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A B S T R A C T

Effective fusion of complementary information captured by multi-modal sensors (visible and infrared cameras)
enables robust pedestrian detection under various surveillance situations (e.g., daytime and nighttime). In this
paper, we present a novel box-level segmentation supervised learning framework for accurate and real-time
multispectral pedestrian detection by incorporating features extracted in visible and infrared channels.
Specifically, our method takes pairs of aligned visible and infrared images with easily obtained bounding box
annotations as input and estimates accurate prediction maps to highlight the existence of pedestrians. It offers
two major advantages over the existing anchor box based multispectral detection methods. Firstly, it overcomes
the hyperparameter setting problem occurred during the training phase of anchor box based detectors and can
obtain more accurate detection results, especially for small and occluded pedestrian instances. Secondly, it is
capable of generating accurate detection results using small-size input images, leading to improvement of
computational efficiency for real-time autonomous driving applications. Experimental results on KAIST multi-
spectral dataset show that our proposed method outperforms state-of-the-art approaches in terms of both ac-
curacy and speed.

1. Introduction

Pedestrian detection has received much attention within the field of
computer vision and robotics in recent years (Oren et al., 1997; Dalal
and Triggs, 2005; Dollár et al., 2012; Angelova et al., 2015; Geiger
et al., 2012; Jafari and Yang, 2016; Cordts et al., 2016; Zhang et al.,
2017b). Given images captured in various real-world surveillance si-
tuations, pedestrian detectors are required to accurately locate human
regions. It provides an important functionality to facilitate human-
centric applications such as autonomous driving, video surveillance,
and urban monitoring (Wu et al., 2016; Li et al., 2017a,b; Zhang et al.,
2017a; Wang et al., 2014; Bu and Chan, 2005; Shirazi and Morris,
2017).

Although significant improvements have been accomplished during
recent years, it still remains a challenging task to develop a robust
pedestrian detector ready for practical applications. It can be noticed
that most existing pedestrian detection methods are based on visible

information alone. Their performances are sensitive to changes of the
environmental brightness (daytime or nighttime). To overcome the
aforementioned limitations, multispectral information (e.g., visible and
infrared), which can supply complementary information about the
targets of interest, are considering to build more robust pedestrian
detectors under various illumination conditions. In the past few years,
multispectral pedestrian detection solutions are developed by many
research works to achieve more accurate and stable pedestrian detec-
tion results for around-the-clock application (Leykin et al., 2007;
Krotosky and Trivedi, 2008; Torabi et al., 2012; Oliveira et al., 2015;
Hwang et al., 2015; González et al., 2016).

It is noted that most existing multispectral pedestrian detection
approaches are built upon anchor box based detectors such as region
proposal networks (RPN) (Zhang et al., 2016) or Faster R-CNN (Ren
et al., 2017), localizing each human target using a bounding box.
During the training phase, a large number of anchor boxes are needed
to ensure sufficient overlap with most ground truth boxes and will

https://doi.org/10.1016/j.isprsjprs.2019.02.005
Received 8 October 2018; Received in revised form 29 December 2018; Accepted 11 February 2019

⁎ Corresponding author at: State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou,
China.

E-mail addresses: caoyp@zju.edu.cn (Y. Cao), 11725001@zju.edu.cn (D. Guan), 3160105381@zju.edu.cn (Y. Wu), yangjx@zju.edu.cn (J. Yang),
sdcaoyl@zju.edu.cn (Y. Cao), michael.yang@utwente.nl (M.Y. Yang).

ISPRS Journal of Photogrammetry and Remote Sensing 150 (2019) 70–79

Available online 20 February 2019
0924-2716/ © 2019 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

T

http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2019.02.005
https://doi.org/10.1016/j.isprsjprs.2019.02.005
mailto:caoyp@zju.edu.cn
mailto:11725001@zju.edu.cn
mailto:3160105381@zju.edu.cn
mailto:yangjx@zju.edu.cn
mailto:sdcaoyl@zju.edu.cn
mailto:michael.yang@utwente.nl
https://doi.org/10.1016/j.isprsjprs.2019.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2019.02.005&domain=pdf


cause severe imbalance between positive and negative anchor boxes
and slow down the training process (Lin et al., 2018). Moreover, the
state-of-the-art pedestrian detection techniques only perform well when
the input is large-size images. Their performances will drop sig-
nificantly when applied to small-size images since it is difficult to make
use of anchor boxes to generate positive samples for small-size targets.
A simple solution is to increase the size of input images and human
targets through image up-scaling, however such practice will adversely
decrease the computational efficiency which is critical for real-time
autonomous driving applications.

To overcome the problems mentioned above, we present a novel
box-level segmentation supervised learning framework for accurate and
real-time multispectral pedestrian detection. Our approach takes pairs
of aligned visible and infrared images with easily obtained bounding
box annotations as input and computes heat maps to predict the ex-
istence of human targets. In Fig. 1, we show some comparative detec-
tion results of our method with the state-of-the-art anchor box based
detector. It is noticed that the proposed box-level segmentation su-
pervised learning framework produces more accurate detection results,
successfully locating far-scale human targets even when the input is
small-size images. It is also worth mentioning that our proposed method
can process more than 30 images per second on a single NVIDIA Ge-
force Titan X GPU which is sufficient for real-time applications in au-
tonomous vehicles. The contributions of this work are as follows.

Overall, the contributions of this paper are summarized as follows:

1 Our box-level segmentation supervised framework completely
eliminates the complex hyperparameter settings of anchor boxes
(e.g., box size, aspect ratio, stride, and intersection-over-union
threshold) required in existing anchor box based detectors. To the
best of our knowledge, this is the first attempt to train deep learning
based multispectral pedestrian detectors without using anchor
boxes.

2 We demonstrate that box-level approximate segmentation masks
provide better supervision information than anchored boxes to train
two-stream deep neural networks for distinguishing pedestrians
from the background, particularly for small human targets. As the
result, our method is capable of generating accurate detection re-
sults even using small-size input images.

3 Our method achieves significantly higher detection accuracy com-
pared with the state-of-the-art multispectral pedestrian detectors
(König et al., 2017; Jingjing et al., 2016a; Guan et al., 2018b,a; Li
et al., 2018a). Moreover, this efficient framework can process more
than 30 images per second on a single NVIDIA Geforce Titan X GPU
to facilitate real-time applications in autonomous vehicles.

The remainder of our paper is structured as follows. Section 2 re-
views the existing research work on multispectral pedestrian detection.
The details of our proposed box-level segmentation supervised deep
neural networks are presented in Section 3. An extensive evaluation of
our method and experimental comparison of methods for multispectral
pedestrian detection are provided in Section 4. We conclude our paper
in Section 5.

2. Related works

Pedestrian detection facilitates various applications in robotics,
automotive safety, surveillance, and autonomous vehicles. A large
variety of visible-channel pedestrian detectors have been proposed.
Schindler et al. (2010) developed a visual stereo system, which consists
of various probabilistic models to fuse evidence from 3D points and 2D
images, for accurate detection and tracking of pedestrians in urban
traffic scenes. Dollár et al. (2009) developed the Integrate Channel
Features (ICF) detector using feature pyramids and boosted classifiers
for visible images. The feature representations of ICF have been further
improved through various techniques, including aggregated channel
features (ACF) (Dollár et al., 2014), locally decorrelated channel fea-
tures (LDCF) (Nam et al., 2014), Checkerboards (Zhang et al., 2015),
etc. Klinger et al. (2017) addressed the problems of target occlusion and
imprecise visual observation by building up a new predictive model on
the basis of Gaussian process regression, and by combining generic
object detection with instance-specific classification for refined locali-
zation. Object detection based on deep neural networks (Girshick,
2015; Ren et al., 2017; He et al., 2017) have achieved state-of-the-art
results on various challenging benchmarks, thus they have been
adopted for the task of human-target detection. Li et al. (2018b) de-
veloped a scale-aware fast region-based convolutional neural networks
(SAF R-CNN) method which combines a large-size sub-network and a
small-size one into a unified architecture using a scale-aware weighting
mechanism to capture unique pedestrian features at different scales.
Zhang et al. (2016) proposed an effective baseline for pedestrian de-
tection using region proposal networks (RPN) followed by boosted
classifiers, which utilizes high-resolution convolutional feature maps
generated by RPN for classification. Mao et al. (2017) proposed a
powerful deep neural networks framework by implementing re-
presentations of channel features to boost pedestrian detection accu-
racy without extra inputs in inference. Brazil et al. (2017) developed an
effective segmentation infusion network to improve pedestrian detec-
tion performance through the joint training of target detection and
semantic segmentation.

Recently, multispectral pedestrian detection becomes a promising
solution to narrow the gap between automatic pedestrian detectors and
human observers. Multi-modal sensors (visible and infrared) supply
complementary information about the targets of interest thus lead to
more robust and accurate detection results. Hwang et al. (2015) pub-
lished the first large-scale multispectral pedestrian dataset (KAIST)
which contains well-aligned visible and infrared image pairs with dense
pedestrian annotations. Wagner et al. (2016) presented the first appli-
cation of deep neural networks for multispectral pedestrian detection.

Fig. 1. (a) Ground truth detection results (displayed using the visible channel);
(b) Bounding box detection results using 640× 512 images (displayed using
the thermal channel); (c) Bounding box detection results using 320× 256
images; (d) Detection results of our proposed method using 320×256 images.
Note that green bounding boxes show ground truth boxes, yellow bounding
boxes show bounding box detections. A score threshold of 0.5 is used to display
the detections. It is observed that the proposed box-level segmentation su-
pervised learning framework produces more accurate detection results and
successfully localizes far-scale human targets even when the input is small-size
images. All images are resized to the same resolution for visualization.
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Two decision networks, one for early-fusion and the other for late-fu-
sion, were proposed to classify the proposals generated by ACF
+T+THOG (Hwang et al., 2015) and achieved more accurate detec-
tions. Jingjing et al. (2016a) systematically evaluated the performance
of four ConvNet fusion architectures which integrate two-branch Con-
vNets on different DNNs stages and found the optimal architecture is
the Halfway Fusion model that merges two-branch ConvNets on the
middle-level convolutional features. König et al. (2017) adopt the ar-
chitecture of RPN+BDT (Zhang et al., 2016) to build Fusion RPN
+BDT, which merges the two-branch RPN on the middle-level con-
volutional features, for multispectral pedestrian detection. Recently,
researchers explore illumination information of a scene and proposed
illumination-aware weighting mechanism to boost multispectral pe-
destrian detection performances (Guan et al., 2018b; Li et al., 2019).
Guan et al. (2018a) presented a unified multispectral fusion framework
for joint training of semantic segmentation and target detection. More
accurate detection results were obtained by infusing the multispectral
semantic segmentation masks as supervision for learning human-re-
lated features. Li et al. (2018a) further deployed subsequent multi-
spectral classification network to distinguish pedestrian instances from
hard negatives.

It is noted that most existing multispectral pedestrian detection
approaches are built upon anchor box based detectors such as region
proposal networks (RPN) (Zhang et al., 2016) or Faster R-CNN (Ren
et al., 2017), using a number of bounding boxes to localize human
pedestrians. However, the use of anchor boxes will cause severe im-
balance between positive and negative training samples (Lin et al.,
2018) and involve complex hyperparameter settings (e.g., box size,
aspect ratio, stride, and intersection-over-union threshold) (Law and
Deng, 2018). Our method is very different from the existing anchor box
based multispectral pedestrian detectors (König et al., 2017; Jingjing
et al., 2016a; Li et al., 2019; Guan et al., 2018b,a; Li et al., 2018a) in
two major aspects. Firstly, we make use of the ground truth bounding
boxes (manually annotated) to generate coarse box-level segmentation
masks, which are utilized to replace the anchor bounding boxes for the
training of two-stream deep neural networks to learn human-relative
characteristic features. Secondly, our method estimates a prediction
heat map instead of a number of bounding boxes to localize pedestrians
in the surrounding space, which can be easily used to support percep-
tive autonomous driving applications such as path planning or collision
avoidance. It is worth mentioning that a large number of semantic
segmentation techniques have been proposed to generate accurate
boundary between foreground objects and background regions without
using anchor boxes (Ha et al., 2017; Balloch et al., 2018; Jégou et al.,
2017). However, these methods typically require the supervision of
pixel-level accuracy mask annotations which are very time-consuming
to obtain. Many researchers attempted to achieve competitive semantic
segmentation accuracy by only using the easily obtained bounding box
annotations (Dai et al., 2015; Rajchl et al., 2017). These methods in-
volve iterative updates to gradually improve the accuracy of segmen-
tation masks, which are slow and not suitable for real-time autonomous
driving applications.

3. Our approach

We propose a novel box-level segmentation supervised framework
for multispectral pedestrian detection. Given pairs of well-aligned
visible and infrared images, we make use of two-stream deep neural
networks to extract semantic features in individual channels. Visible
and infrared feature maps are combined through the concatenation
operation and then utilized to estimate heat maps to predict the ex-
istence of pedestrians as illustrated in Fig. 2. Note that image regions
corresponding to human targets produce high confident scores (larger
than 0.5).

3.1. Network architecture

Fig. 3(a) shows a baseline architecture of our proposed multi-
spectral feature fusion network (MFFN) for pedestrian detection. Given
a pair of well-aligned visible and infrared images, we make use of the
two-stream deep convolutional neural networks presented by Jingjing

Fig. 2. The workflow of our proposed box-level segmentation supervised deep
neural networks for multispectral pedestrian detection. Please note our method
generates a prediction heat map (a score threshold of 0.5 is used to display the
detected pedestrian regions) instead of a number of bounding boxes to localize
pedestrians in the scene. Best viewed in color. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Illustration of (a) MFFN and (b) HMFFN architectures. Note that green
boxes represent convolutional layers, yellow boxes represent pooling layers,
blue boxes represent fusion layers, gray boxes represent deconvolutional layers,
and orange boxes represent soft-max layers. Best viewed in color. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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et al. (2016b) to extract semantic feature maps in individual channels.
Note that each feature extraction stream consists of five convolutional
layers and pooling ones (Conv1-V to Conv5-V in the visible stream and
Conv1-I to Conv5-I in the infrared stream) which adopts the archi-
tectures of Conv1-5 from VGG-16 (Simonyan and Zisserman, 2014).
The two single-channel feature maps are then fused using the con-
catenation layer followed by a ×1 1 convolutional layer (Conv-Mul) to
learn two-channel multispectral semantic features. We use a softmax
layer (Det-Mul) to estimate the heat map to predict the location of
pedestrians.

Inspired by the recent success of top-down architecture with lateral
connections for object detection and segmentation (Pinheiro et al.,
2016; Lin et al., 2017), we design another hierarchical multispectral
feature fusion network (HMFFN) and its architecture is shown in
Fig. 3(b). It is noted that the HMFFN architecture makes use of skip
connections to associate the middle-level feature maps (output of
Conv4-V/I layers) with the high-level ones (output of Conv5-V/I
layers). The deconvolutional layers (Deconv5-V/I) are deployed to in-
crease the spatial resolution of high-level feature maps by a factor of 2.
Then, the upsampled high-level feature maps are merged with the
corresponding middle-level ones (which undergoes ×1 1 convolutional
layers Conv4x-V/I to reduce channel dimensions) by element-wise ad-
dition. In deep convolutional neural networks, outputs of deeper layers
encode high-level semantic information while shallower layers outputs
capture rich low-level spatial patterns (Lin et al., 2017; Hou et al.,
2017). Therefore, the proposed HMFFN architecture, combining feature
maps from different levels, is capable of extracting informative multi-
scale feature maps to achieve more accurate detection results. The
comparative evaluation of MFFN and HMFFN architectures are pro-
vided in Section 4.3.

3.2. Box-level segmentation for supervised training

A common step of state-of-the-art anchor box based detectors is
generating a large number of anchor boxes with various sizes and as-
pect ratios as potential detection candidates as illustrated in Fig. 4(a).
However, the use of anchor boxes involves complex hyperparameter
settings (e.g., box size, aspect ratio, stride, and intersection-over-union
threshold) (Law and Deng, 2018) and causes severe imbalance between
positive and negative training samples (Lin et al., 2018). Moreover, it is
difficult to make use of discretely distributed anchor boxes (using a
large stride) to generate positive samples for small-size targets. In
comparison, our proposed method takes the easily obtained bounding
box annotation as input and generates an unambiguous box-level seg-
mentation mask for the training of two-stream deep neural networks to

learn human-relative characteristic features as illustrated in Fig. 4(b).
In our implementation, the obtained box-level segmentation masks are
down-scaled to match with the size of final multispectral feature maps
(outputs of the concatenation layer) through bilinear interpolation. It is
worth mentioning that it is a challenging task to obtain pixel-level ac-
curate annotations for visible and infrared image pairs since it is diffi-
cult to obtain perfectly aligned and synchronized multispectral data
(Hwang et al., 2015). Therefore, we attempt to explore the easily ob-
tained bounding box annotations as an alternative of supervision to
train deep convolutional neural networks for multispectral target de-
tection.

Let X Y{( , )} denote the training images = = …X x i M{ , 1, , }i (M
pixels) with box-level approximate segmentation masks

= = …Y y i M{ , 1, , }i , where =y 1i denotes the foreground pixel and
=y 0i is the background pixel. The parameters of multispectral pe-

destrian detector are updated by minimizing the cross-entropy loss
which is defined as
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where s0 and s1 are the computed values in our two-channel feature
maps. The optimal parameters are obtained by minimizing the loss
function ( ) through the gradient descent optimization algorithm as

= arg min ( ).
(4)

The output of our method is a full-size prediction heat map in which
human target regions yields high confident scores (larger than 0.5)
while the background regions produce low ones. Such perceptive in-
formation is useful for many autonomous driving applications such as
path planning or collision avoidance. In comparison, it is difficult/im-
practical to use a number of bounding boxes to identify individual
pedestrians in crowded urban scenes. Visual comparisons are provided
in Fig. 1.

4. Experiments

4.1. Dataset and evaluation metric

All the detectors are evaluated using the public KAIST multispectral
pedestrian benchmark (Hwang et al., 2015). We notice that CVC-14
(González et al., 2016) is another newly published multispectral pedes-
trian benchmark consisting of infrared and visible gray image pairs.
However, the multispectral image pairs were not properly aligned thus
the pedestrian annotations are individually labeled in infrared and visible
images. It should be noted that some annotations are only generated in
the infrared/visible image on the CVC-14 dataset. To the best of our
knowledge, KAIST multispectral pedestrian benchmark is the only
available pedestrian dataset which contains large-scale and well-aligned
visible-infrared image pairs with accurate manual annotations.

Totally, KAIST training dataset consists of 50172 well aligned
visible-infrared image pairs ( ×640 512 resolution) captured in all-day
traffic scenes with 13853 pedestrian annotations. The training images
are sampled in every 2 frames following the other multispectral

Fig. 4. Illustration of generating training labels using (a) Anchor boxes; (b) Box-
level segmentation masks. The use of anchor boxes involves complex hy-
perparameter settings (e.g., box size, aspect ratio, stride, and intersection-over-
union threshold). In comparison, our proposed method generates an un-
ambiguous box-level segmentation mask for learning human-relative features.
Note that green bounding boxes (BBs) represent BB ground truth, yellow BBs
represent positive training samples, and red BBs in dashed line represent ne-
gative training samples. Best viewed in color. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)
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pedestrian detection methods (Jingjing et al., 2016b; König et al., 2017;
Guan et al., 2018b,a; Li et al., 2018a). The KAIST testing dataset con-
tains 2252 image pairs with 1356 pedestrian annotations. Since the
original KAIST testing dataset contains many problematic annotations
(e.g., inaccurate bounding boxes and missed human targets), we make
use of the improved annotations provided by Liu et al. (2018) for
quantitative and qualitative evaluation. Specifically, we consider all
reasonable, scale, and occlusion subset of the KAIST testing dataset
(Hwang et al., 2015).

The output of our method is a full-size prediction heat map in which
human target regions yields high confident scores while the background
regions produce low ones. For a fair comparison, we transform the
bounding box detection results with different prediction scores to the
heat map representation, and the pixel-level average precision (AP)
(Salton and McGill, 1986; Cordts et al., 2016) is utilized to evaluate the
quantitative performance of multispectral pedestrian detectors in the
pixel-level. The computed detection results are compared with the
ground-truth annotation masks which are generated based on manually
labeled bounding boxes. Pixels located in the ground-truth bounding
boxes are defined as foreground ones, while other pixels are defined as
background ones. Given the heat map predictions, true positive (TP) is
the number of correctly predicted foreground pixels, false positive (FP)
is the number of incorrectly predicted background pixels, and false
negative (FN) is the number of incorrectly foreground background
pixels. Precision is calculated as TP/(TP+FP) and recall is computed as
TP/(TP+FN). The AP depicts the shape of the precision/recall curve,
and is defined as the mean precision at a number of equally spaced
recall levels by varying the threshold on detection scores. In our im-
plementation, we average the precision values at 100 recall levels
equally spaced between 0 and 1.

4.2. Implementation details

The image-centric training and testing strategy are applied to gen-
erate mini-batches without using image pyramids. The batch size is set
to 1 according to the method presented by Guan et al. (2018a). Each
stream of the feature extraction layers in MFFN and HMFFN are in-
itialized using the weights and bias of VGG-16 net (Simonyan and
Zisserman, 2014) pre-trained on the ImageNet dataset (Russakovsky
et al., 2015). All the other convolutional layers use normalized in-
itialization following the method presented by Glorot and Bengio
(2010). We utilize the Jia et al. (2014) deep learning framework to train
and test our proposed multispectral pedestrian detectors. All the models
are fine-tuned using stochastic gradient descent (SGD) (Zinkevich et al.,
2010) for the first two epochs with the learning rate of 0.001 and one
more epoch with the learning rate of 0.0001. Adjustable gradient
clipping technique is used in training to suppress exploding gradients
(Pascanu et al., 2013).

4.3. Evaluation of multispectral feature fusion schemes

In this paper, we design two multispectral feature fusion schemes
(MFFN and HMFFN). The HMFFN model makes use of skip connections
to associate the middle-level feature maps (output of Conv4-V/I layers)
with the high-level ones (output of Conv5-V/I layers). We experimen-
tally evaluate the performance gain by incorporating middle-level fea-
ture maps into the baseline MFFN model. The quantitative performance
(pixel-level AP (Salton and McGill, 1986)) of MFFN and HMFFN for
different sizes of input images ( × ×640 512, 480 384, and ×320 256) are
compared in Table 1.

We observe that better detection performance is achieved through
the hierarchical multispectral feature fusion. Moreover, the perfor-
mance gain is more obvious when handling small-size input images. By
incorporating the middle-level feature maps, AP index significantly
increases from 0.748 (MFFN-320) to 0.817 (HMFFN-320) for ×320 256
resolution input images in the Reasonable-all subset, while the

improvement is not obvious for ×640 512 resolution input images (in-
creasing from 0.844 to 0.854). The underlying reason is that the
middle-level features from shallower layers (Conv4-V/I) encode rich
small-scale image characteristics which are essential for accurate de-
tection of small-size targets. Using a smaller size input image will sig-
nificantly improve the computational efficiency for real-time autono-
mous driving applications.

Furthermore, we conduct the qualitative comparison of two multi-
spectral feature fusion networks (MFFN-320 and HMFFN-320) by dis-
playing detection results in various scenes in Fig. 5. It is observed that
performance gains can generally be achieved (in both daytime and
nighttime scenes and on different scale and occlusion subsets) by in-
tegrating middle-level feature maps with high-level ones. We evaluate
MFFN-320 and HMFFN-320 models on testing subsets of different
scales. Although both MFFN-320 and HMFFN-320 work well on the
near scale subset, HMFFN-320 can better identify pedestrian targets in
the medium and far scale subsets through incorporating image details
extracted in middle-level layers (Conv4-V/I). Moreover, we test MFFN-
320 and HMFFN-320 models on different occlusion subsets and observe
that HMFFN-320 generates more accurate detection results when target
objects are partially or heavily occluded. A reasonable explanation of
this improvement is that low-level features extracted in shallower
layers (Conv4-V/I) provide useful information of human parts and their
relationships to handle the challenging target occlusion problem (Shu
et al., 2012). The experimental results verify the effectiveness of the
proposed HMFFN architecture, capable of extracting informative multi-
scale feature maps to achieve more precise object detection and remain
more robust against scene variations.

4.4. Evaluation of box-level segmentation supervised framework

In this subsection, we evaluate the performance gain of using box-
level segmentation masks instead of anchor boxes to train deep con-
volutional neural networks for multispectral target detection. For a fair
comparison, we make use of the same architecture in HMFFN for
multispectral feature extraction/fusion as shown in Fig. 3(b). Given the
multispectral semantic features from Conv-Mul layer, the anchor box
based detector RPN (Zhang et al., 2016) is utilized to generate confident
scores and bounding boxes as detection results. In comparison, our
proposed segmentation mask supervised method computes a prediction
heat map to highlight the existence of human targets in a scene. The
performances (pixel-level AP (Salton and McGill, 1986)) of our pro-
posed box-level segmentation supervised method (HMFFN) and the one
based on anchor boxes (RPN-HMFFN) on different sizes of input images
( × ×640 512, 480 384, and ×320 256) are quantitatively compared in
Table 2.

It is observed that HMFFN based on box-level segmentation masks
performs better than RPN-HMFFN based on anchor boxes, achieving
significantly higher AP indexes on various testing subsets and on images
of different sizes (HMFFN-640 0.854 AP vs. RPN-HMFFN-640 0.756 AP
on the reasonable all subset). Such improvements are particularly evi-
dent on some challenging detection tasks (HMFFN-640 0.166 AP vs.
RPN-HMFFN-640 0.065 AP for far scale human target detection).
Another advantage of our proposed HMFFN is that it directly computes
a prediction heat map instead of confident scores and coordinates of
bounding boxes, achieving faster inference speed (HMFFN-320 38.3 fps
vs. RPN-HMFFN-320 32.0 fps).

Furthermore, we qualitatively show some sample detection results
of HMFFN-640 and RPN-HMFFN-640 in Fig. 6. The output of our
method is a full-size prediction heat map in which human target regions
yields high confident scores. For a fair comparison, we also transform
the bounding box detection results with different prediction scores to
the heat map representation, utilizing different colors to show predic-
tion scores of bounding boxes. Note we only show regions with con-
fident scores larger than 0.5. It is noted that HMFFN-640 generate more
precise detection results and fewer false positives compared with RPN-
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HMFFN-640. The use of anchor boxes involves complex hyperpara-
meter settings (e.g., box size, aspect ratio, stride, and intersection-over-
union threshold) will cause severe imbalance between positive and
negative training samples and damage the learning of human-related
features (Law and Deng, 2018). Moreover, we observe that HMFFN-640

can successfully identify some pedestrian instances on the far scale and
heavy occlusion subsets, which are difficult to detect using the anchor
box based RPN-HMFFN-640 or even based on visual observation. For
small/occluded targets, it is difficult to generate enough positive sam-
ples using discretely distributed anchor boxes. In comparison, our

Table 1
Quantitative performance (pixel-level AP (Salton and McGill, 1986)) of MFFN and HMFFN for different sizes of input images ( × ×640 512, 480 384, and ×320 256).

Model Reasonable all Reasonable day Reasonable
night

Near scale Medium
scale

Far scale No occlusion Partial
occlusion

Heavy
occlusion

Inference speed
(fps)

MFFN-640 0.844 0.849 0.836 0.812 0.736 0.163 0.816 0.373 0.169 12.4
HMFFN-640 0.854 0.865 0.836 0.797 0.785 0.166 0.832 0.391 0.171 10.8
MFFN-480 0.825 0.837 0.812 0.799 0.705 0.100 0.790 0.328 0.152 20.3
HMFFN-480 0.843 0.866 0.805 0.796 0.764 0.148 0.818 0.373 0.152 18.5
MFFN-320 0.748 0.757 0.740 0.756 0.546 0.043 0.697 0.243 0.110 40.0
HMFFN-320 0.817 0.825 0.808 0.779 0.696 0.111 0.779 0.345 0.140 38.3

Fig. 5. Qualitative comparison of multispectral pedestrian detection results of MFFN-320 and HMFFN-320 in the KAIST testing images captured in (a) daytime and
(b) nighttime scenes. The first row shows the ground truth (displaying using the visible channel) and the others show detection results of MFFN-320 and HMFFN-320
respectively (displaying using the infrared channel). Note that the green regions represent ground-truth annotation masks which are generated based on manually
labeled bounding boxes, and the detected pedestrian targets are visualized using the heat map representation with a 0.5 threshold. Best viewed in color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Quantitative performance (pixel-level AP (Salton and McGill, 1986)) of our proposed box-based segmentation supervised detectors (HMFFN) with the anchor box
based detectors (RPN-HMFFN) for different sizes of input images ( × ×640 512, 480 384, and ×320 256).

Model Reasonable all Reasonable day Reasonable
night

Near scale Medium
scale

Far scale No occlusion Partial
occlusion

Heavy
occlusion

Inference speed
(fps)

RPN-HMFFN-640 0.756 0.761 0.741 0.607 0.662 0.065 0.705 0.263 0.149 9.4
HMFFN-640 0.854 0.865 0.836 0.797 0.785 0.166 0.832 0.391 0.171 10.8

RPN-HMFFN-480 0.75 0.755 0.743 0.591 0.64 0.046 0.7 0.282 0.142 16.5
HMFFN-480 0.843 0.866 0.805 0.796 0.764 0.148 0.818 0.373 0.152 18.5

RPN-HMFFN-320 0.718 0.717 0.713 0.638 0.571 0.057 0.672 0.225 0.124 32.0
HMFFN-320 0.817 0.825 0.808 0.779 0.696 0.111 0.779 0.345 0.140 38.3
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proposed HMFFN takes the easily obtained bounding box annotation as
input and produces an unambiguous box-level segmentation mask for
learning to distinguish target objects from the background. Overall, our
experimental results demonstrate that box-level approximate segmen-
tation masks provide better supervision information than anchored
boxes for the training of two-stream deep neural networks to learn
human-relative characteristic features.

4.5. Comparison with the state-of-the-art

We compare the proposed HMFFN-640 and HMFFN-320 models
with a number of state-of-the-art multispectral pedestrian detectors
including Halfway Fusion (Jingjing et al., 2016b), Fusion RPN+BDT
(König et al., 2017), IATDNN+IAMSS (Guan et al., 2018b), FRPN-Sum
+TSS (Guan et al., 2018a), and MSDS-RCNN (Li et al., 2018a). The
Fusion RPN+BDT (König et al., 2017) model is re-implemented and
trained according to the original papers, and the detection results of
Halfway Fusion (Jingjing et al., 2016b), IATDNN+IAMSS (Guan et al.,
2018b), FRPN-Sum+TSS (Guan et al., 2018a), and MSDS-RCNN (Li
et al., 2018a) are kindly provided by the authors.

The quantitative evaluation results of different multispectral pe-
destrian detectors are shown in Table 3. Our proposed HMFFN-640 and
HMFFN-320 models both achieve higher AP values in all reasonable,
scale, and occlusion subset of the KAIST testing dataset. These com-
parative results indicate that our propose multispectral pedestrian de-
tector achieves more robust performances under various surveillance
situations. We qualitatively compare different multispectral pedestrian
detectors by visualizing some sample detection results in Fig. 7. The

output of our method is a full-size prediction heat map in which human
target regions yields high confident scores, while the bounding box
detection results with different prediction scores are transformed to the
heat map representation, utilizing different colors to show prediction
scores of bounding boxes. Note we only show regions with confident
scores larger than 0.5. Different from the existing multispectral pedes-
trian detection methods which generate a number of bounding boxes,
our method estimates a full-size prediction heat map to highlight the
existence of pedestrians in a scene. It is observed that our approach is
capable of generating accurate detection results even for small human
targets and using small-size input images.

We also compare the computational efficiency of HMFFN-640 and
HMFFN-320 with state-of-the-art methods. A single Titan X GPU is
utilized to evaluate the computation efficiency. Please note that the
current state-of-the-art multispectral pedestrian detectors (König et al.,
2017; Jingjing et al., 2016a; Guan et al., 2018b,a; Li et al., 2018a) ty-
pically perform image up-scaling to achieve their optimal detection
performances. For instance, input sizes of (Jingjing et al., 2016b), Fu-
sion RPN+BDT (König et al., 2017), IATDNN+IAMSS (Guan et al.,
2018b), FRPN-Sum+TSS (Guan et al., 2018a), and MSDS-RCNN (Li
et al., 2018a) models are × × × ×750 600, 960 768, 960 768, 960 768,
and ×750 600, respectively. In comparison, HMFFN-640 directly takes

×640 512 multispectral data as input without image up-scaling thus run
much faster (10.8 fps vs. 4.4 fps). Moreover, our HMFFN-320 model
takes small-size ×320 256 images as input and achieves 38.3 fps which
is sufficient for real-time autonomous driving applications. Please note
HMFFN-320 achieves more accurate detection results than the current
state-of-the-art multispectral pedestrian detection methods.

Fig. 6. Qualitative comparison of multispectral pedestrian detection results of RPN-HMFFN-640 and HMFFN-640 in the KAIST testing dataset. First row shows the
ground truth (displaying using the visible channel) and the others show detection results of RPN-HMFFN-640 and HMFFN-640 respectively (displaying using the
infrared channel). Note that the green regions represent ground-truth annotation masks which are generated based on manually labeled bounding boxes, and the
detected pedestrian targets are visualized using the heat map representation with a 0.5 threshold. Best viewed in color. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Table 3
Quantitative comparison of HMFFN-640 and HMFFN-320 with the current state-of-the-art methods (König et al., 2017;
Jingjing et al., 2016a; Guan et al., 2018b,a; Li et al., 2018a). Input sizes of different models are Halfway Fusion –

×750 600, Fusion RPN+BDT – ×960 768, IATDNN+IAMSS – ×960 768, FRPN-Sum+TSS – ×960 768, MSDS-RCNN –
×750 600, HMFFN-640 – ×640 512, and HMFFN-320 – ×320 256. The top three results are highlighted in red, green, and

blue, respectively.

Fig. 7. Qualitative comparison of multispectral pedestrian detection results in the KAIST testing dataset with other state-of-the-art approaches. First column shows
the ground truth (displaying using the visible channel) and the others show detection results of Fusion RPN+BDT (König et al., 2017),IATDNN+IAMSS (Guan et al.,
2018b), MSDS-RCNN (Li et al., 2018a) and our proposed HMFFN-640 and HMFFN-320 respectively (displaying using the infrared channel). Note that the green
regions represent ground-truth annotation masks which are generated based on manually labeled bounding boxes, and the detected pedestrian targets are visualized
using the heat map representation with a 0.5 threshold. Best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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5. Conclusions

In this paper, we propose a powerful box-level segmentation su-
pervised learning framework for accurate and real-time multispectral
pedestrian detection. To the best of our knowledge, this represents the
first attempt to train multispectral pedestrian detectors without using
anchor boxes. Extensive experimental results verify that box-level ap-
proximate segmentation masks provide useful information for distin-
guishing human targets from the background. Also, we design a hier-
archical multispectral feature fusion scheme in which the middle-level
feature maps (small-scale image characteristics) and the high-level ones
(semantic information) are incorporated to achieve more accurate de-
tection results, particularly for far-scale human targets. Experimental
results on KAIST benchmark show that our proposed method achieves
higher detection accuracy compared with the state-of-the-art multi-
spectral pedestrian detectors. Moreover, this efficient framework
achieves real-time processing speed and processes more than 30 images
per second on a single NVIDIA Geforce Titan X GPU. The proposed
methods can be generalized to other object detection task with multi-
spectral input and facilitate potential applications (e.g., path planning,
collision avoidance, and target tracking) in autonomous vehicles.
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