (47a)

κy = ϕy,x +ϕx ϕz,x

κz = ϕz,x −ϕx ϕy,x
(47b)

where κx is the torsional curvature and κy,κz are the bending curvatures about the y-axis and z-axis respectively. The
Green-Lagrange strain formulation is adopted to obtain a second order approximation for the axial and transverse shear
strains including warping. Substituting the second order rotation matrix of Eq.(45) into Eq.(43b), the local displacement
vector uuu = (u,v,w)T = rrrP − rrrP

0 of point P, can be evaluated as

u = uc + y(−ϕz +ϕxϕy)+ z(ϕy +ϕxϕz)+ω α
(
1− 1

2 ϕ2
y − 1

2 ϕ2
z
)
,

v = vc − y( 1
2 ϕ2

x +
1
2 ϕ2

z )+ z(−ϕx +ϕyϕz)+ω α yϕz ,

w = wc + yϕx − z
(1

2 ϕ2
x +

1
2 ϕ2

y
)−ω α zϕy .

(48)

Assuming that the axial strain εxx and the shear strains γxy ,γxz are small, we can neglect the second order terms involving
(u,x) ,(v,xv,y) , (w,xw,y) and (w,xw,z), (v,xv,z) yielding the following expressions for the nonlinear Green-Lagrange
tensor

εxx = u,x + 1
2
(
v2
,x +w2

,x
)
,

γxy = u,y + v,x(1+ v,y)+w,xw,y = u,y + v,x ,

γxz = u,z +w,x(1+w,z)+ v,xv,z = u,z +w,x .

(49)

After substituting Eq.(48) into (49), a second order approximation of the Green-Lagrange strains is obtained

εxx = uc,x +
1
2 (v

2
c,x +w2

c,x)− yκz+ zκy +
1
2
(
y2 + z2)ϕ2

x,x +ω α,x , (50a)

γxy = vc,x −ϕz − zϕx,x +ω,y α ,

γxz = wc,x +ϕy + yϕx,x +ω,z α .
(50b)

Since the x and y-axes are principal axes of inertia, we have [11]∫
A

ω,y dA =
∫
A

ω,z dA = 0 . (51)

By integrating Eq.(50a) over the cross-section area and applying Eq.(20) it follows that

εx =
1
A

∫
A

εxx dA = uc,x +
1
2
(
v2

c,x +w2
c,x
)
+ 1

2
Ip

A
ϕ2

x,x , (52)

where εx is the axial stretch and Ip is the polar moment of area about the centoid of the cross-section. The second and
third part on the right-hand side of Eq.(52), refers to the additional axial stretch due to bending and torsion respectively.
The latter is denoted as Wagner effect [43]. Integration of Eqs.(50b) over the cross-section area yields with (51)

γy =
1
A

∫
A

γxy dA = vc,x −ϕz , γz =
1
A

∫
A

γxz dA = wc,x +ϕy . (53)

In the above equations, γy and γz represent the average transverse shear strains due to flexure.
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3.4. Second Order Discrete Formulation
Substitution of Eqs.(31) with the second order rotation matrix of Eq.(45) into Eqs.(30), using boundary conditions (32)
and disregarding third and higher order terms we obtain the second order approximations for the generalized strains

ε2 = l0ϕq
x +

1
2l0

(ε3 − ε4)(ε5 + ε6) (torsion) (54a)

ε3 =−l0ϕ p
y

ε4 = l0ϕq
y +

1
l0

ε2 ε6

ε5 =−l0ϕ p
z

ε6 = l0ϕq
z − 1

l0
ε2 ε4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (bending) (54b)

The quadratic terms in the above equations originate from the additional nonlinearity due to the relative rotations of the
unit vectors eeep

y ,eeep
z and eeeq

y ,eeeq
z at the nodal points p and q as shown in Fig. 8. The elastic displacement vector uuuc(ξ ) and

rotation vector l0ϕϕϕ(ξ ) of an arbitrary point on the elastic line with coordinate x = ξ l0 can be expressed as a vectorial
sum of the axial and lateral displacements, i.e. in the form

uuuccc(ξ ) = uc(ξ )eeex + vc(ξ )eeey +wc(ξ )eeez ,

l0ϕϕϕ(ξ ) = l0
[
ϕx(ξ )eeex +ϕy(ξ )eeey +ϕz(ξ )eeez

]
.

The displacements and rotations are interpolated in the same way as in the linear case, i.e. by the modified Hermitian
shape functions of Eqs.(38) for the case zero eccentricity (ys = zs = 0) resulting in

uuuccc(ξ ) = uq
cN1(ξ )eeex + l0

[−ϕ p
z N y

12(ξ )+ϕq
z N y

14(ξ )
]

eeey + l0
[−ϕ p

y N z
12(ξ )+ϕq

y N z
14(ξ )

]
eeez , (56a)

l0ϕϕϕ(ξ ) = l0
[
ϕq

x N ω
13(ξ )+ l0ε7 N ω

12(ξ )− l0ε8 N ω
14(ξ )

]
eeex

+ l0
[−ϕ p

y N z
22(ξ )+ϕq

y N z
24(ξ )

]
eeey + l0

[−ϕ p
z N y

22(ξ )+ϕq
z N y

24(ξ )
]

eeez . (56b)

Substituting for l0ϕq
x , l0ϕ p

y , l0ϕq
y and l0ϕ p

z ,ϕq
z from Eqs.(54) into Eqs.(56) yields the following second order approxi-

mation of the displacement and rotation fields

uuuccc(ξ ) = uq
cN1(ξ )eeex +

[
ε5N y

12(ξ )+ (ε6 +
1
l0

ε2 ε4)N y
14(ξ )

]
eeey +
[
ε3N z

12(ξ )+ (ε4 − 1
l0

ε2 ε6)N z
14(ξ )

]
eeez , (57a)

l0ϕϕϕ(ξ ) =
[
(ε2 − 1

2l0 (ε3 − ε4)(ε5 + ε6)
)

N ω
13(ξ )+ l0ε7 N ω

12(ξ )− l0ε8 N ω
14(ξ )

]
eeex

+
[
ε3 N z

22(ξ )+ (ε4 − 1
l0

ε2 ε6)N z
24(ξ )

]
eeey +
[
ε5 N y

22(ξ )+ (ε6 +
1
l0

ε2 ε4)N y
24(ξ )

]
eeez . (57b)

Integrating the second part of Eq.(52) over the length of the beam using the derivatives of the polynomial components
of Eq.(57a) yields

1
2

l0∫
0

(
v2

c,x +w2
c,x
)
dx =

1
2l0

1∫
0

(
v2

c,ξ +w2
c,ξ
)
dξ =

1
30l0

(
2ε2

3 + ε3ε4 +2ε2
4 +2ε2

5 + ε5ε6 +2ε2
6
)
. (58)

The quadratic terms in the above equation account for the additional axial shortening of the beam centroid axis due to
bending. The second order shortening due to a twisting rotation ϕq

x of node q is calculated through integration of the
third term (Wagner term) of Eq.(52) over the length of the beam

1
2

Ip

A

l0∫
0

ϕ2
x,x dx =

1
2l0

Ip

A

1∫
0

ϕ2
x,ξ dξ . (59)

However, since the shear centre is the pole of the twisting rotation, there will also be a second order elongation of the
beam axis associated with the twisting rotation, if the shear centre does not coincide with the centroid of the cross-
section. This will be explained on the basis of figure 9. The figure shows the elastic line of the beam element in the
corotational frame (x,y,z) with the origin at node cp. The x-axis coincides with the centroid of the cross-sections and
the y-axis and z-axis are principal axes; ys and zs are the coordinates of the shear centre with respect to the centroid. We
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Figure 9: Axial elongation due to rotation about shear axis.

consider the end-sections at the nodes cp and cq normal to the shear centre axis. The cross-section at node cq rotates
through an angle ϕq

x = ε2/l0 about the shear axis. As a result of this rotation, the elastic line becomes helical after
rotation as shown in figure 9 . The associated generalized strains are

−ε3 = ys
ε2
l0
, ε4 = ys

ε2
l0
, −ε5 = zs

ε2
l0
, ε6 = zs

ε2
l0

. (60)

Substitution of Eqs.(60) into Eq.(58) yields an expression which describes the second order elongation of the elastic
line due to the twisting rotation ε2/l0, about the shear centre axis

1
30l0

(
2ε2

3 + ε3ε4 +2ε2
4 +2ε2

5 + ε5ε6 +2ε2
6
)
=

(
y2

s + z2
s
)

10l0
ε2

2
l2
0
. (61)

3.5. Modified Deformation Modes
As a final step we derive a set of modified generalized strains ε i through integration of the second order analytical
expressions for the axial stretch and the torsion and bending curvatures, over the length of the beam, using the second
order displacement and rotation fields of Eqs.(57). Integrating Eq.(52) over the length of the beam and including the
second order elongation term of Eq.(61) we obtain

ε1 =

l0∫
0

εxdx =
1∫

0

uc,ξ dξ +
1

2l0

1∫
0

(
v2

c,ξ +w2
c,ξ +

Ip

A
ϕ2

x,ξ
)
dξ −

(
y2

s + z2
s
)

10l0
ε2

2
l2
0
. (62)

In a similar way, integration of the torsion curvature of Eq.(47a) over the length of the beam yields

ε2 = l0

l0∫
0

κx dx = l0
1∫

0

(ϕx,ξ −ϕy ϕz,ξ )dξ . (63)

Expressions for (ε3, ...,ε6) are obtained using the moment-area theorem [10] including the effects of transverse shear
deformation. Using the nonlinear bending curvature and average transverse shear strain relations of Eqs.(47b) and (53)
respectively, we obtain

ε3 =

l0∫
0

[
κy(l0 − x)− γz

]
dx = l0

1∫
0

[
(ϕy,ξ +ϕx ϕz,ξ )(1− ξ )− (

1
l0

wc,ξ +ϕy)
]
dξ ,

ε4 =

l0∫
0

[
κy x+ γz

]
dx = l0

1∫
0

[
(ϕy,ξ +ϕx ϕz,ξ )ξ +

1
l0

wc,ξ +ϕy
]
dξ ,

ε5 =

l0∫
0

[
κz(l0 − x)+ γy

]
dx = l0

1∫
0

[
(ϕz,ξ −ϕx ϕy,ξ )(1− ξ )+

1
l0

vc,ξ −ϕz
]
dξ , (64)

ε6 =

l0∫
0

[
κz x− γy

]
dx = l0

1∫
0

[
(ϕz,ξ −ϕx ϕy,ξ )ξ − (

1
l0

vc,ξ −ϕz)
]
dξ .
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Substituting the components of ϕϕϕ(ξ ) and the derivatives of the components uuuc(ξ ) and ϕϕϕ(ξ ) of Eqs.(57)into Eqs.(62)-
(64) and neglecting third and higher order terms, we obtain a set of modified generalized strains including second order
coupling terms

εεε = EEE(εεε), (65)

where
ε1 = ε1 +

1
30l0

[
2ε2

3 + ε3 ε4 +2ε2
4 +2ε2

5 + ε5 ε6 +2ε2
6
]

+
1

30l3
0

Ip

A
[
3ε2
(
6ε2 − ε7 − ε8

)
+2ε2

7 − ε7 ε8 +2ε2
8
]− 1

10l3
0
(y2

s + z2
s )ε2

2

}
(elongation)

ε2 = ε2 +
1
l0
(−ε3 ε6 + ε4 ε5) ,

}
(torsion)

ε3 = ε3 +
1

10l0
ε2(ε5 +2ε6)+

1
30l0

[
3ε5 ε7 − ε8(ε5 + ε6)

]
,

ε4 = ε4 − 1
10l0

ε2(2ε5 + ε6)+
1

30l0

[−3ε6 ε8 + ε7(ε5 + ε6)
]
,

ε5 = ε5 − 1
10l0

ε2(ε3 +2ε4)+
1

30l0

[−3ε3 ε7 + ε8(ε3 + ε4)
]
,

ε6 = ε6 +
1

10l0
ε2(2ε3 + ε4)+

1
30l0

[
3ε4 ε8 − ε7(ε3 + ε4)

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(bending)

ε7 = ε7 ,

ε8 = ε8.

}
(warping)

(66)

The linear terms εi represent the first order approximations of the generalized strains as they are defined in Eqs.(33).
The quadratic terms in the equation for ε1 take into account the additional shortening of the beam axis caused by its
bending, torsion and warping. The latter two terms represent the so-called "Wagner-effect" which strongly influence the
beam response in cases of flexural/torsional buckling of open thin-walled beams. The quadratic terms in the expression
for ε2 account for the extra torsion of the beam caused by its bending. The quadratic terms in the expressions for ε3
to ε6 take into account the effect of unsymmetrical bending caused by torsion and warping deformations of the beam.
Because the rigidity against axial elongation is much larger than the flexural and torsional rigidity, the modification of
ε1 is the most relevant one and the other modifications are only relevant to more special cases, for instance when large
differences in flexural rigidities occur.
Substitution of Eq.(5) in Eq.(65) yields a new set of modified deformation modes, specified by a set of modified
generalized strains εi expressed as functions of the global nodal coordinates Xi

εεε = EEE(DDD(XXX)) = DDD(XXX) . (67)

These deformation modes form the basis of a second order beam finite element that captures non-uniform torsion and
flexural-torsional coupling of thin-walled beams with unsymmetrical cross-section. In the next section the equations of
motion are derived for this second order beam model.

4. Equations of Motion
The equations of motion are derived using d’Alembert’s principle, which states that the balance of virtual work

σσσTδεεε = FFFTδuuu− δXXXT[MMM ẌXX +hhh], (68)

holds for all δε and δuuu depending on the variations of the nodal coordinates δXXX , by the relations

δεεε = DDD,,,XXX δXXX , δδδ uuu = AAAδδδXXX , (69)

where
DDD,,,XXX = EEE ,,,DDD DDD,,,XXX , AAA = diag(I, 2ΛΛΛp, 1, I, 2ΛΛΛq, 1). (70)

in which I is a 3× 3 unitary matrix and ΛΛΛ is defined in Eq.(10). The last term in Eq.(68) represents the virtual work
due to the inertia forces, where MMM(XXX) is a position dependent mass matrix and hhh(XXX , ẊXX) a convective inertia term being
a quadratic function of nodal velocities. Both quantities are obtained by adding the consistent and lumped inertia parts,
i.e. MMM = MMMc +MMM� and hhh = hhhc +hhh� . Substitution of the compatibility relations (69) in Eq.(68) yields with the transpose
matrices DDDT

,XXX and AAAT

DDDT
,XXX σσσ = AAATFFF − (MMM ẌXX +hhh) . (71)
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These are the equations of motion for the free second order beam element. With the inclusion of the second order terms
in the definitions of the modified generalized strains ε i, relationship(42a) between generalized strains and dual stress
resultants remains valid, i.e.

σσσ = SSSεεε , (72)
where SSS is defined by Eq.(42b). The dual stress-resultants σ i have now a slightly modified meaning in case of finite
deformations. A consistent mass formulation is derived by Jonker [16] and Meijaard [26]. A lumped mass matrix MMM�

and corresponding convective term hhh� is obtained by applying one-half of the total twist, rotary and warping inertia’s
to both end points of the beam [16]

MMM� =
1
2 ρ l0 diag

[
AIII , 4ΛΛΛpTJJJ ΛΛΛp

, Iω , AIII , 4ΛΛΛqTJJJ ΛΛΛq
, Iω

]
, (73)

hhh� = 1
2 ρ l0
[
000 , 8ΛΛΛpTTT JJJ ΛΛΛp

[
λ̇ p

0

λ̇λλ
p

]
, 0 , 000 , 8ΛΛΛqTJJJ ΛΛΛq

[
λ̇ q

0

λ̇λλ
q

]
, 0
]T

,

in which III and 000 are a 3× 3 unitary and zero matrix respectively, Iω is the sectorial moment defined in Eq.(23a) and
matrices ΛΛΛ(i)

, (i = p, q) and JJJ are defined by

ΛΛΛ(i)
= (−λλλ (i),λ (i)

0 I− λ̃λλ
(i)
) , JJJ = diag

(
Ip, Ix, Iy

)
. (74)

In order to study the vibration properties and the elastic stability we consider small disturbances from an equilibrium
configuration σ0

i D0
i,k = A0

lkF0
l . Substitution of (72) into (71) and expanding the equations in terms of disturbances Δxxx,

Δẍxx and disregarding second and higher order terms, yields the linearized equations of motion [17, 26][
D0

i,kSi jD
0
j,l +σ0

i D0
i,kl − (AmkFm)

0
,l
]
Δxl +M0

kl Δẍl = 0, (75)

or in matrix form
(KKK0 +GGG0 +NNN0)Δxxx+MMM0Δẍxx = 000 , (76)

where (KKK0 +GGG0 +NNN0) is the tangent stiffness matrix, with KKK0 the constitutive stiffness matrix and GGG0 the geometric
stiffness matrix due to the reference load FFF0 giving rise to reference stress resultants σσσ0. The matrix NNN0 is the dynamic
stiffness matrix containing the terms (AmkFm)

0
,l which need not be symmetric. For static problems the tangent stiffness

matrix (KKK0 +GGG0) is always symmetric.

5. Numerical Simulations
The presented second order beam-warping element has been implemented in the computer programme SPACAR [15]
under the name BEAMW-element. This programme can make computations for mechanical systems with intercon-
nected rigid and flexible elements. Specifically, the motion can be simulated for given initial conditions, the equations
can be linearized about an arbitrary state of motion, stationary solutions can be determined and with the linearized
equations, eigen frequencies and corresponding frequency modes as well as the elastic stability can be determined. An
incremental-iterative method based on the Newton-Raphson method combined with constant arc length of the incre-
mental displacement vector is employed for the solution of the quasi-static equilibrium equations [28].

5.1. Flexural-Torsional Buckling of a Simply-Supported C-shaped Beam

Figure 10: Simply supported C-shaped beam with geometrical properties.

In this example we determine the global buckling load of a simply supported C-shaped beam subjected to a centroidal
axial force F . See Fig. 10. The cross-sectional properties of the beam are presented in table 1. In this example the high
ratio E/G between elastic and the transverse shear elastic moduli requires a beam model (e.g.Timoshenko-Reissner)
that accounts for the shear strain effects on both non-uniform torsion and bending. Because of symmetry only one half
of the beam need to be modelled. The half-beam is divided into 2 equal beam warping elements.
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Table 1: Cross-sectional properties simply supported c-shaped beam

Elastic modulus E = 1.44×102 kN/mm2

Shear modulus G = 4.14 kN/mm2

cross-sectional area A = 5.4×104 mm2

Position of shear centre ys = 457.1 mm
Moment of inertia Iy = 3.78×109 mm4

Moment of inertia Iz = 2.16×109 mm4

Torsion constant It = 1.62×107 mm4

Warping constant Iω = 1.3886×1014 mm6

Wagner term Ip/A = 1.1×105 mm2

Shear stiffness Dy = 2.79×104 mm2

Shear stiffness Dz = 1.58×104 mm2

Warping shear stiffness Dω = 3.65×106 mm4

Warping shear stiffness Dzω =−3.7×106 mm3

In Table 2, the buckling loads are presented for a simply supported beam with l/h = 10, including shear deformation
or not. When two finite elements are adopted, the error with respect to the analytic solution of Cortinez and Pivian [8]
is negligible for the Timoshenko-Reissner beam model and less than 4% for the Bernoulli-Vlasov beam model. It is
quite evident that ignoring shear deformations implies a strong overestimate of the buckling load (35% for l/h = 10).
Furthermore the eigen frequencies of modes 1-6 and of mode 12 and 13 of the simply-supported beam have been
computed and compared with the analytical solutions values of Cortinez and Piovan [8].The beam is divided into
30 BEAMW elements. The results are shown in Table 3. Eigenfrequencies are evaluated including effects of shear
flexibility or not. There is a good agreement with the analytic results. It can be observed that neglecting shear strain
effects leads to significant overestimation of natural frequencies.

Table 2: Buckling loads of simply supported C-shaped beam with l/h = 10. Comparison between present analysis
using SPACAR and the analytical solution proposed by Cortinez and Piovan [8]

Beam model Cortinez and Piovan [8] SPACAR SPACAR
(analytic solution) (2 EL) (4 EL)

Timoshenko-Reissner 11.94 .103 kN 12.86 .103 kN 11.90 .103 kN
Bernoulli-Euler-Vlasov 16.12 .103 kN 18.34 .103 kN 16.67 .103 kN

Table 3: Flexural-torsional frequencies fn (Hz) of simply supported beam with C-shaped cross-section.

Mode nr. Cortinez and Piovan SPACAR Cortinez and Piovan SPACAR

(a) Including shear flexibility (b) Excluding shear flexibility
1 33.23 33.18 38.63 38.61
2 67.17 67.30 88.85 88.85
3 99.03 98.65 153.86 153.86
4 102.79 103.01 207.98 207.38
5 169.05 168.65 345.90 344.37
6 178.01 178.41 355.42 355.43
12 1421.67 1421.8
13 395.60 397.28
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5.2. Rotating C-Shaped Cantilever Beam Subjected to Eccentric Tip Force
A uniform C-shaped beam of length L is attached to a rigid hub of radius R = 0, rotating at constant angular speed
Ω. The geometry of the beam and its cross-section are shown in Fig. 11. With these data the cross-sectional input has
been calculated and presented in table 4. The beam is subjected to a vertical tip force F at the free end applied at the
points D or E of the cross-section respectively. Its lateral-torsional post-buckling behaviour is investigated for different
rotation speeds. The beam is divided into 10 equal BEAMW elements. In Fig. 12 the load-deflection curves (−w,F) of
point D are depicted for the case where Ω = 0 (static case) and load F is applied at point D or E, respectively. This case
was recently analysed by Bourihane et al [5], using ABAQUS. The comparison of these curves with those computed
using 120 shell elements of type S8R in ABAQUS shows a good agreement. It appeared that the Vlasov beam model
provides satisfactory results for this nonlinear beam problem. In addition the effect of the second order terms that
account for geometric non-linearities appears to be negligibly small for this problem. Fig. 13 shows the load-deflection
curves (−w,F) of point D for four different angular velocities, where load F is applied at point D.

Figure 11: Rotating C-shaped cantilever beam with geometrical properties.

Table 4: Cross-sectional properties rotating C-shaped beam

Elastic modulus E = 21000 kN/cm2

Shear modulus G = 8077 kN/cm2

cross-sectional area A = 58.8 cm2

Position yo =−2.456 cm
Position of shear centre ys =−6.0779 cm
Moment of inertia Iy = 8038.7 cm4

Moment of inertia Iz = 559.92 cm4

Torsion constant It = 35.408 cm4

Warping constant Iω = 78943.0 cm6

Mass density ρ = 7.8×10−3 kg/cm3
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Figure 12: Load-deflection curves of C-shaped cantilever
beam, static case (Ω=0).
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Figure 13: Load-deflection curves of C-shaped can-
tilever beam rotating at different speeds Ω.
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6. Conclusions
The generalized strain beam formulation is used to derive a co-rotational beam element for buckling and post-buckling
analysis of thin-walled beams. A first- and second order stiffness formulation is derived. The first order stiffness
formulation includes the derivation of the stiffness matrix based on Timoshenko-Reissner’s thin-walled beam model.
Cross-sectional warping is accounted for by a single warping function. Coupling among bending and torsion due to non-
coinciding centroid and shear centre is incorporated using a transformation matrix which accounts for the eccentricity of
the shear centre. The second order stiffness formulation deals with the derivation of modified deformation modes which
includes quadratic terms that account for geometric nonlinearities, intended to analyse buckling and post-buckling
behaviour of thin-walled beams. With the inclusion of additional second order terms, a clear separation of stiffness due
to elongation, torsion, warping and bending in two directions is retained, so deformation modes with a large stiffness
can be eliminated by constraining them to be zero. Some numerical examples including large torsion and deflections,
and pre- and post buckling are presented in order to illustrate the performance of the present beam element and to
investigate the influence of second order terms on the accuracy and the rate of convergence. The following conclusions
can be drawn:

1. In flexural-torsional buckling and vibration analysis of beams with unsymmetric channel cross-section under
axial forces, the present solutions show excellent agreement with the analytical solutions from literature.

2. In the post buckling analysis of thin-walled open beams under eccentric bending loads the use of second order
terms does not lead to a reduction in the number of elements needed to perform the analysis with the same
accuracy. This is probably due to the use of torsional deformation mode (7b) which is limited to small bending
and torsion deformations.

3. The shear strain effects become significant for beams made of materials characterized by large E/G-ratios.
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Appendix A–Stiffness Matrix of Beam Element
The 8×8 stiffness matrix of the BEAMW element based on the modified Hermitian interpolation, is written in block
matrix form as [29, 30]

(ε1) (ε2) (ε s
3 ) (ε s

4 ) (ε s
5 ) (ε s

6 ) (ε7) (ε8)

Ss =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
S11
]

0 0 0 0 0 0 0[
S22
] [

S23 S24
] [

S25 S26
] [

S27 S28
]

[
S33 S34

S43 S44

][
S35 S36

S45 S46

][
S37 S38

S47 S48

]

Symm

[
S55 S56

S65 S66

][
S57 S58

S67 S68

]
[

S77 S78

S87 S88

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[S11] =
EA
l0

,
[
S23 S24

]
=

2GDωz Φω Φz
l0(1+Φω)(1+Φz)

[−1 1] ,
[
S25 S26

]
=

2GDωy Φω Φy

l0(1+Φω)(1+Φy)
[1 −1] ,

⎡⎢⎣S22 S27 S28

S77 S78

S88

⎤⎥⎦=
GIt

30l3
0(1+Φω)2

⎡⎢⎣36+P1 −3 −3

4+P2 −(1+P2)

4+P2

⎤⎥⎦+ EIω

l5
0(1+Φω)

⎡⎢⎣12 −6 −6

4+Φω 2−Φω

4+Φω

⎤⎥⎦ ,
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[
S33 S34

S43 S44

]
=

EIy

l3
0(1+Φz)

[
4+Φz −2+Φz

−2+Φz 4+Φz

]
,

[
S35 S36

S45 S46

]
=

GDyz Φy Φz

4l0(1+Φy)(1+Φz)

[
−1 1

1 −1

]
,

[
S37 S38

S47 S48

]
=

GDωz Φω Φz

4l2
0(1+Φω)(1+Φz)

[
1 1

−1 −1

]
,

[
S55 S56

S65 S66

]
=

EIz

l3
0(1+Φy)

[
4+Φy −2+Φy

−2+Φy 4+Φy

]
,

[
S57 S58

S67 S68

]
=

GDωy Φω Φy

4l2
0(1+Φω)(1+Φy)

[
−1 −1

1 1

]
.

In the above equations, P1 = 30Φω (2+Φω ) and P2 = 5Φω (1+Φω/2). The shear coefficients Dω , Dωy, Dωz and Dyz
for simple cross-sections can be calculated using a pre-processing procedure [21, 22].
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