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A B S T R A C T

The Stribeck curve shows the friction coefficient as a function of speed, viscosity and load. The viscosity times
speed over load parameter can be interpreted as a film thickness. The film thickness over roughness parameter
unifies friction curves in the isoviscous rigid regime. In this paper, the Stribeck curve is predicted numerically in
the full-film Elastohydrodynamic Lubrication regime. It is shown that the lambda ratio is not the most appro-
priate parameter. A more elaborate parameter including the operating conditions and based on the Amplitude
Reduction Theory [1] gives much better results. For a complex surface topography, the full numerical simulation
is time-consuming. A rapid prediction method is proposed. Good agreement is found between the full numerical
simulation and the prediction.

1. Introduction

Most machine elements are working under elastohydrodynamically
lubricated (EHL) conditions. Understanding the frictional behavior in
such contacts play an important role for reducing friction, preventing
wear as well as improving service life. The Stribeck curve: friction
coefficient as a function of the Sommerfeld number, is a useful tool to
describe the frictional characteristics of a liquid lubricant [2]. In 1879,
Thurston [3] gave precise values of the friction coefficient and he was
probably the first person to report that the friction coefficient passed
through a minimum as the load increased [4]. Twenty years later,
Stribeck [5] published results of a carefully conducted and wide-ran-
ging series of experiments on journal bearings, which are frequently
referred to as ‘the Stribeck curve’. Gϋmbel [6] analysed Stribeck's ex-
perimental results in a single curve by plotting the friction against the
parameter p/ ¯, where is the lubricant viscosity, is the angular
velocity of the shaft and p̄ is the load per unit length. At the same time,
Hersey [2] conducted experiments on journal bearings and plotted the
friction coefficient against the load, speed, temperature, viscosity and
rate of oil supply. He showed that hydrodynamic friction should be a
function of n p/ in which n is the rotational speed and p is the pressure.
Many years later, Wilson and Barnard [7] replotted the Stribeck curve
by introducing a new variable i.e. zn p/ , where the lower-case z stands
for the lubricant viscosity. Subsequently, McKee [8] provided a similar
dimensionless group ZN P/ . Vogelpohl et al. [9] incorporated the

boundary and fluid friction coefficient and showed a transition from the
hydrodynamic lubrication regime to the mixed lubrication regime. All
of the work mentioned above is performed under low pressure condi-
tions, in the isoviscous rigid regime.

The situation for non-conforming contacts, such as those occurring
in rolling element bearings, gears and seals, is somewhat different [10].
Shotter [11] experimentally showed that the friction increases with the
surface roughness. Tallian and his co-workers [12,13] proposed a ratio

0 between the elastohydrodynamic film thickness and the composite
root mean square roughness to represent the mixed elastody-
drodynamic regime ( < <1 40 ). Poon [14] was concerned with the
transition from the boundary to the mixed regime with a dimensionless
parameter 1.0 2.0 and the transition from mixed to full EHL re-
gion with <2.0 2.4 by using electrical-conductivity measurements.
Bair and Winer [15] plotted the reduced traction coefficient as a
function of a lambda ratio by performing sliding-rolling experiments.
They found that when the lambda ratios is less than 2 the contact moves
into the mixed regime. In general, the Stribeck curve is plotted versus
the lambda ratio, which is defined as central film thickness to compo-
site surface roughness. Typically, the lubrication regimes can be divided
as [16]: > 3.0 represents the full-film regime, 1.0 3.0 is the
mixed EHL regime and < 1.0 indicates the boundary regime. How-
ever, study [17] shows that this lambda ratio is not a suitable parameter
to determine lubrication states when some aspects such as non-New-
tonian, thermal and transient effects are considered. Transition
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locations from mixed to boundary lubrication regime or from full-film
to mixed lubrication regime are still ambiguous. Therefore, an appro-
priate grouping including the speed, film thickness and roughness is
required. Schipper [18] suggested a so-called Lubrication number L ,
which takes viscosity, speed and pressure into consideration, to detect
the variation of the friction coefficient.

Because the full numerical model of mixed lubrication is compli-
cated and the knowledge of the physico-chemical interactions in
boundary lubrication is still insufficient, most of the work was done
experimentally. Recently, Gelinck [19] extended Johnson's model [20]
to calculate the coefficient of friction for the whole mixed EHL regime.
Lu and Khonsari [21] examined the behavior of the Stribeck curve
theoretically and experimentally on a journal bearing and found a good
agreement. Wang et al. [22] presented a numerical approach developed
on the basis of deterministic solutions of mixed lubrication to evaluate
sliding friction. Meanwhile, they measured the sliding friction on a
commercial test rig. Both results were plotted against sliding velocities
and also showed good agreement. Kalin [23] investigated changes of
the Stribeck curve when one or two surfaces in the contact are non-fully
wetted. Afterwards, Kalin [24] tested the variations of the friction
coefficient with diamond-like carbon coatings (DLC). Results showed
that in the boundary-lubrication regime the Stribeck curve of the DLC
contacts has an inverse shape to that of the steel contacts. Zhang [25]
developed a numerical approach assuming the asperity interaction
friction is proportional to the contact area to predict the mixed EHL
friction coefficient. Bonaventure [26] and his co-authors conducted
rolling-sliding experiments with randomly surface roughness, they
found that the onset of ML at a higher entrainment products ue0 (in
which 0 is inlet viscosity and ue is entrainment speed) and a relevant

roughness scalar parameter was obtained to predict the onset position.
In previous work on the Stribeck curve, the friction coefficient is

depicted as a function of the oil film thickness to the combined surface
roughness. Recent work [1] shows that under very high pressure si-
tuations, surface roughness will be deformed, and this deformation
depends on the operating conditions. Hence, the old parameter “lambda
ratio” is replaced by a new parameter. The current study employs the
Amplitude Reduction Theory [1] to predict the Stribeck curve nu-
merically in the full-film EHL regime. A new parameter including the
operating conditions is derived to unify all simulation results into a
single curve. Meanwhile, a rapid prediction method based on the
roughness power spectral density (PSD) is provided to predict the re-
lative friction increase due to roughness which is shown to yield results
with good engineering accuracy for practical use.

2. EHL model

2.1. Equations

The classical Reynolds equation for the transient case reads [27]:

+ =
x

h p
x y

h p
y

u h
x

h
t12 12

¯ ( ) ( ) 0
3 3

(1)

with =p 0 on the boundaries and the cavitation condition p 0 ev-
erywhere. Where p represents the pressure, h denotes the film thickness
and = +u u u¯ ( )/21 2 is the mean velocity.

The density and the viscosity are defined by the Dowson and
Higginson relation [28] and the Roelands viscosity pressure relation
[29] respectively. Meanwhile the film thickness equation is denoted as:

Notation

ad deformed amplitude in the center of the contact [m]
Ad dimensionless deformed amplitude in the center of the

contact
a i initial amplitude [m]
A i dimensionless initial amplitude
ah the radius of the contact area =a wR E3 /(2 )h x3 [m]
E reduced modulus of elasticity = +E E2/ (1 )/1

2
1

E(1 )/2
2

2 [Pa]
f the friction force induced by the shearing of the lubricant

[N]
F the dimensionless friction force
G dimensionless material parameter =G E
h film thickness [m]
H dimensionless film thickness =H hR a/x h

2

hc central film thickness [m]
Hc dimensionless central film thickness for smooth case

=H h R a/c c x h
2

H H,x y dimensionless mesh sizes in x and y directions respectively
L L,x y lengths of final topography [m]
L dimensionless material parameter (Moes) =L G U(2 )0.25

M 2d dimensionless load parameter (Moes) =M W U(2 )2
0.75

p pressure [Pa]
ps Pressure for smooth cases [Pa]
p pressure fluctuations [Pa]
P dimensionless pressure fluctuations =P p p/ h

q q,x y Wavenumbers in x and y directions respectively [1/m]
Rx reduced radius of curvature in x: = +R R R1/ 1/ 1/x x x1 2 [m]
Ry reduced radius of curvature in y: =R Ry x [m]
rr surface roughness [m]
rrd Deformed surface roughness [m]
RR dimensionless surface roughness =RR rr R a/x h
t time [s]

T dimensionless time =T t u a¯/ h
ū mean velocity = +u u u¯ ( )/21 2 [m/s]

u sliding speed =u u u1 2 [m/s]
U dimensionless speed parameter =U u E R( ¯)/( )x0

U slide-to-roll ratio = =U u u u u u/ ¯ ( )/ ¯1 2
Ura t slip parameter =U u u/ ¯ra t 1
w normal load [N]
W2 2d dimensionless load parameter =W w E R/( )x2

2

x coordinate in the rolling direction [m]
X dimensionless coordinate =X x a/ h
X̄ dimensionless surface feature location
y coordinate perpendicular to x [m]
Y dimensionless coordinate =Y y a/ h

pressure viscosity index [1/Pa]
¯ dimensionless viscosity index = p¯ h

shear stress induced by the shearing of the lubricant [Pa]
2 dimensionless wavelength parameter defined in Ref. [1]

¯ dimensionless speed parameter
,x y wavelength in x, y direction, = =x y [m]

¯̄ dimensionless wavelength = a¯̄ / h
viscosity [Pa·s]

0 the atmospheric viscosity [Pa·s]
¯ dimensionless viscosity =¯ / 0

density [Kg m 3]
0 the atmospheric density [Kg m 3]

¯ dimensionless density =¯ / 0

subscripts

a b, inlet, outlet
i d, initial, deformed
r s, rough, smooth
st start
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where

= +E E E2/ (1 )/ (1 )/1
2

1 2
2

2

and is the Poisson ratio, and E is the elastic modulus of the two bodies
1 and 2 respectively. E is called the reduced elastic modulus and
rr x y t( , , ) stands for the undeformed roughness of the two surfaces.

Finally, the force balance equation should be satisfied all the time.

=
+ +

w t p x y t dx dy( ) ( , , )
(3)

where w is the normal load.
In the full-film EHL regime, the friction force is mainly determined

by the shearing of the lubricant in the contact zone, which is written as

= =f t x y t dxdy p t u
h x y t

dxdy( ) ( , , ) ( , )
( , , ) (4)

where =u u u1 2 is the sliding speed, f and are friction force and
shear stress respectively.

In the current work, a Newtonian lubricant, an isothermal regime
and a circular contact condition are proposed. To reduce the number of
the independent parameters, we introduce =P p p/ h, =X x a/ h, =Y y a/ h
and =H h R a/x h

2, based on Hertz and =T t u a¯/ h, =¯ / 0 and =¯ / 0.
Dimensionless forms of equations (1)–(3) are used as expressed in Ref.
[27].

The dimensionless form of Eq. (4) is

=F T P T U
H X Y T

dXdY( ) ¯ ( , )
( , , ) (5)

in which =U u u/ ¯ is the slide/roll ratio.
Consequently, the relative friction coefficient is defined by

= =
µ
µ

T F T
w

F
w

F T
F

( ) ( ) / ( )r

s

r s r

s (6)

where the subscripts r and s stand for the rough and smooth case re-
spectively.

2.2. Numerical solution

In order to solve the EHL contact model, the well-known Multigrid
technique [27] is used. However, the performance of the existing Multi-
Grid algorithm in terms of efficiency and stability deteriorates when
large variations of the coefficient h /3 occur on a small scale, as in the
case for very rough surfaces. An efficient way of restoring the perfor-
mance is by constructing the coarse grid operator, and the intergrid
transfers as proposed by Alcouffe et al. [30]. The partial differential
equation considered by Alcouffe is

+
=

D X Y T U X Y T X Y T U X Y T
FF X Y T
( ( , , ) ( , , )) ( , , ) ( , , )

( , , ) (X,Y) (7)

where D, U and FF are discontinuous functions on the bounded region
.

The dimensionless Reynolds equation has the same form as Eq. (7)
with: =U P, = 0, =D H¯ / ¯ ¯3 and = +FF H X H T( ¯ )/ ( ¯ )/ . In
this study, the calculation domain is a rectangle ×X X Y Y[ , ] [ , ]a b a a
covered by a uniform grid. The mesh size in the two directions is

=Hx X X Nx( )/b a and =Hy Y Y Ny( )/a a respectively, in which Nx
and Ny are the number of grid points in x- and y-direction. According to
Eq. [2.4] in Ref. [30], the dimensionless Reynolds equation is dis-
cretized as:

+ +

+ =
+ +A P P A P P B P P

B P P ff

( ) ( ) ( )

( )
i j k i j k i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k

, , , 1, , , , 1, , 1, , , , , 1, , , ,

, 1, 1, , , , , , (8)

where = + +A D D0.5( )i j k i j k i j k, , , , , 1, , = + +B D D0.5( )i j k i j k i j k, , , , 1, , , and
=ff Hx Hy FF( )i j k i j k, , , , .The right hand side of Reynolds equation ffi j k, , is

discretized using a second order backward discretization.
Compared to the classical Multilevel method, improvements re-

ferred in Ref. [30] are mainly represented in two aspects. One is con-
structing new intergrid transfer operators IH

h and Ih
H based on coeffi-

cients Ai j k, , and Bi j k, , , which allows D P to be continuous over the
whole calculation domain and gives a more reasonable physical re-
presentation on a coarse grid. Another is rebuilding the coarse grid
operator using Galerkin coarsing =L I L IH

h
H h

H
h to form a good approx-

imation to the fine grid operator to eliminate low frequency error
components.

3. PSD relative friction model

An alternative approach to predict the relative friction coefficient
for a complex rough surface is by applying the power spectral density.
The power spectral density (PSD) is a mathematical tool that can de-
compose a rough surface into harmonic components of different fre-
quencies [31], which enables the pressure increase to be calculated
analytically for each frequency component. Subsequently, the shear
stress for the whole rough surface can be obtained. At last, the relative
friction coefficient is obtained. The calculation process is as follows:

A rough surface topography rrx y, can be expressed in the frequency
domain by means of the Fourier transform:

= +rr
N N

rr e4 ( )q q
x y x y x y

i q x q y
, , ,

( )
x y

x y
(9)

where rrx y, is the discrete form of the surface roughness rr x y( , ), qx and
qy are the wavenumbers in x and y direction respectively. In general, Eq.
(9) is computed by the fast Fourier transform (FFT) algorithm.

Combing Eq. (9) and Eq. (6) in Ref. [1], the deformed surface
roughness rrq q

d
,x y in the frequency domain is:

=rr A
A

rrq q
d d

i q q
q q,

,
,x y

x y
x y

(10)

According to the relation between the pressure and the elastic de-
formation of the waviness given in Ref. [32], the pressure increase in
the frequency domain follows the expression below

=p E rr rr
2q q q q q q

d
, , ,x y x y x y

(11)

Where is defined as = +q q2 x y
2 2 in terms of the isotropic surface

topography.
With the inverse discrete Fourier transform, the pressure increase in

the space domain is obtained:

= +p
N N

p e4
x y

x y q q q q
i q x q y

, , ,
( )

x y x y
x y

(12)

According to Eq. (4), the ratio of the shear stress /r s can be derived
as:

= =x y
x y

x y
x y

h x y
h x y

x y
x y

h x y
h x y a x y

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , ) ( , )

r

s

r

s

s

r

r

s

s

s d (13)

It is easy to obtain the shear stress distribution x y( , )s or the smooth
surface case, where the pressure distribution for the smooth surface
case can be replaced by a semi-elliptical pressure distribution:

= +p x y p x a y a x y a( , ) 1 ( / ) ( / ) if
0 otherwise.

s
h h h h

2 2 2 2 2

Y. Zhang et al. Tribology International xxx (xxxx) xxx–xxx

3



Afterwards, the pressure distribution for roughness cases is com-
puted by +p ps . The shear stress distribution x y( , )r for a rough
surface case is obtained as:

=x y
x y
x y

h x y
h x y a x y

x y( , )
( , )
( , )

( , )
( , ) ( , )

( , )r
r

s

s

s d
s

(14)

Finally, the shear forces for both of the smooth case and the rough
case are computed by integrating the shear stress x y( , )s and x y( , )r ,
respectively. The relative friction coefficient is then calculated ac-
cording to Eq. (6). A detailed description for the prediction process of
the relative friction coefficient is shown as Fig. 1.

4. Results

The relative friction coefficient is predicted for a harmonic surface
roughness and for artificial fractal surface roughness respectively. The
model validation is presented in section 4.1. Subsequently, in section
4.2 and 4.3, prediction results for two types of surface topography are
discussed.

4.1. PSD friction model validation

To validate the model described in Section 3, the relative friction
coefficient evaluated from a full numerical simulation is compared with
that predicted by PSD under the same operating conditions. The nu-
merical simulation takes place on a domain X2.5 1.5 and

Y2.0 2.0 with ×513 513 equal-spaced points. The time step is
selected equal to the spatial mesh size, i.e. with

= = =T HX HY 0.0078125. Meanwhile, the calculation starts with
=X 2.5st and the surface topography moves into the high pressure

zone with the velocity of the rough surface u1. The monitoring time
should be long enough so that the ‘steady oscillations’ of the results
occur. What we considered in the present work is the small-amplitude
roughness so that a small slip parameter is selected i.e. =U 1.01ra t . This
small slip assumption allows us to use the numerical solver for pure
rolling and the Amplitude Reduction Theory [1] in pure rolling as well,
as shown by Ref. [33]. In this study, the rough surface topography used
is isotropic. Studies on non-isotropic surfaces will be considered in fu-
ture work.

An artificial fractal rough surface is chosen to validate the model

mentioned in section 3 and the operating condition parameters are
listed in Table 1.

Table 2 presents the friction ratio as a function of the mesh points
for the two methods. The results predicted by two schemes are basically
identical. The ratio of friction coefficients predicted by the PSD method
changes slightly (<0.085%) with decreasing mesh size. However, in the
full numerical simulation, a large mesh size leads to a relative high
deviation. This is because some high frequency components of the
rough surface can not be represented on such a large mesh size cor-
rectly. In this article, the precision of the numerical results simulated by

×513 513 mesh points is considered acceptable.

4.2. The isotropic harmonic surface roughness

The isotropic harmonic surface pattern employed in this article is
the same as that in Ref. [1], i.e.:

Fig. 1. Flow chart for the relative friction coefficient prediction.

Table 1
Operating condition parameters.

Parameter Value Units

w 600 N
ū 0.84 m/s
R 0.018 m
E 2.26e11 Pa

2.2e-8 Pa 1

0 40e-3 Pa·s
0.05e-6 m

=L Lx y 8.29e-4 m
qr 0 m 1

=N Nx y 256
Hurst exponent 0.8

Table 2
Relative friction coefficients as a function of the mesh points for two prediction
schemes.

Mesh points ×N Nx y =H Hx y µ µ/r s(PSD) µ µ/r s(EHL)

×257 257 1/64 1.53 1.48
×513 513 1/128 1.53 1.51
×1025 1025 1/256 1.53 1.51
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=RR X Y T A X X Y( , , ) 10 cos 2 cos 2i
X X10 max(0,( )/ )

2

(15)

where = +X X U T¯ st rat , A i is the initial amplitude of the harmonic
surface pattern, ¯̄ is the dimensionless wavelength which equals to

a/x h or a/y h for an isotropic surface pattern. The exponential term in
Eq. (15) is used to avoid discontinuous derivatives when the roughness
moves into the calculation domain.

Fig. 2 shows the relative friction coefficient as a function of the

dimensionless time. The operating conditions are =M 1000, =L 10,
= × = ×A H0.4 9.734 10i c

3 and = 0.5. The value of µ µ/r sis ob-
tained by averaging µ µ T/ ( )r s over a time period. For this case, the re-
lative friction coefficients is =µ µ/ 1.461r s .

Fig. 3 presents the relative friction coefficient as a function of H A/c i
for many different operating conditions. It is readily observed that the
relative friction coefficient decreases with increasing H A/c i. Indeed,
with increasing H A/c i, the relative rough surface becomes ‘smoother’
and the relative friction coefficient approaches 1. For each operating
condition, a very smooth curve is obtained, however, we can not have a
single curve like that for low pressure application through the para-
meter H A/c i (or h /c ) to correctly describes the transition. According
the Amplitude Reduction Theory [1], under very high pressure situa-
tion, surface roughness will be deformed. Instead of using this simple
parameter A i or a measured surface roughness parameter , it is better
to use the deformed parameter A d.

Using the Amplitude Reduction Theory [1], it is possible to combine
all results obtained for different values of ¯̄, M , L as well as H A/c iinto a
single curve using a dimensionless parameter 2. Fig. 4 shows the re-
lative friction coefficient as a function of 2 for M500 2000,

L5 15, 0.25 ¯̄ 1.0 and H A1.0 / 10c i . After curve-fitting, the
single curve can be described by the following equation:

= + +
µ
µ

1 0.546 0.219r

s
2

2
2

4

(16)

where = L M H A¯̄ ( / )c i2
1.1 0.33 0.67 .

The physical justification of this scaling parameter can be seen from
a simplified analysis given in the Appendix.

4.3. The artificial fractal surface roughness

The artificial surface topography is generated by means of fractals.
Fig. 5 depicts an artificial fractal surface topography and its corre-
sponding “power spectral density” (PSD). This surface geometry is
produced with the input parameters given in Table 1 without a roll-off
region.

The resulting deformed micro-geometry, of which the original sur-
face topography is shown in Fig. 5 (a) for a full numerical EHL simu-
lation and a PSD prediction, are presented in Fig. 6. In terms of nu-
merical simulation results, the deformed micro-geometry A d is
obtained by h hs r and removing data outside the high-pressure zone.
Once again, for this specific surface, the operating conditions are the
ones given in Table 1 where =M 1000 and =L 10. Both the deformed
surface topographies A d are shown in the same region ( +X Y 12 2 ).
The maximum Hertzian pressure reaches 1.66 GPa and the maximum
surface roughness height deformed significantly from ×1 10 m7 to

×3.5 10 m8 . In addition, it is shown that the height distribution of the
deformed surface roughness from the EHL simulation and the PSD
prediction are very similar. The results of the numerical prediction are
less detailed. This is because high frequency components of the surface
roughness can not be well represented on the selected mesh. Therefore,
these components are averaged.

Twenty artificial randomly rough surfaces were generated with the
same input parameters i.e. the standard deviation = ×5 10 m8 ,
lengths of final topography = = ×L L 8.29 10 mx y

4 , roll–off wave
number =q 0 mr

1 and Hurst exponent = 0.8. The relative friction
coefficient values for these artificial randomly rough surfaces are given
in Fig. 7, showing that the two different prediction methods give closer
results. And the average deviation around 8%.

5. Conclusions

An extended multigrid code incorporating Alcouffe's method [30] is
applied in this paper. This numerical simulation tool is employed to
generate the Stribeck curve in the full-film EHL regime. The Amplitude
Reduction Theory is used to predict pressure increase due to waviness

Fig. 2. The relative friction coefficient as a function of dimensionless time T for
=M 1000, =L 10, = ×A H0.4i c and = 0.5.

Fig. 3. The relative friction coefficient as a function of H A/c i.

Fig. 4. The relative friction coefficient as a function of 2.Dotted curve: equa-
tion (16).
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deformation. This local pressure increase causes a friction increase. For
many isotropic harmonic surfaces, all the relative friction coefficients
fall onto a single curve using the dimensionless coordinate

= L M H A¯̄ ( / )c i2
1.1 0.33 0.67 . This means that the transition from the

mixed to the full-film regime is determined by 2 and not simply by the
lambda ratio. For a complex rough surface, thousands of time steps are
needed for the full numerical simulation, which requires 3 days of
computation. In this work, a rapid analytical prediction method, whose

calculation time for each time step is only 2 s is proposed. The two
methods show good agreement.
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Appendix

According to the Barus [34] viscosity-pressure equation, the shear stress ratio can be approximated as:

= + + + + +e P P P P1 ¯ ( ¯ )
2!

( ¯ )
3!

( ¯ )
4!

...r

s

P
2 3 4

(17)

Fig. 5. The artificial fractal surface and its “power spectral density” (PSD). The 2D surface roughness topography z x y( , ) (a) can be represented as a 2D PSD
C q q( , )D

x y
2 (b), and for this isotropic surface, the radial average C q( )iso is shown in (c).

Fig. 6. Deformed surface roughness for a specific time step. Top view of the deformed surface roughness for a full numerical simulation (left) and for a PSD prediction
(right).

Fig. 7. The relative friction coefficient obtained by EHL simulation and PSD prediction for 20 artificial randomly rough isotropic surfaces.
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where the pressure increase P has a linear relation with deformation [32], i.e. = ( )P 1A A
A2

i d
i

2
. Using a first order approximation of the

dimensionless pressure increase P, P¯ reduces to:

P A L M H H
A

¯ ¯
2

3
2 2

i c c

i

2 1/3 2 1

(18)

where ¯ is expressed as = ( )¯ L M3
2

1/3
. Defining Hc

Dthe dimensionless film thickness value using the well-known Hamrock-Dowson equation [35],
=H L U M1.2c

D 0.53 0.49 0.067. Now the dimensionless central film thickness Hc can be rewritten as

=H R
a

Hc
x

h
c
D

2

2 (19)

in which R a/x h
2 2 is expressed as =R a M U/ (3/2)x h

2 2 2/3 2/3 0.5.
Substituting Eq. (19) into Eq. (18) gives:

P L M H A¯ 1.6467[ ( ) ( / )]c i
1.53 0.4 1 1

(20)

Applying a second order approximation of P, P¯ yields:

P A A
A

L M H A¯
2

1 0.24[ ( ) ( / )]i d

i
c i

2
1.03 0.1 0 1

(21)

where A A M L/ 1 0.15 1 0.15 ( / )d i 2
0.5.

Observing Eq. (20) and Eq. (21), the exponent of the parameter M varies from −0.1 to 0.4, the exponent of L varies from −1.03 to −1.53 and
that of ¯̄ varies from 0 to 1. Hence the expression of the 2 parameter using M0.33, L 1.1 and ¯̄0.67 employs coefficients that fall in the range outlined
above.
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