European Journal of Control 46 (2019) 36-48

journal homepage: www.elsevier.com/locate/ejcon

Contents lists available at ScienceDirect

European Journal of Control

European
Journal
of Control

Solvability conditions and design for H,, & H, almost state )

Check for

synchronization of homogeneous multi-agent systems

Anton A. Stoorvogel®, Ali Saberi?, Meirong Zhang“*, Zhenwei Liu?

aSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
b Department of Electrical Engineering Mathematics and Computer Science, University of Twente, Enschede PO Box 217, The Netherlands

¢School of Engineering and Applied Science, Gonzaga University, Spokane, WA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 17 July 2017

Revised 25 July 2018

Accepted 6 August 2018
Available online 16 August 2018

Recommended by S. Tarbouriech

Keywords:

Multi-agent systems

H., and H, almost state synchronization
Distributed control

This paper studies the H,, and H, almost state synchronization problem for homogeneous multi-agent
systems with general linear agents affected by external disturbances and with a directed communica-
tion topology. Agents are connected via diffusive full-state coupling or diffusive partial-state coupling. A
necessary and sufficient condition is developed for the solvability of the H,, and H, almost state syn-
chronization problem. Moreover, a family of protocols based on either an algebraic Riccati equation (ARE)
method or a directed eigen structure assignment method are developed such that the impact of dis-
turbances on the network disagreement dynamics, expressed in terms of the H,, and H, norm of the
corresponding closed-loop transfer function, is reduced to any arbitrarily small value. The protocol for
full-state coupling is static, while for partial-state coupling it is dynamic.
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1. Introduction

Over the past decade, the synchronization problem of multi-
agent system (MAS) has received substantial attention because of
its potential applications in cooperative control of autonomous ve-
hicles, distributed sensor network, swarming and flocking and oth-
ers. The objective of synchronization is to secure an asymptotic
agreement on a common state or output trajectory through decen-
tralized protocols (see [1,8,16,30] and references therein).

State synchronization inherently requires homogeneous MAS
(i.e. agents have identical dynamics). Most works have focused
on state synchronization based on diffusive full-state coupling,
where the agent dynamics progress from single- and double-
integrator dynamics (e.g. [9,10,13-15]) to more general dynam-
ics (e.g. [22,27,29,31]). State synchronization based on diffusive
partial-state coupling has also been considered (e.g. [3,4,22-
25,28]).

Most research has focused on the idealized case where the
agents are not affected by external disturbances. In the literature
where external disturbances are considered, y-suboptimal H., de-
sign is developed for MAS to achieve H,, norm from an external
disturbance to the synchronization error among agents less than
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an, a priori given, bound y. In particular, [4,34] considered the
H,, norm from an external disturbance to the output error among
agents. [21] considered the H,, norm from an external disturbance
to the state error among agents. These papers do not present an
explicit methodology for designing protocols. Refs. [5] and [6] try
to obtain an Hy norm from a disturbance to the average of the
states in a network of single or double integrators.

By contrast, Peymani et al. [11] introduced the notion of H
almost synchronization for homogeneous MAS, where the goal is
to reduce the H,, norm from an external disturbance to the syn-
chronization error, to any arbitrary desired level. But it requires an
additional layer of communication among distributed controllers,
which is completely dispensed in this paper. This work is extended
later in Refs. [12,32], and [33]. Ref. [33], where heterogeneous MAS
are considered, provides a solution for the case of right-invertible
agents with the addional objective beyond output synchronization
that the agents track a regulated signal given to some or all of
the agents. Although homogeneous MAS, which are considered in
this paper, are a subset of heterogeneous MAS, the results of Zhang
et al. [33] cannot be directly applied to the case of full-state cou-
pling since the agents are not right-invertible. Secondly, the re-
sults for synchronization without regulation cannot be obtained
from results obtained for regulated synchronization. Thirdly, we
consider state synchronization instead of output synchronization in
both full- and partial-state coupling. Finally, by restricting to ho-
mogeneous networks more explicit designs can be obtained under
weaker conditions.

0947-3580/© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved.
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In this paper, we will study H., almost state synchronization for
a MAS with full-state coupling or partial-state coupling. We will
also study H, almost state synchronization, since it is closely re-
lated to the problems of H,, almost state synchronization. In Hy,
we look at the worst case disturbance with the only constraints
being the power, while in H, we only consider white noise distur-
bances which is a more restrictive class. In both cases, disturbances
or noises are restricted in the process, not in the measurement.
Our contribution in this paper is three-fold.

« We obtain necessary and sufficient conditions for H,, and H,
almost state synchronization for a MAS in the presence of ex-
ternal disturbances

We develop a protocol design for H,, and H, almost state
synchronization based on an algebraic Riccati equation (ARE)
method

We develop a protocol design for Hy, and H, almost state syn-
chronization based on an asymptotic time-scale eigenstructure
assignment (ATEA) method for the full-state coupling case, and
on the direct eigenstructure assignment method for the partial-
state coupling case.

It is worth noting that our solvability conditions and protocol
designs are developed for a MAS associated with a set of network
graphs. Specifically, only rough information of a network graph is
utilized.

1.1. Notations and definitions

Given a matrix A e C™" A’ denotes its conjugate transpose,
||A]l is the induced 2-norm. A square matrix A is said to be Hur-
witz stable if all its eigenvalues are in the open left half complex
plane. A ® B depicts the Kronecker product between A and B. I, de-
notes the n-dimensional identity matrix and 0, denotes n x n zero
matrix; sometimes we drop the subscript if the dimension is clear
from the context. Given a complex number A, Re(A) is the real part
of A and Im(A) is the imaginary part of A.

A weighted directed graph G is defined by a triple (V, €&, A)
where vV ={1,...,N} is a node set, £ is a set of pairs of nodes
indicating connections among nodes, and A = [g;;] € RNXN is the
weighting matrix, and a; >0 iff (i, j) € £ which denotes an edge
from node j to node i. In our case, we have g; = 0. A path from
node i; to i is a sequence of nodes {iy, ..., i} such that (ij;1.i;) €
g for j=1,...,k— 1. A directed tree is a subgraph (subset of nodes
and edges) in which every node has exactly one parent node ex-
cept for one node, called the root, which has no parent node. In
this case, the root has a directed path to every other node in the
tree. A directed spanning tree is a directed tree containing all the
nodes of the graph. For a weighted graph G, a matrix L = [¢;]
with

N . .
0= 2 k=1 Tik: 1=,
Y —ajj, 1#],

is called the Laplacian matrix associated with the graph G. The
Laplacian L has all its eigenvalues in the closed right half plane
and at least one eigenvalue at zero associated with right eigenvec-
tor 1. A specific class of graphs needed in this paper is presented
below:

Definition 1. For any given o> >0, let G p denote the set of
directed graphs with N nodes that contain a directed spanning
tree and for which the corresponding Laplacian matrix L satisfies
IIL|| <« while its nonzero eigenvalues have a real part larger than
or equal to B.

2. Problem formulation

Consider a MAS composed of N identical linear time-invariant
agents of the form,

X; = AX; + Bu; + Ew;,

Y Cx (i=1,....N) (1)

where x; e R", u; e R™, y; ¢ RP are respectively the state, input,
and output vectors of agent i, and w; € R” is the external distur-
bances.

The communication network provides each agent with a linear
combination of its own outputs relative to that of other neighbor-

ing agents. In particular, each agent i € {1, ..., N} has access to the
quantity,

N
§i=zaij(J’i—J’j), (2)

j=1

where ;>0 and a; =0 indicate the communication among
agents. This communication topology of the network can be de-
scribed by a weighted and directed graph G with nodes corre-
sponding to the agents in the network and the weight of edges
given by the coefficient a;. In terms of the coefficients of the Lapla-
cian matrix L, {; can be rewritten as

N
L= tiy. (3)
=1

We refer to this case as partial-state coupling. Note that if C has full
column rank then, without loss of generality, we can assume that
C =1, and the quantity ¢{; becomes

N N
§i= Zaij(xi —Xj) = Zeijxj- (4)
i i

We refer to this case as full-state coupling.

If the graph G describing the communication topology of the
network contains a directed spanning tree, then it follows from
[15, Lemma 3.3] that the Laplacian matrix L has a simple eigen-
value at the origin, with the corresponding right eigenvector 1 and
all the other eigenvalues are in the open right-half complex plane.
Let Aq,..., Ay denote the eigenvalues of L such that A; =0 and
Re(A;) >0,i=2,...,N.

Let N be any agent and define Xx; = xy — x; and

X1 w1
X= : and w=| :
XN_1 WN
Obviously, synchronization is achieved if X = 0. That is
[lirglo(xi(t)—x,\,(t))za Vi,e{1,...,N-1}. (5)
We denote by T,;, the transfer function from w to x

Remark 1. Agent N is not necessarily a root agent. Obviously, (5) is
equivalent to the condition that

lim (6(6) = x;(£) =0, Vi, je{l,....N}.

We formulate below four almost state synchronization prob-
lems for a network with either H, or H,, almost synchronization.

Problem 1. Consider a MAS described by (1) and (4). Let G be a
given set of graphs such that G € GN. The H,, almost state syn-
chronization problem via full-state coupling (in short H.,-ASSFS)
with a set of network graphs G is to find, if possible, a linear static
protocol parameterized in terms of a parameter &, of the form,

u;=F(e)g, (6)
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such that, for any given real number r> 0, there exists an &* such
that for any € €(0, ¢*] and for any graph G € G, (5) is satisfied for
all initial conditions in the absence of disturbances and the closed
loop transfer matrix T,; satisfies

I Toilloo < 1. (7)

Problem 2. Consider a MAS described by (1) and (3). Let G be
a given set of graphs such that G < GM. The H, almost state
synchronization problem via partial-state coupling (in short Hy.-
ASSPS) with a set of network graphs G is to find, if possible, a
linear time-invariant dynamic protocol parameterized in terms of
a parameter &, of the form,

Xi = Ac(&) xi + Bc(8)¢;,
ui = Cc(&) i + Dc(e) &, (8)

where x; € R, such that, for any given real number r> 0, there
exists an ¢* such that for any ¢ €(0, ¢*] and for any graph G € G,
(5) is satisfied for all initial conditions in the absence of distur-
bances and the closed loop transfer matrix T,z satisfies (7).

Problem 3. Consider a MAS described by (1) and (4). Let G be a
given set of graphs such that G € GN. The H, almost state synchro-
nization problem via full-state coupling (in short H,-ASSFS) with a
set of network graphs G is to find, if possible, a linear static proto-
col parameterized in terms of a parameter &, of the form (6) such
that, for any given real number r> 0, there exists an &* such that
for any ¢ <(0, €*] and for any graph G € G, (5) is satisfied for all
initial conditions in the absence of disturbances and the closed
loop transfer matrix T,; satisfies

I Tozll2 < 1. (9)

Problem 4. Consider a MAS described by (1) and (3). Let G be a
given set of graphs such that G € GN. The H, almost state syn-
chronization problem via partial-state coupling (in short H,-ASSPS)
with a set of network graphs G is to find, if possible, a linear time-
invariant dynamic protocol parameterized in terms of a parameter
&, of the form (8) such that, for any given real number r> 0, there
exists an &* such that for any € (0, ¢*] and for any graph G € G,
(5) is satisfied for all initial conditions in the absence of distur-
bances and the closed loop transfer matrix T,z satisfies (9).

Note that the problems of H,, almost state synchronization and
H, almost state synchronization are closely related. Roughly speak-
ing, H, almost synchronization is easier to achieve than H,, al-
most synchronization. This is related to the fact that in H,, we look
at the worst case disturbance with the only constraints being the
power:

T
limsupl/ ] (t)w;(t)dt < oo.
T—o00 2T -T

while in H, we only consider white noise disturbances which is a
more restrictive class.

3. MAS with full-state coupling

In this section, we establish a connection between the almost
state synchronization among agents in the network and a robust
H,, or H, almost disturbance decoupling problem via state feed-
back with internal stability (in short H,, or H,-ADDPSS) (see [20]).
Then, we use this connection to derive the necessary and sufficient
condition and design appropriate protocols.

3.1. Necessary and sufficient condition for Hy,-ASSFS

The MAS system described by (1) and (4) after implementing
the linear static protocol (6) is described by

X = Ax; + BF(S)Q + Ew;,

fori=1,...,N. Let

X1 w1

XN WN
Then, the overall dynamics of the N agents can be written as
X=(Iy®A+L®BF(&))x+ (IN®E)w. (10)

We define the robust H..-ADDPSS with bounded input as fol-
lows. Given A c C, there should exist M > 0 such that for any given
real number r> 0, we can find a parameterized controller

u=F(e)x (11)
for the following subsystem,
X = Ax + ABu + Bw, (12)

such that for any A € A the following hold:

1. The interconnection of the systems (12) and (11) is internally
stable;

2. The resulting closed-loop transfer function T,y from w to x has
an Hy, norm less than r.

3. The resulting closed-loop transfer function T, from w to u has
an H,, norm less than M.

In the above, A denotes all possible locations for the nonzero
eigenvalues of the Laplacian matrix L when the graph varies over
the set G. It is also important to note that M is independent of the
choice for r.

In the following lemma we give a necessary condition for the
H.,-ASSFS. Moreover, for sufficiency, we connect the H.,-ASSFS
problem to the robust H.,-ADDPSS with bounded input problem
which we will address later.

Lemma 1. Let G be a set of graphs such that the associated Lapla-
cian matrices are uniformly bounded and let A consist of all possible
nonzero eigenvalues of Laplacian matrices associated with graphs in
G.

(Necessity) The H,,-ASSFS for the MAS described by (1) and
(4) given G is solvable by a parameterized protocol u; = F(&)¢; only if

imE c imB. (13)

(Sufficiency) The H..-ASSFS for the MAS described by (1) and
(4) given G is solved by a parameterized protocol u; = F(¢)¢; if the ro-
bust H.,-ADDPSS with bounded input for the system (12) with A€ A
is solved by the parameterized controller u = F(&)x.

Proof. Note that L has eigenvalue 0 with associated right eigenvec-
tor 1. Let

L=TST™, (14)

with T unitary and S; the upper-triangular Schur form associated
to the Laplacian matrix L such that S;(1,1) = 0. Let

M w1
ni=T"ehx=|: |, =T 'ehw=

NN N
where 1; € C" and @; € C%. In the new coordinates, the dynamics
of 1 can be written as

N(t)=(IN®A+S ®BF(e))n+ (T ' 9 E)w, (15)
which is rewritten as
N

M = A + ) s1;BF(e)n; + Edn,
j=2
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N
ni = (A+ ABF(&))n; + Z sijBF (¢)n; + E;,

j=it+1
NN = (A+ANBF(&))nn + Edn, (16)
for ie{2,...,N—1} where S; =[s;;]. The first column of T is an

eigenvector of L associated to eigenvalue O with length 1, i.e. it is
equal to £1/+/N. Using this we obtain:

— -1 0 - 0 1
- XN = X2 0 -1
X = . = ®In
: : oo 0
XN = XN-1 0o -~ 0 -1 1
(Tel)n

~((0 Ve
for some suitably chosen matrix V. Therefore we have

M2
x=Vel) B (17)
1IN

Note that since T is unitary, also the matrix T-! is unitary and
the matrix V is uniformly bounded. Therefore the H,, norm of the
transfer matrix from @ to X can be made arbitrarily small if and
only if the H,, norm of the transfer matrix from @ to 7 can be
made arbitrarily small.

In order for the H,, norm from @ to n to be arbitrarily small
we need the H,, norm from @y to ny to be arbitrarily small. From
classical results (see [18,26]) on H,, almost disturbance decoupling
we find that this is only possible if (13) is satisfied.

Conversely, suppose u = F(g)x solves the robust H.,-ADDPSS
with bounded input for (12) and assume (13) is satisfied. We show
next that u; = F(¢)¢{; solves the Ho-ASSFS for the MAS described
by (1) and (4). Let X be such that E = BX.

The fact that u = F(e)x solves the robust H,,-ADDPSS with
bounded input for (12) implies that for small ¢ we have that
A+ ABF(e) is asymptotically stable for all A € A. In particular, A +
AiBF(¢) is asymptotically stable for i =2,..., N which guarantees
that n; — 0 for i = 2, ..., N for zero disturbances and all initial con-
ditions. Therefore we have state synchronization.

Next, we are going to show that for any 7 > 0, we can choose &
sufficiently small such that the transfer matrix from @ to 7; is less
than 7 for i = 2, ..., N. This guarantees that we can achieve (7) for
any r> 0. We have that

TA(s) = (sl —A— ABF(¢))"'B,

T2, (s) = F(g)(sl —A— ABF(¢))"'B.

For a given M and parameter ¢, the following is satisfied
IT)ulloe < M

for all A€ A where 7, is a parameter depending on & with the
property that lim, o7 = 0. Denote v; = F(&)7;.
When i = N, it is easy to find that,

”Eﬁx”oo < T,

Ton, = Tok (0 0 X).
Touy = Tt (0 0 X)
and hence

ITomlloe <7 [Ty lloo < My

provided

IXIFe <7, IX[IM < My. (18)
Recall that we can make ¢ arbitrarily small by reducing & without
affecting the bound M. Assume

”T&)nj”oo <T, ”waj”m < Mj

holds for j=i+1,...,N. We have:

Jj=i+1

N
T, (5) = Toi(s) {ei ®X+ > sijTay, (S)]

N
Ton, () = T (s) {e,- ®X+ Y sijTa, (s)}

j=i+1

where e; is a row vector of dimension N with elements equal to
zero except for the ith component which is equal to 1. Since

N N
e ®X+ Y siTow, | < IIXI+ Y IsijIM;

Jj=i+1 0 Jj=i+1
we find:
ITonlloe <70 1 Tav Ml < M; (19)
provided:
N N
(||X|| +> |Sij|1\71j)fs <T, (||X|| +) |5ij|1\71j)1\71 <M;. (20)
J=i+1 j=i+1

Note that s; depends on the graph in G but since the Lapla-
cian matrices associated to graphs in G are uniformly bounded
we find that also the s; are uniformly bounded. In this way for
any arbitrary 7, we can recursively obtain the bounds in (19) for
i=2,..., N provided we choose ¢ sufficiently small such that the
corresponding 7, satisfies (18) and (20) for i = 2,..., N — 1. Hence,
we can choose ¢ sufficiently small such that the transfer matrix
from @ to n; is less than 7 for i =2,...,N. As noted before this
guarantees that we can achieve (7) for any r>0. O

For the case where the set of graphs G equals Ggﬂ for some
given «, B >0, we develop necessary and sufficient conditions for
the solvability of the H.,-ASSFS for MAS as follows:

Theorem 1. Consider a MAS described by (1) and (4) with an asso-
ciated graph from the set G = Gg’ﬂ for some «, B >0.

Then, the Hy,-ASSFS is solvable if and only if (13) is satisfied and
(A, B) is stabilizable.

Proof. From Lemma 1, we note that (13) is actually a necessary
condition for H-ASSFS. Clearly, also (A, B) stabilizable is a neces-
sary condition. Sufficiency is a direct result of Theorems 3 or5 for
H.-ASSFS. O

3.2. Necessary and sufficient conditions for H,-ASSFS

We define the robust H,-ADDPSS with bounded input as fol-
lows. Given A c C, there should exist M > 0 such that for any given
real number r> 0, we can find a parameterized controller (11) for
the system, (12) such that the following holds for any A € A:

1. The interconnection of the systems (11) and (12) is internally
stable;

2. The resulting closed-loop transfer function T,y from w to x has
an H, norm less than r.

3. The resulting closed-loop transfer function T, from w to u has
an H,, norm less than M.

In the above, A denotes all possible locations for the nonzero
eigenvalues of the Laplacian matrix L when the graph varies over
the set G. It is also important to note that M is independent of the
choice for r. Note that we need to consider two aspects in our con-
troller H, disturbance rejection and robust stabilization (because of
a set of network graphs GV ,). The latter translates in the H,, norm

a.f
constraint from w to u.
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Lemma 2. Let G be a set of graphs such that the associated Lapla-
cian matrices are uniformly bounded and let A consist of all possible
nonzero eigenvalues of Laplacian matrices associated with graphs in
G.

(Necessity) The H,-ASSFS for the MAS described by (1) and
(4) given G is solvable by a parameterized protocol u; = F(¢)¢; only if
(13) is satisfied.

(Sufficiency)The H,-ASSFS for the MAS described by (1) and
(4) given G is solvable by a parameterized protocol u; = F(¢)¢; if the
robust H,-ADDPSS with bounded input for the system (12) with A € A
is solved by the parameterized controller u = F(&)x.

Proof. The proof is similar to the proof of Lemma 1. This time we
need the H, norm from @y to ny to be arbitrarily small and also
H, almost disturbance decoupling then immediately yields that we
need that (13) is satisfied.

The rest of the proof follows the same lines except that we re-
quire the H, norm from & to 7; arbitrarily small while we keep
the He norm from @ to v; bounded. Recall that for any two sta-
ble, strictly proper transfer matrices T; and T, we have:

ITLl2 < 1T ll2 T2l
which we need in the modifications of the proof of Lemma 1. O

For the case with a set of graph G = Gg P (with given «, 8 > 0),

we develop necessary and sufficient conditions for the solvability
of the H,-ASSFS for MAS as follows:

Theorem 2. Consider a MAS described by (1) and (4) with an asso-
ciated graph from the set G = Gg’ﬂ for some «, B> 0.

Then, the H,-ASSFS is solvable if and only if (13) is satisfied and
(A, B) is stabilizable.

Proof. We have already noted before that (13) is actually a neces-
sary condition for H,-ASSFS. Clearly, also (A, B) being stabilizable
is a necessary condition. Sufficiency for H,-ASSFS, is a direct result
of either Theorems 4 or6. O

3.3. Protocol design for H.,-ASSFS and H,-ASSFS

We present below two protocol design methods for both H.-
ASSFS and H,-ASSFS problems. One relies on an algebraic Riccati
equation (ARE), and dummyTXdummy- the other is based on an
asymptotic time-scale eigenstructure assignment (ATEA) method.

3.3.1. ARE-based method
Using an algebraic Riccati equation, we can design a suitable
protocol provided (A, B) is stabilizable. We consider the protocol,

u; = pFg;, (21)

where p = % and F = —B'P with P being the unique solution of the
continuous-time algebraic Riccati equation

A'P+PA—28PBBP+1=0, (22)

where 8 is a lower bound for the real part of the non-zero eige-
navlues of all Laplacian matrices associated with a graph in G =
GN 5
o,
The main result regarding H.,-ASSFS is stated as follows.

Theorem 3. Consider a MAS described by (1) and (4) such that
(13) is satisfied. Let any real numbers o, B >0 and a positive inte-
ger N be given, and hence a set of network graphs Gg‘ P be defined.

If (A, B) is stabilizable then the H.,-ASSFS stated in Problem 1 with
G= Ggﬁ is solvable. In particular, for any given real number r> 0,
there exists an &*, such that for any e€(0, &*), the protocol
(21) achieves state synchronization and the resulting system from w
to x; —x; has an He norm less than r for any i,je1,..., N and for
any graph G € Gzﬁ.

Proof. Using Lemma 1, we know that we only need to verify
that u = pFx solves the robust H,-ADDPSS with bounded input
for the system (12) with Ae A. Given G eGg‘ﬁ, we know that
Ae A implies ReX > f. Clearly, the Laplacian matrices are uni-
formly bounded since ||L|| <.

Consider the interconnection of (12) and u = pFx. We define
V(x) = x'Px
and we obtain:
V = x'(A — pABB'P)'Px + w'B'Px + X'P(A — pABB'P)x + X' PBw
= x'PBB'Px — X'x — 2 p8X'PBB'Px + 2X' PBw

e
<(1- é)x/PBB/Px —Xx+ oo
€ B
ﬂ / / € /
<——¢evlu—xx+so'w
=73 + B
which implies that the system is asymptotically stable and the H,
norm of the transfer function from w to x is less that ¢/ while
the H,, norm of the transfer function from w to u is less that 2/52.
Therefore, u = pFx solves the robust H,,-ADDPSS with bounded in-
put for the system (12) as required. O

For H,-ASSFS we have the following classical result:
Lemma 3. Consider an asymptotically stable system:
p=Aip+Bw

The Hy norm from w to p is less than & if there exists a matrix Q such
that:

A1Q+QA/1+BlB/1§O, Q < 41

The main result regarding H,-ASSFS is stated as follows.

Theorem 4. Consider a MAS described by (1) and (4) such that
(13) is satisfied. Let any real numbers «, B >0 and a positive inte-
ger N be given, and hence a set of network graphs Gg, P be defined.

If (A, B) is stabilizable then the H,-ASSFS stated in Problem 3 with
G= Gg’ﬂ is solvable. In particular, for any given real number r> 0,
there exists an &*, such that for any ¢<(0, &*), the protocol
(21) achieves state synchronization and the resulting system from w
to x; —X; has an Ho norm less than r for any i,j e 1,...,N and for
any graph G Gg,ﬂ.

Proof. Using Lemma 2, we know that we only need to verify that
u = pFx solves the robust H,-ADDPSS with bounded input for the
system (12) with A € A. We use the same feedback as in the proof
of Theorem 3. In the proof of Theorem 3 it is already shown that
the closed loop system is asymptotically stable and the H,, norm
of the transfer function from w to u is bounded. The only remain-
ing part of the proof is to show that the H, norm from w to x can
be made arbitrarily small. Using the algebraic Riccati equation it is
easy to see that we have:

(A— pABB'P)' P+ P(A— pABB'P) + pBPBB'P <0
for large p. But then we have:
Q:(A— pABB'P) + (A— pABB'P)Q. +BB <0

for Q; = ¢B~1P~1. Then Lemma 3 immediately yields that we can
make the H, norm from w to x arbitrarily small by choosing a suf-
ficiently small e. O

3.3.2. ATEA-based method

The ATEA-based design is basically a method of time-scale
structure assignment in linear multivariable systems by high-gain
feedback [19]. In the current case, we do not need the full struc-
ture presented in the above method. It is sufficient to note that
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there exists non-singular transformation matrix Ty € R"™*" (See [17,
Theorem 1]) such that

s (X)) _
X= (22) = Tyx, (23)

and the dynamics of % is represented as

>é1 = An&i +Apk,,

)22 = Az]),é] +A22)22 + ABu + Bw, (24)
with B invertible, and that (A, B) is stabilizable implies that
(A11,Aqy) is stabilizable.

Choose F; such that A;; +Aq,F is asymptotically stable. In that
case a suitable protocol for (1) is

u; =FEg;, (25)
where F; is designed as

1

F=

B'(R -ITy (26)
The main result regarding H,,-ASSFS is stated as follows. The
result is basically the same as Theorem 3 except for a different

design protocol.

Theorem 5. Consider a MAS described by (1) and (4) such that
(13) is satisfied. Let any real numbers o, >0 and a positive inte-
ger N be given, and hence a set of network graphs (Gg_ 8 be defined.
If (A, B) is stabilizable then the H.,-ASSFS stated in Problem 1 with
G= Ggﬁ is solvable. In particular, for any given real number r> 0,
there exists an &* such that for any ¢e<(0, €*), the protocol
(25) achieves state synchronization and the resulting system from w

to x; —X; has an Ho, norm less than r for any i,j e 1,...,N and for
any graph G € GN 5

Proof. Similarly to the proof of Theorem 3, we only need to estab-
lish that u = F.x solves the robust H,-ADDPSS with bounded in-
put for the system (12) with A € A. Given G Gg_ﬁ, we know that
X e A implies Re A > .

After a basis transformation, the interconnection of (12) and
u = Fx is equal to the interconnection of (24) and (25). We ob-
tain:

R1 = AnRi 4+ Apky,

8)%2 = (8A21 + )\Fl ))?1 + (8/'_\22 - )\,I))’fz + 8B-a). (27)
Define
X =)‘(\1, X =)'<\2 —F])?L

Then we can write this system (27) in the form:

??1 = Amﬁ +A12?72,
85('2 = €A~215Z1 + (8A22 — )J))Zz —+ 83_(1), (28)
where
Ay = An +ApF, Ap=Ap,
Ax1 = Ayt — FAn +Axn — RAp,  Ap =Axn — FAp.

In the absence of the external disturbances, the above system
(28) is asymptotically stable for small enough ¢.

Since Ay = Aqq + AqzF is Hurwitz stable, there exists P> 0 such
that the Lyapunov equation PAy; + A}, P = —I holds. For the dynam-
ics &, we define a Lyapunov function V; = &} P%;. Then the deriva-
tive of V; can be bounded

Vl < —||)2'1 ||2 + X/ZA/IZP)G -I—)A('QPA'Q)?Z
< *”5(11 ”2 +2 Re()’(',]PA'u)Zz)
< =% 117 + i lIZ IR

where 2||PA;,|| < ;. Now define a Lyapunov function V;, = eXX)
for the dynamics X,. The derivative of V, can then also be
bounded.
V, < —2Re(A)[|%,]1? 4 2 Re(R) A &1) + 26R,A X, + 2 Re(%,Bw)
< “2Re(M) IR ]1* + e[| % IRl + er31%a|1* + erall ]| [1%2 |
< =BlI%IP + erallZ IR:] + eralle]| 1%l

IA

for a small enough &, where we choose r,, 13, 14 such that

208l <12, 2|Anll <73, and  2|B|| <14

Let V = Vj + yV; for some y > 0. Then, we have

V< =% +nlizxiHZ] - v BlIRI? + ey ra Iz 1%
+eynllollllX]l.

We have that

rliflI%] < %) + %II?@ 112,

< s < 1 .
eynalfllifll < ey 2% 1% + ZlI%)12,

o 1
eynlollifll < ey rilol” + ZlI%[1*.

Now we choose y such that y8 =1+1? and rs = yrs. Then, we
obtain

14

IA

1,. 1 .
S IR = Sl + 22 o]

IA

1,
—5 I%II* + e[l eo]|?,

for a small enough ¢. From the above, we have that ||T, ;| < 2&r1s,
which immediately leads to ||Tyx||eo <7 for any real number r> 0
as long as we choose ¢ small enough. On the other hand:

Tou(5) = — (0 B 1)Tx(s)

3
and hence:
[ Toullso < 1B I7s.

Therefore, u = F.x solves the robust H,,-ADDPSS with bounded in-
put for the system (12) as required. O

The main result regarding H,-ASSFS is stated as follows.

Theorem 6. Consider a MAS described by (1) and (4) such that
(13) is satisfied. Let any real numbers o, B >0 and a positive inte-
ger N be given, and hence a set of network graphs va p be defined.

If (A, B) is stabilizable then the H,-ASSFS stated in Problem 1 with
G= Gg],,s is solvable. In particular, for any given real number r> 0,
there exists an &* such that for any ee(0, €*), the protocol
(25) achieves state synchronization and the resulting system from w
to x; —x; has an Hy norm less than r for any i,je1,...,N and for
any graph G € Gg,ﬁ.

Proof. Using Lemma 2, we know that we only need to verify that
the feedback solves the robust H,-ADDPSS with bounded input for
the system (12) with A € A. We use the same feedback as in the
proof of Theorem 5. In the proof of Theorem 5 it is already shown
that the closed loop system is asymptotically stable and the Hy
norm of the transfer function from w to u is bounded. The only re-
maining part of the proof is to show that the H, norm from w to x
can be made arbitrarily small. This clearly is equivalent to showing
that the system (28) has an arbitrary small H, norm from w to %,
and X, for sufficiently small €. Choose Q such that

QA%I + A~1]Q =]



42 A.A. Stoorvogel et al./European Journal of Control 46 (2019) 36-48

In that case we have:

veQ 0 Ve 0\, 0 0
Ad( 0 \/§1>+< 0 JEI)AC’ +(0 Bé’)

- VE VE@Ap +QAY)
=\ Ve, +A1Q) -L£1

for sufficiently small & where:

Ay = /‘311 5 Ap
; Ay Ap -2l

and we used that
A+A>28.

We then obtain for sufficiently small ¢ that:
VeQ 0 VEQ 0 ),
Acl( 0 \/EI + 0 \/EI Acl

0 0
+ (0 Bé’) =0

Then Lemma 3 immediately yields that we can make the H, norm
from w to x arbitrarily small by choosing a sufficiently small ¢. O

4. MAS with partial-state coupling

In this section, similar to the approach of the previous section,
we show first that the almost state synchronization among agents
in the network with partial-state coupling can be solved by equiv-
alently solving a robust Hy, or H, almost disturbance decoupling
problem via measurement feedback with internal stability (in short
Ho, or H,-ADDPMS). Then, we design a controller for such a robust
H., or H,-ADDPMS with bounded input.

4.1. Necessary and sufficient condition for Hy,-ASSPS

The MAS system described by (1) and (3) after implementing
the linear dynamical protocol (8) is described by

. (A BC.(¢)\. (BDc(¢) E
Xi= (o Ac(e) )"" + ( Be(¢) )9 + <0>‘“l‘

vi=(C 0)%, (29)
N
Gi= Zeijyjs
j=1
fori=1,...,N, where
% = ("f).
Xi
Define
)?1 w1
x=1:1 W= ,
)2N wN
and
i (A BCl(e) = (BDc(¢) - (E
A= (o acey ) B=Bey ) E=\o)
C=(c o).
Then, the overall dynamics of the N agents can be written as
X=(Un®A+Le®BO)X+ (IyeE)ow. (30)

We define a robust H,,-ADDPMS with bounded input as follows.
Given A c C, there should exist M > 0 such that for any given real
number r> 0, we can find a parameterized controller

X =Ac(e)x +Bc(e)y,
u=C(e)x +Dc(e)y. (31)

where x e R, for the following system,

X = AXx + ABu + Bw,
y=Cx (32)

such that the following holds for any A € A:

1. The closed-loop system of (31) and (32) is internally stable

2. The resulting closed-loop transfer function T,y from w to x has
an H,, norm less than r.

3. The resulting closed-loop transfer function T,, from w to u has
an H,, norm less than M.

In the above, A denotes all possible locations for the nonzero
eigenvalues of the Laplacian matrix L when the graph varies over
the set G. It is also important to note that M is independent of the
choice for r.

In order to obtain our main result, we will need the following
lemma:

Lemma 4. Consider the system:

X=Ax+Bu+Ew,

y==Cx

Z=X

with (A, B) stabilizable and (C, A) detectable. The H.,-ADDPMS for the
above system is defined as the problem to find for any r>0 a con-
troller of the form (31) such that the closed loop system is internally

stable while the Hy, norm from w to z is less than r. The H..-ADDPMS
is solvable if and only if:

1. imE c imB,
2. (A, E, C, 0) is left-invertible,
3. (A E, C 0) is minimum-phase.

Proof. From [18] we immediately obtain that the H,,-ADDPMS is
solvable if and only if:

1. imE c imB

2. (A, E, C, 0) is at most weakly non-minimum-phase and left-
invertible.

3. For any 6 >0 and every invariant zero sy of (A, E, C, 0), there
exists a matrix K such that sI — A — BKC is invertible and

| (sol —A — BKC) 'E||» < & (33)
Choose a suitable basis such that:
An  Ap By E;
A = , B = N E = 5
<A21 Axp B, E;
C=(I 0

Assume Sy is an imaginary axis zero of (A, E, C, 0). In that case the
rank of the matrix:

sl — A —A1 Eq
Ay sl-Ayp E
I 0 0

drops for s = sg. This implies the existence of p#0 and q#0 such
that

—An _(E
(S()I —Azz)p - (Ez)q
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The final condition for Hy, almost disturbance decoupling requires
for any § > 0 the existence of a K such that (33) is satisfied. How-
ever:

(sol —A — BKC) 'Eq

_ SoI—Au - B1K

_AIZ
- —Ay — BK

-1
_A12 p
S()I — Azz Sol — A22

—Ap

-1
_ SoI —A11 — BlK SOI _All - BlK
S()I — Azz —A21 — BzK

a ( —Ay — BoK

0y (0
p) \p)
which yields a contradiction if § is such that

Ipll > dlqll.

Therefore we cannot have any invariant zeros in the imaginary
axis. In other words, the system (A, E, C, 0) needs to be minimum-
phase instead of weakly minimum-phase. Conversely, if (A, E, C, 0)
is minimum-phase it is easy to verify that for any § > 0 there exists
K such that (33) is satisfied. O

Theorem 7. Consider the MAS described by (1) and (3) with (A, B)
stabilizable and (C, A) detectable.

(Part I) Let ¢, B >0 be given such that a set of graphs Gg’,ﬁ be
defined. Then, the H.,-ASSPS for the MAS with any graph G € Gg, 8 is
solvable by a parameterized protocol (8) for any o > B > 0 if and only

if

imE c imB

—An
501 — A22

(34)

while (A, E, C, 0) is minimum phase and left-invertible.

(Part II) Let G be a set of graphs such that the associated Lapla-
cian matrices are uniformly bounded and let A consist of all possible
nonzero eigenvalues of Laplacian matrices associated with graphs in
G. Then, the H,-ASSPS for the MAS with any graph G € G is solved by
a parameterized protocol (8) if the robust Hy,-ADDPMS with bounded
input for the system (32) with A< A is solved by the parameterized
controller (31).

Proof. By using L =TS;T-!, we define

m d)l
ni= (T*1®1n))?: E R (I):(T71®1)a):

1IN d)N

where 7; € C"" and @; € CY. In the new coordinates, the dynam-
ics of n can be written as

Nt)=In@A+S @By + (T' 9 E)w, (35)
which is rewritten as

N
nm =An + ZSUBC’?J' +Ew,,

j=2

- [ N - -
i = (A+ABOn; + > 5ijBCnj + Ed,
Jj=i+1
v = (A+ ANBC)ny + Edon, (36)
withie{2,...,N—1} where
= 0
E= (E) St = [sijl.
As in the case of full-state coupling, we can show that:
12

X= (V ® In) ’ (37)

N

for some suitably chosen matrix V which is uniformly bounded.
Therefore the H,, norm of the transfer matrix from w to X can be
made arbitrarily small if and only if the H,, norm of the transfer
matrix from @ to n can be made arbitrarily small.

In order for the H,, norm from & to n to be arbitrarily small
we need the Hy, norm from @y to ny to be arbitrarily small. In
other words, the robust H,,-ADDPMS with bounded input has to
be solvable for the system

X =Ax+ ABu+ Ew,
y==Cx
From the results of Lemma 4, we find that this is only possible
if (34) is satisfied and (A, E, C, 0) is left-invertible and minimum
phase.

On the other hand, suppose (31) solves the robust H,,-ADDPMS
with bounded input of (32) and assume (34) is satisfied. We need
to show that (8) solves the H.,-ASSFS for the MAS described by

(1) and (3). This follows directly from arguments very similar to
the approach used in the proof of Lemma 1. O

4.2. Necessary and sufficient condition for H,-ASSPS

The MAS system described by (1) and (3) after implement-
ing the linear dynamical protocol (8) is described by (29) for i =
1,...,N, and, as before, the overall dynamics of the N agents can
be written as

We define a robust H,-ADDPMS with bounded input as follows.
Given A c C, there should exist M > 0 such that for any given real
number r> 0, we can find a parameterized controller

X =Ac(e)x +Bc(e)y.

u==C(e)x +Dc(e)y, (39)
where x e R, for the following system,

X = Ax+ ABu + Bw,

y==Cx (40)

such that the following holds for any A € A:

1. The closed-loop system of (39) and (40) is internally stable

2. The resulting closed-loop transfer function T,y from w to x has
an H, norm less than r.

3. The resulting closed-loop transfer function T, from w to u has
an Hy, norm less than M.

In the above, A denotes all possible locations for the nonzero
eigenvalues of the Laplacian matrix L when the graph varies over
the set G. It is also important to note that M is independent of the
choice for r.

The following lemma, provides a necessary condition for the
H,-ADDPMS:

Lemma 5. Consider the system:

X=Ax+Bu+Ew,

y==C

Z=X

with (A, B) stabilizable and (C, A) detectable. The H,-ADDPMS for the
above system is defined as the problem to find for any r>0 a con-
troller of the form (39) such that the closed loop system is internally

stable while the Hy, norm from w to z is less than r. The H,-ADDPMS
is solvable only if:

1. imE c imB
2. (A, E, C, 0) is at most weakly non-minimum-phase and left-
invertible.
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Proof. This follows directly from [18]. O

Theorem 8. Consider the MAS described by (1) and (3) with (A, B)
stabilizable and (C, A) detectable.

(Part I) Let «, B >0 be given such that a set of graphs Ggﬁ be

defined. Then, the H,-ASSPS for the MAS with any graph G e Gg P is
solvable by a parameterized protocol (8) for any o > 8 >0 only if

imE c imB (41)

while (A, E, C, 0) is at most weakly non-minimum phase and left-
invertible .

(Part 11) Let G be a set of graphs such that the associated Lapla-
cian matrices are uniformly bounded and let A consist of all possible
nonzero eigenvalues of Laplacian matrices associated with graphs in
G. Then, the H,-ASSPS for the MAS with any graph G € G is solved by
a parameterized protocol (8) if the robust H,-ADDPMS with bounded
input for the system (40) with A € A is solved by the parameterized
controller (39).

Proof. Similar, to the proof of Theorem 7, the dynamics can be
written in the form (36).

Using (37), we note the H, norm of the transfer matrix from @
to X can be made arbitrarily small if and only if the H, norm of
the transfer matrix from ® to n can be made arbitrarily small.

In order for the H, norm from & to n to be arbitrarily small
we need the H, norm from @y to ny to be arbitrarily small. In
other words, the robust H,-ADDPMS with bounded input has to be
solvable for the system

X =AXx+ ABu+Ew,
y==Cx

From the results of Lemma 5, we find that this is only possible if
(41) is satisfied, (A, E, C, 0) is left-invertible and at most weakly
non-minimum phase.

On the other hand, suppose (39) solves the robust H,-ADDPMS
with bounded input of (40) and assume (41) is satisfied. We need
to show that (8) solves the H,-ASSFS for the MAS described by
(1) and (3). This follows directly from arguments very similar to
the approach used in the proof of Lemma 1. O

4.3. Protocol design for Hy,-ASSPS

We present below two protocol design methods based on ro-
bust stabilization for the case E = B and therefore the case where
(A, B, C, 0) is minimum-phase. One relies on an algebraic Riccati
equation (ARE) method, and the other is based on the direct eigen-
structure assignment method.

4.3.1. ARE-based method

Using an algebraic Riccati equation, we can design a suitable
protocol. As in the full-state coupling case, we choose F = —B'P
with P =P’ > 0 being the unique solution of the continuous-time
algebraic Riccati equation

AP+ PA—2BPBB'P+1=0, (42)

where $ is a lower bound for the real part of the non-zero eigen-
values of all Laplacian matrices associated with a graph in Gg 2

Since (A, B, C, 0) is minimum-phase then for any & there exists
& small enough such that

AQ +QA' +BB +&7%Q% - 872QC'CQ =0 (43)
has a solution Q > 0. We then consider the following protocol:

Xi = A+ KC) xi — Ke g,
u; = Fe xi, (44)

where

F—-lpp

1
——g Kg :_ﬁQC/

The main result in this section is stated as follows.

Theorem 9. Consider a MAS described by (1) and (3) with (A, B) sta-
bilizable and (C, A) detectable. Let any real numbers o, B >0 and a
positive integer N be given, and hence a set of network graphs Gg’, 8
be defined.

The H.,-ASSPS stated in Problem 2 with G = va 8 is solvable. In
particular, for any given real number r> 0, there exists an &*, such
that for any € (0, &*), the protocol (44) achieves state synchroniza-
tion and the resulting system from w to x; — x; has an Ho norm less
than r for any i, j e 1,...,N and for any graph G € Gg’ﬂ.

Proof. Using Theorem 7, we know that we only need to verify
that

X = A+ KO x — Key,

u=Fy, (45)
solves the robust H,,-ADDPMS with bounded input for the sys-
tem (32) with A e A. Given geGg’ﬂ, we know that Ae A im-
plies Re A > B. Obviously A + BF. and A + K;C are both asymptoti-
cally stable by construction and hence the intersection of (32) and

(45) is asymptotically stable. The closed loop transfer function
from w to x is equal to:

vl %) (3

where:

Ti(s) = (sI—A— ABE.)"'B (46a)
To(s) = A(sI — A — ABF,)"'BE, (46b)
T5(s) = A(sI — A — K.C + ABFE,)"'BE. (46¢)
T4(s) = (sI — A — K,C + ABF,)"'B (46d)

As argued in the proof of Theorem 3, we have:

€ 2|A| 2«
ITillo < 2. IRlls < 25 < 25

! B B~ B?

On the other hand, (43) implies according to the bounded real
lemma:

T3]l < &2 (47)
where

T:(s) = (sI—A—K.C)"'B

Note that:

T3 = A(I+AGE)'BE

which yields, using (47), that
1G]l < (1—&My)'eM; < 2eM;
for small € where M; is such that:
IMIIBP|| < e|[B'P|| = My

The above yields:

[ Toxlloc < €M
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for some suitable constant M,. The closed loop transfer function
from w to u is equal to:

-1
I -1 T
Twu = (Fa Fs) <T3 I ) (_T4>

which yields using similar arguments as above that:
1 Toullc < M3

for some suitable constant M3 independent of . Therefore the H,,
norm of the transfer matrix T,x becomes arbitrarily small for suf-
ficiently small & while the H,, norm of the transfer matrix T, re-
mains bounded. O

4.3.2. Direct method

For ease of presentation, we only consider the case q=1, i.e.
the case where we have a scalar measurement. We consider the
state feedback gain F; given in (26), that is

1
T ¢
where Ty is defined in (23).

Next, we consider the observer design. Note that the system (A,
B, C, 0) is minimum-phase and left-invertible. In that case there is
a nonsingular matrix I'y such that, by defining X = ['xx, we obtain
the system

E B! (Fl —I)Tx,

)Za = Aaxa + Lad.yv
Xd = Adxd + Bd (u +w+ Edaxa + Eddxd),
y = Gixg. (48)

where

with X e R"” and x; € R” and where the matrices A; € RP*P,
By € R?*1, and C; € R1*P have the special form

0o 1 - 0 0
A= 10 o 1| Ba=|;]

0 0 o0 ]
G=(1 0 - 0). (49)

Furthermore, the eigenvalues of A, are the invariant zeros of (A,
B, C) and hence A, is asymptotically stable. The transformation
I'x can be calculated using available software, either numerically
[7] or symbolically [2].

Next, define a high-gain scaling matrix

Sy :=diag(1, €2,...,&%P72), (50)
and define the output injection matrix

0
K. =T, (825811() (51)

where K is such that Ay + B;K is asymptotically stable. We then
consider the following protocol:

Xi = A+ KO xi — K&,
u; = E xi. (52)
The main result in this section is stated as follows.

Theorem 10. Consider a MAS described by a SISO system (1) and (3).
Let any real numbers «, >0 and a positive integer N be given, and
hence a set of network graphs Gz 8 be defined.

If (A, B) is stabilizable then the H.,-ASSPS stated in Problem 2 with
G= GZ, P is solvable. In particular, for any given real number r> 0,
there exists an &*, such that for any ¢<(0, €*), the protocol
(52) achieves state synchronization and the resulting system from w

to X; — x; has an Hy, norm less than r for any i, je 1,...,N and for
any graph G € Gg.ﬁ.

Proof. We use a similar argument as in the proof of Theorem 10.
We know that we only need to verify that

X = A+ KO x — Ky,

u=-~Ey, (53)
solves the robust H,,-ADDPMS with bounded input for the sys-
tem (32) with AeA. Given ¢ eGg_ﬁ, we know that Ae A im-
plies Re A > . Obviously A + BF; and A + K.C are both asymptoti-
cally stable by construction and hence the intersection of (32) and

(45) is asymptotically stable. As in the proof of Theorem 9, the
closed loop transfer function from w to x is equal to:

1
Tox = (I 0)<TI3 _1T2> (_%) (54)

where, as before, we use the definitions in (46) but with our mod-
ified F; and K. As argued in the proof of Theorem 5, we have:

ITillo < Mig, T2l < Ma.

for suitable constants My, M, > 0. Finally

-1
_ sl —Aq LadCd 0
B =Tk (-BdEda Z By

where
Zy =sl—Aq — e72S;1KCy — B4Egq
We obtain:
-1
o=y 8)(2ak ) (2)
with
Zy = sl —e2Aq — £72KCy + £2"B4E44S: ",
using that

872Ad = SgAngl, SsBd = Sand and CdS;l = Cd~

Note that Eg4, is bounded for ¢ < 1. Next, we note that:

1
_ sl —Aa LadCd 0
Xe(s) = ( 0 sl-e2(A;+KkC)) \By
_ _ -1
_ 82< (5= 1) LM) (e2s] - Aq — KCg) "By

From the above we can easily conclude that there exists M such
that ||Xe ||oo < M&2. We have:

3= 82"FX I 91 (1-‘1- 82X5Eds)_lxs
0 S;
where

Ege = (62" 2Eqa 67" ?EaaS;")

which is clearly bounded for ¢ < 1. This clearly implies, using our
bounds for X; and Eg, that there exists M3 >0 such that:

IT31l < &*Ms

for small & since

I 0
g2n - &2I.
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Fig. 1. The communication topology.

Our bound for T3 guarantees that
ITllo < &Ma, [ Tallo < &Ms,
for suitable M4 and Ms. Moreover
[E|l <& 'Mo

Given our bounds, we immediately obtain from (54) that there ex-
ists Mg such that

| Toxllco < Mge.

The closed loop transfer function from w to u is equal to:

-1
I -1 T
e 0(s ) (%)

which yields, using similar arguments as above, that:
”Twu”oo <My

for some suitable constant M, independent of ¢. In other words,
the transfer function from w to x is arbitrarily small for sufficiently
small ¢ while the transfer function from w to u is bounded which
completes the proof. O

4.4. Protocol design for H,-ASSFS

We present below two protocol design methods based on ro-
bust stabilization for the case E = B. The necessary condition pro-
vided earlier shows that (A, B, C, 0) need only be at most weakly
non-minimum-phase. The following designs are provided under
the stronger assumption that (A, B, C, 0) is minimum-phase.

4.4.1. ARE-based method

We consider the protocol (44) already used in the case of Hyo-
ASSFS. It is easy to verify using a similar proof that this protocol
also solves the robust H,-ADDPMS with bounded input and there-
fore solves H,-ASSPS for the MAS. Using the same notation as be-
fore, this relies on the fact that we have N; such that

ITill2 < &Ny

which follows directly from the full-state coupling case. On the
other hand we have N, such that

T2 < &2Na

since Q— 0 for § — 0 and
(A-KC)Q+Q(A—-KC) +BB <0.
It is then easily shown that

ITall2 < €2Ns

for some N3 > 0. The rest of the proof is then as before in the case
of H,,-ASSPS.

10
r T T T

€=0.3 and 6=0.01
T

T T T

State errors among 6 agents

-10 ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40
Time
€=0.01 and 6=0.0001
10 T T T T T T T

State errors among 6 agents

|

| | | |

15

20 25 30 35 40
Time

Fig. 2. State errors among N = 6 agents.
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Fig. 3. The controller inputs of N = 6 agents.

4.4.2. Direct method

We consider the protocol (52) already used in the case of Hy-
ASSFS. It is easy to verify using a similar proof that this protocol
also solves the robust H,-ADDPMS with bounded input and there-
fore solves H,-ASSPS for the MAS. Using the same notation as be-
fore, this relies on the fact that we have N; such that

T

which follows directly from the full-state coupling case. On the
other hand we have N, such that

ITall2 < &N,

using that X, has an H, norm of order . The rest of the proof is
then as before in the case of H.,-ASSPS.

2<8N1

5. Example

In this section, we illustrate our results on a homogeneous MAS
of N =6 agents. We consider the H,, almost state synchronization
problem via partial-state coupling.

The agent model is given by:

-2 0 O 0 0
A=|2 2 0], B=|3), C=|1})
5 4 2 2 1
0
E=1{3],
2
with disturbances
w1 = sin(3t), w, = cos(t), ws =0.5,

w4 = sin(2t) + 1, ws = sin(t), we = cos(2t).

The communication topology is shown in Fig. 1 with the Laplacian
matrix

1 -1 0 0 0 0
0 2 -2 0 0 0
o -1 4 3 0 o
“lo 0o 0o 2 =20
0 2 0 0 2 0

0 0 0 0 -1 1

We design a controller of the form (44) based on an ARE-based
method. The feedback gain F. = —%B/P with P given by the alge-
braic Riccati equation (22) and K, = —S%QC’ given by the algebraic
Riccati equation (43). When choosing ¢ = 0.3 and § = 0.01, we get
the controller

-2 0 0
Xi=| 2 -299214 -301.214 |y;

5 -199.194 —201.194
0
+(301.214 | ¢,
203.194
u = (—34.068 —30.5702 —27.0943)x;;

while when choosing ¢ = 0.01 and § = 0.0001, the controller is

-2 0 0 0
xi=[2 —29999 —30001 )y + (30001 )¢,
5 —19999 —20001 20003
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u = (-1022 -917.1 -812.8)x;.

The results are shown in Fig. 2. It is clear that when ¢ goes smaller,
the Hy, norm from the disturbance to the relative error between
the states of the different agents gets smaller. The controller inputs
for all agents are shown in Fig. 3.

6. Conclusion

In this paper, we have studied H,, and H, almost state syn-
chronization for MAS with identical linear agents affected by ex-
ternal disturbances. The communication network is directed and
coupled through agents’ states or outputs. We have first developed
the necessary and sufficient conditions on agents’ dynamics for the
solvability of H., and H, almost state synchronization problems.
Then, we have designed protocols to achieve H,, and H, almost
state synchronization among agents based on two methods. One
is ARE-based method and the other is ATEA-baed method. The fu-
ture work could be to extend the results of this paper to nonlinear
agents, that is, H,, and H, almost state synchronization for MAS
with identical nonlinear agents affected by external disturbances.
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