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Abstract— Neural processing of sensory stimuli can be stud-
ied using EEG by estimation of the evoked potential using the
averages of large sets of trials. However, it is not always possible
to include all stimulus parameters in a conventional analysis,
since this would lead to an insufficient amount of trials to obtain
the evoked potential by averaging. Linear mixed models use
dependencies within the data to combine information from all
data for the estimation of the evoked potential. In this work, it is
shown that in multi-stimulus EEG data the quality of an evoked
potential estimate can be improved by using a linear mixed
model. Furthermore, the linear mixed model effectively deals
with correlation between parameters in the data and reveals
the influence of individual stimulus parameters.

I. INTRODUCTION

To study neural processing of sensory stimuli using EEG,
the evoked potential (EP) must be estimated using sufficient
amounts of trials. To identify important parameters of stim-
ulus processing, it is required to apply stimuli with multiple
properties. However, experiments to gather the required data
on human subjects cannot take too long and the amount of
stimuli is limited, which is problematic for the acquisition
of sufficient trials. Often, stimulus selection methods are
used for a more efficient probing of the stimulus parameter
space. However, this results in different amounts of trials
per stimulus property. Since the variance of the estimated
EP depends on the amount of acquired trials, analysis of
those trials using conventional averaging is impeded. This
could be overcome by using an analysis method which is
robust for variations in the amount of acquired trials. Such a
method is provided by a linear mixed model (LMM), which
deals with those variations by using dependencies within the
data. This means that a lower amount of trials is required
to accurately estimate the effect of stimulus parameters with
respect to averaging.

Recently, we have used EPs to study neural processing of
single and double pulse nociceptive electrical stimuli around
the detection threshold, which is defined as the stimulus
amplitude at which 50% of the stimuli are detected. For
optimal estimation of the probability that a stimulus is
detected roughly equal amounts of detected and undetected
stimulus-response pairs have to be acquired. To keep stimu-
lus amplitudes around the detection threshold, we developed
a method for simultaneous tracking of nociceptive detection
thresholds (NDTs) for multiple types of stimuli [1]. A single
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Fig. 1. Simultaneous tracking of NDTs for multiple stimulus types, with
a varying number of pulses (NOP), by randomized stimulation around the
nociceptive detection threshold [1]. In this case, stimuli with a single pulse
(NOP = 1) and a double pulse with 10 ms inter-pulse interval (NOP = 2)
were used.

detection threshold is tracked by an adaptive randomized
stimulus sequence which automatically varies the stimulus
amplitude with respect to the amount of detected and un-
detected stimuli. Detection thresholds for multiple stimulus
types are tracked by randomly interchanging the stimulus
types (single-pulse and double-pulse) during stimulation,
which is shown in Figure 1. Because NDTs change over time
due to habituation of the nociceptive system, a wide variety
of stimulus amplitudes is used throughout the experiment.
Because of this variety, the data does not include equal
amounts of trials per stimulus amplitude. This leads to a
poor estimation of the signal by averaging, which is shown
in Figure 2. To extract and analyze the brain activity during
detected and undetected stimuli, a more efficient method than
averaging is required.

A tool which successfully accounts for the effects of
multiple stimulus parameters simultaneously is the linear
model (LM). Regression using a LM has the benefit over
averaging that it allows for a large number of repeated
measures without using many subjects, deals more efficiently
with missing data and is flexible in modeling covariates
and correlation structures. Although LMs are a popular
statistical tool in fMRI research, they have been used by
few researchers for EEG analysis, of which some interesting
examples include [2] and [3].

Recently Vossen et al. [4] used linear mixed models
(LMMs) in EEG analysis to account for between-subject
variations and habituation. A major difference with LMs
is that LMMs attempt to model the distribution of random
effects in the data, enabling subject-level and group-level
intercepts and slopes. This provides a convenient way of
modeling the dependence of EEG data within one subject
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Fig. 2.

Summary of data acquired from one of the subjects. The figure on the left shows the amplitudes of all detected and undetected double-pulse

stimuli with respect to the NDT. The histogram in the middle shows that at most 25 times the same stimulus was used. This leads to a poor estimation of

the EP by averaging, which is shown in the figure on the right.

or one group. Considering their efficiency in dealing with
high-dimensional data, trial-to-trial variability and between-
subject variations, they provide an ideal tool for analysis of
multivariate EEG data. In addition, they provide means to
measure the influence of within-subject and between-subject
variations simultaneously, which is useful in clinical studies.

In this work, it is demonstrated that a LMM enables the
analysis of variations within EEG data with respect to stimu-
lus intensity and stimulus properties, such as the variation of
the EEG signals obtained during NDT tracking experiments.
It will be shown that a LMM effectively reduces the amount
of background activity, and can be used to measure and
test relations between stimulus parameters, psychophysical
responses and nociceptive EPs.

II. METHOD
A. Experiment

Single and double-pulse stimuli are applied to twelve
healthy subjects (5 male, 7 female) via intra-epidermal elec-
trocutaneous stimulation. Nociceptive detection thresholds
are tracked by randomized application of stimuli around the
detection threshold [1]. A vector of 5 stimulus amplitudes
with a step size of 0.025 mA is initialized, of which one
amplitude is chosen randomly for the next stimulus of that
type. During the experiment, all amplitudes in this vector are
increased or decreased depending on the previous response
of the subject. In total 171+24 trials were recorded for every
stimulus type from each subject, with a variable amplitude.
Figure 1 shows an example of the paradigm. The institution’s
ethical review board approved all experimental procedures
involving human subjects.

B. EEG Data Recording and Pre-processing

EEG data was recorded continuously with a sampling rate
of 1024 Hz at 64 Ag/AgCl electrodes placed on the scalp
according to the international 10-20 system using a TMSi
REFA amplifier. In this work, data from the Cz channel
is analyzed. Signals are pre-processed using FieldTrip [5],
a Matlab toolbox for scientific EEG and MEG analysis.
Contamination of the EEG by eye-blinks or movements is

corrected using an independent component analysis algo-
rithm [6]. Trials for EP analysis are extracted from the EEG
using a window ranging from 0.5 s before until 1.0 s after the
stimulus, bandpass filtered from 0.1 to 40 Hz and baseline
corrected using the interval ranging from -0.5 s to O s relative
to stimulus onset. EEG data is downsampled to 200 Hz to
increase computational speed.

C. Model Formulation

The statistical model should ideally include all relevant ex-
perimental parameters. However, the total amount of model
parameters should be restricted to prevent overfitting. In this
case, the detection of a stimulus (D) can be expected to be of
major influence on the EP. Furthermore, another part of the
activity might be directly related to the intensity of the pulse.
Both pulses (P1 and P2) can cause an independent increase
of brain activity. Brain activity can decrease over time with
respect to the number of received stimuli (TRL) due to
habituation. Additionally, effect sizes might be dependent
on the subject. The LMM that is used to describe those
modulations and random effects during the j-th trial of the
i-th subject at time 7 is shown in equation 1.

Yi;i (1) = Bine.(T7) + Br1(T)xP1,45 + Br2(T)xP2,ij + B (T)XD 35
+ Brri(T)xTRL,i; + UInt. s (T) + up1,i (T)TP1,i;
+ up2,i(T)xp2,ij + up,i(T)TD,ij + urrL,:(T)TTRL,qj

+ni; (1) 0

Where:

The single-channel EEG signal in one trial is y;;(7)

The stimulus parameters are £p1,p2/p/TRL,i; (T)

The general model intercept is Brne. (T)

The general model slopes with respect to stimulus

parameters are 8p1/p2/p/TRL(T)

o The subject-specific model intercept is wrne.,i(T)

o The subject-specific model slopes with respect to stimulus
parameters are up1,p2/p/TRL,i(T)

o The model residual is 7;;(7)
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Fig. 3. Grand averages of the EEG signal at Cz, pooled
with respect to amplitude values with more than 300 trials.
Significance is computed using cluster-based permutation
testing [7].
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Fig. 4. Average model fit for amplitude values with more
than 300 trials at Cz, and the percentage of explained vari-
ance of the average model fit. Significance was computed
by a Wald t-test of the model coefficient.
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Fig. 5.

The model coefficients and their significance based on a Wald ¢-test at Cz. All coefficients are significant during the post-stimulus interval. The

influence of the first pulse and second pulse is computed by the coefficients Sp1 and Sps. The influence of stimulus detection and the number of received

stimuli is computed by the coefficients Sp and Sr gL .

D. Analysis and Statistical Testing

The model variables are centered and scaled based on
their mean and standard deviation. Next, model coefficients
are estimated for every point in time by optimization of
the restricted maximum likelihood using Matlab (The Math-
Works Inc., version 2015b). To verify model validity, the
model residuals are assessed for normality along the entire
EP interval. Significance of the model coefficients is tested
against the null-hypothesis using a Wald ¢-test. To reduce the
chance of false significance due to retesting, the requirement
is imposed that a coefficient should be significant (p <
0.05) for at least 4 subsequent time points. Furthermore, the
residual is checked for normality along the entire interval.

ITI. RESULTS
A. Reduction of Background Activity

Figure 2 shows that averaging data for every amplitude and
stimulus type per subject results in estimated EPs where post-
stimulus activity is difficult to distinguish from pre-stimulus
activity due to the high amount of background activity. One
way to obtain information about how the EP varies with
respect to the stimulus amplitude is by pooling the data with
respect to the amplitude and average over considerably larger
sets of trials. Figure 3 shows EP waveforms computed by
averaging over trials pooled for the three stimulus amplitudes

with the largest number of trials. Although the estimated EPs
show a clear variation with respect to stimulus amplitude, the
pre-stimulus period shows that our estimate still contains a
considerable amount of background activity. Figure 4 shows
the average fit of a LMM on the same data. In this figure, the
pre-stimulus period shows clearly less background activity.
For both figures, the percentage of explained variance
was computed by dividing the variance of the model fit
by the total variance on each point in time. In the case
of averaging, the average was considered the model fit. A
comparison between the amount of explained variance in
Figure 3 and Figure 4 shows that the data from all trials
using a LMM increases the amount of explained variance.
A comparison between the significance returned by cluster-
based permutation testing [7] of the contrast (left) and the
significance of the model coefficient (right), shows that
testing the model coefficient results in a higher and more
sustained significance of the effect of stimulus amplitude.

B. Influence of Stimulus Parameters

Model coefficients are shown in Figure 5. All coefficients
show a significant modulation of the EP. The coefficients can
be used to predict the variation of the EP with respect to the
variation of a single parameter. In Figure 6 the variation
of EP with respect to the pulse amplitudes and stimulus
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Fig. 6. The effect of variation of stimulus detection (D), the pulse amplitude
(P1 and P2) and the amount of received stimuli (TRL) with respect to the
model intercept at Cz.

detection is predicted using the model. The Figures 3 and
4 both show a strong modulation by the stimulus amplitude.
However, the prediction of the linear mixed model in Figure
6 mostly varies with respect to stimulus detection.

IV. DISCUSSION
A. Reduction of Background Activity

Figure 5 shows that evoked potentials which are estimated
using a linear mixed model include less background activ-
ity and therefore provide a more accurate estimate of the
stimulus-related electrophysiological activity. Furthermore,
using a LMM increases the percentage of explained variance
with respect to averaging by using a larger amount of trials.
This was successfully demonstrated in Figures 3 and 4,
where an increase of the explained variance from 3.6%
to 24.4% can be observed around 0.4 s. The significance
returned by a Wald t-test of the model coefficient shows
a higher and more sustained significance of the effect of
stimulus amplitude than cluster-based permutation testing.
This demonstrates that for a multi-stimulus experiment a
Wald t-test of the model coefficient is a more efficient
statistical test than cluster-based permutation testing of the
contrast.

B. Influence of Stimulus Parameters

The model shows significant modulation of the EP by
all factors. As can be expected based on neurophysiology,

the coefficient of the first pulse modulates an earlier part
of the EP than the coefficient of the second pulse and
the coefficient of stimulus detection. A major part of the
EP waveform is significantly modulated by the amount of
received stimuli: due to habituation the EP will be lower
with respect to stimuli of the same amplitude at the end
of the experiment. While conventional averaging would not
have enabled analysis of the influence of stimulus amplitude
and the amount of received stimuli, the LMM successfully
accounts for those effects.

Since stimulus detection is correlated with the pulse am-
plitude (i.e. a higher pulse amplitude results in an increased
detection probability), the variation in the average EP in
Figures 3 and 4 is likely confounded by stimulus detection.
The model prediction in Figure 6 shows that the observed
variation of the EP is mainly caused by stimulus detection,
while changes in pulse amplitudes only result in minor
changes of the EP. Conventional averaging might not have
revealed these relations between stimulus parameters and
the EP, since inclusion of all potential confounders in the
analysis would not be possible due to a lack of trials.
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