
European Journal of Control 46 (2019) 36–48 

Contents lists available at ScienceDirect 

European Journal of Control 

journal homepage: www.elsevier.com/locate/ejcon 

Solvability conditions and design for H ∞ 

& H 2 

almost state 

synchronization of homogeneous multi-agent systems 

Anton A. Stoorvogel b , Ali Saberi a , Meirong Zhang 

c , ∗, Zhenwei Liu 

a 

a School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA 
b Department of Electrical Engineering Mathematics and Computer Science, University of Twente, Enschede PO Box 217, The Netherlands 
c School of Engineering and Applied Science, Gonzaga University, Spokane, WA, USA 

a r t i c l e i n f o 

Article history: 

Received 17 July 2017 

Revised 25 July 2018 

Accepted 6 August 2018 

Available online 16 August 2018 

Recommended by S. Tarbouriech 

Keywords: 

Multi-agent systems 

H ∞ and H 2 almost state synchronization 

Distributed control 

a b s t r a c t 

This paper studies the H ∞ 

and H 2 almost state synchronization problem for homogeneous multi-agent 

systems with general linear agents affected by external disturbances and with a directed communica- 

tion topology. Agents are connected via diffusive full-state coupling or diffusive partial-state coupling. A 

necessary and sufficient condition is developed for the solvability of the H ∞ 

and H 2 almost state syn- 

chronization problem. Moreover, a family of protocols based on either an algebraic Riccati equation (ARE) 

method or a directed eigen structure assignment method are developed such that the impact of dis- 

turbances on the network disagreement dynamics, expressed in terms of the H ∞ 

and H 2 norm of the 

corresponding closed-loop transfer function, is reduced to any arbitrarily small value. The protocol for 

full-state coupling is static, while for partial-state coupling it is dynamic. 

© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

H  

a  

t  

e  

t  

s

a  

t  

c  

a  

w  

l  

a  

a  

t  

t  

t  

e  

p  

s  
1. Introduction 

Over the past decade, the synchronization problem of multi-

agent system (MAS) has received substantial attention because of

its potential applications in cooperative control of autonomous ve-

hicles, distributed sensor network, swarming and flocking and oth-

ers. The objective of synchronization is to secure an asymptotic

agreement on a common state or output trajectory through decen-

tralized protocols (see [1,8,16,30] and references therein). 

State synchronization inherently requires homogeneous MAS

(i.e. agents have identical dynamics). Most works have focused

on state synchronization based on diffusive full-state coupling,

where the agent dynamics progress from single- and double-

integrator dynamics (e.g. [9,10,13–15] ) to more general dynam-

ics (e.g. [22,27,29,31] ). State synchronization based on diffusive

partial-state coupling has also been considered (e.g. [3,4,22–

25,28] ). 

Most research has focused on the idealized case where the

agents are not affected by external disturbances. In the literature

where external disturbances are considered, γ -suboptimal H ∞ 

de-

sign is developed for MAS to achieve H ∞ 

norm from an external

disturbance to the synchronization error among agents less than
∗ Corresponding author. 
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n, a priori given, bound γ . In particular, [4,34] considered the

 ∞ 

norm from an external disturbance to the output error among

gents. [21] considered the H ∞ 

norm from an external disturbance

o the state error among agents. These papers do not present an

xplicit methodology for designing protocols. Refs. [5] and [6] try

o obtain an H ∞ 

norm from a disturbance to the average of the

tates in a network of single or double integrators. 

By contrast, Peymani et al. [11] introduced the notion of H ∞ 

lmost synchronization for homogeneous MAS, where the goal is

o reduce the H ∞ 

norm from an external disturbance to the syn-

hronization error , to any arbitrary desired level. But it requires an

dditional layer of communication among distributed controllers,

hich is completely dispensed in this paper. This work is extended

ater in Refs. [12 , 32] , and [33] . Ref. [33] , where heterogeneous MAS

re considered, provides a solution for the case of right-invertible

gents with the addional objective beyond output synchronization

hat the agents track a regulated signal given to some or all of

he agents. Although homogeneous MAS, which are considered in

his paper, are a subset of heterogeneous MAS, the results of Zhang

t al. [33] cannot be directly applied to the case of full-state cou-

ling since the agents are not right-invertible. Secondly, the re-

ults for synchronization without regulation cannot be obtained

rom results obtained for regulated synchronization. Thirdly, we

onsider state synchronization instead of output synchronization in

oth full- and partial-state coupling. Finally, by restricting to ho-

ogeneous networks more explicit designs can be obtained under

eaker conditions. 
rved. 
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In this paper, we will study H ∞ 

almost state synchronization for

 MAS with full-state coupling or partial-state coupling. We will

lso study H 2 almost state synchronization, since it is closely re-

ated to the problems of H ∞ 

almost state synchronization. In H ∞ 

e look at the worst case disturbance with the only constraints

eing the power, while in H 2 we only consider white noise distur-

ances which is a more restrictive class. In both cases, disturbances

r noises are restricted in the process, not in the measurement.

ur contribution in this paper is three-fold. 

• We obtain necessary and sufficient conditions for H ∞ 

and H 2 

almost state synchronization for a MAS in the presence of ex-

ternal disturbances 

• We develop a protocol design for H ∞ 

and H 2 almost state

synchronization based on an algebraic Riccati equation (ARE)

method 

• We develop a protocol design for H ∞ 

and H 2 almost state syn-

chronization based on an asymptotic time-scale eigenstructure

assignment (ATEA) method for the full-state coupling case, and

on the direct eigenstructure assignment method for the partial-

state coupling case. 

It is worth noting that our solvability conditions and protocol

esigns are developed for a MAS associated with a set of network

raphs. Specifically, only rough information of a network graph is

tilized. 

.1. Notations and definitions 

Given a matrix A ∈ C 

m ×n , A 

′ denotes its conjugate transpose,

 A ‖ is the induced 2-norm. A square matrix A is said to be Hur-

itz stable if all its eigenvalues are in the open left half complex

lane. A � B depicts the Kronecker product between A and B . I n de-

otes the n -dimensional identity matrix and 0 n denotes n × n zero

atrix; sometimes we drop the subscript if the dimension is clear

rom the context. Given a complex number λ, Re (λ) is the real part

f λ and Im (λ) is the imaginary part of λ. 

A weighted directed graph G is defined by a triple (V, E, A )

here V = { 1 , . . . , N} is a node set, E is a set of pairs of nodes

ndicating connections among nodes, and A = [ a i j ] ∈ R 

N×N is the

eighting matrix, and a ij > 0 iff (i, j) ∈ E which denotes an edge

rom node j to node i . In our case, we have a ii = 0 . A path from

ode i 1 to i k is a sequence of nodes { i 1 , . . . , i k } such that (i j+1 , i j ) ∈
for j = 1 , . . . , k − 1 . A directed tree is a subgraph (subset of nodes

nd edges) in which every node has exactly one parent node ex-

ept for one node, called the root , which has no parent node. In

his case, the root has a directed path to every other node in the

ree. A directed spanning tree is a directed tree containing all the

odes of the graph. For a weighted graph G, a matrix L = [ � i j ]

ith 

 i j = 

{∑ N 
k =1 a ik , i = j, 

−a i j , i � = j, 

s called the Laplacian matrix associated with the graph G. The

aplacian L has all its eigenvalues in the closed right half plane

nd at least one eigenvalue at zero associated with right eigenvec-

or 1 . A specific class of graphs needed in this paper is presented

elow: 

efinition 1. For any given α ≥β > 0, let G 

N 
α,β

denote the set of

irected graphs with N nodes that contain a directed spanning

ree and for which the corresponding Laplacian matrix L satisfies

 L ‖ < α while its nonzero eigenvalues have a real part larger than
r equal to β . u
. Problem formulation 

Consider a MAS composed of N identical linear time-invariant

gents of the form, 

˙ x i = Ax i + Bu i + Eω i , 

y i = Cx i , 
(i = 1 , . . . , N) (1)

here x i ∈ R 

n , u i ∈ R 

m , y i ∈ R 

p are respectively the state, input,

nd output vectors of agent i , and ω i ∈ R 

ω is the external distur-

ances. 

The communication network provides each agent with a linear

ombination of its own outputs relative to that of other neighbor-

ng agents. In particular, each agent i ∈ { 1 , . . . , N} has access to the

uantity, 

i = 

N ∑ 

j=1 

a i j (y i − y j ) , (2)

here a ij ≥ 0 and a ii = 0 indicate the communication among

gents. This communication topology of the network can be de-

cribed by a weighted and directed graph G with nodes corre-

ponding to the agents in the network and the weight of edges

iven by the coefficient a ij . In terms of the coefficients of the Lapla-

ian matrix L , ζ i can be rewritten as 

i = 

N ∑ 

j=1 

� i j y j . (3) 

e refer to this case as partial-state coupling . Note that if C has full

olumn rank then, without loss of generality, we can assume that

 = I, and the quantity ζ i becomes 

i = 

N ∑ 

j=1 

a i j (x i − x j ) = 

N ∑ 

j=1 

� i j x j . (4)

e refer to this case as full-state coupling . 

If the graph G describing the communication topology of the

etwork contains a directed spanning tree, then it follows from

15, Lemma 3.3] that the Laplacian matrix L has a simple eigen-

alue at the origin, with the corresponding right eigenvector 1 and

ll the other eigenvalues are in the open right-half complex plane.

et λ1 , . . . , λN denote the eigenvalues of L such that λ1 = 0 and

e (λi ) > 0 , i = 2 , . . . , N. 

Let N be any agent and define x̄ i = x N − x i and 

¯
 = 

⎛ 

⎝ 

x̄ 1 
. . . 

x̄ N−1 

⎞ 

⎠ and ω = 

⎛ 

⎝ 

ω 1 

. . . 
ω N 

⎞ 

⎠ . 

bviously, synchronization is achieved if x̄ = 0 . That is 

lim 

→∞ 

(x i (t) − x N (t)) = 0 , ∀ i, ∈ { 1 , . . . , N − 1 } . (5)

e denote by T ω ̄x , the transfer function from ω to x̄ 

emark 1. Agent N is not necessarily a root agent. Obviously, (5) is

quivalent to the condition that 

lim 

→∞ 

(x i (t) − x j (t)) = 0 , ∀ i, j ∈ { 1 , . . . , N} . 
We formulate below four almost state synchronization prob-

ems for a network with either H 2 or H ∞ 

almost synchronization. 

roblem 1. Consider a MAS described by (1) and (4) . Let G be a

iven set of graphs such that G ⊆ G 

N . The H ∞ 

almost state syn-

hronization problem via full-state coupling (in short H ∞ 

-ASSFS)

ith a set of network graphs G is to find, if possible, a linear static

rotocol parameterized in terms of a parameter ε, of the form, 

 = F (ε) ζ , (6) 
i i 
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such that, for any given real number r > 0, there exists an ε∗ such

that for any ε ∈ (0, ε∗] and for any graph G ∈ G , (5) is satisfied for

all initial conditions in the absence of disturbances and the closed

loop transfer matrix T ω ̄x satisfies 

‖ T ω ̄x ‖ ∞ 

< r. (7)

Problem 2. Consider a MAS described by (1) and (3) . Let G be

a given set of graphs such that G ⊆ G 

N . The H ∞ 

almost state

synchronization problem via partial-state coupling (in short H ∞ 

-

SSPS) with a set of network graphs G is to find, if possible, a

linear time-invariant dynamic protocol parameterized in terms of

a parameter ε, of the form, 

˙ χi = A c (ε) χi + B c (ε) ζi , 

u i = C c (ε) χi + D c (ε) ζi , (8)

where χi ∈ R 

n c , such that, for any given real number r > 0, there

exists an ε∗ such that for any ε ∈ (0, ε∗] and for any graph G ∈ G ,

(5) is satisfied for all initial conditions in the absence of distur-

bances and the closed loop transfer matrix T ω ̄x satisfies (7) . 

Problem 3. Consider a MAS described by (1) and (4) . Let G be a

given set of graphs such that G ⊆ G 

N . The H 2 almost state synchro-

nization problem via full-state coupling (in short H 2 -ASSFS) with a

set of network graphs G is to find, if possible, a linear static proto-

col parameterized in terms of a parameter ε, of the form (6) such

that, for any given real number r > 0, there exists an ε∗ such that

for any ε ∈ (0, ε∗] and for any graph G ∈ G , (5) is satisfied for all

initial conditions in the absence of disturbances and the closed

loop transfer matrix T ω ̄x satisfies 

‖ T ω ̄x ‖ 2 < r. (9)

Problem 4. Consider a MAS described by (1) and (3) . Let G be a

given set of graphs such that G ⊆ G 

N . The H 2 almost state syn-

chronization problem via partial-state coupling (in short H 2 -ASSPS)

with a set of network graphs G is to find, if possible, a linear time-

invariant dynamic protocol parameterized in terms of a parameter

ε, of the form (8) such that, for any given real number r > 0, there

exists an ε∗ such that for any ε ∈ (0, ε∗] and for any graph G ∈ G ,

(5) is satisfied for all initial conditions in the absence of distur-

bances and the closed loop transfer matrix T ω ̄x satisfies (9) . 

Note that the problems of H ∞ 

almost state synchronization and

H 2 almost state synchronization are closely related. Roughly speak-

ing, H 2 almost synchronization is easier to achieve than H ∞ 

al-

most synchronization. This is related to the fact that in H ∞ 

we look

at the worst case disturbance with the only constraints being the

power: 

lim sup 

T →∞ 

1 

2 T 

∫ T 

−T 

ω 

′ 
i (t) ω i (t) dt < ∞ . 

while in H 2 we only consider white noise disturbances which is a

more restrictive class. 

3. MAS with full-state coupling 

In this section, we establish a connection between the almost

state synchronization among agents in the network and a robust

H ∞ 

or H 2 almost disturbance decoupling problem via state feed-

back with internal stability (in short H ∞ 

or H 2 -ADDPSS) (see [20] ).

Then, we use this connection to derive the necessary and sufficient

condition and design appropriate protocols. 

3.1. Necessary and sufficient condition for H ∞ 

-ASSFS 

The MAS system described by (1) and (4) after implementing

the linear static protocol (6) is described by 

˙ x = Ax + BF (ε) ζ + Eω , 
i i i i 
or i = 1 , . . . , N. Let 

 = 

⎛ 

⎝ 

x 1 
. . . 

x N 

⎞ 

⎠ , ω = 

⎛ 

⎝ 

ω 1 

. . . 
ω N 

⎞ 

⎠ . 

hen, the overall dynamics of the N agents can be written as 

˙ 
 = (I N � A + L � BF (ε)) x + (I N � E) ω. (10)

We define the robust H ∞ 

-ADDPSS with bounded input as fol-

ows. Given � ⊂ C , there should exist M > 0 such that for any given

eal number r > 0, we can find a parameterized controller 

 = F (ε) x (11)

or the following subsystem, 

˙ 
 = Ax + λBu + Bω, (12)

uch that for any λ∈ � the following hold: 

1. The interconnection of the systems (12) and (11) is internally

stable; 

2. The resulting closed-loop transfer function T ωx from ω to x has

an H ∞ 

norm less than r . 

3. The resulting closed-loop transfer function T ωu from ω to u has

an H ∞ 

norm less than M . 

In the above, � denotes all possible locations for the nonzero

igenvalues of the Laplacian matrix L when the graph varies over

he set G . It is also important to note that M is independent of the

hoice for r . 

In the following lemma we give a necessary condition for the

 ∞ 

-ASSFS. Moreover, for sufficiency, we connect the H ∞ 

-ASSFS

roblem to the robust H ∞ 

-ADDPSS with bounded input problem

hich we will address later. 

emma 1. Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . 

( Necessity ) The H ∞ 

-ASSFS for the MAS described by (1) and

4) given G is solvable by a parameterized protocol u i = F (ε) ζi only if

m E ⊂ im B. (13)

( Sufficiency ) The H ∞ 

-ASSFS for the MAS described by (1) and

4) given G is solved by a parameterized protocol u i = F (ε) ζi if the ro-

ust H ∞ 

-ADDPSS with bounded input for the system (12) with λ∈ �

s solved by the parameterized controller u = F (ε) x . 

roof. Note that L has eigenvalue 0 with associated right eigenvec-

or 1 . Let 

 = T S L T 
−1 , (14)

ith T unitary and S L the upper-triangular Schur form associated

o the Laplacian matrix L such that S L (1 , 1) = 0 . Let 

:= (T −1 
� I n ) x = 

⎛ 

⎝ 

η1 

. . . 
ηN 

⎞ 

⎠ , ω̄ = (T −1 
� I) ω = 

⎛ 

⎝ 

ω̄ 1 

. . . 
ω̄ N 

⎞ 

⎠ 

here ηi ∈ C 

n and ω̄ i ∈ C 

q . In the new coordinates, the dynamics

f η can be written as 

˙ (t) = (I N � A + S L � BF (ε)) η + (T −1 
� E) ω, (15)

hich is rewritten as 

˙ η1 = Aη1 + 

N ∑ 

j=2 

s 1 j BF (ε) η j + E ̄ω 1 , 
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˙ ηi = (A + λi BF (ε)) ηi + 

N ∑ 

j= i +1 

s i j BF (ε) η j + E ̄ω i , 

˙ N = (A + λN BF (ε)) ηN + E ̄ω N , (16) 

or i ∈ { 2 , . . . , N − 1 } where S L = [ s i j ] . The first column of T is an

igenvector of L associated to eigenvalue 0 with length 1, i.e. it is

qual to ±1 / 
√ 

N . Using this we obtain: 

¯
 = 

⎛ 

⎜ ⎜ ⎝ 

x N − x 1 
x N − x 2 

. . . 
x N − x N−1 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−1 0 · · · 0 1 

0 −1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 0 

. . . 
0 · · · 0 −1 1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

� I n 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(T � I n ) η

= 

((
0 V 

)
� I n 

)
η, 

or some suitably chosen matrix V . Therefore we have 

¯
 = (V � I n ) 

⎛ 

⎝ 

η2 

. . . 
ηN 

⎞ 

⎠ , (17)

ote that since T is unitary, also the matrix T −1 is unitary and

he matrix V is uniformly bounded. Therefore the H ∞ 

norm of the

ransfer matrix from ω to x̄ can be made arbitrarily small if and

nly if the H ∞ 

norm of the transfer matrix from ω̄ to η can be

ade arbitrarily small. 

In order for the H ∞ 

norm from ω̄ to η to be arbitrarily small

e need the H ∞ 

norm from ω̄ N to ηN to be arbitrarily small. From

lassical results (see [18,26] ) on H ∞ 

almost disturbance decoupling

e find that this is only possible if (13) is satisfied. 

Conversely, suppose u = F (ε) x solves the robust H ∞ 

-ADDPSS

ith bounded input for (12) and assume (13) is satisfied. We show

ext that u i = F (ε) ζi solves the H ∞ 

-ASSFS for the MAS described

y (1) and (4) . Let X be such that E = BX . 

The fact that u = F (ε) x solves the robust H ∞ 

-ADDPSS with

ounded input for (12) implies that for small ε we have that

 + λBF (ε) is asymptotically stable for all λ∈�. In particular, A +
i BF (ε) is asymptotically stable for i = 2 , . . . , N which guarantees

hat ηi → 0 for i = 2 , . . . , N for zero disturbances and all initial con-

itions. Therefore we have state synchronization. 

Next, we are going to show that for any r̄ > 0 , we can choose ε
ufficiently small such that the transfer matrix from ω̄ to ηi is less

han r̄ for i = 2 , . . . , N. This guarantees that we can achieve (7) for

ny r > 0. We have that 

T λωx (s ) = (sI − A − λBF (ε)) −1 B, 

 

λ
ωu (s ) = F (ε)(sI − A − λBF (ε)) −1 B. 

or a given M and parameter ε, the following is satisfied 

 T λωx ‖ ∞ 

< 

˜ r ε , ‖ T λωu ‖ ∞ 

< M 

or all λ∈ � where ˜ r ε is a parameter depending on ε with the

roperty that lim ε↓ 0 ̃  r ε = 0 . Denote νi = F (ε) ηi . 

When i = N, it is easy to find that, 

 ω̄ ηN 
= T λN 

ωx 

(
0 · · · 0 X 

)
, 

T ω̄ νN 
= T λN 

ωu 

(
0 · · · 0 X 

)
nd hence 

 T ω̄ ηN 
‖ ∞ 

< r̄ , ‖ T ω̄ νN 
‖ ∞ 

< M̄ N 

rovided 

 X ‖ ̃

 r ε < r̄ , ‖ X ‖ M < M̄ N . (18)

ecall that we can make ˜ r ε arbitrarily small by reducing ε without

ffecting the bound M . Assume 

 T ω̄ η j 
‖ ∞ 

< r̄ , ‖ T ω̄ ν j 
‖ ∞ 

< M̄ j 
olds for j = i + 1 , . . . , N. We have: 

 ω̄ ηi 
(s ) = T λi 

ωx (s ) 

[ 

e i � X + 

N ∑ 

j= i +1 

s i j T ω̄ ν j 
(s ) 

] 

T ω̄ νi 
(s ) = T λi 

ωu (s ) 

[ 

e i � X + 

N ∑ 

j= i +1 

s i j T ω̄ ν j 
(s ) 

] 

here e i is a row vector of dimension N with elements equal to

ero except for the i th component which is equal to 1. Since 

e i � X + 

N ∑ 

j= i +1 

s i j T ω̄ ν j 

∥∥∥∥∥
∞ 

< ‖ X ‖ + 

N ∑ 

j= i +1 

| s i j | M̄ j 

e find: 

 T ω̄ ηi 
‖ ∞ 

< r̄ , ‖ T ω̄ νi 
‖ ∞ 

< M̄ i (19)

rovided: 
 

‖ X ‖ + 

N ∑ 

j= i +1 

| s i j | M̄ j 

) 

˜ r ε < r̄ , 

( 

‖ X ‖ + 

N ∑ 

j= i +1 

| s i j | M̄ j 

) 

˜ M < M̄ i . (20) 

ote that s ij depends on the graph in G but since the Lapla-

ian matrices associated to graphs in G are uniformly bounded

e find that also the s ij are uniformly bounded. In this way for

ny arbitrary r̄ , we can recursively obtain the bounds in (19) for

 = 2 , . . . , N provided we choose ε sufficiently small such that the

orresponding ˜ r ε satisfies (18) and (20) for i = 2 , . . . , N − 1 . Hence,

e can choose ε sufficiently small such that the transfer matrix

rom ω̄ to ηi is less than r̄ for i = 2 , . . . , N. As noted before this

uarantees that we can achieve (7) for any r > 0. �

For the case where the set of graphs G equals G 

N 
α,β

for some

iven α, β > 0, we develop necessary and sufficient conditions for

he solvability of the H ∞ 

-ASSFS for MAS as follows: 

heorem 1. Consider a MAS described by (1) and (4) with an asso-

iated graph from the set G = G 

N 
α,β

for some α, β > 0 . 

Then, the H ∞ 

-ASSFS is solvable if and only if (13) is satisfied and

 A , B ) is stabilizable. 

roof. From Lemma 1 , we note that (13) is actually a necessary

ondition for H ∞ 

-ASSFS. Clearly, also ( A , B ) stabilizable is a neces-

ary condition. Sufficiency is a direct result of Theorems 3 or 5 for

 ∞ 

-ASSFS. �

.2. Necessary and sufficient conditions for H 2 -ASSFS 

We define the robust H 2 -ADDPSS with bounded input as fol-

ows. Given � ⊂ C , there should exist M > 0 such that for any given

eal number r > 0, we can find a parameterized controller (11) for

he system, (12) such that the following holds for any λ∈ �: 

1. The interconnection of the systems (11) and (12) is internally

stable; 

2. The resulting closed-loop transfer function T ωx from ω to x has

an H 2 norm less than r . 

3. The resulting closed-loop transfer function T ωu from ω to u has

an H ∞ 

norm less than M . 

In the above, � denotes all possible locations for the nonzero

igenvalues of the Laplacian matrix L when the graph varies over

he set G . It is also important to note that M is independent of the

hoice for r . Note that we need to consider two aspects in our con-

roller H 2 disturbance rejection and robust stabilization (because of

 set of network graphs G 

N 
α,β

). The latter translates in the H ∞ 

norm

onstraint from ω to u . 
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s  

f  

t  
Lemma 2. Let G be a set of graphs such that the associated Lapla-

cian matrices are uniformly bounded and let � consist of all possible

nonzero eigenvalues of Laplacian matrices associated with graphs in

G . 

( Necessity ) The H 2 -ASSFS for the MAS described by (1) and

(4) given G is solvable by a parameterized protocol u i = F (ε) ζi only if

(13) is satisfied. 

( Sufficiency )The H 2 -ASSFS for the MAS described by (1) and

(4) given G is solvable by a parameterized protocol u i = F (ε) ζi if the

robust H 2 -ADDPSS with bounded input for the system (12) with λ∈ �

is solved by the parameterized controller u = F (ε) x . 

Proof. The proof is similar to the proof of Lemma 1 . This time we

need the H 2 norm from ω̄ N to ηN to be arbitrarily small and also

H 2 almost disturbance decoupling then immediately yields that we

need that (13) is satisfied. 

The rest of the proof follows the same lines except that we re-

quire the H 2 norm from ω̄ to ηj arbitrarily small while we keep

the H ∞ 

norm from ω̄ to ν j bounded. Recall that for any two sta-

ble, strictly proper transfer matrices T 1 and T 2 we have: 

‖ T 1 T 2 ‖ 2 ≤ ‖ T 1 ‖ 2 ‖ T 2 ‖ ∞ 

which we need in the modifications of the proof of Lemma 1 . �

For the case with a set of graph G = G 

N 
α,β

(with given α, β > 0),

we develop necessary and sufficient conditions for the solvability

of the H 2 -ASSFS for MAS as follows: 

Theorem 2. Consider a MAS described by (1) and (4) with an asso-

ciated graph from the set G = G 

N 
α,β

for some α, β > 0 . 

Then, the H 2 -ASSFS is solvable if and only if (13) is satisfied and

( A , B ) is stabilizable. 

Proof. We have already noted before that (13) is actually a neces-

sary condition for H 2 -ASSFS. Clearly, also ( A , B ) being stabilizable

is a necessary condition. Sufficiency for H 2 -ASSFS, is a direct result

of either Theorems 4 or 6 . �

3.3. Protocol design for H ∞ 

-ASSFS and H 2 -ASSFS 

We present below two protocol design methods for both H ∞ 

-

SSFS and H 2 - ASSFS problems. One relies on an algebraic Riccati

equation (ARE), and dummyTXdummy- the other is based on an

asymptotic time-scale eigenstructure assignment (ATEA) method. 

3.3.1. ARE-based method 

Using an algebraic Riccati equation, we can design a suitable

protocol provided ( A , B ) is stabilizable. We consider the protocol, 

u i = ρF ζi , (21)

where ρ = 

1 
ε and F = −B ′ P with P being the unique solution of the

continuous-time algebraic Riccati equation 

A 

′ P + PA − 2 βP BB 

′ P + I = 0 , (22)

where β is a lower bound for the real part of the non-zero eige-

navlues of all Laplacian matrices associated with a graph in G =
G 

N 
α,β

. 

The main result regarding H ∞ 

-ASSFS is stated as follows. 

Theorem 3. Consider a MAS described by (1) and (4) such that

(13) is satisfied. Let any real numbers α, β > 0 and a positive inte-

ger N be given, and hence a set of network graphs G 

N 
α,β

be defined. 

If ( A , B ) is stabilizable then the H ∞ 

-ASSFS stated in Problem 1 with

G = G 

N 
α,β

is solvable. In particular, for any given real number r > 0,

there exists an ε∗, such that for any ε ∈ (0, ε∗), the protocol

(21) achieves state synchronization and the resulting system from ω
to x i − x j has an H ∞ 

norm less than r for any i, j ∈ 1 , . . . , N and for

any graph G ∈ G 

N 
α,β

. 
roof. Using Lemma 1 , we know that we only need to verify

hat u = ρF x solves the robust H ∞ 

-ADDPSS with bounded input

or the system (12) with λ∈ �. Given G ∈ G 

N 
α,β

, we know that

∈ � implies Re λ ≥ β . Clearly, the Laplacian matrices are uni-

ormly bounded since ‖ L ‖ ≤α. 

Consider the interconnection of (12) and u = ρF x . We define 

 (x ) = x ′ P x 

nd we obtain: 

˙ 
 = x ′ (A − ρλBB 

′ P ) ′ P x + ω 

′ B 

′ P x + x ′ P (A − ρλBB 

′ P ) x + x ′ P Bω 

= x ′ P BB 

′ P x − x ′ x − 2 ρβx ′ P BB 

′ P x + 2 x ′ P Bω 

≤ (1 − β

ε 
) x ′ P BB 

′ P x − x ′ x + 

ε 

β
ω 

′ ω 

≤ −β

2 

εu 

′ u − x ′ x + 

ε 

β
ω 

′ ω 

hich implies that the system is asymptotically stable and the H ∞ 

orm of the transfer function from ω to x is less that ε/ β while

he H ∞ 

norm of the transfer function from ω to u is less that 2/ β2 .

herefore, u = ρF x solves the robust H ∞ 

-ADDPSS with bounded in-

ut for the system (12) as required. �

For H 2 -ASSFS we have the following classical result: 

emma 3. Consider an asymptotically stable system: 

˙ p = A 1 p + B 1 ω 

he H 2 norm from ω to p is less than δ if there exists a matrix Q such

hat: 

 1 Q + QA 

′ 
1 + B 1 B 

′ 
1 ≤ 0 , Q < δI 

The main result regarding H 2 -ASSFS is stated as follows. 

heorem 4. Consider a MAS described by (1) and (4) such that

13) is satisfied. Let any real numbers α, β > 0 and a positive inte-

er N be given, and hence a set of network graphs G 

N 
α,β

be defined. 

If ( A , B ) is stabilizable then the H 2 -ASSFS stated in Problem 3 with

 = G 

N 
α,β

is solvable. In particular, for any given real number r > 0,

here exists an ε∗, such that for any ε ∈ (0, ε∗), the protocol

21) achieves state synchronization and the resulting system from ω
o x i − x j has an H ∞ 

norm less than r for any i, j ∈ 1 , . . . , N and for

ny graph G ∈ G 

N 
α,β

. 

roof. Using Lemma 2 , we know that we only need to verify that

 = ρF x solves the robust H 2 -ADDPSS with bounded input for the

ystem (12) with λ∈ �. We use the same feedback as in the proof

f Theorem 3 . In the proof of Theorem 3 it is already shown that

he closed loop system is asymptotically stable and the H ∞ 

norm

f the transfer function from ω to u is bounded. The only remain-

ng part of the proof is to show that the H 2 norm from ω to x can

e made arbitrarily small. Using the algebraic Riccati equation it is

asy to see that we have: 

(A − ρλBB 

′ P ) ′ P + P (A − ρλBB 

′ P ) + ρβP BB 

′ P ≤ 0 

or large ρ . But then we have: 

 ε (A − ρλBB 

′ P ) ′ + (A − ρλBB 

′ P ) Q ε + BB 

′ ≤ 0 

or Q ε = εβ−1 P −1 . Then Lemma 3 immediately yields that we can

ake the H 2 norm from ω to x arbitrarily small by choosing a suf-

ciently small ε. �

.3.2. ATEA-based method 

The ATEA-based design is basically a method of time-scale

tructure assignment in linear multivariable systems by high-gain

eedback [19] . In the current case, we do not need the full struc-

ure presented in the above method. It is sufficient to note that
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here exists non-singular transformation matrix T x ∈ R 

n ×n (See [17,

heorem 1] ) such that 

ˆ 
 = 

(
ˆ x 1 
ˆ x 2 

)
= T x x, (23) 

nd the dynamics of ˆ x is represented as 

˙ ˆ 
 1 = Ā 11 ̂  x 1 + Ā 12 ̂  x 2 , 

˙ ˆ 
 2 = Ā 21 ̂  x 1 + Ā 22 ̂  x 2 + λB̄ u + B̄ ω, (24) 

ith B̄ invertible, and that ( A , B ) is stabilizable implies that

( ̄A 11 , Ā 12 ) is stabilizable. 

Choose F 1 such that Ā 11 + Ā 12 F 1 is asymptotically stable. In that

ase a suitable protocol for (1) is 

 i = F ε ζi , (25) 

here F ε is designed as 

 ε = 

1 

ε 
B̄ 

−1 
(
F 1 −I 

)
T x (26) 

The main result regarding H ∞ 

-ASSFS is stated as follows. The

esult is basically the same as Theorem 3 except for a different

esign protocol. 

heorem 5. Consider a MAS described by (1) and (4) such that

13) is satisfied. Let any real numbers α, β > 0 and a positive inte-

er N be given, and hence a set of network graphs G 

N 
α,β

be defined. 

If ( A , B ) is stabilizable then the H ∞ 

-ASSFS stated in Problem 1 with

 = G 

N 
α,β

is solvable. In particular, for any given real number r > 0,

here exists an ε∗, such that for any ε ∈ (0, ε∗), the protocol

25) achieves state synchronization and the resulting system from ω 

o x i − x j has an H ∞ 

norm less than r for any i, j ∈ 1 , . . . , N and for

ny graph G ∈ G 

N 
α,β

. 

roof. Similarly to the proof of Theorem 3 , we only need to estab-

ish that u = F ε x solves the robust H ∞ 

-ADDPSS with bounded in-

ut for the system (12) with λ∈ �. Given G ∈ G 

N 
α,β

, we know that

∈ � implies Re λ ≥ β . 

After a basis transformation, the interconnection of (12) and

 = F ε x is equal to the interconnection of (24) and (25) . We ob-

ain: 

˙ ˆ x 1 = Ā 11 ̂  x 1 + Ā 12 ̂  x 2 , 

 ̇

 ˆ x 2 = (ε ̄A 21 + λF 1 ) ̂  x 1 + (ε ̄A 22 − λI) ̂  x 2 + ε ̄B ω. (27) 

efine 

˜ 
 1 = 

ˆ x 1 , ˜ x 2 = 

ˆ x 2 − F 1 ̂  x 1 . 

hen we can write this system (27) in the form: 

˙ ˜ x 1 = 

˜ A 11 ̃  x 1 + 

˜ A 12 ̃  x 2 , 

 ̇

 ˜ x 2 = ε ̃  A 21 ̃  x 1 + (ε ̃  A 22 − λI) ̃  x 2 + ε ̄B ω, (28) 

here 

˜ A 11 = Ā 11 + Ā 12 F 1 , ˜ A 12 = Ā 12 , 

˜ 
 21 = Ā 21 − F 1 ̄A 11 + Ā 22 − F 1 ̄A 12 , ˜ A 22 = Ā 22 − F 1 ̄A 12 . 

n the absence of the external disturbances, the above system

28) is asymptotically stable for small enough ε. 

Since ˜ A 11 = Ā 11 + Ā 12 F 1 is Hurwitz stable, there exists P > 0 such

hat the Lyapunov equation P ̃  A 11 + 

˜ A 

′ 
11 

P = −I holds. For the dynam-

cs ˜ x 1 , we define a Lyapunov function V 1 = ˜ x ′ 1 P ̃  x 1 . Then the deriva-

ive of V 1 can be bounded 

˙ 
 1 ≤ −‖ ̃

 x 1 ‖ 

2 + 

˜ x ′ 2 ̃  A 

′ 
12 P ̃  x 1 + 

˜ x ′ 1 P ̃  A 12 ̃  x 2 

≤ −‖ ̃

 x 1 ‖ 

2 + 2 Re ( ̃  x ′ 1 P ̃  A 12 ̃  x 2 ) 

≤ −‖ ̃

 x 1 ‖ 

2 + r 1 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ , 
here 2 ‖ P ̃  A 12 ‖ ≤ r 1 . Now define a Lyapunov function V 2 = ε ̃  x ′ 
2 ̃

 x 2 
or the dynamics ˜ x 2 . The derivative of V 2 can then also be

ounded. 

˙ 
 2 ≤ −2 Re (λ) ‖ ̃

 x 2 ‖ 

2 + 2 ε Re ( ̃  x ′ 2 ̃  A 21 ̃  x 1 ) + 2 ε ̃  x ′ 2 ̃  A 22 ̃  x 2 + 2 ε Re ( ̃  x ′ 2 ̄B ω)

≤ −2 Re (λ) ‖ ̃

 x 2 ‖ 

2 + εr 2 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ + εr 3 ‖ ̃

 x 2 ‖ 

2 + εr 4 ‖ ω‖‖ ̃

 x 2 ‖ 

≤ −β‖ ̃

 x 2 ‖ 

2 + εr 2 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ + εr 4 ‖ ω‖‖ ̃

 x 2 ‖ 

or a small enough ε, where we choose r 2 , r 3 , r 4 such that 

 ‖ ̃

 A 21 ‖ ≤ r 2 , 2 ‖ ̃

 A 22 ‖ ≤ r 3 , and 2 ‖ ̄B ‖ ≤ r 4 . 

et V = V 1 + γV 2 for some γ > 0. Then, we have 

˙ 
 ≤ −‖ ̃

 x 1 ‖ 

2 + r 1 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ − γβ‖ ̃

 x 2 ‖ 

2 + εγ r 2 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ 

+ εγ r 4 ‖ ω‖‖ ̃

 x 2 ‖ . 

e have that 

 1 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ ≤ r 2 1 ‖ ̃

 x 2 ‖ 

2 + 

1 

4 

‖ ̃

 x 1 ‖ 

2 , 

εγ r 2 ‖ ̃

 x 1 ‖‖ ̃

 x 2 ‖ ≤ ε 2 γ 2 r 2 2 ‖ ̃

 x 1 ‖ 

2 + 

1 

4 

‖ ̃

 x 2 ‖ 

2 , 

εγ r 4 ‖ ω‖‖ ̃

 x 2 ‖ ≤ ε 2 γ 2 r 2 4 ‖ ω‖ 

2 + 

1 

4 

‖ ̃

 x 2 ‖ 

2 . 

ow we choose γ such that γβ = 1 + r 2 1 and r 5 = γ r 4 . Then, we

btain 

˙ 
 ≤ −1 

2 

‖ ̃

 x 1 ‖ 

2 − 1 

2 

‖ ̃

 x 2 ‖ 

2 + ε 2 r 2 5 ‖ ω‖ 

2 

≤ −1 

2 

‖ ̃

 x ‖ 

2 + ε 2 r 2 5 ‖ ω‖ 

2 , 

or a small enough ε. From the above, we have that ‖ T ω ̃ x ‖ ∞ 

< 2 εr 5 ,

hich immediately leads to ‖ T ωx ‖ ∞ 

< r for any real number r > 0

s long as we choose ε small enough. On the other hand: 

 ωu (s ) = −1 

ε 

(
0 B̄ 

−1 
)
T ω ̃ x (s ) 

nd hence: 

 T ωu ‖ ∞ 

≤ ‖ ̄B 

−1 ‖ r 5 . 

herefore, u = F ε x solves the robust H ∞ 

-ADDPSS with bounded in-

ut for the system (12) as required. �

The main result regarding H 2 -ASSFS is stated as follows. 

heorem 6. Consider a MAS described by (1) and (4) such that

13) is satisfied. Let any real numbers α, β > 0 and a positive inte-

er N be given, and hence a set of network graphs G 

N 
α,β

be defined. 

If ( A , B ) is stabilizable then the H 2 -ASSFS stated in Problem 1 with

 = G 

N 
α,β

is solvable. In particular, for any given real number r > 0,

here exists an ε∗, such that for any ε ∈ (0, ε∗), the protocol

25) achieves state synchronization and the resulting system from ω 

o x i − x j has an H 2 norm less than r for any i, j ∈ 1 , . . . , N and for

ny graph G ∈ G 

N 
α,β

. 

roof. Using Lemma 2 , we know that we only need to verify that

he feedback solves the robust H 2 -ADDPSS with bounded input for

he system (12) with λ∈ �. We use the same feedback as in the

roof of Theorem 5 . In the proof of Theorem 5 it is already shown

hat the closed loop system is asymptotically stable and the H ∞ 

orm of the transfer function from ω to u is bounded. The only re-

aining part of the proof is to show that the H 2 norm from ω to x

an be made arbitrarily small. This clearly is equivalent to showing

hat the system (28) has an arbitrary small H 2 norm from ω to ˜ x 1 
nd ˜ x 2 for sufficiently small ε. Choose Q such that 

 ̃

 A 

′ 
11 + 

˜ A 11 Q = −I 
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In that case we have: 

A cl 

(√ 

ε Q 0 

0 

√ 

ε I 

)
+ 

(√ 

ε Q 0 

0 

√ 

ε I 

)
A 

′ 
cl + 

(
0 0 

0 B̄ ̄B 

′ 

)

≤
( √ 

ε 
√ 

ε ( ̃  A 12 + Q ̃

 A 

′ 
21 ) √ 

ε ( ̃  A 

′ 
12 + 

˜ A 21 Q ) − β√ 

ε 
I 

)
for sufficiently small ε where: 

A cl = 

(
˜ A 11 

˜ A 12 

˜ A 21 
˜ A 22 − λ

ε I 

)
and we used that 

λ + λ′ ≥ 2 β. 

We then obtain for sufficiently small ε that: 

A cl 

(√ 

ε Q 0 

0 

√ 

ε I 

)
+ 

(√ 

ε Q 0 

0 

√ 

ε I 

)
A 

′ 
cl 

+ 

(
0 0 

0 B̄ ̄B 

′ 

)
≤ 0 

Then Lemma 3 immediately yields that we can make the H 2 norm

from ω to x arbitrarily small by choosing a sufficiently small ε. �

4. MAS with partial-state coupling 

In this section, similar to the approach of the previous section,

we show first that the almost state synchronization among agents

in the network with partial-state coupling can be solved by equiv-

alently solving a robust H ∞ 

or H 2 almost disturbance decoupling

problem via measurement feedback with internal stability (in short

H ∞ 

or H 2 -ADDPMS). Then, we design a controller for such a robust

H ∞ 

or H 2 -ADDPMS with bounded input. 

4.1. Necessary and sufficient condition for H ∞ 

-ASSPS 

The MAS system described by (1) and (3) after implementing

the linear dynamical protocol (8) is described by ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ˆ x i = 

(
A BC c (ε) 
0 A c (ε) 

)
ˆ x i + 

(
BD c (ε) 
B c (ε) 

)
ζi + 

(
E 
0 

)
ω i , 

y i = 

(
C 0 

)
ˆ x i , 

ζi = 

N ∑ 

j=1 

� i j y j , 

(29)

for i = 1 , . . . , N, where 

ˆ x i = 

(
x i 
χi 

)
. 

Define 

ˆ x = 

⎛ 

⎝ 

ˆ x 1 
. . . 

ˆ x N 

⎞ 

⎠ , ω = 

⎛ 

⎝ 

ω 1 

. . . 
ω N 

⎞ 

⎠ , 

and 

Ā = 

(
A BC c (ε) 
0 A c (ε) 

)
, B̄ = 

(
BD c (ε) 
B c (ε) 

)
, Ē = 

(
E 
0 

)
, 

¯
 = 

(
C 0 

)
. 

Then, the overall dynamics of the N agents can be written as 

˙ ˆ x = (I N � Ā + L � B̄ ̄C ) ̂  x + (I N � Ē ) ω. (30)
We define a robust H ∞ 

-ADDPMS with bounded input as follows.

iven � ⊂ C , there should exist M > 0 such that for any given real

umber r > 0, we can find a parameterized controller 

˙ = A c (ε) χ + B c (ε) y, 

u = C c (ε) χ + D c (ε) y, (31)

here χ ∈ R 

n c , for the following system, 

˙ x = Ax + λBu + Bω, 

 = Cx (32)

uch that the following holds for any λ∈ �: 

1. The closed-loop system of (31) and (32) is internally stable 

2. The resulting closed-loop transfer function T ωx from ω to x has

an H ∞ 

norm less than r . 

3. The resulting closed-loop transfer function T ωu from ω to u has

an H ∞ 

norm less than M . 

In the above, � denotes all possible locations for the nonzero

igenvalues of the Laplacian matrix L when the graph varies over

he set G . It is also important to note that M is independent of the

hoice for r . 

In order to obtain our main result, we will need the following

emma: 

emma 4. Consider the system: 

˙ x = Ax + Bu + Eω, 

 = Cx 

z = x 

ith ( A , B ) stabilizable and ( C , A ) detectable. The H ∞ 

-ADDPMS for the

bove system is defined as the problem to find for any r > 0 a con-

roller of the form (31) such that the closed loop system is internally

table while the H ∞ 

norm from ω to z is less than r. The H ∞ 

-ADDPMS

s solvable if and only if: 

1. im E ⊂ im B, 

2. ( A , E , C , 0) is left-invertible, 

3. ( A , E , C , 0) is minimum-phase. 

roof. From [18] we immediately obtain that the H ∞ 

-ADDPMS is

olvable if and only if: 

1. im E ⊂ im B 

2. ( A , E , C , 0) is at most weakly non-minimum-phase and left-

invertible. 

3. For any δ > 0 and every invariant zero s 0 of ( A , E , C , 0), there

exists a matrix K such that sI − A − BKC is invertible and 

‖ (s 0 I − A − BKC) −1 E‖ ∞ 

< δ (33)

Choose a suitable basis such that: 

 = 

(
A 11 A 12 

A 21 A 22 

)
, B = 

(
B 1 

B 2 

)
, E = 

(
E 1 
E 2 

)
, 

 = 

(
I 0 

)
ssume s 0 is an imaginary axis zero of ( A , E , C , 0). In that case the

ank of the matrix: 
 

sI − A 11 −A 12 E 1 
−A 21 sI − A 22 E 2 

I 0 0 

) 

rops for s = s 0 . This implies the existence of p � = 0 and q � = 0 such

hat 

−A 12 

s 0 I − A 22 

)
p = 

(
E 1 
E 2 

)
q. 
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invertible. 
he final condition for H ∞ 

almost disturbance decoupling requires

or any δ > 0 the existence of a K such that (33) is satisfied. How-

ver: 

(s 0 I − A − BKC) −1 Eq 

= 

(
s 0 I − A 11 − B 1 K −A 12 

−A 21 − B 2 K s 0 I − A 22 

)−1 ( −A 12 

s 0 I − A 22 

)
p 

= 

(
s 0 I − A 11 − B 1 K −A 12 

−A 21 − B 2 K s 0 I − A 22 

)−1 (
s 0 I − A 11 − B 1 K −A 12 

−A 21 − B 2 K s 0 I − A 22 

)
(

0 

p 

)
= 

(
0 

p 

)
, 

hich yields a contradiction if δ is such that 

 p‖ > δ‖ q ‖ . 

herefore we cannot have any invariant zeros in the imaginary

xis. In other words, the system ( A , E , C , 0) needs to be minimum-

hase instead of weakly minimum-phase. Conversely, if ( A , E , C , 0)

s minimum-phase it is easy to verify that for any δ > 0 there exists

 such that (33) is satisfied. �

heorem 7. Consider the MAS described by (1) and (3) with ( A , B )

tabilizable and ( C , A ) detectable. 

(Part I) Let α, β > 0 be given such that a set of graphs G 

N 
α,β

be

efined. Then, the H ∞ 

-ASSPS for the MAS with any graph G ∈ G 

N 
α,β

is

olvable by a parameterized protocol (8) for any α > β > 0 if and only

f 

m E ⊂ im B (34) 

hile ( A , E , C , 0) is minimum phase and left-invertible. 

(Part II) Let G be a set of graphs such that the associated Lapla-

ian matrices are uniformly bounded and let � consist of all possible

onzero eigenvalues of Laplacian matrices associated with graphs in

 . Then, the H ∞ 

-ASSPS for the MAS with any graph G ∈ G is solved by

 parameterized protocol (8) if the robust H ∞ 

-ADDPMS with bounded

nput for the system (32) with λ∈ � is solved by the parameterized

ontroller (31) . 

roof. By using L = T S L T 
−1 , we define 

:= (T −1 
� I n ) ̂  x = 

⎛ 

⎝ 

η1 

. . . 
ηN 

⎞ 

⎠ , ω̄ = (T −1 
� I) ω = 

⎛ 

⎝ 

ω̄ 1 

. . . 
ω̄ N 

⎞ 

⎠ 

here ηi ∈ C 

n + n c and ω̄ i ∈ C 

q . In the new coordinates, the dynam-

cs of η can be written as 

˙ (t) = (I N � Ā + S L � B̄ ̄C η + (T −1 
� E) ω, (35)

hich is rewritten as 

˙ η1 = Ā η1 + 

N ∑ 

j=2 

s 1 j ̄B ̄C η j + Ē ̄ω 1 , 

˙ ηi = ( ̄A + λi ̄B ̄C ) ηi + 

N ∑ 

j= i +1 

s i j ̄B ̄C η j + Ē ̄ω i , 

˙ N = ( ̄A + λN ̄B ̄C ) ηN + Ē ̄ω N , (36) 

ith i ∈ { 2 , . . . , N − 1 } where 

¯
 = 

(
0 

E 

)
, S L = [ s i j ] . 

s in the case of full-state coupling, we can show that: 

¯
 = (V � I n ) 

⎛ 

⎝ 

η2 

. . . 
ηN 

⎞ 

⎠ , (37)
or some suitably chosen matrix V which is uniformly bounded.

herefore the H ∞ 

norm of the transfer matrix from ω to x̄ can be

ade arbitrarily small if and only if the H ∞ 

norm of the transfer

atrix from ω̄ to η can be made arbitrarily small. 

In order for the H ∞ 

norm from ω̄ to η to be arbitrarily small

e need the H ∞ 

norm from ω̄ N to ηN to be arbitrarily small. In

ther words, the robust H ∞ 

-ADDPMS with bounded input has to

e solvable for the system 

˙ x = Ax + λBu + Eω, 

 = Cx 

rom the results of Lemma 4 , we find that this is only possible

f (34) is satisfied and ( A , E , C , 0) is left-invertible and minimum

hase. 

On the other hand, suppose (31) solves the robust H ∞ 

-ADDPMS

ith bounded input of (32) and assume (34) is satisfied. We need

o show that (8) solves the H ∞ 

-ASSFS for the MAS described by

1) and (3) . This follows directly from arguments very similar to

he approach used in the proof of Lemma 1 . �

.2. Necessary and sufficient condition for H 2 -ASSPS 

The MAS system described by (1) and (3) after implement-

ng the linear dynamical protocol (8) is described by (29) for i =
 , . . . , N, and, as before, the overall dynamics of the N agents can

e written as 

˙ ˆ 
 = (I N � Ā + L � B̄ ̄C ) ̂  x + (I N � Ē ) ω. (38)

We define a robust H 2 -ADDPMS with bounded input as follows.

iven � ⊂ C , there should exist M > 0 such that for any given real

umber r > 0, we can find a parameterized controller 

˙ = A c (ε) χ + B c (ε) y, 

u = C c (ε) χ + D c (ε) y, (39) 

here χ ∈ R 

n c , for the following system, 

˙ x = Ax + λBu + Bω, 

 = Cx (40) 

uch that the following holds for any λ∈ �: 

1. The closed-loop system of (39) and (40) is internally stable 

2. The resulting closed-loop transfer function T ωx from ω to x has

an H 2 norm less than r . 

3. The resulting closed-loop transfer function T ωu from ω to u has

an H ∞ 

norm less than M . 

In the above, � denotes all possible locations for the nonzero

igenvalues of the Laplacian matrix L when the graph varies over

he set G . It is also important to note that M is independent of the

hoice for r . 

The following lemma, provides a necessary condition for the

 2 -ADDPMS: 

emma 5. Consider the system: 

˙ x = Ax + Bu + Eω, 

 = Cx 

z = x 

ith ( A , B ) stabilizable and ( C , A ) detectable. The H 2 -ADDPMS for the

bove system is defined as the problem to find for any r > 0 a con-

roller of the form (39) such that the closed loop system is internally

table while the H ∞ 

norm from ω to z is less than r. The H 2 -ADDPMS

s solvable only if: 

1. im E ⊂ im B 

2. ( A , E , C , 0) is at most weakly non-minimum-phase and left-
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Proof. This follows directly from [18] . �

Theorem 8. Consider the MAS described by (1) and (3) with ( A , B )

stabilizable and ( C , A ) detectable. 

(Part I) Let α, β > 0 be given such that a set of graphs G 

N 
α,β

be

defined. Then, the H 2 -ASSPS for the MAS with any graph G ∈ G 

N 
α,β

is

solvable by a parameterized protocol (8) for any α > β > 0 only if 

im E ⊂ im B (41)

while ( A , E , C , 0) is at most weakly non-minimum phase and left-

invertible . 

(Part II) Let G be a set of graphs such that the associated Lapla-

cian matrices are uniformly bounded and let � consist of all possible

nonzero eigenvalues of Laplacian matrices associated with graphs in

G . Then, the H 2 -ASSPS for the MAS with any graph G ∈ G is solved by

a parameterized protocol (8) if the robust H 2 -ADDPMS with bounded

input for the system (40) with λ∈ � is solved by the parameterized

controller (39) . 

Proof. Similar, to the proof of Theorem 7 , the dynamics can be

written in the form (36) . 

Using (37) , we note the H 2 norm of the transfer matrix from ω
to x̄ can be made arbitrarily small if and only if the H 2 norm of

the transfer matrix from ω̄ to η can be made arbitrarily small. 

In order for the H 2 norm from ω̄ to η to be arbitrarily small

we need the H 2 norm from ω̄ N to ηN to be arbitrarily small. In

other words, the robust H 2 -ADDPMS with bounded input has to be

solvable for the system 

˙ x = Ax + λBu + Eω, 

y = Cx 

From the results of Lemma 5 , we find that this is only possible if

(41) is satisfied, ( A , E , C , 0) is left-invertible and at most weakly

non-minimum phase. 

On the other hand, suppose (39) solves the robust H 2 -ADDPMS

with bounded input of (40) and assume (41) is satisfied. We need

to show that (8) solves the H 2 -ASSFS for the MAS described by

(1) and (3) . This follows directly from arguments very similar to

the approach used in the proof of Lemma 1 . �

4.3. Protocol design for H ∞ 

-ASSPS 

We present below two protocol design methods based on ro-

bust stabilization for the case E = B and therefore the case where

( A , B , C , 0) is minimum-phase. One relies on an algebraic Riccati

equation (ARE) method, and the other is based on the direct eigen-

structure assignment method. 

4.3.1. ARE-based method 

Using an algebraic Riccati equation, we can design a suitable

protocol. As in the full-state coupling case, we choose F = −B ′ P 
with P = P ′ > 0 being the unique solution of the continuous-time

algebraic Riccati equation 

A 

′ P + PA − 2 βP BB 

′ P + I = 0 , (42)

where β is a lower bound for the real part of the non-zero eigen-

values of all Laplacian matrices associated with a graph in G 

N 
α,β

. 

Since ( A , B , C , 0) is minimum-phase then for any ε there exists

δ small enough such that 

AQ + QA 

′ + BB 

′ + ε −4 Q 

2 − δ−2 QC ′ CQ = 0 (43)

has a solution Q > 0. We then consider the following protocol: 

˙ χi = (A + K ε C) χi − K ε ζi , 

u = F ε χ , (44)
i i 
here 

 ε = −1 

ε 
B 

′ P, K ε = − 1 

δ2 
QC ′ 

The main result in this section is stated as follows. 

heorem 9. Consider a MAS described by (1) and (3) with ( A , B ) sta-

ilizable and ( C , A ) detectable. Let any real numbers α, β > 0 and a

ositive integer N be given, and hence a set of network graphs G 

N 
α,β

e defined. 

The H ∞ 

-ASSPS stated in Problem 2 with G = G 

N 
α,β

is solvable. In

articular, for any given real number r > 0, there exists an ε∗, such

hat for any ε ∈ (0, ε∗), the protocol (44) achieves state synchroniza-

ion and the resulting system from ω to x i − x j has an H ∞ 

norm less

han r for any i, j ∈ 1 , . . . , N and for any graph G ∈ G 

N 
α,β

. 

roof. Using Theorem 7 , we know that we only need to verify

hat 

˙ = (A + K ε C) χ − K ε y, 

u = F ε χ, (45)

olves the robust H ∞ 

-ADDPMS with bounded input for the sys-

em (32) with λ∈ �. Given G ∈ G 

N 
α,β

, we know that λ∈ � im-

lies Re λ ≥ β . Obviously A + BF ε and A + K ε C are both asymptoti-

ally stable by construction and hence the intersection of (32) and

45) is asymptotically stable. The closed loop transfer function

rom ω to x is equal to: 

 ωx = 

(
I 0 

)( I −T 2 
˜ T 3 I 

)−1 (
T 1 

− ˜ T 4 

)
here: 

 1 (s ) = (sI − A − λBF ε ) 
−1 B (46a)

 2 (s ) = λ(sI − A − λBF ε ) 
−1 BF ε (46b)

˜ 
 3 (s ) = λ(sI − A − K ε C + λBF ε ) 

−1 BF ε (46c)

˜ 
 4 (s ) = (sI − A − K ε C + λBF ε ) 

−1 B (46d)

As argued in the proof of Theorem 3 , we have: 

 T 1 ‖ ∞ 

< 

ε 

β
, ‖ T 2 ‖ ∞ 

< 

2 | λ| 
β2 

≤ 2 α

β2 
. 

n the other hand, (43) implies according to the bounded real

emma: 

 T 3 ‖ ∞ 

< ε 2 (47)

here 

 3 (s ) = (sI − A − K ε C) −1 B 

ote that: 

˜ 
 3 = λ(I + λT 3 F ε ) 

−1 T 3 F ε 

hich yields, using (47) , that 

 ̃

 T 3 ‖ ∞ 

< (1 − ε M 1 ) 
−1 ε M 1 < 2 ε M 1 

or small ε where M 1 is such that: 

 λ|‖ B 

′ P ‖ < α‖ B 

′ P ‖ = M 1 

he above yields: 

 T ωx ‖ ∞ 

< εM 2 
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or some suitable constant M 2 . The closed loop transfer function

rom ω to u is equal to: 

 ωu = 

(
F ε F ε 

)( I −T 2 
˜ T 3 I 

)−1 (
T 1 

− ˜ T 4 

)
hich yields using similar arguments as above that: 

 T ωu ‖ ∞ 

< M 3 

or some suitable constant M 3 independent of ε. Therefore the H ∞ 

orm of the transfer matrix T ωx becomes arbitrarily small for suf-

ciently small ε while the H ∞ 

norm of the transfer matrix T ωu re-

ains bounded. �

.3.2. Direct method 

For ease of presentation, we only consider the case q = 1 , i.e.

he case where we have a scalar measurement. We consider the

tate feedback gain F ε given in (26) , that is 

 ε = 

1 

ε 
B̄ 

−1 
(
F 1 −I 

)
T x , 

here T x is defined in (23) . 

Next, we consider the observer design. Note that the system ( A ,

 , C , 0) is minimum-phase and left-invertible. In that case there is

 nonsingular matrix �x such that, by defining x̄ = �x x, we obtain

he system 

˙ x a = A a x a + L ad y, 

˙ 
 d = A d x d + B d (u + ω + E da x a + E dd x d ) , 

y = C d x d . (48) 

here 

¯
 = �x x = 

(
x a 
x d 

)
, 

ith x a ∈ R 

n −ρ and x d ∈ R 

ρ and where the matrices A d ∈ R 

ρ×ρ,

 d ∈ R 

ρ×1 , and C d ∈ R 

1 ×ρ have the special form 

 d = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 1 

0 · · · 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, B d = 

⎛ 

⎜ ⎜ ⎝ 

0 

. . . 
0 

1 

⎞ 

⎟ ⎟ ⎠ 

, 

C d = 

(
1 0 · · · 0 

)
. (49) 

urthermore, the eigenvalues of A a are the invariant zeros of ( A ,

 , C ) and hence A a is asymptotically stable. The transformation

x can be calculated using available software, either numerically

7] or symbolically [2] . 

Next, define a high-gain scaling matrix 

 ε := diag (1 , ε 2 , . . . , ε 2 ρ−2 ) , (50)

nd define the output injection matrix 

 ε = �x 

(
0 

ε −2 S −1 
ε K 

)
. (51) 

here K is such that A d + B d K is asymptotically stable. We then

onsider the following protocol: 

˙ i = (A + K ε C) χi − K ε ζi , 

u i = F ε χi , (52) 

The main result in this section is stated as follows. 

heorem 10. Consider a MAS described by a SISO system (1) and (3) .

et any real numbers α, β > 0 and a positive integer N be given, and

ence a set of network graphs G 

N 
α,β

be defined. 
If ( A , B ) is stabilizable then the H ∞ 

-ASSPS stated in Problem 2 with

 = G 

N 
α,β

is solvable. In particular, for any given real number r > 0,

here exists an ε∗, such that for any ε ∈ (0, ε∗), the protocol

52) achieves state synchronization and the resulting system from ω 

o x i − x j has an H ∞ 

norm less than r for any i, j ∈ 1 , . . . , N and for

ny graph G ∈ G 

N 
α,β

. 

roof. We use a similar argument as in the proof of Theorem 10 .

e know that we only need to verify that 

˙ = (A + K ε C) χ − K ε y, 

u = F ε χ, (53) 

olves the robust H ∞ 

-ADDPMS with bounded input for the sys-

em (32) with λ∈ �. Given G ∈ G 

N 
α,β

, we know that λ∈ � im-

lies Re λ ≥ β . Obviously A + BF ε and A + K ε C are both asymptoti-

ally stable by construction and hence the intersection of (32) and

45) is asymptotically stable. As in the proof of Theorem 9 , the

losed loop transfer function from ω to x is equal to: 

 ωx = 

(
I 0 

)( I −T 2 
˜ T 3 I 

)−1 (
T 1 

− ˜ T 4 

)
(54) 

here, as before, we use the definitions in (46) but with our mod-

fied F ε and K ε . As argued in the proof of Theorem 5 , we have: 

 T 1 ‖ ∞ 

< M 1 ε, ‖ T 2 ‖ ∞ 

< M 2 . 

or suitable constants M 1 , M 2 > 0. Finally 

 3 (s ) = �x 

(
sI − A a L ad C d 
−B d E da Z 1 

)−1 (
0 

B d 

)
here 

 1 = sI − A d − ε −2 S −1 
ε KC d − B d E dd 

e obtain: 

 3 (s ) = ε 2 n �x 

(
I 0 

0 S −1 
ε 

)(
sI − A a L ad C d 

ε 2 n B d E da Z 2 

)−1 (
0 

B d 

)
ith 

 2 = sI − ε −2 A d − ε −2 KC d + ε 2 n B d E dd S 
−1 
ε , 

sing that 

 

−2 A d = S ε A d S 
−1 
ε , S ε B d = ε 2 n B d and C d S 

−1 
ε = C d . 

ote that E d ε is bounded for ε < 1. Next, we note that: 

 ε (s ) = 

(
sI − A a L ad C d 

0 sI − ε −2 (A d + KC d ) 

)−1 (
0 

B d 

)

= ε 2 
(

−(sI − A a ) −1 L ad 

I 

)
(ε 2 sI − A d − KC d ) 

−1 B d 

rom the above we can easily conclude that there exists M such

hat ‖ X ε‖ ∞ 

< M ε2 . We have: 

 3 = ε 2 n �x 

(
I 0 

0 S −1 
ε 

)
(I + ε 2 X ε E dε ) 

−1 X ε 

here 

 dε = 

(
ε 2 n −2 E da ε 2 n −2 E dd S 

−1 
ε 

)
hich is clearly bounded for ε < 1. This clearly implies, using our

ounds for X ε and E d ε , that there exists M 3 > 0 such that: 

 T 3 ‖ ≤ ε 2 M 3 

or small ε since 

 

2 n 

(
I 0 

0 S −1 
ε 

)
< ε 2 I. 
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Fig. 1. The communication topology. 
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Our bound for T 3 guarantees that 

‖ ̃

 T 3 ‖ ∞ 

< εM 4 , ‖ ̃

 T 4 ‖ ∞ 

< εM 5 , 

for suitable M 4 and M 5 . Moreover 

‖ F ε ‖ < ε −1 M 0 

Given our bounds, we immediately obtain from (54) that there ex-

ists M 6 such that 

‖ T ωx ‖ ∞ 

< M 6 ε. 

The closed loop transfer function from ω to u is equal to: 

T ωu = 

(
F ε F ε 

)( I −T 2 
˜ T 3 I 

)−1 (
T 1 

− ˜ T 4 

)
which yields, using similar arguments as above, that: 

‖ T ωu ‖ ∞ 

< M 7 

for some suitable constant M 7 independent of ε. In other words,

the transfer function from ω to x is arbitrarily small for sufficiently

small ε while the transfer function from ω to u is bounded which

completes the proof. �
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.4. Protocol design for H 2 -ASSFS 

We present below two protocol design methods based on ro-

ust stabilization for the case E = B . The necessary condition pro-

ided earlier shows that ( A , B , C , 0) need only be at most weakly

on-minimum-phase. The following designs are provided under

he stronger assumption that ( A , B , C , 0) is minimum-phase. 

.4.1. ARE-based method 

We consider the protocol (44) already used in the case of H ∞ 

-

SSFS. It is easy to verify using a similar proof that this protocol

lso solves the robust H 2 -ADDPMS with bounded input and there-

ore solves H 2 -ASSPS for the MAS. Using the same notation as be-

ore, this relies on the fact that we have N 1 such that 

 T 1 ‖ 2 < εN 1 

hich follows directly from the full-state coupling case. On the

ther hand we have N 2 such that 

 T 3 ‖ 2 < ε 2 N 2 

ince Q → 0 for δ → 0 and 

(A − KC) Q + Q(A − KC) ′ + BB 

′ ≤ 0 . 

t is then easily shown that 

 ̃

 T 4 ‖ 2 < ε 2 N 3 

or some N 3 > 0. The rest of the proof is then as before in the case

f H ∞ 

-ASSPS. 
0 25 30 35 40
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0 25 30 35 40
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ng N = 6 agents. 
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.4.2. Direct method 

We consider the protocol (52) already used in the case of H ∞ 

-

SSFS. It is easy to verify using a similar proof that this protocol

lso solves the robust H 2 -ADDPMS with bounded input and there-

ore solves H 2 -ASSPS for the MAS. Using the same notation as be-

ore, this relies on the fact that we have N 1 such that 

 T 1 ‖ 2 < εN 1 

hich follows directly from the full-state coupling case. On the

ther hand we have N 2 such that 

 ̃

 T 4 ‖ 2 < εN 2 

sing that X ε has an H 2 norm of order ε. The rest of the proof is

hen as before in the case of H ∞ 

-ASSPS. 

. Example 

In this section, we illustrate our results on a homogeneous MAS

f N = 6 agents. We consider the H ∞ 

almost state synchronization

roblem via partial-state coupling. 

The agent model is given by: 

 = 

( −2 0 0 

2 2 0 

5 4 2 

) 

, B = 

( 

0 

3 

2 

) 

, C ′ = 

( 

0 

1 

1 

) 

, 

 = 

( 

0 

3 

2 

) 

, 

ith disturbances 

 1 = sin (3 t) , ω 2 = cos (t) , ω 3 = 0 . 5 , 
 4 = sin (2 t) + 1 , ω 5 = sin (t) , ω 6 = cos (2 t) . 

he communication topology is shown in Fig. 1 with the Laplacian

atrix 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 −1 0 0 0 0 

0 2 −2 0 0 0 

0 −1 4 −3 0 0 

0 0 0 2 −2 0 

0 −2 0 0 2 0 

0 0 0 0 −1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

e design a controller of the form (44) based on an ARE-based

ethod. The feedback gain F ε = − 1 
ε B 

′ P with P given by the alge-

raic Riccati equation (22) and K ε = − 1 
δ2 QC ′ given by the algebraic

iccati equation (43) . When choosing ε = 0 . 3 and δ = 0 . 01 , we get

he controller 

˙ i = 

( −2 0 0 

2 −299 . 214 −301 . 214 

5 −199 . 194 −201 . 194 

) 

χi 

+ 

( 

0 

301 . 214 

203 . 194 

) 

ζi , 

u i = 

(
−34 . 068 −30 . 5702 −27 . 0943 

)
χi ;

hile when choosing ε = 0 . 01 and δ = 0 . 0 0 01 , the controller is 

˙ i = 

( −2 0 0 

2 −29999 −30 0 01 

5 −19999 −20 0 01 

) 

χi + 

( 

0 

30 0 01 

20 0 03 

) 

ζi , 
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u i = 

(
−1022 −917 . 1 −812 . 8 

)
χi . 

The results are shown in Fig. 2 . It is clear that when ε goes smaller,

the H ∞ 

norm from the disturbance to the relative error between

the states of the different agents gets smaller. The controller inputs

for all agents are shown in Fig. 3 . 

6. Conclusion 

In this paper, we have studied H ∞ 

and H 2 almost state syn-

chronization for MAS with identical linear agents affected by ex-

ternal disturbances. The communication network is directed and

coupled through agents’ states or outputs. We have first developed

the necessary and sufficient conditions on agents’ dynamics for the

solvability of H ∞ 

and H 2 almost state synchronization problems.

Then, we have designed protocols to achieve H ∞ 

and H 2 almost

state synchronization among agents based on two methods. One

is ARE-based method and the other is ATEA-baed method. The fu-

ture work could be to extend the results of this paper to nonlinear

agents, that is, H ∞ 

and H 2 almost state synchronization for MAS

with identical nonlinear agents affected by external disturbances. 
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