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Abstract The graph transformation tool GROOVE supports so-called recipes, which
allow the elaboration of composite rules by gluing simple rules via a control
language. This paper shows how recipes can be used to provide a complete formal-
ization (construction) of the control flow semantics of JAVA 6. This construction
covers not only basic language elements such as branches and loops, but also
abrupt termination commands, such as exceptions. By handling the whole JAVA 6
language, it is shown that the method scales and can be used in real-life settings.
Our implementation has two major strengths. First, all rule sequencing is handled
by recipes, avoiding the need to include extraneous elements in the graphs for
this purpose. Second, the approach provides rules modularization: related rules
are grouped in recipes, which in turn can be used again to form larger, more
elaborated recipes. This gives rise to an elegant, hierarchical rule structure built
in a straightforward, compositional way.

1 Introduction

This paper presents two contributions: a fully formalised control flow specification
for JAVA (language version 6), and an extensive case study demonstrating the
concept of recipes, which is a mechanism for rule composition in the graph
transformation (GT) tool GROOVE [7, 11].

Control Flow Specification Our first contribution addresses the issue of control
flow specification for the imperative, object-oriented language JAVA. The step of
generating a control flow graph from the source code of a program is a very
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well-known one: it lies at the core of both compiler optimisation and formal
program analysis; see, for instance, [1, 9]. The control semantics of basic imperative
statement types, such as while, if, switch, for and the like, is very well-
understood, and it is not difficult to come up with an efficient, compositional
algorithm for their construction. It is quite a bit more tricky to do the same in the
presence of abrupt termination (as it is called in JAVA); that is, for break, continue,
throw and return statements occurring anywhere in a block. The presence of
abrupt termination firstly requires an extension to the notion of control flow itself—
for instance, a flow transition taken because of a thrown exception needs to be
treated differently from an ordinary control flow transition—and secondly mandates
an overhaul of the construction algorithm.

The challenge involved in control flow generation can be made precise as
follows: to devise an algorithm that, given the abstract syntax tree (AST) of an
arbitrary (compilation-correct) JAVA program, generates a control flow graph (CFG)
that captures all feasible paths of execution, with minimal over-approximation.
(Some over-approximation is unavoidable, as the question whether an execution
path can actually be taken by some real program run generally involves data analysis
and is ultimately undecidable.)

In this paper we aim for a solution to this challenge that satisfies the following
criteria:

* It is based on a declarative, rule-based formalism that manipulates (abstract syn-
tax, respectively control) graphs directly; thus, one can alternatively understand
our algorithm as a specification of the JAVA control flow semantics.

* It covers all of JAVA, rather than just a fragment; thus, we cannot take shortcuts by
ignoring the more “dirty” language features.

* It is implemented and executable using a state-of-the-art graph transformation
tool.

Recipes as a Rule Composition Mechanism Our second contribution is specif-
ically directed at rule-based specification languages in general, and graph trans-
formation in particular. In rule-based formalisms, it is quite common (as we also
point out in the related work discussion below) to offer a way of scheduling rules
sequentially or as alternatives; essentially, this comes down to adding imperative
control to a declarative formalism. However, this form of composition results in
constructs that cannot themselves be regarded as rules: their execution does not
show up as a single, atomic step. Thus, one composes from rules but not into
new rules. Instead, in this paper we demonstrate the concept of recipes, which are
essentially named procedures with atomic behaviour. Recipes can for all intents and
purposes be regarded as rules; in particular, they themselves can again be composed
and recursively form new recipes.

The grammar for control flow specification presented in this paper very exten-
sively uses the concept of recipes as implemented in the GT tool GROOVE, and
hence serves as a demonstrator for their viability.
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Related Work On the topic of (explicitly) dealing with abrupt termination in a
formal setting, we can point to [8], which extends assertional reasoning to abrupt
termination. The notion of control flow is implicitly treated there (as it must be,
because the notion of pre- and post-conditions is inextricably bound to control flow)
and the paper is rather comprehensive, but does not share our ambition of actually
dealing with, and providing tool support for, any complete version of JAVA.

A much earlier version of the approach reported here is given in [14]: there also,
graph transformation is used to construct flow graphs for programs with abrupt
termination, but the construction is not compositional, relying instead on intricate
intermediate structures that cause it to be far less elegant than what one would hope
for in a declarative formalism.

On the topic of controlled graph rewriting, i.e., using control constructs for rule
composition, quite some work has been done in the field of graph transformation.
For instance, many GT tools, such as PROGRES [13], GRGEN [6] and VIATRA [4]
include textual control languages, some of which are quite rich. Other tools such as
HENSHIN [3] rely on the visual mechanism of story diagrams (developed in [5]) for
specifying control. In [10] it is investigated what the minimal requirements are for
a control language to be, in a strict sense, complete, and [2] generalises the notion
of control composition itself. However, none of these approaches explicitly include
the notion of atomicity that is essential to be able to regard a control fragment as a
rule, as we do in our recipes. In fact, we argue that this is a dimension not covered
by Plump [10] that identifies an incompleteness of other control languages.

2 Background

In this section we set the stage by providing some necessary background
information.

2.1 Graph Grammars

We use graph transformation as our basic formalism for specifying computations.
This means that we rely on typed graphs to describe states—in this case, ASTs
and flow graphs—and transformation rules to describe how the states change, and
under what conditions—in this case, how flow graphs are incrementally built on top
of ASTs. Without going into full formal detail, we pose the following:

* A problem-specific type graph 7 that describes all the concepts occurring in the
domain being modelled, in terms of node types (which include primitive data types
and carry a subtype relation) and edge types. The possible connections between
nodes and edges are restricted to those explicitly contained in .7.
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* A universe of graphs ¢, consisting of nodes and edges that have an associated
(node or edge) type, subject to the restrictions imposed by 7.

¢ A universe of rules %, with each rule r associated with a signature sig(r),
consisting of possibly empty sequences of input and output parameter (node)

types.
* An application relation, consisting of tuples of the form

G LYW, g

where G, H are graphs, r is a rule and v, w are sequences of nodes from G
and H, respectively, typed by sig(r): these represent the actual input and output
parameters and have to satisfy the rule signature.

An application instance such as the one above is called a transformation step, with
G as source graph and H as target graph. A rule is called applicable to a given
graph G if there exists an application step with G as source.

As a toy example, consider the rule fib depicted in Fig. la, with two example
applications shown next to the rule in Fig. 1b. This specifies (in GROOVE syntax):

* A third Cell is created and appended to two existing next-linked Cell-nodes; the
new Cell gets a val-attribute that is the sum of the val-attributes of the existing
Cells. In GROOVE syntax, element creation is indicated by fat, green outlines.

* The first of the two existing Cells is deleted, together with its outgoing edges. In
GROOVE syntax, this is indicated by blue, dashed outlines.

(a) Rule fib (b) Two applications of rule fib
iCell} iCell} Cell Cell
"'!" "A" val = 1 next val = 1
nexl next
yY_ J fib(2)
wCeII r-- nextﬁ next Cell ol
Il
vaI val Vge }“”eXt"{vme ‘
10
O o) v
Cell Cell
v val =2 next val =3
(c) Rule del (d) Rule add (e) Recipe fib
20
Cell next Cell
_>- recipe fib(out int result){
wCeIIrfnext val next val node d;
vaI “next Beae int v;
Vo -Cell- d, v o= del(),

result := add(d,v);
¥

N
LS

Fig. 1 From simple GT rules to recipes. (a) Complete simple GT rule £ib. (b) Two applications
of rule £ib. (¢) Ingredient rule del. (d) Ingredient rule add. (e) Recipe £ib
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» However, this only occurs if there is not a third Cell already. In GROOVE syntax,
this is indicated by the red, dotted Cell nodes on top, which are so-called negative
application conditions.

* The rule has a single output parameter, and no input parameters. In GROOVE
syntax, this is indicated by the black adornment with the inscribed parameter
number preceded by the exclamation mark !. An input parameter has a ?-prefix
instead.

A graph grammar is essentially a set of graph transformation rules, together with
a start graph. We say that a graph grammar defines the “language” of graphs that
can be derived through a sequence of rule applications from the start graph. One of
the ways in which this can be used is to define transformations from one graph
to another, namely by setting one graph as start graph and then considering all
reachable graphs in which no more rules are applicable.

2.2 Recipes for Rule Composition

One of the attractive aspects of graph transformation (which it shares with other
rule-based formalisms) is its declarative nature: each rule describes a particular
change combined with conditions under which it can be applied, but there is
typically no a priori prescription on how that change is effected or how different
changes are combined. However, in practice it does occur quite frequently that
an algorithm encoded in a set of transformation rules requires some dependencies
between rules, resulting in a certain built-in order for their application. Moreover,
it is also quite common that different rules contain similar parts, in which case it is
desirable to be able to share those as sub-rules. Both are scenarios which can benefit
from a notion of rule composition, meaning that a notion of control is imposed on
top of the declarative rules, restricting the order in which rules may be applied and
allowing the same rule to be applied in different contexts. Rule parameters can then
be used to pass information between rule applications, circumventing the need to
artificially put control information into the graphs themselves.

The GT tool GROOVE supports such rule composition in the form of recipes,
which are procedure-like constructs with:

* A signature, consisting (like for rules) of a name and sequences of input and output
parameters;
* A body, which specifies rule sequencing, repetition and choice.

A recipe is guaranteed to have atomic (transaction-like) behavior: it either finishes
completely, in which case its effect, which may consist of many consecutive rule
applications, is considered to be a single step; or it is aborted if at some point during
its execution the next scheduled rule is inapplicable, in which case the recipe is
considered to not have occurred at all.

As an example, Fig. 1c—e show how the rule from Fig. 1a can be specified instead
as a recipe, by composing two ingredient rules (del and add) and using rule
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parameters to ensure that the second rule is applied using the Cell- and int-nodes
obtained from the first. The atomic nature of recipe execution implies that, if rule
add is not applicable because the Cell already has a next, the execution is aborted
and the graph is “rolled back” to the one before the del-transformation.

As stated in the introduction, for all intents and purposes a recipe itself behaves
like a rule. The concept of a grammar is therefore extended to consist of rules,
recipes and a start graph.

2.3 Constructing Abstract Syntax Trees

As explained in the introduction, the first contribution of this paper is to specify the
construction of JAVA CFGs on top of ASTs; but in order to do so, first we have to
obtain the ASTs themselves. The overall picture of how this is done can be seen
in Fig.2. For a more detailed discussion on the topics of this section we refer the
interested reader to [15].

To bridge the world between JAVA source code and GROOVE graphs we built
a specialized graph compiler that receives as input one or more .java files and
produces a corresponding AST in GROOVE format for each compilation unit. The
graph compiler was created by replacing the back-end of the Eclipse JAVA compiler
with one that outputs the AST in the GXL format used in GROOVE. Our restriction to
JAVA version 6 in this work stems from the Eclipse compiler used, which is limited
to this language version. As future work, we plan to update the graph compiler to
the latest JAVA version, namely version 10 at the time of writing.

As explained above, our graphs and rules are typed by a problem-specific type
graph 7 that describes the allowed graph elements and their connections. In
particular, program ASTs generated by the graph compiler conform to a JAVA AST
type graph (see also Fig. 2), the node types of which are shown in Fig. 3. This type
graph was manually constructed based on the AST structure produced by the Eclipse
compiler. Additional typing structure is present in the form of edge types, which are
omitted from Fig. 3 but presented in detail in [12].

Flow graph construction adds extra elements on top of the AST, which are also
typed, this time by a JAVA CFG type graph (see Fig. 4), which extends the AST type

Eclipse Java derived from | Java AST | extends | Java CFG
Compiler Source Type Graph Type Graph

A A

AN I (Flow Grammaa i
\ | |
\extends i conforms conforms |
I |

I |

\
\

1 1
Java Graph Program GROOVE Program
Code Compiler AST Exploration CFG

Fig. 2 Overview of the conversion from JAVA sources to GROOVE graphs
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[ flow |
entry | exit
L |

reason FlowElem < ASTNode

abort A
resumeAbort

branch condition

Branch .
\M‘ on : boolean @

Fig. 4 jAVA CFG type graph

graph. Node type FlowElem is the top super-type of all possible elements that can
occur in a CFG. Every executable block of code, such as a method body, has an entry
point marked by an entry-edge. Execution then follows flow-edges until the Exit node
is reached. Additional elements in Fig. 4 are Branch nodes, which are used in the
over-approximation of loops and conditional statements, and Abort nodes, which
point to commands that cause abrupt termination (see Sect. 3.2).

3 Building JAVA Control Flow Graphs with Recipes

In this section we give an overview of the GROOVE grammar for JAVA CFG
construction. The grammar is composed of over 50 recipes and more than 250
simple GT rules, and therefore, a complete discussion in this paper is unfeasible.
Instead, we focus on key aspects of grammar design and on some representative
recipe cases. In Sect.3.1, we give a simple example that shows the general
idea of CFG construction for sequential execution of statements. Subsequently,
Sect. 3.2 discusses the more elaborate case of dealing with abrupt termination
commands. Finally, Sect. 3.3 presents the basic guidelines followed during grammar
construction.

3.1 Basic Construction of CFGs from ASTs

Given an AST representing a valid JAVA program, we construct the CFG by adding
flow-edges between AST nodes. The fundamental aspect of this construction is
similar to the operation of a recursive descent parser. The AST is visited in a top-
down manner, starting at the AST root node and traversing down the children nodes
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by recursive calls to appropriate recipes. Recursion stops at the AST leaf nodes,
where recipes terminate and return to their caller. When the entire calling sequence
is finished, i.e., when the recipe for the root node completes, the entire AST was
visited and the whole CFG was constructed.

Suppose a simple JAVA assignment expression, such as x = 2+3+4. Assuming
that x is a simple local int variable, language semantics states that the right-hand
side expression must be evaluated left-to-right' and the resulting value should be
stored in x. Considering the usual operator precedence, the expression in post-fix
notation corresponds to (2 (3 4 ) +).

In JAVA, a method is the usual unit for grouping statements. Hence, the control
flow grammar builds one CFG for each method in the AST. Commands inside
a method are normally executed first-to-last, left-to-right. However, our recursive
descent on the AST visits its nodes from right-to-left. In other words, the construc-
tion of the CFG is done in reverse order. This choice was made to limit the need for
additional elements in the program graph.

The construction of a method CFG starts at a MethodDecl node, the root of
the method in the AST. Upon visiting such node, a special Exit node is created,
to indicate the method exit point (both for normal and abrupt termination). Then,
method statements are visited last-to-first.

Every recipe for CFG construction has the following signature:

recipe SomeCommand (node root, node exit, out node entry) { .. }

Thus, recipe SomeCommand receives as input the root node of the sub-tree being
visited and the exit node where the execution should flow after SomeCommand
finishes. The recipe is responsible for constructing the CFG of SomeCommand and
of all its composing sub-commands, by recursively descending in the AST starting
at root. Finally, once this part of the CFG is constructed, the entry point of the entire
sub-tree is known. This node is assigned to the entry parameter, and is returned to
the caller.

To illustrate the process explained above, we present a step-by-step construction
of the CFG for the assignment x = 2+3+«4. The AST for this command is depicted
in Fig. 5a. The Assign recipe (not shown) starts by calling BinaryExpr (n2, no),
meaning that the CFG construction traverses down the AST, to the root node of
the right-hand side expression (node n2), whose exit point is the Assign node (no0).
Execution then continues inside the BinaryExpr recipe, given in Listing 1.

1For the argument’s sake we assume the compiler does not perform optimizations such as constant
folding, which would simplify the expression during compile time.
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(2)
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Assign
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Fig. 5 Step-by-step construction of the CFG for x =
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11 12
Ieftg root : BinaryExpr '—right

Fig. 6 Rule get-Children, used by recipe BinaryExpr

Listing 1 Recipe for a binary expression

recipe BinaryExpr (node root, node exit, out node entry) ({
create-FlowEdge (root, exit);
// Match the left and right components of the expression.
node lroot, rroot := get-Children (root) ;
// Build the flow for the right sub—expression.
node rentry := Expr (rroot, root);
// Build the flow for the left sub—expression.
entry := Expr (lroot, rentry);

In line 2 of Listing 1, the simple GT rule create-FlowEdge is applied to create
a flow-edge from node n2 to node no, resulting in the graph presented in Fig. 5b.
The recipe then continues in line 4, where rule get-Children, shown in Fig. 6, is
invoked.

Rule get -children is a common kind of simple GT rule used in our solution. Its
sole role is to traverse along the AST, according to the given parameters, as can be
seen from its signature in Fig. 6. (Recall from Sect. 2.1 that adornments with symbol
? indicate an input parameter node, whereas ! marks an output node.) Thus, given
the root for the binary expression, the rule in Fig. 6 matches and returns the two
roots for the left and right sub-expressions.

Execution of Listing 1 then continues on line 6, with recipe Expr being called
on the right sub-expression (rroot node). This recipe (given in Listing 5 in an
abbreviated form) just dispatches the call to the appropriate recipe, depending on
the type of root node given as input. This dispatch leads to the recursive call
BinaryExpr (n4, n2), which starts by creating the flow-edge between n4 and n2,
leading to the graph shown in Fig. Sc.

The second call of BinaryExpr continues in the same vein as previously
explained, until leaf node né is reached with a call to recipe Lit, presented in
Listing 2.

Listing 2 Recipe for all types of Literals

recipe Lit (node root, node exit, out node entry) ({
// A literal is always a leaf in the AST, so we close the recursion here.
create-FlowEdge (root, exit);
entry := root;
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Since literals do not have children in the AST, the recursion stops at the Lit
recipe, which just flows to the exit and returns the literal node itself as the entry
point, yielding the graph in Fig. 5d.

The current BinaryExpr reaches line 8, where the left sub-expression is
constructed. Note that the entry of the right sub-expression (rentry) is now used as
the exit point. This leads to call Lit (n5, n6), and the resulting graph from Fig. 7e.
The second BinaryExpr call returns, leading to the traversal of node n3 with call
Lit (n3, n5), and the corresponding graph in Fig. 7f. Finally, the right-hand side
expression of the assignment was traversed and node n3 was identified as the entry
point, as can be seen in Fig. 7g. By following the flow-edges starting from the entry,
we obtain exactly the post-fix expression (2 (3 4 %) +) from the beginning of
this example.

Construction of a CFG for sequential statements is as straightforward as that
of expressions. When dealing with branching commands and loops, however, it
is necessary to generate Branch nodes in the CFG, to mark the possible paths of
execution. The overall method for handling branching is quite similar to the idea
discussed above, and thus it will be skipped for brevity’s sake. Instead, in the
following we show the more complex case of abruptly terminating commands.

3.2 Handling Abrupt Termination

In JAVA, four statements cause abrupt termination, viz., break, continue, throw
and return. These are so named because they “break” the normal execution flow
of a program, causing a block to terminate early. The semantics of these commands
can get quite convoluted due to nesting and the possibility of abrupt termination
inside try-finally blocks. The JAVA method m () given in Listing 3 illustrates this
complex case.

Listing 3 Method with return in try -finally block

1 void m() {

2 ; //Cl1

3 try {

4 ; //C2

5 return;

6 } finally {
; //C3

1
; // Unreachable

o v ™

We use empty statements (;) in method m () to simplify the example, but these
can be seen as place-holders for any block of commands. JAVA semantics states that
a finally block must always be executed, even in the case of an abrupt termination.
Thus, execution of m() starts at command C1, enters the try block and executes
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c2, and is aborted by the return statement. Control then flows to the finally
block, causing the execution of c3. Lastly, the abortion is resumed on the enclosing
scope, where execution flows immediately to the method exit point, bypassing the
command indicated as unreachable. The AST of method m () is shown in Fig. 8a,
where EmptyStmt nodes are marked with the same comments as in Listing 3. Integer
attribute index is used in the AST to record the ordering of statements within a
method body or block.

Control flow for abrupt termination requires information about flow in normal
execution. Thus, during the AST traversal, we construct the CFG for non-abrupt
statements as usual, and create Abort nodes in the CFG to mark abruptly terminating
commands. An intermediate CFG in our running example can be seen in Fig. 8b,
where node n10 marks the abort caused by the ReturnStmt node. The resolving-
edge between these two nodes indicates that the abortion still needs to be handled.
Control flow is now extended with abort-edges, which can be traversed as, but
have priority over flow-edges, leading to Abort nodes and their associated reason
for abrupt termination. On a complete CFG, Abort nodes flow to some point of the
AST, so that execution can continue.

After the basic CFG construction finishes, we enter a phase called abort
resolution, where all the aborted commands are properly analyzed and the CFG
is finalized. As long as possible, Abort nodes are matched and recipes are called
to resolve them. All these recipes are neatly contained in a control package called
Abort, and Listing 4 shows the code for one of such recipes.

Listing 4 Recipe for resolving pending Return commands

package Abort;
recipe ResolveReturn (node root, node aroot) {

do {
choice root := propagate (root, aroot);
or root,aroot := resolve-ReturnStmt-In-TryBlock (root, aroot) ;
or root,aroot := resolve-CatchBlock (root, aroot) ;
or root,aroot := resolve-FinallyBlock (root, aroot);

} until (resolve-AbsMethodDecl (root, aroot))

}

Recipe ResolveReturn receives as input a ReturnStmt node (parameter root)
and its associated Abort node (aroot). The recipe enters a loop, where abort
resolution traverses up the AST, by means of rule propagate, shown in Fig.9a.
This rule receives as input an Abort node and the current FlowElem being resolved,
and returns the parent statement in the AST. This rule is used to propagate abortions
along nested blocks, for example, in Fig. 8b, from node n7 to node na4.

Abort propagation continues until it hits the method root node, when the abort
is finally resolved by rule resolve-AbsMethodDecl, shown in Fig.9b, which
immediately flows to the method exit point. Lines 5-7 in Listing 4 handle the cases
when abort propagation cannot go up, due to an enclosing try statement. Rule
resolve-ReturnStmt-In-TryBlock is given in Fig.9c. When reaching the outer
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Fig. 8 Handling abruptly terminating commands. (a) Start state. (b) CFG after traversal with
pending Abort node. (¢) Final CFG after resolution
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(a) (b)
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Fig. 9 Three rules used in recipe Abort .ResolveReturn. (a)
Abort .propagate, (b) Abort .resolve-AbsMethodDecl, (¢

Abort.resolve-ReturnStmt-In-TryBlock

scope of a try block that has an associated £inally block, the given Abort node
flows to the entry point. However, abort propagation does not end there, otherwise
execution would continue normally after the £inally block. Therefore, the rule also
creates a new Abort node in the enclosing scope and returns it, so that propagation
can proceed.

The rules used in lines 67 of Listing 4 are similar to the one in Fig. 9a and thus
are not shown. The final CFG for this running example is given in Fig. 8c, with an
additional Abort node (n11) created. Edge resumeAbort has the same semantics and
priority as an abort-edge. It is interesting to note that some code analysis can now
be performed on the finished CFG. For instance, node n3 has no incoming flow edge
and is therefore unreachable (as expected).

3.3 Rationale for Recipe Elaboration

Given that the control flow grammar is quite large, some guidelines were defined to
rationalize its construction. We present these guidelines here with the hope that they
will be useful in similar case studies.

The entire grammar construction was based on the JAVA AST type graph (Fig. 3)
that was previously published in [12] and later updated in [15]. By looking at type
nodes, the following guidelines were applied:
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Fig. 10 Part of the AST type
graph showing the abstract AT

type Expr and some of its P T ____ 1o
I
subtypes | OperatorExpr i o E_LiE !

____ZF‘ ______ t
|BinaryExpr| |FIoatLit| i

1. Types that are not composed by other elements, i.e., that cannot have children in
the AST, are the base case for the recursive descent of recipes on the AST. An
example of such type is Lit, with its recipe given in Listing 2. Other types that
also fit into this category are EmptyStmt, NameRef, and ThisRef, which follow
the exact same recipe structure from Lit.

2. Abstract types lead to recipes that only dispatch the call to the correct recipe,
based on the type of the given root node. For example, Fig. 10 shows part of
the type graph from Fig.3 zoomed in the hierarchy of abstract type Expr. The
associated recipe is given in Listing 5.

Listing 5 Part of the recipe for an Expression

1 recipe Expr (node root, node exit, out node entry) {
2 choice entry := Assign(root, exit);

3 or entry := OperatorExpr (root, exit);

4 or entry := Lit(root, exit);

5 [...]

6 }

This recipe sequentially tries to call each of the recipes associated with the direct
subtypes of Expr. If node root passed to Expr has type Assign, then the call to
recipe Assign succeeds and Expr returns. If the node has a different type, the
call to Assign fails and the Expr recipe tries the next line, until a successful call
is made. It is interesting to note that recipe Lit does not follow this structure,
despite Lit being an abstract type, because it falls in case 1.

3. Types that have one or more sub-trees in the AST give rise to the standard type
of recipe, of which the BinaryExpr recipe in Listing 1 is a prime representative.
Elaborating this type of recipe was the core of this work, and basically amounted
to constructing the CFG for each sub-tree in the reverse order, following the JAVA
semantics.

As a passing note, we should point that one of the recipe features highlighted
in Sect. 2.2, namely the possibility to “rollback™ a failing recipe is not needed in
the CFG constructing grammar. Since we work with syntax-correct ASTs, the only
place where a recipe can fail is on “dynamic recipe dispatching”, i.e., on recipes
for abstract types such as Expr, where we know we have an expression but we have
yet to determine its concrete type. The choice-or construction sequentially calls
recipes until one succeeds, but even in this case there is no real need of rollback,
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because a recipe can only fail when inspecting the type of its given root node, and
we are sure that exactly one of the recipes in the choice-or construct will succeed.
(Since we are at an abstract node and it can only have one of the subtypes prescribed
by the type graph, which are all potentially tested by the corresponding recipe.)

4 Conclusions and Future Work

This paper presented a GROOVE recipe-based solution for the problem of generating
control flow graphs over abstract syntax trees of JAVA programs. Recapping the
contributions stated in the introduction:

* The CFG generating grammar can be seen as an alternate, formal, executable
specification of the control flow semantics of JAVA, which is presented in the
language manual in plain English.

* The use of recipes provides an elegant, hierarchical rule composition mechanism.
Although we tried in the text to make this point across, it can only be fully
grasped when handling the real grammar in GROOVE. A previously attempted,
non-recipe-based solution quickly became unwieldy, as one was forced to work in
an unstructured set of several hundred rules, which could interact in complex ways
and “polluted” the CFG with extraneous elements to ensure rule composition. In
contrast, in this solution, rule composition and sequencing lend themselves neatly
to a recipe-based implementation. This, in turn, simplifies the rules used in the
grammar, making it easier to understand and maintain. We refer the interested
reader to http://groove.cs.utwente.nl/downloads/grammars/, where the complete
grammar here described is available for download.

As future work, the most pressing task is to update the graph compiler to JAVA
version 10. No major obstacles are foreseen in lifting this approach to the latest
JAVA version, given that new language constructs (such as lambdas) are defined in
terms of existing ones to ensure backwards language compatibility. After a new
compiler is available, the grammar here presented must be updated, but again no
major hurdles are expected.

Having the ability to import real-life JAVA code to a GT tool such as GROOVE
opens up a myriad of possibilities. One possible extension would be the creation
of an optimizing grammar that does dead code elimination and other types of code
analysis. Another would be the creation of a simulating grammar, that can follow
the constructed CFG and “execute” the program, effectively rendering GROOVE a
GT-based JAVA Virtual Machine. Since the major functionality of GROOVE is state
space exploration, this could in turn allow for the model-checking of JAVA code. We
plan to follow this line of investigation in the future.


http://groove.cs.utwente.nl/downloads/grammars/
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