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peatedly interrupted by several input/output steps, and the self-consistency and self-adaptive response to the
modelled data and the features therein are lost while handling the data from different kinds of working environ-
ments. To date, an automated and a comprehensive validation system, which includes both the cutoff-dependent
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and -independent evaluation criteria for spatial modelling approaches, has not yet been developed for GIS based
methodologies. This study, for the first time, aims to fill this gap by designing and evaluating a user-friendly
model validation approach, denoted as Performance Measure Tool (PMT), and developed using freely available
Python programming platform. The considered cutoff-dependent criteria include receiver operating characteris-
tic (ROC) curve, success-rate curve (SRC) and prediction-rate curve (PRC), whereas cutoff-independent consist of
twenty-one performance metrics such as efficiency, misclassification rate, false omission rate, F-score, threat
score, odds ratio, etc. To test the robustness of the developed tool, we applied it to a wide variety of geo-
environmental modelling approaches, especially in different countries, data, and spatial contexts around the

world including, the USA (soil digital modelling), Australia (drought risk evaluation), Vietnam (landslide stud-
ies), Iran (flood studies), and Italy (gully erosion studies). The newly proposed PMT is demonstrated to be capa-
ble of analyzing a wide range of environmental modelling results, and provides inclusive performance evaluation
metrics in a relatively short time and user-convenient framework whilst each of the metrics is used to address a
particular aspect of the predictive model. Drawing on the inferences, a scenario-based protocol for model perfor-

mance evaluation is suggested.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Spatially-applicable predictive models must include a mandatory
step where different aspects of the model performance can be quantita-
tively benchmarked. Without considering the performance of such geo-
environmental models, the users would not be confident about the ve-
racity of the modelling results, and is unlikely to utilize them for practi-
cal decision making (Pullar and Springer, 2000; Glade, 2005; Begueria,
2006). The accuracy of predictive models, which is a pertinent factor
demonstrating the usefulness of the relevant models, can significantly
result in the misclassification costs of the approach depending on the
error magnitudes and types (Frattini et al., 2010). For example, in the
modelling of natural hazards, the Error Type I (i.e., false positive) is
likely to indicate that a stable part of a spatial region is classified as
being unstable, and therefore, it can lead to unnecessary control and
risk mitigation measures that are implemented. The Error Type II
(i.e., false negative) can imply that a given terrain unit is susceptible
to the hazard, and it can be incorrectly classified as being stable, and
consequently, this terrain region can be allowed to be occupied by peo-
ple or infrastructure without a responsible and actionable risk mitiga-
tion activity. These errors, if not assessed properly, can consequently
incur social and economic costs, depending on the vulnerability and
economic value of the elements at risk (e.g., infrastructures, lives, etc.).
In light of this need, a robust investigation of such predictive errors in
spatially-applicable models is highly warranted, to make the modelling
approaches and model results more viable for real-life usage, risk miti-
gation and implementation.

Over the past couple of decades, a number of susceptibility assess-
ment models have been built, each striving to portray the current and
future spatial patterns of a specific phenomenon. Many studies have in-
cluded a “model comparison” or a “performance assessment” step that
was aimed to evaluate the spatial modelling result, and to select the
most optimal spatially-relevant model. These sorts of models, largely
promulgated as an operational tool, have largely been reported in differ-
ent fields and applications, such as landslide susceptibility studies (e.g.,
Kornejady et al., 2017; Kavzoglu et al., 2019; Yan et al., 2019), flood sus-
ceptibility studies (e.g., Chapi et al., 2017; Rahmati and Pourghasemi,
2017; Siahkamari et al., 2018; Choubin et al., 2019), forest fire modelling
purposes (e.g., Arpaci et al., 2014; Tien Bui et al., 2017), groundwater
potential modelling studies (e.g., Naghibi et al., 2017; Miraki et al.,
2019), species distribution modelling tasks (e.g., Bucklin et al., 2015;
Shabani et al.,, 2016; Quillfeldt et al., 2017), land subsidence modelling
(e.g., Abdollahi et al., 2018; Ghorbanzadeh et al., 2018), soil digital map-
ping (e.g., Minasny and McBratney, 2007; Wiesmeier et al., 2011;
Malone et al,, 2017), gully-erosion susceptibility (e.g., Akgiin and Tiirk,
2011; Conoscenti et al., 2014; Garosi et al., 2018). The evaluation of pre-
dictive models with different statistical metrics and their implemented
approaches, especially in such a diverse range of studies, clearly warrant

automated and coherent scientific strategies where performance evalu-
ations are implemented by means of a universally acceptable and statis-
tically robust tool.

Areview of published literature in this respect reveals significant ad-
vancements in predictive model performance evaluations where the
context of application and the respective model type were seen to
play a pivotal role in how these evaluation tools were implemented. Re-
cently, the study of Pourghasemi and Rahmati (2018) compared the
performance of ten different advanced machine learning models for
the modelling of landslide susceptibility, while the study of Fukuda
et al. (2013) applied and compared seven different data-driven models
for developing species distribution maps. These authors considered the
receiver operating characteristic (ROC) curves and a number of cutoff-
dependent methods for judging the capability of their model, and con-
sequently, in preparing and transporting the results to their statistical
software, although this was a relatively time-consuming task. Partic-
ularly, one must note that when susceptibility maps are supposed to
be directly incorporated into land-use planning, the best performing
model are likely to be highly favored for practical decision-making
tasks (Siahkamari et al.,, 2018). This is primarily because the
model performance assessments provide immensely useful insights
into the optimal structure of such models, and the possibility of
their practical implementation for perceived risk mitigation (Van
Westen et al., 2006).

Most performance evaluation metrics that are designed to evaluate
the overall learning skill of the predictive model, and the validity of
the generated results from them are based on comparing the predicted
patterns in spatial models with the actual observation datasets (Chung
and Fabbri, 2008). In a somewhat different approach to the traditional
model evaluation approaches (e.g., graphical check of the model's sus-
ceptibility maps in respect to the ground-truth datasets), the new gen-
eration of model performance metrics is mainly applicable for
quantifying the traditional terms and the models' functionality. Accord-
ing to a general consensus, the performance indices in a predictive
model can be classified into two different categories: cutoff-
dependent metrics (e.g., Cohen's Kappa, sensitivity, and specificity)
and the -independent metrics (e.g. receiver operating characteristic,
ROC method) (Frattini et al., 2010). These approaches have been used
in a number of spatial modelling sub-fields.

Meanwhile, there is little doubt that the ArcGIS software, by vir-
tue of its wide flexibility, portability and the relevance in spatial
modelling approaches (e.g. geostatistics, mapping tools, variogram,
kriging, and local/global scale metrics), has been unceasingly used
by many researchers to implement the most basic as well as the
more complex spatial functions and statistical criterion that are
available. In spite of this widespread usage of ArcGIS software as a
spatial modelling platform, the absence of a dedicated GIS-based
tool and its non-availability to aspiring researchers and practitioners
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who are outside of the major subscribed users and institutions, is still
very challenging (Scott and Janikas, 2010). Furthermore, the GIS
users need to employ cumbersome step-by-step procedures in
order to calculate each of their performance indices, and occasion-
ally, they need to reach out for additional commercial and/or freely
available software platforms (e.g., Microsoft Excel, SPSS, and R pack-
ages). These types of external model evaluation frameworks and
largely the expensive software that need to be used to analyze
these data outside of GIS platforms, represent a challenging task
when aiming at optimizing any modelling workflow.

In respect to these arguments for more robust evaluation of
spatially-relevant predictive models, some of the freely available soft-
ware, such as the R package in the form of “cvTools” (Alfons, 2012) or
“CrossValidate” (Coombes, 2018), and the relevant modelling platforms
in the R software have partially satisfied the need to compute these
metrics. However, these add-in tools also seem to be relatively deficient
in terms of their inclusiveness in the respective modelling approach,
and also sometimes, they may require additional external coding skills,
which in some cases may not available to the users. Furthermore, each
of these add-in software are likely to include only some of the cutoff-
dependent and/or -independent evaluation criteria, and not include
the others (as necessary) within a universally desirable manner, and
therefore, the external software may be less flexible and attractive to
the novice modeler and other non-scientific stakeholders, practitioner
and decision-makers.

To address inherent limitations posed by existing approaches
adopted in the evaluation of spatial models, this research study aims
to propose and construct a new, robust and comprehensive GIS-based
package, denoted as the Performance Measure Tool (PMT), to scrutinize
in a statistically sound manner the performance of spatially-relevant
predictive models. The merits of the proposed PMT, augmented by its
extensive validation in diverse regions, contextual applications and
global studies, are likely to enable modelers and risk mitigation practi-
tioners to calculate practically useful performance metrics (both
cutoff-dependent and the -independent category). The PMT is designed
in such way that it has the ability to provide information in a tabular and
graphical format with a relatively simple platform and self-explanatory
user interface. This proposed tool is likely to be useful for any spatially-
relevant model, various types of end-users—from the beginner who are
not familiar with advanced coding, to those who are comfortable with a
‘click-based procedure’ and also practitioners in any scientific sub-field
who need to implement decisions about the model's versatility. To fur-
ther ensure credibility and generalizability of the software, the pro-
posed PMT has been benchmarked rigorously to evaluate its relative
performance in different geo-environmental modelling contexts and
in different parts of the world including studies in Australia, Asia,
Europe, and America.

2. Basic design framework of the performance measure tool

Implementing the notion that performance evaluation of a spatially-
relevant predictive model must be an important cornerstone of any spa-
tial modelling attempt, in this study different cutoff-dependent and -
independent evaluation criteria, elaborated later in greater detail, have
been proposed. A brief review of recent literature shows that most of
these analyses are underpinned by a matrix-wise calculation, termed
as the confusion matrix (and also, sometimes known as the table of con-
fusion, error matrix, or the matching matrix) and the contingency table
(also known as the cross tabulation or crosstab). Some researchers have
interchangeably used these two names in their studies and considered
the confusion matrix largely as a special derivative of the contingency
matrix. Other researchers, however, pointed out a delicate, and logi-
cal difference, in that the former is more suitable for evaluating the
performance of different classifiers (i.e., more common in data min-
ing models), while the latter is used to evaluate the rules of associa-
tion and interrelations between any two variables (Powers, 2011).

Table 1
Confusion matrix elements.
Observed Predicted
Class stable (—) Class unstable (+)
Class stable (—)* (—]—) True negative (TN) (+]—) False positive

(FP; Error Type I)

Class unstable (4)° (—|+) False negative (+]+) True positive (TP)

(FN; Error Type II)

@ Absence areas.
b Presence areas.

However, the name “matching matrix” is well-adapted in unsuper-
vised machine learning algorithms, whereas the confusion matrix
is used in supervised learning (i.e., input data fed by the training
instances).

In this research, the confusion matrix has been considered as a way
to describe the primary basis for constructing the proposed spatially-
relevant model evaluation tool. Consequently, a 2 x 2 confusion matrix
is created where the rows are the instances in an actual class (i.e., the
observations) and the columns are the instances in the predicted class,
as illustrated in Table 1. As the name “confusion” implies, the matrix is
able to examine the degree of mislabeling one state (as another) by
means of directly comparing the predictions and the observations. The
statistics derived from the matrix are therefore all presented as either
the row-wise (e.g., positive and negative predictive values) or the
column-wise (e.g., sensitivity and specificity) in the implemented PMT
tool.

It should be emphasized that the process and various stages of
model performance assessments can be rather a time-consuming and
a complex task for the performance measures in a traditional approach
must be calculated separately using the geo-statistical techniques. This
is particularly the case for novice end-users (e.g., risk mitigation practi-
tioners who may be unfamiliar with various mathematical and statisti-
cal knowledge). More importantly, to the best of the authors’
knowledge, there is hardly any reliable, comprehensive and end-user-
friendly tool currently available that can be used to consider the most
relevant performance metrics, particularly in the widely adopted ArcGIS
environment. Considering this deficit, this paper aims to develop an ef-
ficient and automated approach that operates in a quick, reliable and or-
ganized manner, and also presents a relatively effective framework
providing a user-friendly interface. The PMT has deliberately been writ-
ten in the freeware, the Python programming environment using a por-
tability feature that enables it to be installed easily within a geo-
processing framework found in the ArcToolbox of the ArcGIS 10.2
software.

Fig. S1 (refer to supplementary information) illustrates the graphical
user interface and the execution process of the proposed PMT.

To illustrate the operational mechanism of the proposed PMT, one
part of the Python code used for calculating the evaluation criteria is
displayed in Fig. S2. The required inputs used to execute the tool and
the relevant outputs files are given in Tables 2 and 3, respectively. It is
important to note that the PMT extension allows the end-users to eval-
uate the accuracy of the predictive model in both steps, composed of
training/calibration and the validation phase. End-users can also adopt
both parts of the training and validation process to check the accuracy
of their predictive models, although investigating the accuracy of the
model in the training step can also be left unchecked in this particular
tool. This option is added because most of the interest is usually focused
on the validation component, as it guarantees the viability of the model
to be used for the prediction and decision-making process. Conversely,
calibration is a component uniquely voted to build the reference
model, and to evaluate the covariate effects, although these can be sub-
jected to some degree of overfitting (Lombardo et al., 2018). These
stages make the model easy-to-use with no special skills required to
run the proposed tool.
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Table 2
The PMT input files.
ID Setting Description ID Setting Description
1 Input The raster maps generated by any spatial model representing the 5 Validation Import the shapefile of all the validation samples of the
raster susceptibility or suitability of a phenomenon over an area (you can positives phenomenon of interest (discarded dataset in the training stage).
layers add different maps for the same area as many as desired).
2 Cutoff An a-priori cutoff percentage to split the input raster into two 6 Validation Import the shapefile of the non-event validation locations.
segments (50% is set as default). negatives
3 Training Import the shapefile of all the training samples of the phenomenon 7  Output The pass to contain the outputs (a folder address).
positives  of interest. workspace
4 Training Import the shapefile of the absence training locations (should be 8 Number of The number into which the spatial raster is to be reclassified (100

negatives prepared beforehand by different methods mentioned in the text)

classes (for SRC
and PRC curves)

classes are set as default). The reclassification method is based on
an equal interval. A higher number of classes will result in
smoother SRC and PRC curves with more precise AUSRC and
AUPRC values.

3. Statistical background of the performance metrics
3.1. Confusion matrix

In what follows next, the authors outline the kinds of information
these metrics are able to convey regarding the model performance. In
order to construct a confusion matrix from a spatial model, the users
should define a cutoff (in percentile units) to split the spatial map into
two distinct classes in which the PMT can calculate the cutoff-
dependent performance metrics. This is the analogous operation to split-
ting a probability distribution into two distinct classes, although in our
case, this is performed directly within ArcGIS into map form. In this pro-
cess, the first class (i.e., the lower percentage of susceptibility/suitability
map) is considered as the absence areas (e.g, the landslide-free areas)
and the upper part as the presence locations (e.g., the landslide affected
areas). For instance, let us assume a 50% cutoff for a landslide susceptibil-
ity map of particular interest with 20 landslides located within the lower
50% (i.e., low to moderate susceptible areas). In this case, those 20 sam-
ples will be considered as error sources (denoted as the ‘false negative
error’, that has been discussed later) by the proposed tool and conse-
quently, it can reduce the performance of the predictive model since the
landslides that have already occurred are supposed to be located within
the areas with the highest susceptibility values. The 50% cutoff value is
also quite common in existing literature, especially for the equally bal-
anced presence/absence datasets (e.g., Lombardo and Mai, 2018). How-
ever, the prevalence can be considered as the best alternative since it is
able to represent the inherent predominance of a phenomenon and it is
not controlled by the experimenter. Additionally, quantifying the preva-
lence of a natural phenomenon is somewhat problematic (discussed in
Section 5.3). Most of the data mining models can circumvent this issue
by calculating the prevalence by means of estimating the best possible
distribution of an event using generalized algorithms which is common
in the presence-only models (e.g. Maximum entropy model).

3.2. Cutoff-dependent approach

Cutoff-dependent metrics include True Positive Rate (TPR), True
Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate
(FNR), Misclassification rate, Accuracy, Positive Predictive Value (PPV),
False Discovery Rate (FDR), Negative Predictive Value (NPV), False
Omission Rate (FOR), F-score, Matthews Correlation Coefficient
(MCC), Informedness (Bookmaker informedness; BM), Markedness

(MK), Threat Score, Equitable threat score, True skill statistic, Heidke's
skill score, Odds ratio, Odd ratio skill score, and Cohen's kappa. Table 4
details the equations for all of the cutoff-dependent metrics.

The TPR, also termed as the sensitivity, recall, or hit rate, represents
the probability of correctly predicting the positives as observed in real-
ity (given as True positives (TP)/total number of positives (P)). The TNR,
termed as the specificity, aims to quantify the probability of correctly
predicting the negatives as observed in reality (given as true negatives
(TN)/total number of negatives (N)). The FPR, also known as the “1-
specificity” or fall-out, aims to indicate the probability of incorrectly
predicting a non-event location as an event (given as false positives
(FP)/total number of negatives (N)). Furthermore, the FNR, also de-
noted as the miss rate, indicates the probability of incorrectly predicting
an event location as a non-event (given as false negatives (FN)/total
number of positives (P)). This quantity is used to express how often
the model wrongly predicts absences. Misclassification rate undertakes
both the false negative and false positive values and therefore reflects an
overall error rate ((FP 4 FN)/total). The accuracy (or the model effi-
ciency) is the opposite metric compared to the misclassification rate,
since it is able to highlights the overall success of the predictive model
((i.e., TP 4+ TN)/total). Overall, this metric shows how often the predic-
tive model is correct. The PPV, also denoted as the confidence or the pre-
cision in data mining approaches, or as Powers (2011) analogously calls
it as the accuracy of predicted positives, is used to measure the propor-
tion of predicted presences that correctly represent the real presence. As
a complement component of the PPV, a false discovery rate is applied to
conceptualize the Type I errors (i.e., rejection of a true null hypothesis)
(Benjamini and Hochberg, 1995). In accordance with the PPV, the NPV is
used to measure the precision of the predictive model in predicting the
absence (or non-event) locations. However, this metric largely ignores
how well the model is able to handle the presence locations and that
the FOR simply is the complement of the NPV. The F-score is also called
the harmonic mean of the precision and the recall (i.e., sensitivity)
where it reaches its best values at 1 (i.e., best precision and recall) and
the worst at 0. In essence, MCC is a correlation coefficient metric com-
puted between the observed and the predicted binary classifications,
and it is able to undertake a true and a false positive and negative
value. The terms informedness and markedness, implemented in the
PMT, were introduced initially by Powers (2011). Informedness, how-
ever, is likely to be the only unbiased indicator in the confusion matrix
and it measures the probability that an informed decision that is being
made rather than guessing, either the correct or the incorrect decision

Table 3
The PMT output files.
ID Setting Description
1 Html file It explains the main results of the performance analyses including confusion matrix, cutoff-dependent metrics, and cutoff-independent metrics.

ROC, SRC, and PRC curves are other parts of this html file. In addition, all results were classified into two groups of cutoff-dependent and
cutoff-independent approaches with some useful explanations regarding these approaches.

2 Microsoft excel file

This file summarize all of quantitative results (without explanations)
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Table 4
Equations of cutoff-dependent performance metrics.
Performance metric Equation Performance metric Equation
True positive rate (TPR; sensitivity) ™ _ TP Matthews correlation coefficient (MCC) (TPxTN) — (FPxFN)
P TP+IN (TP FP)(TP+EN) (TNt FP)(TN+FN)
False positive rate (FPR; fall-out; 1-specificity) L rpiipm =1— s Informedness (Bookmaker informedness; BM) TPR + TNR — 1
True negative rate (TNR; specificity) % = % Markedness (MK) PPV + NPV — 1
i i IN_ N _ 1P
False negative rate (miss rate) Bl = s = 1-TPR Threat score e
Efficiency (accuracy) AN Equitable threat score _ TP—TPrygon
TP+FN+FP—IPrngom
where, TP gngom = w
Misclassification rate PN True skill statistic (Pierce's skill score) TPy — gy = Sensitivity + Specificity-1
Positive predictive value (PPV; precision) ke Heidke's skill score PNt
where E = 1[(TP + EN)(TP + FP) + (TN + FN)(TN + FP)]
False discovery rate (FDR) 1—PPV = % 0Odds ratio me
i icti N io ski ' (TPxTN)— (FPxFN
Negative predictive value (NPV) o 0dd ratio skill score (Yule's Q) (TPiTN))H('FPjFN)]
issi _ _ _IN ' (TP-+TN) — [{TP+EN) (TP FP) + (FN+ TN)(FP+ TN)|/ T
False omission rate (FOR) 1-NPV = o Cohen's kappa e e TN)(FP4TN))/T)/
- PR _ 2 -
F-score 2 3ok = ampettem

(due to overtraining, atypical data, or even deliberately) (Powers, 2011).
Markedness, also referred to as deltaP in psychology, is the complemen-
tary pair of informedness indicating the probability that an outcome is
marked by the predictor (marker). Threat Score also penalizes the rare
events since some success of correct predictions of a less frequent event
might be resulted out of random chance. Although Threat Score uses dif-
ferent statistics in conjunction, the actual sources of misclassification
error are not discernible. Equitable Threat Score also known as the
Gilbert's skill score (Gilbert, 1884; Schaefer, 1990), the equitable threat
score functions as per above based on critical success score, but it is also
used to eliminate the hit rates (i.e., true positive rates) originated by ran-
dom chance. True skill statistic (TSS) (also called the Hanssen and Kuipers
discriminant or Pierces skill score), is applied to measure the ability of a
predicted value to discriminate between the events and the non-events,
using all of the elements in the confusion matrix (Allouche et al., 2006).
The Heidke's Skill Score operates according to the accuracy level but it is
also used to improve its meaning by eliminating the true positive rates
that would be expected to occur by chance (Heidke, 1926). Odd Ratio is
used to measure the odds that an event (or an outcome) will occur
given a particular exposure, compared to the odds of the event occurring
in the absence of that exposure (Pepe et al., 2004). Odd Ratio Skill Score
(also known as the Yule's Q) rescales the values of the odds ratio into
the —1 and the +1 range. In addition, Kappa is essentially a measure of
how well the model has performed as compared to how well it would
have performed purely by chance, and this would enable the modeler
to better understand the true outcome of the model in respect to the ran-
dom occurrence of that value (Cohen, 1960).

3.3. Cutoff-independent approach

This approach, included in the PMT, includes two different methods
that can be categorized as: (1) receiver operating characteristic (ROC)
curve, and (2) success-rate curve (SRC) and prediction-rate curve (PRC).

3.3.1. ROC curve

The ROC curve, used typically in risk assessment through predictive
model results, simply plots the sensitivity (i.e., true positive rates) on
the Y-axis against the 1-specificity (i.e., false positive rate) on the X-axis
(Gorsevski et al., 2006). The area under the ROC curve (denoted as
AUROC, bounded by [0, 1]), is the actual measure of the model evaluation
since it generates a quantitative value of the performance (Pontius Jr and
Schneider, 2001; Mas et al., 2013; Swets, 2014). The closer the AUROC is
to unity, the better is the performance. The ROC curve can be interpreted
differently depending on the dataset; it can address the learning capabil-
ity (or the so-called goodness-of-fit) of the model if the training set is

used for plotting; it can also infer the predictive skill of the model if the
validation set is used (Fawcett, 2006; Lombardo and Mai, 2018).

In this regard, the proportion between training and validation samples
is highly relevant. A 70:30% split is quite common among the researchers
(Pradhan and Lee, 2010). Although different partitions have also been
used, such as 80:20% (e.g. Lipovetsky, 2009), 70:30% (e.g. Choubin et al.,
2019) or even 50:50% (e.g. Deo et al., 2016; Deo et al., 2017), there is no
empirical consensus on the best partition since this is more of an
expert-user based decision. Irrespective of this, having a large amount of
inventory data (i.e.,, number of events), one can assign a greater percent-
age of such data to train the predictive model and a lesser percentage for
validation. Opting for a suitable approach to partition the training and val-
idation sets is yet another crucial matter that has been the subject of many
studies, e.g. Kornejady et al. (2017). In this regard, the random sampling,
self-organizing maps for input selection, Mahalanobis distance,
excerpting separate training/validation areas, and temporal partitioning
are all some of the common sample partitioning approaches. For more de-
tails, readers can refer to the references therein.

3.3.2. Success-rate curve (SRC) and prediction-rate curve (PRC)

The SRC is a measure of the learning capability of the model, while
the PRC is able to examine the predictive power. Although the SRC
and the PRC may share some common features with the ROC, the ROC
in particular uses almost all the elements of the confusion matrix. This
includes positive (TPR and TNR) and negative (FPR and FNR) aspects
of the model, while the SRC and the PRC are calculated independently
from the confusion matrix. In fact, the SRC represents the cumulative
areal percentage of the susceptibility classes (i.e, from the highest values
to the lowest) on the X-axis against the areal cumulative percentage of
the training set located within those susceptibility classes on the Y-axis
(Chung, 2006; Blahut et al., 2010). In terms of its physical interpretation,
a steeper SRC curve is used to indicate that more events fall within the
highly susceptible classes; i.e., a good learning skill. The PRC curve, how-
ever, follows the same plotting process as the SRC, but the training data
are replaced by the validation set.

4. Testing the efficacy of PMT: selected case studies

In this section, the proposed PMT is applied to 5 distinct, real geo-
environmental modelling tasks and case studies in order to robustly in-
vestigate its credibility and generalizability, and also to demonstrate the
potential benefits in considering different evaluation criteria promulgated
by the PMT. It is imperative to note that the selected case studies exhib-
ited various noticeable characteristics in terms of the issue under investi-
gation, the modelling strategies, the overall frameworks and the
predictive model type, spatial or temporal scales considered and the
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geographical and climatic conditions that influence the results and imple-
mentation of the model.

To provide a robust evaluation of the proposed PMT, the most relevant
and a relatively diverse range of data sets were obtained from most re-
cently conducted research studies and also some newly implemented
models based on: (1) gully erosion prediction mapping in two small
catchments of central-western Sicily, Italy (Conoscenti et al., 2018)
(2) flood hazard modelling in the Galikesh region, Iran (Rahmati and
Pourghasemi, 2017) (3) drought risk modelling in south-east Queens-
land, Australia (Dayal, 2018; Dayal et al., 2018) (4) landslide susceptibility
modelling in the Kon Tum province, Vietnam (5) soil digital modelling in
South Dakota, USA (Fig. 1). Each of these studies employed a range of geo-
spatial models where the PMT is used to provide a consolidated assess-
ment of its efficacy in providing greater insights into the practicality of
the modelling various frameworks.

An overall description of the study areas and the applied models are
provided as follows whereas further details of the modelling ap-
proaches are provided in the references therein.

A detailed flowchart of the various studies is shown in Fig. 2.

4.1. Gully erosion modelling (Italy)

Intense farming activities in two small catchments of central-western
Sicily, Italy, have expedited many erosion processes. In particular, the

Central-Western Sicily
(Italy)

BSR Watershed
South Dekota (USA)

Galikesh
(Iran)

gully erosion has led to the landscape dissection and massive soil loss
(Conoscenti et al., 2018). The gullies in the study area have developed
as a result of the interrelation of several geo-environmental factors and
human activities such as access roads, parcel borders, wheel tracks, and
plow furrows. In addition to the multivariate adaptive regression splines
(MARS) model already utilized by Conoscenti et al. (2018) for gully ero-
sion prediction mapping, in this paper we used the generalized linear
model (GLM) to conduct a fair comparison of their approach (Fig. 3).

4.2. Flood hazard modelling (Iran)

Over the last few decades, the Galikesh region, located in the
Golestan province, in the north-east of Iran, has witnessed severe
flood events due to the particular climatic and topo-hydrological
conditions that resulted in many economic losses and causalities at-
tributable to environmental mismanagement (e.g., deforestation,
overgrazing, and over-exploitation). Since flood-inundation has
been one of the major issues of the urban areas in Golestan province
for decades, Rahmati and Pourghasemi (2017) used evidential belief
function (EBF) to investigate the flood-prone hotspots (Fig. 4). In this
paper, we have implemented the proposed PMT as a statistical and
decision-support tool to provide an inclusive performance evalua-
tion of their model.

Kon Tum

(Vietnam)
’ .
7 /'

South-East Queensland
(Australia)

Fig. 1. Study sites on the world map.
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Fig. 2. Methodological flowchart adopted in this study.
4.3. Drought risk modelling (Australia) which require a reliable water supply. As the study area is affected by
severe and frequent drought events, Dayal (2018) and Dayal et al.
An area located in the south-east of Queensland, Australia, encom- (2018) attempted to develop a spatial drought risk map by employing
passes intensive agricultural activities, such as grazing, horticulture, the Bayes' theorem (i.e., classifying spatial indicators), fuzzy logic
and animal production, other than the densely populated localities, (i.e., standardizing spatial indicators), and fuzzy GAMMA overlay
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Fig. 3. Gully erosion prediction maps of the central-western Sicily (Italy) generated by using the GLM (a) and MARS (b) models.
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Fig. 4. Flood-inundation susceptibility map of the Galikesh region (Iran) obtained from the EBF model.

(i.e., aggregating drought vulnerability, exposure, and hazard indices)
technique (Fig. 5). Employing the findings of that study, in this paper
we utilized their final drought risk map as a potential input to the pro-
posed PMT, enabling us to examine the different aspects of its perfor-
mance over the geospatial scale. In order to investigate the influence
of the cutoff values on the performance analysis, three different cutoffs,
i.e., 50%, 70%, and 90% were taken into account and the results were
compared, as illustrated in Fig. 6.

4.4. Landslide susceptibility modelling (Vietnam)

Landslides are the dominant geo-hazardous elements in the Kon
Tum province of Vietnam. Hence, this study has used two novel data
mining models including maximum entropy (MaxEnt) and a recently
developed model named as BayGmmKda (Bayesian-based ensemble
of Gaussian mixture model and radial-basis-function Fisher discrimi-
nant analysis) (Tien Bui and Hoang, 2017) (Fig. 7). This study also
uses the proposed PMT to highlight the potential asymmetries among
the performance metrics.

4.5. Soil digital modelling (USA)

Soil digital modelling has received significant attention among sci-
entists in recent years, where computer-assisted pedometric-
predictive mapping of soil properties has led to the creation of an inclu-
sive geographically-referenced soil database. To this end, an attempt is
carried out to map the soil bulk density (BD) predictive distribution in
South Dakota, USA, by obtaining soil bulk density samples of the study
area and using two data mining models, namely the artificial neural net-
work (ANN) and decision tree (DAT) (Fig. 8). We have delineated the

need for rendering quantitative suitability maps into probability values
to be able to use the proposed PMT for further assessing the models'
performance. In general, there is a few differences between models' re-
quirements. For example, DAT model does not require a separate
dataset to optimize parameters and just uses the training dataset for
model building (i.e., learning and predicting), whereas ANN model
uses both the training and validation datasets for model building, vali-
dation, and reevaluation and tuning parameters. Therefore, in ANN
model, soil inventory dataset was divided into three subsets: training
(50% of input data) and 25% each for validation and testing. For compar-
ison sake, the same 25% testing dataset was kept in a vault and used for
assessing the generalization power of both the ANN and DAT models.

5. Results and discussion

The following results and the subsequent discussions are based on
Table 5, containing all the previously-described performance metrics
that have been calculated by means of the newly proposed GIS-based
PMT extension system. After a preliminary diagnosis of the models in
each of the aforementioned case studies, a detailed comparison of the
performance metrics is provided.!

! Note: the discussion provided here follows a particular way as the inferences derived
from each case study is modified or reemphasized perpetually on the basis of the collective
information obtained from different case studies and modelling scenarios. It is tried to be
err on the side of caution to avoid raising any misleading points and engaging in dogmatic
defense of one approach to the detriment of another.
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Fig. 5. Drought risk map of the south-east of Queensland (Australia) produced by using fuzzy GAMMA overlay technique.

5.1. Gully erosion modelling, Italy

According to the AUROC values, both the GLM and the MARS model
show excellent performance where the differences in the AUROC values
were almost negligible. According to Conoscenti et al. (2018), the excel-
lent performance of these two models is indebted to a well-
investigation of the gullies in the study area and opting the main con-
trolling factors that best defined the occurrence mechanism. This pro-
cess has been carried out by building a base model comprised of the
slope gradient and the contribution area and is then fed by nine other
geo-environmental factors one at a time. Moreover, the exemplary fea-
tures of the chosen model have also led to a significantly good perfor-
mance, defined by measures such as the handling of all types of
factors (i.e., both categorical and continuous) and well detecting the

0 75 150 300 Km
I S

A Positives

@ Negatives

interactions among the factors and also between the factors and the re-
sponse event. Notably, Gémez-Gutiérrez et al. (2015) also applied the
MARS model to predict the gully occurrence in a relatively close (ca.
85 km) catchment with similar characteristics; however, the AUROC
values stood at the range of about 0.75-0.85, which was lower than
that of Conoscenti et al. (2018). This highlights the importance of mak-
ing a well-structured input data and the calibration/validation tech-
niques. To this point, both models seem to have rather similar
performances.

However, a greater discrimination between models become appar-
ent, as present in the results, after breaking down these overall precision
metrics into smaller components (i.e., considering simpler indices) that
explain the efficacy of the approach more elaborately. Considering the
misclassification rate of both models, it is evident that the GLM

. Danger zone

@ safezone

Fig. 6. Effects of 50% (a), 70% (b) and 90% (c) cutoff values on the extent of safe/danger zones and classification of presence/absence samples in south-east of Queensland.
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Fig. 7. Landslide susceptibility maps of the Kon Tum province (Vietnam) obtained from BayGmmKda (a) and MaxEnt (b) models.

approach has most likely misclassified the presence and the absence
more than the MARS model. Also, accuracy, as understood to be the op-
posite concept of misclassification rate, attested the same pattern,
where the MARS model exhibited a higher accuracy in the classification
of the presence and the absence localities generated by the spatially-
relevant model.

Further exploring the confusion matrix, it becomes evident that the
higher value of the misclassification rate in the GLM approach is directly
rooted in the false negative rate. That is, the GLM approach appears to
have misclassified a number of ‘presence locations’ as the ‘absence loca-
tions’ (in fact, this happened almost 13 folds greater than the MARS
model). This indicates that the GLM approach has somewhat failed to

locate the gullies in notable study areas, and therefore, may require fur-
ther careful consideration prior to its application for real-life decisions.
In fact, the present analysis shows that this error appears to have also
spread out to the other metrics such as the sensitivity, F-score, NPV,
and the FOR. The reason for the high AUROC value for the GLM approach
is plausibly due to that the latter is a cutoff independent metric, while
the confusion matrix elements have been calculated based on a 50% cut-
off value. However, this does not justify the GLM's underperformance at
misclassifying the absence locations, since both predictive models are
compared under the same situation.

As explained in the Theory section, in such situations, the MCC may
be the best representative of the model's performance regarding the
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Fig. 8. Bulk density predictive distribution maps of South Dakota (USA) generated from ANN (a) and DT (b) models.
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Table 5
Performance metrics calculated for each case study.
Country Subject Model Modelling Efficiency True False Threat Equitable Hedke Odds  Odd
step (accuracy) positive positive score  threat skill ratio ratio
rate (TPR)  rate (FPR) score score skill
score
Australia Drought risk mapping Fuzzy function: 50%  Validation 0.625 0.580 0.222 0.545 0.142 0.25 48462  0.657
cutoff
Fuzzy function: 70% 0.85 0.818 0.111 0.75 0.538 0.7 36 0.945
cutoff
Fuzzy function: 90% 0.625 1 0.428 0.25 0.142 0.25 0] 1
cutoff
Iran Flood inundation mapping EBF Training 0.808 0.891 0.245 0.647 0.446 0.617 25.33 0.924
Validation 0.718 0.769 0.315 0.526 0.28 0.437 7.22 0.756
USA Distribution of soil organic DAT Validation 0.442 0.431 0 0.431 0.014 0.028 0 1
matters ANN Validation 0.730 0.625 0.1 0.588 0315 0.48 15 0.875
Italy Gully susceptibility mapping MARS Training 0.970 0.963 0.022 0.942 0.888 0.940 1151 0.998
Validation 0.976 0.970 0.016 0.954 0.910 0.953 1885 0.998
GLM Training 0.656 0.592 0 0.592 0.185 0.312 0 1
Validation 0.674 0.605 0 0.605 0.211 0.348 0 1
Vietnam Landslide susceptibility MaxEnt Validation 0.601 0.556 0 0.556 0.112 0.202 0 1
mapping BayGmmKda 0.739 0.731 0.2521 0.592 0314 0.478 8.08 0.779
Country  Subject Model Modelling True Cohen's True False Misclassification ~ Positive False Negative
step skill kappa negative negative rate  rate predictive discovery predictive
statistic rate (TNR)  (miss rate) value (PPV) rate (FDR)  value (NPV)
Australia Drought risk Fuzzy Validation  0.358 0.25 0.778 0.419 0375 0.900 0.100 0.350
mapping function:
50% cutoff
Fuzzy 0.707 0.7 0.889 0.182 0.150 0.900 0.100 0.800
function:
70% cutoff
Fuzzy 0.571 0.25 0.571 0.000 0375 0.250 0.750 1.000
function:
90% cutoff
Iran Flood inundation EBF Training 0.646 0.617 0.754 0.108 0.192 0.702 0.298 0.915
mapping Validation  0.453 0.437 0.684 0.231 0.281 0.625 0.375 0.813
USA Predictive DAT Validation  0.431 0.028 1.00 0.569 0.558 1.000 0.000 0.033
distribution of soil ANN Validation  0.525 0.48 0.90 0.375 0.269 0.909 0.091 0.600
bulk density
Italy Gully susceptibility MARS Training 0.941 0.940 0.978 0.037 0.030 0.978 0.022 0.963
mapping Validation  0.953 0.953 0.983 0.030 0.024 0.983 0.017 0.970
GLM Training 0.592 0312 1.000 0.407 0.344 1.000 0.000 0.313
Validation  0.605 0.348 1.000 0.394 0.326 1.000 0.000 0.349
Vietnam Landslide MaxEnt Validation ~ 0.556 0.202 1.000 0.444 0.399 1.000 0.000 0.203
susceptibility BayGmmKda 0.479 0.478 0.748 0.269 0.261 0.757 0.243 0.722
mapping
Country  Subject Model Modelling False F-score Matthews Informedness Markedness AUROC AUSRC AUPRC
step omission correlation (Bookmaker (MK)
rate (FOR) coefficient (MCC) informedness; BM)
Australia Drought risk Fuzzy Validation 0.650 0.706 0.299 0.358 0.250 0.873 - 74.400
mapping function: 50%
cutoff
Fuzzy 0.200 0.857 0.704 0.707 0.700 0.873 74.400
function: 70%
cutoff
Fuzzy 0.000 0.400 0.378 0.571 0.250 0.873 74.400
function: 90%
cutoff
Iran Flood inundation EBF Training 0.085 0.786 0.632 0.646 0.617 0.866 79.710 -
mapping Validation 0.188 0.690 0.445 0.453 0438 0.787 - 75.209
USA Predictive DAT Validation 0.967 0.603 0.120 0.431 0.033 0.839 - 77.620
distribution of soil ANN Validation 0.400 0.741 0.517 0.525 0.509 0.879 - 79.630
bulk density
Italy Gully susceptibility MARS Training 0.037 0.971 0.941 0.941 0.941 0992 99.141 -
mapping Validation 0.030 0.977 0.953 0.953 0.953 0.995 - 99.285
GLM Training 0.687 0.744 0.430 0.593 0.313 0.987 97.134 -
Validation 0.651 0.754 0.460 0.606 0.349 0.992 - 97.542
Vietnam Landslide MaxEnt Validation 0.797 0.715 0.336 0.556 0.203 0.889 - 0.855
susceptibility BayGmmKda 0.278 0.744 0.479 0.479 0.479 0.819 - 69.460
mapping

agreement between the observations and predictions. One reason for any error sources. Expectedly, the MCC has well differentiated the per-
this is because, as opposed to AUROC, AUSRC, and AUPRC, the MCC formance of both MARS and GLM approaches, where the MARS model
values the cost of error and attempts to avoid to circumvent or truncate with a value close to 1 almost represents a perfect model, while the
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GLM approach with a value below 0.5 has shown a lesser degree of
agreement between the observations and predictions. This notion raises
the possibility of some randomness (i.e., being closer to zero). The
underperformance of the GLM approach highlights the disadvantages
of using a predictive model that is built on linear functions. Such a
model is largely incapable of considering the nonlinear interactions be-
tween the causal factors and the response event, may be sensitive to the
number of predictors, and more importantly, it could be sensitive to the
outliers which are robustly handled by non-linear basis functions in the
MARS model. Given that the asymmetries of the cutoff-dependent and -
independent metrics are now more evident, a greater degree of
scrutinization is perhaps required, as provided by a more extensive dis-
cussion in the following real-life case studies.

5.2. Flood hazard modelling, Iran

Recently, Evidential Belief Function (EBF), as a bivariate statistical
model underpinned by the Dempster-Shafer theory (Shafer, 1976),
has been adopted for flood inundation and susceptibility mapping in
[ran (Rahmati and Pourghasemi, 2017). Starting with the AUROC values,
the overall performance is acceptable, with respectively, 0.86 as the
learning capability (obtained from the training set) and 0.78 as a predic-
tive skill (obtained from the validation set). Higher learning skill com-
pared to the predictive capability is common, and generally expected
since the model's parameters have been calibrated on a much larger
data sample compared to the validation set. However, this might ques-
tion the possibility of overfitting, where a statistical model begins to de-
scribe the random error in the data rather than the relationships
between variables; that is, the model becomes accustomed to the pre-
used set of data. In this regard, simple statistical assumptions have
been identified as one of the main sources of overfitting issues, espe-
cially in bivariate statistical models. This can negatively influence the
generalization power and the transferability of the model's results to
the validation set/areas/time periods.

Considering the results presented here, all of the favorable qualities
of the model (i.e., all the performance metrics highlighting the success
of the model) have deteriorated to some extent in the model validation
stage. Although according to the AUROC classifications provided by
Hosmer and Lemeshow (2000), the values >0.7 and 0.8, respectively, in-
dicate an acceptable and excellent performances, which in turn some-
what addresses the possibility of overfitting. This is also evident in the
AUSRC and AUPRC values, indicating that the predictive model is re-
spectively well-performing in terms of both the learning capability
and the predictive skill. As for the AUSRC and AUPRC values, the differ-
ences are discernable when compared to the training- and validation-
derived AUROC values. These differences are conceivable, given that
the AUSRC and AUPRC are calculated merely based on the presence lo-
calities. Therefore, by using the AUSRC and AUPRC, the potential error
sources (i.e., polluting the presence population to some absences
which are incorrectly classified as positives) are left unclear and some
degree of success (i.e., correctly detecting the absence locations) are
also not acknowledged and not included in the final calculation. This
makes using the AUSRC and AUPRC less favorable to use due to their er-
roneous behavior (Frattini et al., 2010).

A closer scrutinization appears to shed more light on the randomly-
driven performances and consequently, the weakness of the model or
the input data. Considering the MCC—so far suggested as an all-
inclusive metric in this study—the values greater than zero
(i.e., random agreement) reveals a promising level of precision; how-
ever, the values may not be high enough (i.e., far from a perfect preci-
sion to be certain of a non-random performance). In particular, the
level of disagreement between the observed and the predicted values
appears to increase in the validation stage. Other comprehensive mea-
sures, such as the true skill statistic, informedness, and markedness
are also in concurrence with the MCC value.

The Heidke's Skill Score, well-known for providing a robust accuracy
value by diminishing the TPR values generated by random chance,
shows how the preliminary accuracy values (i.e., efficiency) is likely to
decay. Similarly, the Cohen's Kappa aims to address the random aspect
of the model performance and provides new values in agreement with
the latter. However, as stated in our recent discussion, one should be
cautious when using the cutoff-dependent metrics. Drawing relevance
from a report given by Frattini et al. (2010), the score-based metrics, de-
spite providing valuable insights, highly relies on certain cutoff values.
That is, different cutoff values might result in different performance
values. However, this assumption still does not contradict using the
score-based metrics for a comparison purpose, since, as stated above,
all the predictive models were supposed to be compared under the
same cutoff value(s) (e.g., the Italian case study). To test this concern,
we have applied three different cutoffs for assessing the performance
of a drought risk map developed in the south-east region of Queensland,
Australia.

To elaborate further, we provide two assumptions regarding the re-
duction in the accuracy of the EBF metric. The first assumption pertains
to the model's structure. Bivariate statistical models have long been crit-
icized for ignoring the interactions among the predictors, which can
have direct (and largely negative) influence on both the learning and
the predictive skills. Moreover, as stated by Ruspini et al. (1992), and
more recently Reineking (2014), a need for categorizing factors with
continuous nature and also presenting a generalized probabilistic rea-
soning limit the application of the EBF metric only to some specific
problems (e.g., detecting the uncertainty sources) rather than a general
use. However, a review of the previous work of Rahmati and
Pourghasemi (2017) reveals that the two other well-known data min-
ing models (i.e., boosted regression trees and the random forest) have
been used in addition to the EBF and surprisingly, we noted that the
EBF outperformed both of the data mining models, although the differ-
ences were negligible (i.e., AUROCs = 0.73-0.78), which leaves us with
the second hypothesis.

Regarding the latter, the input data can be responsible for such lim-
ited performances of all three models. Reviewing the model input data
shows that only 63 flooding points were used as an input for the model-
ling process in the period of 2001-2009, let alone that they were catego-
rized into two sets of 47 (training) and 16 (validation) locations which
seems to be rather small to build a proper predictive model.
Complementing the inventory map by collecting more data from a
broader time period would provide a larger information matrix for the
models to rely on. This highlights a note given by Ruspini et al.
(1992); “the alleged lack of decision-support and counterintuitive nature
of evidential belief models, in fact, indicates the lack of basic informational
shortcomings”.

5.3. Drought risk spatial attribution and modelling, Australia

For a drought risk map produced in the south-east of Queensland,
Australia, the following inferences can be derived from the validation
stage only in order to focus on the alteration of the performance metric
values. The question mentioned above regarding the liability of the
cutoff-dependent metrics is answered by means of producing three cut-
offs thresholds, i.e., 50%, 70%, and 90%, and then comparing these
results.

It was evident that the AUROC and AUSRC expectedly yielded intact
performance values through all of the three cutoffs (Table 5). Based on
this, the predictive skill of the fuzzy model appears to be well
performing. However, the values of all the cutoff-dependent metrics
drastically change at each cutoff. It is evident that by a transition from
50% to 90% cutoff, the area of danger zone appears to shrink (as illus-
trated in Fig. 8). Moreover, at each cutoff threshold, a different popula-
tion of the negatives and the positives appears to fall within the safe
and danger zones.
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The direct impact of these transitions on the results is transparent in
Table 5. As appears, moving from 50% to 70% cutoff, the FN error de-
creases to a certain level and adds to the TN, serving as an advantage
point for the model, while the false positives and true positives have
remained intact. Moreover, a vivid increase is also discernible in the
values of the cutoff-dependent metrics. However, another step towards
the 90% cutoff backfires, where—similar to the previous transition—al-
though the FN value decreases and adds to TN, most of the TP population
migrates to FP category. This expectedly decreases the values of some
cutoff-dependent metrics such as F-score and PPV. Although 70% cutoff
performed better than 50% and 90% cutoffs. Such a choice would not be
advisable for the other study areas and certainly not for the other pre-
dictive models, because it is only in favor of this particular predictive
model and the specific distribution of the positive/negative points
throughout the study area.

As previously mentioned in the Theory section, the only suitable sub-
stitute for the cutoff value is the prevalence of the phenomenon, which
again is difficult to ascertain, unless one constructs an inclusive archive
of the ‘presence-absence locations’ by visiting numerous sites. This type
of data compilation is more common in species distribution assessment,
whereas, in natural hazard-related studies, extracting absence locations
are executed as an additional stage after inventory mapping, based on
random selection or other analytical strategies. Drawing on these infer-
ences, it is reasonable to ascertain that using cutoff-dependent perfor-
mance metrics may not be practical for individual model assessment,
unless it is accompanied by mentioning the cutoff value from which
the metrics' values are extracted (i.e., 50% for Iran, Italy, and all the fol-
lowing case studies), or it is carried out by setting the prevalence as the
cutoff value.

As with the case of Iran, the AUROC yielded the most accurate per-
formance value that a spatial modeler can rely on. Thus, based on cur-
rent arguments, we confirm the second assumption in which the
incapability of the models (i.e., EBF, BRT, and RF) to progress is due to
the unsatisfactory input data (i.e., either scarce inventory, inadequate
spatial indicators or spatial resolution) rather than the models' struc-
ture. Analogously, the AUROC and AUPRC values are more representa-
tive for the fuzzy model's performance in Queensland, Australia. Also,
they are comparatively in accordance with the validation method of
Dayal (2018) and Dayal et al. (2018), based on which the correlation
of the drought risk map and the soil moisture/rainfall departure maps
confirmed plausible predictive skills.

Comparing the different predictive models (i.e., choosing the pre-
mier model among the many alternatives) or different scenarios of a
specific model (i.e., opting the best scenario from different sample
partitioning techniques, different spatial resolution, and so forth), is
still feasible by using the cutoff-dependent metrics as they do provide
valuable information that can lead to a more transparent distinction be-
tween the choices. In particular, the cutoff-dependent indices can assist
us with distinguishing the features of the GLM and the MARS models for
the case study in Italy. Hence, in the following case studies, the cutoff-
metrics are used only for a comparison and selection of the better-
performing predictive model.

5.4. Landslide susceptibility modelling, Vietnam

In accordance with the analytical evidence from the results of previ-
ous case studies, this study avers that the use of the cutoff-dependent
metrics can be informative for a predictive model comparison. The in-
ferences of this case study are interesting in several ways, showing
that how one should interpret the latter with some degree of caution.
According to the AUROC and AUPRC values of MaxEnt and BayGmmKda
models tested in Vietnam (Table 5), the MaxEnt appears to slightly
excel in predictive skill, although both models show an excellent perfor-
mance (AUROC>0.8). On the other hand, asymmetries are evident in the
values of the cutoff-dependent metrics, as we have categorized them as
the ROC-accordant and -discordant metrics (see Table 6).

Table 6
Opposing performance metrics for Vietnam's case study.

ROC-accordant ROC-discordant

Informedness Markedness

PPV MCC

TNR NPV

TSS Misclassification rate

1-Specificity FNR

FDR Cohen's Kappa
F-score

Hedke skill score
Equitable threat score
Threat score
Sensitivity
Accuracy
FOR

According to Table 6 and the relevant equations provided in Table 4,
both categories support high TP and TN values, while there is a subtle
difference that makes them oppose. In fact, a model's success in FP
stage is highly favored in the ROC-accordant metrics, while the discor-
dant group leans towards penalizing a model's downfall in the FN
stage. This is evident in the confusion matrix of the MaxEnt and
BayGmmkKda, in which the MaxEnt shows an outstanding performance
with a zero FP value, while the FN population is drastically increased in
such a way that it even surpasses the FN + FP population in
BayGmmKda model. In this case, the BayGmmKda has well balanced
the FP and FN population that accords to Table 7. As previously men-
tioned in the Theory section, although a zero FP (Type I error) in MaxEnt
results cause no infrastructural and study costs, a drastic increase in FN
(Type I error) values can cause massive casualties via misrepresenting
an area as a safe location.

Considering the structure of these predictive models, as opposed to
the presence-absence nature of the BayGmmKda, MaxEnt is considered
as a presence-only model where some randomly chosen pseudo-
absence locations (i.e., background samples) help the model differenti-
ate the presence locations and eventually predict an occurrence pattern.
Therefore, presence-absence-based validation metrics (i.e., all the met-
rics provided in this study) may not be a good fit for the performance as-
sessment of MaxEnt. This being the case, AUPRC might be the best fit for
MaxEnt and in fact, it has clearly distinguished the performance of both
models. However, according to Phillips et al. (2006), at least, those back-
ground locations should be considered as ‘pure absences’ to be able to
graph a ROC curve, and also to calculate the metrics derived from confu-
sion matrix. This is an inevitable process for the MaxEnt. Another critical
inference of this case study underlines that although cutoff-dependent
metrics are valuable metrics for comparing different models, they are
not necessarily supposed to be in line with cutoff-independent metrics.
This is the reason why MaxEnt and BayGmmKda both excel, but in dif-
ferent areas. Therefore, relying on what we have conceived so far, each
cutoff-dependent or -independent metric has a unique indication of a
model's performance.

There is a consensus that selecting the best predictive model can be a
matter of the user preference and study area's goals, which has been
previously well-delineated in Goetz et al. (2015). This can be carried
out by relying on a pros and cons list for all the metrics and assessing

Table 7
Comparing confusion matrix variants of MaxEnt and BayGmmKda models as imple-
mented in Vietnam.

Observed Models
MaxEnt BayGmmKda
TN 330 1175
TP 1627 1231
FN 1297 452
FP 0 396
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whether they work in agreement with the objective(s) of the project.
Taking aside the disadvantages of cutoff-dependent metrics, some
critics have also been moved towards AUROC (Lobo et al., 2008). The
main complains pertain to ignoring the PPV (addressed earlier in Theory
section) and equally weighting omission (not recording some in-
stances) and commission (miss-recording some instances) errors. How-
ever, this directly stems from predefining a series of thresholds and the
presence-absence fabric of AUROC which is not only specific to AUROC
but rather all the performance metrics. Furthermore, these limitations
do not question the metric itself, but rather the application of them.
For instance, ROC curves were first employed in the study of “discrimi-
nator systems for the detection of radio signals in the presence of noise in
the 1940s”, following the attack on Pearl Harbor, USA (Garrett et al.,
2008). Even the use of AUROC in clinical biochemistry is carried out
under a presence-absence condition (Obuchowski et al., 2004). There-
fore, in order to employ AUROC and other cutoff/prevalence- indepen-
dent metrics in a probabilistic environmental modelling context, their
limitation should be accepted in favor of their valuable outcomes re-
garding the performance evaluation.

Under these premises, we aver that the project study goal can assist
the decision maker with opting the well-performing model. For in-
stance, if the number of opposing metrics matters the most, the
BayGmmKda would be the well-performing one. In particular, many
municipal authorities may decide in favor of public safety, which in
turn can end in an immediate rejection of the MaxEnt due to having
considerable Type Il error that can also cause notable fatalities. Compar-
atively, if the uncertain nature of the cutoff value is in question, one can
choose the decisive judgment of the AUROC.

5.5. Soil digital modelling, USA

As previously mentioned, this case study represents a unique appli-
cation of the proposed PMT for performance assessment of the Bulk
Density (BD) lateral distribution in South Dakota, USA. In contrast to
the previous applications of data mining methods that deal with
predicting the probability of an occurrence, in this study we employed
the ANN and DT approaches for predicting an actual quantity of BD
whose actual amounts can be measured in the field. Measuring the BD
samples from different location of the study area, root mean square
error (RMSE) can be a good metric to test the accuracy of the results
(i.e., an approximated standard deviation of data) if the data are Gauss-
ian (ie., rich data) and devoid of any outliers (Chai and Draxler, 2014).
However, RMSE or accuracy, in general, can be biased and may not re-
flect the total precision of a predictive model, warranting the need for
a consolidated list of model evaluation metrics that provide more exten-
sive insights into the predictive performance.

In respect to the above discussion, the proposed PMT approach can
be a good alternative, but the nature of the prediction map should be
rendered into its probability terms or at least as an indication of the
probability. That is, the higher values of the prediction map can indicate
the greater probability of having higher BD values, and vice versa. By
doing so, the cutoff-dependent and -independent metrics have been
calculated based on which, almost all the indices congruently introduce
ANN as a better-performing model compared to DAT; the rest of oppos-
ing metrics (e.g. specificity and PPV) show negligible differences. This is
in agreement with those reported by Taghizadeh-Mehrjardi et al.
(2017) where the ANN was seen to outperform the support vector ma-
chine (SVM) model in the mapping of soil organic matter distribution.

6. Synthesis and conclusion

This paper provides a novel scientific contribution towards the de-
sign and implementation of an adaptive, largely automated and user-
friendly GIS-based spatial model assessment system, denoted as the
Performance Measure Tool (PMT). PMT can be used to address existing
challenges in pragmatic evaluation of predictive models in diverse

contexts, and generally, for any scientific branch where information has
a spatial connotation. The PMT encloses the relevant mathematical for-
mulations to make it an easy-to-use software; it has the added capability
to evaluate the accuracy of the spatial modelling approach based on the
different cutoff-dependent and -independent evaluation criteria. The
PMT is considerably flexible, and hence, it can be widely applicable in
multiple scientific and engineering applications where spatially-relevant
predictive models are tested. The approach has the potential to be applied
in diverse contexts, as verified in this research study, to extend its usage
from geo-environmental spatial models to fields such as medical geogra-
phy and epidemiology where data-driven approaches are adopted to gen-
erate predictive models and such models require robust comparison with
several benchmark models and real-life (observed) datasets.

In context of proposing an additional GIS-based predictive model as-
sessment tool, the consolidated metrics that are generated and evalu-
ated by the proposed PMT, certainly provides a new practical pathway
for real-life decision-makers who are seeking a better performing pre-
dictive model (relative to any other comparative model). Based on
contested reasons, and evaluations of PMT with several studies collated
in this research paper, real-life decision-makers can deduce the grounds
on which their predictive models performs better than the others prior
to implementing them for practical use. By accommodating multiple
types of real-time geo-environmental modelling instances in this
study, the take-home messages are as follows. The use of a merely
row-wise or a column-wise calculated index from the confusion matrix
is not a robust approach for model selection as this can ignore the more
practical concepts considered by their counterpart tools.

In contrast, some of the model evaluation indices (i.e. cutoff-
dependent and -independent ones) generally use a collective informa-
tion of the matrix in such a way that a set of multiple statistics are used
in conjunction with each other. Notwithstanding this, some cutoff-
dependent metrics may infer the same connotation which they can be
used interchangeably (e.g., threat score and equitable threat score, or
the odds ratio and the odds ratio skill score). Moreover, the choice of
using the cutoff-dependent metrics over each other without a prior
knowledge can also constitute an unjust approach since each metric is
able to tackle a different aspect of the model performance. However,
all metrics can be highly sensitive to the cutoff values so, they should
be suggested only for the model comparison.

As demonstrated in the theory of PMT and relevant case studies, it
becomes unambiguous that the measurement of the prevalence of the
studied phenomenon is highly advisable in order to ascertain reliable
cutoff-dependent values. Doing so, they are likely to be applicable
even for the performance assessment of an individual model, and also,
they could be comparable with cutoff-independent metrics.

On the other hand, the cutoff-independent metrics (i.e., AUROC,
AUSRC, and AUPRC) can decisively screen the premier model regardless
of the changes in their cutoff values. However, the AUROC is also
underpinned by some specific assumptions so that using it would re-
quire accepting its mathematical fabric. Furthermore, AUSRC and
AUPRC only support presence locations, they show an erroneous behav-
ior and in particular may result in an underestimation of performance
compared to AUROC. Moreover, all cutoff-dependent and
-independent metrics can occasionally mislead by providing different
results and consequently different model ranks. In such case, selecting
the reference model is strictly tied to the aim of the research and specific
aspect(s) of interest. We also concluded that compartmentalizing
models in different performance categories is not feasible since the mat-
ter of performance itself is quite relative.

We also propose the following scenario-based decision-making
inferences:

I. Italy and USA case studies: having more than one model— if
AUROC values converge and the changes are negligible— using
other cutoff-dependent metrics to derive the better-performing
model.
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II. Iran and Australia case studies: having one model— no access to
prevalence value change— cutoff-dependent metrics change
drastically by altering cutoff values— use AUROC as the decisive
metric.

III. Vietnam case study: more than one model— metrics are oppos-
ing and taking different parts (i.e. each selecting a different
model) — decision should be made based on the project goal
by making pros and cons list for all the metrics.

As our final upshot, ROC and AUC are metrics that tend to lump to-
gether the prediction as a whole; however, studying confusion matrices,
accuracy and precision of a model ensure a better insight on a model hit
and misses. This is something that can be rarely found in the literature,
despite its great importance. The PMT quickly provides a full suite of
performance metrics allowing the users to better evaluate their spatial
model and supporting a more critical judgment, which in turn can pro-
mote better decision-making procedures.
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