#### UNIVERSITY OF TWENTE.





### Effect of Electron Beam Irradiation on Structure and Properties of Styrene-Butadiene Rubber



Katarzyna S. Bandzierz, Louis A.E.M. Reuvekamp, Grażyna Przybytniak, Wilma K. Dierkes, <u>Anke Blume</u>, Dariusz M. Bielinski

INTERNATIONAL RUBBER CONFERENCE (IRC), KUALA LUMPUR, 4th – 6th September 2018



# **Crosslinking Density**



# **Sulfur Curing**

Disadvantage of sulfur curing:

- Presence of
  - double bond
  - Sulfur + accelerator in the compound
- 130 160 °C required
- Variety in crosslinks



## **Peroxide Curing**

Disadvantage of peroxide curing:

- Presence of peroxides in the compound
- 130 160 °C required



Alternative crosslinking method: Radiation Curing



**Electron beam** – beam of high-energetic, accelerated electrons generated in electron accelerator



Alternative crosslinking method: Radiation Curing

- Independent of
  - double bonds
  - curing system
- Curing at room temperature is possible



- Curatives are not necessary
- Process initiatated by high-energy ionizing radiation



C-C crosslink between polymer chains

Degradation of the polymer



The higher the dose and power of radiation the higher crosslinking density.



But which radiation dose is the best for a good performance of the created network?



• E-SBR; KER 1500,

Synthos (Poland);

23.5% of bound styrene

• 
$$M_w = 425\ 000\ g/mol$$

- Irradiation with doses: 25, 50, 75, 100, 150, 200 kGy
- Electron beam:
  - energy of 10 MeV
  - average power of 10 kW
- Irradiation conditions:
  - air atmosphere at room temperature

#### **Reference sample: non-irradiated**

Radiation curing leads to:

- C-C crosslink between polymer chains
- Degradation of the polymer

Charlesby-Rosiak tried to quantify both

reactions by sol-gel analysis

### **Sol-Gel Analysis**

0,2 g rubber extracted with THF (30 days) – drying at 60 °C (7 days):  $\rightarrow$  insoluble (gel) fraction  $\rightarrow$  soluble (sol) fraction s



Soxhlet extractor

Charlesby-Rosiak: 
$$s + \sqrt{s} = \frac{p_0}{q_0} + \left(2 - \frac{p_0}{q_0}\right) \left(\frac{D_v + D_g}{D_v + D}\right)$$



#### s - sol fraction

 $p_0$  – average chain scission density per radiation dose unit

q<sub>0</sub> – average crosslinking density per radiation dose unit

- D radiation dose
- $D_v$  virtual dose
- $D_g$  gel dose

# average chain scission density / average crosslinking density = ca. 1 : 4

# Effect of ionizing radiation on gel formation: gel fraction



Higher irradiation leads to higher insoluble (gel) fraction - crosslink density

# Gel fraction vs crosslink density



# **Crosslink density**

Samples swollen in toluene for 4 days at RT, dried 4 days at 60 °C, calculation according to Flory-Rehner Samples swollen in toluene for 4 days at RT, dried 4 days at 60 °C, swollen in cyclohexane for 4 days at RT, **freezing point depression** evaluated by DSC (heating rate 5 K/min)



What happens at higher dosage rates?

# **Crosslink density**



What happens at higher dosage rates?

# Gel fraction vs crosslink density

Q. Wang, Radiation Physics and Chemistry 78
(2009) 1001 – 1005: Influence on irradiation dosage on crosslinking density of E-SBR



What happens at higher dosage rates? Polymer degradation becomes more likely!

# Effect of ionizing radiation on SBR structure: mechanical properties



- Higher crosslinks lead to higher hardness
- Few crosslinks lead to significant increase in modulus

# Effect of ionizing radiation on SBR structure: mechanical properties



- Maximum tensile strength: ca. for 100 kGy
- Few crosslinks lead to significant reduction of EaB

# Summary

- SBR can be cured by radiation
- Radiation dose influences crosslink density
- Increasing crosslink density influences hardness and stressstrain behavior

# Summary

Which radiation dose is the best for a good performance of the created network?

- Required radiation dose for sufficient SBR crosslinking network ca. 150 kGy
- Charlesby-Rosiak model is applicable for radiation-curing process
- Chain scission density / Crosslinking density = ca. 1 : 4

### UNIVERSITY OF TWENTE.



Institute of Polymer and Dye Technology Łódź University of Technology, Poland



#### Acknowledgements





Thanks to the Ministry of Science and Higher Education (Republic of Poland) for the financial support.



#### **UNIVERSITY OF TWENTE.**



### Thank you for your kind attention!



katarzyna.bandzierz@gmail.com

a.blume@utwente.nl

This paper is already published in: Radiat. Phys. Chem. 2018, 149, 14–25, DOI: 0.1016/j.radphyschem.2017.12.011



Radiation curing leads to:

- C-C crosslink between polymer chains
- Degradation of the polymer

1959: Charlesby and Pinner tries to quantify both reactions by sol-gel analysis

### **Sol-Gel Analysis**

0,2 g rubber extracted with THF (30 days) – drying at 60 °C (7 days):  $\rightarrow$  insoluble (gel) fraction  $\rightarrow$  soluble (sol) fraction s



Soxhlet extractor

# **Sol-Gel Analysis**

#### **Charlesby-Pinner equation**

$$s + \sqrt{s} = \frac{p_0}{q_0} + \frac{2}{q_0 u_{2,0} D}$$

s – sol fraction

 $p_0$  – average chain scission density per radiation dose unit  $q_0$  – average crosslinking density per radiation dose unit  $u_{2,0}$  – average degree of polymerization of the primary polymer chains

**D** – radiation dose

# **Charlesby-Pinner equation**

Assumptions:

- Chain scission and crosslinking occur at random spatial distribution and proportionally to radiation dose
- Ratio between chain scission and crosslinking is constant over the whole range of doses
- Crosslinking leads to formation of tetra-functional crosslinks X, not tri-functional endlinks Y
- Initial molecular weight distribution is random:

polydispersity index PDI =  $\overline{M}_w/\overline{M}_n = 2$ 

 $(\overline{M}_w$  - weight-average molecular weight

 $\overline{M}_n$  - number-average molecular weight)

#### Chain scission vs crosslinking

Charlesby-Pinner equation  $s + \sqrt{s} = \frac{p_0}{q_0} + \frac{2}{q_0 u_{2,0} D}$ 2.0  $\overline{M}_w/\overline{M}_n > 2$ 1.5  $s + \sqrt{s}$  $\overline{M}_w/\overline{M}_n=2$ 1.0  $\overline{M}_w/\overline{M}_n < 2$ 0.5 0.0 0.00 0.01 0.02 0.03 0.04 0.05  $\frac{1}{n}$  / kGy<sup>-1</sup>  $\rightarrow$  Limitation of this model if  $\frac{\overline{M}_w}{\overline{M}_n} \neq 2$ 

#### Chain scission vs crosslinking

$$\rightarrow$$
 Limitation of this model if  $\frac{\overline{M}_w}{\overline{M}_n} \neq 2$ 



**Charlesby-Pinner equation** 

#### **NO linear correlation!**

 $\overline{M}_w/\overline{M}_n > 2$ 

(GPC: PDI = 
$$\frac{\overline{M}_w}{\overline{M}_n}$$
 = 2, 8 )

### Chain scission vs crosslinking

 $\rightarrow$  Limitation of Charlesby-Pinner if  $\frac{\overline{M}_w}{\overline{M}_n} \neq 2$ 

#### **Charlesby-Rosiak equation**

$$s + \sqrt{s} = \frac{p_0}{q_0} + \left(2 - \frac{p_0}{q_0}\right) \left(\frac{D_v + D_g}{D_v + D}\right)$$

s – sol fraction

 $p_0$  – average chain scission density per radiation dose unit

 $q_0$  – average crosslinking density per radiation dose unit

- D radiation dose
- $D_v$  virtual dose
- $D_g$  gel dose

# Effect of ionizing radiation on SBR structure: DSC glass transition temperature (T<sub>g</sub>)



Increase of T<sub>g</sub>: formation of crosslinks

### Yield of chain scission (G<sub>s</sub>) and crosslinking (G<sub>x</sub>)

#### Condition for effective crosslinking: $G_s/G_x < 4$

|                  | G <sub>s</sub> /G <sub>x</sub> |
|------------------|--------------------------------|
| Investigated SBR | 0.49                           |
| cis-1,4 BR [1]   | 0.10                           |
| <b>EPDM</b> [2]  | 0.26                           |

- SBR, BR and EPDM can be crosslinked by irradiation
- Irradiation of SBR leads to higher chain scission than in EPDM or BR

[1] Kozlov et al., Vysokomol. Soedin. A+, 11 (1969) 2230-2237[2] Geissler et al., Macromol. Chem. Physic. 179 (1978) 697-705

# Effect of ionizing radiation on SBR structure

Why does the irradiation of SBR leads to higher chain scission than in EPDM or BR?



- styrene ring absorbs radiation dissipate it = more resistant to crosslinking but also to degradation
- styrene blocks stiffen the polymer chain = crosslinking is less likely

Used E-SBR; KER 1500, Synthos (Poland); 23.5% of bound styrene

|                      | <mark>G</mark> _ in µmol / J [3] |
|----------------------|----------------------------------|
| SBR (16% of styrene) | 0.30                             |
| SBR (28% of styrene) | 0.16                             |
| SBR (85% of styrene) | 0.03                             |

Increasing amount of styrene hinders crosslinking.