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Abstract 
In this work, a recently developed superelement formulation in the floating frame of reference is 

implemented for plates. By using Craig-Bampton modes, a coordinate transformation from the absolute 

floating frame coordinates and local elastic coordinates to the absolute interface coordinates is established. 

Several benchmark problems are considered to validate the formulation for plates. Results from the 

superelement formulation for plates are in good agreement with other formulations, meaning that the 

formulation can successfully be used for the efficient description of plates in flexible multibody systems, 

such as flexure mechanisms that can no longer be modelled as beam elements because of their unbeamlike 

dimensions. 

1 Introduction 

In precision engineering, flexure hinges are frequently used for their deterministic behavior, due to the 

absence of friction, hysteresis, and backlash [2]. Flexure hinges allow motion by being compliant in driving 

directions, while constraining motion in other directions, as shown in Figure 1. Generally, as the support 

stiffness rapidly decreases with deflection, flexure hinges have a reduced performance in their deflected 

state [2]. Shape and topology optimization is used to design sophisticated mechanisms to minimize this 

performance reduction. This requires modelling the flexure mechanisms with computer simulations.  

As these forms of optimization require many design evaluations, reduction of computational costs is desired. 

To decrease the computational costs, flexures are often simplified as flexible multibody systems using 

nonlinear beam elements. This is a valid assumption as long as the flexures are long and slender, and thus 

have a high aspect ratio (defined as length/height). 

Figure 1 Single leaf spring flexure. 

 

Flexible multibody dynamics concerns the study of mechanisms that consist of multiple deformable bodies. 

These deformable bodies are attached to each other or to the fixed world at their interface points. The 

problem is geometrically nonlinear as the joints at the interface points allow for large rigid body rotations. 

However, because the elastic deformations within a body are considered to remain small, linear elasticity 
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theory can be used. For the simulations of such systems, general suitable formulations can be classified into 

three categories: the inertial frame formulation, the corotational formulation, and the floating frame 

formulation. In each formulation, kinematics and kinematic constraints are described differently. The 

kinematics of a body represent its motion, which is described by the motion of coordinate frames that are 

rigidly attached to different material points on the body. Kinematic constraints represent the connections 

between bodies, and relate the motions of the coordinate frames at the interface points of different bodies. 

The inertial frame formulation is a nonlinear finite element formulation, using the nonlinear Green-Lagrange 

strain definition [3]. By using global interpolation functions, each body is discretized into finite elements. 

The degrees of freedom in this formulation are the absolute nodal coordinates. Kinematic constraints are 

easily enforced by equating nodal coordinates of the interface points between the different bodies. The 

inertial frame formulation does not make a distinction between large rigid body rotations and small elastic 

deformations.  

The corotational frame formulation can be regarded as an extension of the linear finite element formulation 

[4, 5]. A corotational coordinate frame describes large rigid body motions of elements with respect to an 

inertial frame. Small deformations are then superimposed using linear finite element matrices, based on the 

Cauchy strain definition [6]. Nonlinear finite element models are obtained by pre- and post-multiplying 

element matrices with rotation matrices based on the corotational frame. As in the inertial frame formulation, 

absolute nodal coordinates are the degrees of freedom, and as such, constraints are obtained in the same 

way. The corotational frame formulation does not distinguish between flexible and rigid bodies, which 

makes the simulation of models containing rigid bodies less efficient. 

The floating frame formulation can be interpreted as a flexible extension on rigid multibody formulations 

[7]. In this formulation a floating frame describes a body’s large rigid body motions and a linear combination 

of mode shapes is used to describe local elastic deformations. Since the local deformations remain small, 

these mode shapes can be obtained by applying powerful model order reduction techniques on a body’s 

linear finite element model [7]. The absolute floating frame coordinates and the local generalized 

coordinates corresponding to the mode shapes are the degrees of freedom of the system. As the interface 

points are not part of the degrees of freedom, the kinematic constrains are in general nonlinear. Therefore, 

Lagrange multipliers are required to enforce the kinematic constraints, increasing the number of degrees of 

freedom and subsequently the computational costs. 

As the floating frame formulation allows for well-developed model order reduction techniques, this is the 

preferred formulation in many multibody systems where the elastic deformation within a body remains 

small. Recent research presented a method that overcomes the disadvantage of having to introduce Lagrange 

multipliers [1]. By using Craig-Bampton modes [8], a coordinate transformation from the absolute floating 

frame coordinates and local elastic coordinates to the absolute interface coordinates is established. The 

coordinate transformation is used to create so-called superelements in the floating frame formulation. This 

way, the Lagrange multipliers are eliminated and as the interface coordinates are now part of the degrees of 

freedom, kinematic constraints can be enforced in the same straightforward way as in inertial frame 

formulation. In this way, the new superelement formulation combines the advantages of the different 

formulations mentioned above. 

Within precision engineering, recent developments of flexure mechanisms are aimed at the optimization of 

mechanisms with a high support stiffness while heavily loaded in supporting directions; whereas, state-of-

the-art optimizations are mostly aimed at high support stiffness during a large range of motion [9]. In the 

latter case, flexure mechanisms can often be simplified as beam elements. However, flexure mechanisms 

that are loaded in their supporting direction typically are short and wide instead of long and slender, meaning 

that they have a low aspect-ratio instead of a high one. This implies that the mechanisms can no longer be 

simplified as beam elements, as they do not provide sufficient accuracy. Plate elements should be used 

instead of beam elements to obtain sufficient accuracy; however, this increases the number of degrees of 

freedom and therefore computational costs significantly. 

The method presented by Ellenbroek and Schilder offers a promising reduction method for these types of 

problems [1]. The method is applicable for the reduction of arbitrarily shaped bodies, although the original 

work only presented validation problems with beams. In this work, superelements are implemented in the 

floating frame formulation for plates. Benchmark problems for plates are considered to extend this 
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validation. To this end, a cantilever and a clamped square plate are modelled. The cantilever is loaded at the 

free tip, whereas the clamped square plate is loaded with a point load on the centerline of the plate. 

Simulation results are compared to results obtained using both the corotational frame formulation and the 

inertial frame formulation. This way, validity of the superelements in the floating frame formulation are 

validated against other formulations as well. 

The paper is structured as follows: Chapter 2 of this paper presents an overview of the essentials of the 

method presented by Ellenbroek and Schilder [1]. In Chapter 3, this method will be applied to plates; 

kinematics for plates in the floating frame are discussed, as well as its implementation in the new 

superelement method. In Chapter 4, two validation examples are considered: a cantilever and a clamped 

square plate. These examples are adapted from Izzuddin [10]. Conclusions are discussed in Chapter 5 and 

this paper is concluded with recommendations for further research in Chapter 6. 

2 Absolute interface coordinates in the floating frame formulation 

To describe the kinematics of a plate in the regular floating frame formulation, the coordinates of each 

interface point are expressed in terms of the absolute floating frame coordinates and the local interface 

coordinates. This is shown graphically in Figure 2. 

 

 

Figure 2 Floating frame formulation for a plate. 

 

Different choices can be made for the set of deformation shapes that describe the local elastic deformations. 

However, as the local interface coordinates are in fact the generalized coordinates corresponding to static 

Craig-Bampton modes, it is natural to choose these as the deformation shapes. This way, the coordinate 

transformation towards absolute interface coordinates can be established. However, since both the Craig-

Bampton modes and the floating frame coordinates are able to describe rigid body modes, these modes need 

to be eliminated from the Craig-Bampton modes. This is realized by defining the floating frame such that 

there is zero elastic deformation at its location. Both the coordinate transformation and the way the 

constraints are satisfied are described in detail in [1]. Using the coordinate transformation, the equation of 

motion and the equilibrium equation can be rewritten from the standard floating frame to the new coordinate 

set. As Chapter 3 only addresses static examples, the equilibrium equations are of more relevance here. The 

equilibrium equation in standard floating frame form is given by: 
 

𝐊𝐪 = 𝐅, (1) 
 

where 𝐊 is the global stiffness matrix according to the floating frame formulation, 𝐪 is the vector of 

generalized coordinates and 𝐅 contains the generalized forces that are externally applied or due to kinematic 

constraints. The equilibrium equation after the coordinate transformation is given by: 
 

[𝐑][𝐓]𝑇𝐊𝐶𝐵𝐪𝐿𝐼 = 𝐅, (2) 
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where [𝐑] contains the rotation matrices that relate the floating frame to the inertial frame. 𝐊𝐶𝐵 is the 

stiffness matrix that is obtained by model order reduction of the body’s finite element model, using the 

Craig-Bampton modes and 𝐪𝐿𝐼 are the local interface coordinates. Finally, [𝐓] is a transformation matrix 

that removes the rigid body motion of the floating frame from the expression. [𝐓] is given by: 
 

[𝐓] = 𝟏 − [𝚽𝑟𝑖𝑔][𝐙], (3) 

 

in which [𝚽𝑟𝑖𝑔] contains the displacement of all interface coordinates when the body is subjected to a rigid 

body motion with respect to the floating frame. The matrix [𝐙] is given by: 
 

[𝐙] = ([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵], (4) 

 

where [𝚽𝐶𝐵] consists of the Craig-Bampton mode shapes evaluated at the floating frame. This equilibrium 

equation is the basis of the examples discussed in Chapter 3. Further details of the coordinate transformation 

and derivations are presented in [1]. 

3 Validation 

To verify validity of the proposed formulation for plates, two static problems are modelled. First, a cantilever 

that is loaded out-of-plane is considered. Its dimensions are such that beam theory is still valid and therefore 

the results are also compared to formulations for beams. Second, a square plate is considered that is clamped 

on two opposite sides. Both examples are adapted from [10]. 

3.1 Cantilever 

In the first example, a cantilever is modelled. The cantilever, shown in Figure 3, is loaded in positive 

transverse (z-)direction. The cantilever has length 𝐿 = 10 𝑚, width 𝑤 = 1 𝑚, and thickness 𝑡 = 0.1 𝑚. It 

has a Young’s modules of 𝐸 = 12 𝐺𝑃𝑎 and a Poisson ratio of 𝜈 = 0.3. A mesh of 10 elements is used for 

all simulations and the load is modelled as two equal point loads at the two nodes at the cantilever tip. The 

response of the tip in both x- and z-direction is measured.  

The problem is modelled using the superelement formulation for plates and is compared to three other 

formulations. The results for the superelement formulation implemented for plates are represented by the 

black solid line in Figure 4. The grey solid line represents the problem modelled in Ansys (shell181 

elements), using a nonlinear finite element formulation based on the full nonlinear Green-Lagrange strain 

expression [3]. As the cantilever is long and slender, and thus has a high aspect-ratio, simplifying it as beam 

elements is allowed. To this end, the superelement formulation for beams is also used for validation, as well 

as the corotational formulation using nonlinear beam elements from software package Spacar. The latter 

two are represented by, respectively, black and grey dashed lines. The detailed formulation of Spacar can 

be found in [11]. 

Figure 4 shows the normalized transverse (𝑤/𝐿) and axial (−𝑢/𝐿 ) displacements. This figure shows that 

there is a favorable comparison between the four methods. Maximum deviations from Ansys are in the 

range of approximately 1 to 3%. Furthermore, there is a clear resemblance between Figure 4 and the 

results from Izzuddin (Figure 8 from [10]). 
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Figure 3 Deflected shapes of cantilever for different loads. 

 

 

Figure 4 Response of cantilever to tip point loading. 

 

3.2 Clamped square plate 

In the second example, a square plate is modelled and loaded by a point load P. The plate has length and 

width 𝐿 = 𝑤 = 400 𝑚𝑚 and thickness 𝑡 = 1.98 𝑚𝑚. Its Young’s modulus is 𝐸 = 21.5 𝐺𝑃𝑎 and its 

Poisson ratio is 𝜈 = 0.3. The plate is clamped on two opposite edges. Figure 5 shows the plate (left) as well 

as shows the deflected shape (right). For clarity reasons, only half of the deflected plate is shown and 

displacements are scaled with a factor 10. A mesh of 10 x 10 elements is used. The point load is applied at 

node A (Figure 5) which lies on the center line, at the third node from the free edge. The z-displacement at 

this node, as well as at node B, is measured. As this problem cannot be modelled using beam elements, the 

results are compared with software package Ansys only. 
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Figure 6 shows the results for displacements in the order of the thickness of the plate (P = [0, 25] N). As can 

be seen, both methods correspond very well. For a point load of 25 N, the deviation is approximately 1 to 

2%. If the load is increased up to 250 N, the deviation also slightly increases, with a maximum deviation of 

slightly over 3% for the displacement of node B. The results for the load range P = [0, 250] N are presented 

in Figure 7. Results for both load ranges are also in close agreement with the results from Izzuddin (Figures 

10 and 11 from [10]).  

 

 

 

Figure 5 Clamped square plate (left) and deflected shape for P = 250 N (right, displacement scale = 10). 

 

 

Figure 6 Response of nodes A and B on clamped square plate for P = [0, 25] N. 
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Figure 7 Response of nodes A and B on clamped square plate for P = [0, 250] N. 

 

4 Discussion 

Examples in Chapter 3 showed that the results from the superelement formulation for plates are in good 

agreement with the other formulations. This means that the method can successfully be used for the efficient 

description of plates in flexible multibody dynamics. However, some small deviations of around 1 to 3% 

still occur.  

The small deviation is probably caused by the way the location of the floating frame is determined. It is 

known that the elastic displacements in the interface coordinates, multiplied by the Craig-Bampton mode 

shapes, should always equal zero at the location of the floating frame. However, a numerical error may 

cause this relation to be non-zero, and thus cause the floating frame to drift away. Therefore the location 

becomes slightly inaccurate after a while. This problem is expected be solved by determining the location 

of the floating frame using a Newton-Raphson procedure. The Newton-Raphson procedure should be 

applied on the multiplication of the elastic displacements in the interface coordinates and the Craig-Bampton 

mode shapes, which should finally equal zero. The position of the floating frame at the current time step can 

be used as an initial estimate. In future work, this Newton-Raphson procedure will be implemented. 

As the method is successfully implemented for plates, the method offers a promising reduction method for 

flexure mechanisms. Flexures that can no longer be simplified as beam elements, because of their low 

aspect-ratio, can be modelled in an accurate way using superelements.  
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