
Contents lists available at ScienceDirect

Tribology International

journal homepage: www.elsevier.com/locate/triboint

Boundary layers: Unifying the impact and rolling EHL point contacts

A.A. Lubrechta,∗, N. Bibouleta, C.H. Vennerb

aUniversité de Lyon, INSA-Lyon, LaMCoS, CNRS UMR 5259, Villeurbanne, F69621, France
bUniversiteit Twente, Enschede, the Netherlands

A R T I C L E I N F O

Keywords:
EHL
Impact lubrication
Amplitude reduction theory

A B S T R A C T

Transient effects in elastohydrodynamic lubrication occur due to varying operating conditions and surface
features moving through the contact. For rolling/sliding contacts the lubricated contact behaviour is determined
by a unifying mechanism characterized by the inlet length (boundary layer). Roughness deformation depends on
a single dimensionless parameter representing the ratio inlet length to wavelength. This behaviour is shown to
generalize to the pure impact problem. The bell shaped film thickness near the periphery of the contact is
directly related to the boundary layer velocity profile. Also, the waviness deformation under impact conditions is
shown to depend on the same parameter as in rolling contacts when the rolling velocity is replaced by the local
boundary layer velocity in the impact problem.

1. Introduction

Lubricated concentrated contacts as appearing between gear teeth,
in rolling bearings and cam-follower mechanisms have now been stu-
died for over 100 years. Martin [1] and Gümbel [2] showed that
standard lubrication theory is unable to predict sufficient lubricant film
formation to separate surfaces with realistic roughness. The two missing
physical effects explaining lubrication are the elastic deformation of the
surfaces and the viscosity pressure dependence as was demonstrated by
Ertel and Grubin [3]. The viscosity pressure dependence introduces the
special feature of a pressure spike, first shown in the solutions presented
by Petrusevich [4]. Hence, lubrication of concentrated contacts was
established as a separate specialism: ElastoHydrodynamical Lubrica-
tion. Based on numerical solutions, film thickness predictions were
derived for line contact by Dowson and Higginson [5] and for circular
contact by Hamrock and Dowson [6]. Both formulas are still widely
used. The development of faster, more stable and efficient numerical
algorithms and the advances in computer hardware in terms of com-
putational speed and memory capacity, have led to the study of in-
creasingly complex and realistic problems. Since the late 1980's many
theoretical studies by different groups of researchers have appeared
leading to a very advanced understanding of film thickness behaviour
under steady state (isothermal) fully flooded conditions, e.g. see Ref.
[7] (and later [8–10]), under starved conditions [11], in transient
problems of varying load and speed [12–14] and with surface features
moving through the contact, [15,16]. Several authors simulated mea-
sured surface roughness profiles in point contacts moving through the
contact and many other phenomena, e.g. see Ref. [17]. As an

alternative to the simulations with measured roughness proflies, a
group of researchers developed a conceptual approach to derive an
engineering relation for roughness deformation from the study of the
deformation of harmonic waviness, e.g. see Refs. [18–22]. It was found
that the deformation was governed by a unifying mechanism reflected
by a single nondimensional parameter representing the ratio of inlet
length to wavelength which was shown to generalize for all contacts
including starved ones [23]. The physical rationale and generality for
line and point contacts (isoviscous) is presented in Ref. [44]. As a result
of the many studies rolling/sliding EHL contacts are well understood.
Many of the phenomena observed have been validated experimentally
using optical interferometry with a model ball on disc contact [24].
Overviews of the many developments can be found in Refs. [25–27].

The problem of two bodies in normal approach, referred to as the
impact EHL contact has received much less attention. The dry contact
impact problem is described by Johnson [28]. Early numerical studies of
the lubricated contact are found in the work of Christensen [29], Yang
et al. [30] and Larsson et al. [31]. Detailed aspects were further analysed
by Guo, Kaneta and Wang [32,33,35], and e.g. surface waviness effects in
Ref. [34]. Experimental work includes that of Cameron [36], Safa [37],
Wong [38] and Kaneta et al. [39,40]. In addition to the engineering lit-
erature, problems very similar to the impact problem are extensively
discussed in the literature of physics, with relevance to, e.g. droplet im-
pact, bubble interaction, and impact of soft materials e.g. see Ref. [41].

Under impact conditions when the two surfaces approach, lubricant
is pushed to the sides and the pressure in the center increases as would
be the case for undeformable surfaces. However, enhanced by the
viscosity pressure dependence, the surfaces start to deform in the
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center, creating a bell shaped enclosure, entrapping lubricant.
Subsequently, the minimum film thickness occurs near the sides where
a thin film thickness front is advancing as the load and thereby the
contact region, increases. The film shape in the periphery of the contact
exhibits similar phenomena to the film thickness in the exit region of
rolling/sliding contacts. During further impact the film thickness in the
center changes only marginally. Upon rebound this remains to be the
case and the thin film front at the periphery recedes. The film thickness
in the center again remains roughly unchanged. In recent work the
authors [42,43] generalised the film thickness prediction of the impact
central film thickness for the Iso-Viscous Elastic and the Piezo-Viscous
Elastic regimes for both line and point contacts. In these papers the
behaviour of the film thickness in the region of minimum film thick-
ness, i.e. the periphery of the contact is addressed. For rolling-sliding
EHL contacts, it was shown that the film thickness is determined by the
inlet pressure sweep (boundary layer), or in fact the transition region in
which the importance of the Poiseuille flow terms decreases and shear
flow starts to dominate. This boundary layer, its scaling, and the effect
on the EHL film are described in Refs. [44–46]. The current work ex-
tends this boundary layer analysis to the film thickness behaviour in the
impact problem. In particular it is shown that the waviness deformation
under impact conditions, to a good approximation, is governed by the
same mechanism as waviness amplitude reduction in the rolling contact
problem.

To allow the reader to relate the operating conditions to the rolling/
sliding contact, the Moes parameters [47,48] M and L are used. How-
ever, the authors are thoroughly convinced that the parameter set
α λ( , ) is a more coherent choice as it seamlessly combines line and
point contacts [8] as well as rolling/sliding and impacting contacts.

2. Theory

Consider the case of a ball impacting a flat with the two surfaces
separated by a lubricant film, under the assumption of a thin layer flow,
the Reynolds equation can be used. Using the parameters of the dry
contact impact problem, see Ref. [43] the resulting dimensionless
Reynolds equation is:
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in which a* and ph
* are the Hertzian contact radius and maximum

Hertzian pressure at the moment of maximum impact in the dry contact

impact case.
The viscosity and density pressure dependence have been modeled

using the empirical relations presented by Roelands [49] and by
Dowson and Higginson [5].

The equation for the dimensionless film thickness is:
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where Δ is the non dimensional mutual approach of two points in the
solids which is determined by the Newton's second law for the im-
pacting ball:
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The dimensionless initial conditions are:

=d
dT

VΔ
0 (5)

and = =TΔ( 0) Δ0.
The equations were discretized on a uniform grid with second order

accuracy in space and (implicit) in time. The discrete equations at each
time were solved using Multigrid techniques [13,43,50,51].

In the dimensionless rolling EHL contact the λ parameter reads:
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In order to create the same λ parameter for the impact problem and
the rolling problem one introduces the transport time t0:
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Now the impact λ can be written in a similar way:
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Notation

a Hertzian contact radius
a* maximum Hertzian contact radius (over time)
Ad deformed waviness amplitude
Ai initial waviness amplitude

′E reduced elastic modulus
h film thickness
H dimensionless film thickness (Hertz) =H hR a/ *2

L Moes parameter =L α λ π( /6)3 1/4

m sphere mass
M Moes parameter =M π λ((128 )/(3 ))3 1/4

P pressure
ph

* maximum Hertzian pressure (over time)
P dimensionless pressure =P p p/ h

*

R reduced radius of curvature
� surface roughness (waviness)

t time
t0 impact or transit time =t δ v/0

*
0 or =t a u/ m0

T dimensionless time =T t t/ 0

x coordinate
X dimensionless coordinate =X x a/ *

um mean rolling velocity
v0 initial vertical impact velocity
α pressure viscosity index
α product of pressure and viscosity index =α αph

*

δ Hertzian deformation a R/ x
2

δ* maximum Hertzian deformation a R/ x
*2

Δ dimensionless deformation
η viscosity, η0 at ambient pressure
λ waviness wavelength
λ dimensionless parameter =λ η R a t p(12 )/( )h0

2 *2
0

*

ρ density, ρ0 at ambient pressure
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Now the impact time t0 represents the ratio of the impact distance
(the maximum Hertzian deformation δ*) and the impact velocity v0.
Johnson [28] gives this impact time as 2.94, (see appendix).

This means that the lubricated impact problem and the rolling
contact problem are described by the same Reynolds equation.

3. Impact velocity

Whereas the boundary layer horizontal velocity is constant in the
rolling contact, it varies from close to infinity to zero during impact,
depending on the operating conditions (especially the load condition).

The dry impact problem can once again be used as an important
asymptotic solution. Simplifying Johnson's [28] approximate solution,
the contact radius a varies with the contact time t as (see appendix):

= −a t
a

t
t
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2
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with contact occurring for ∈ −t t t[ , ]* * .
In the following figures =t 2.7* and the time origin has been shifted

to fit the dry contact problem.
Fig. 1 shows the evolution of the contact radius and its derivative as

a function of time.
The (horizontal) velocity shows two vertical asymptotes, one at the

first instant of impact and one at the last instant of impact. These two
asymptotes find their origins in the infinite slopes of the Hertzian
contact. Another interesting feature is the near-linear velocity evolution
around maximum impact (see Appendix). Fig. 2 shows that this feature
of the dry impact carries over to all sufficiently loaded lubricated im-
pacts. This figure only shows the first half of the impact as this de-
termines the film build-up.

If one uses the classical Hamrock and Dowson [6] relation between
velocity and film thickness ∝h u0.67 one can draw a “simplistic” theo-
retical film thickness prediction, see Fig. 3.

One can observe, especially from the zoomed Fig. 4, that the fit is
not perfect, but the ∝h u0.67 gives a very nice first order approximation
of the film thickness shape for < <X0.75 0.95. The film thickness in the
central zone is created by the impact motion generating enough pres-
sure for the oil to enter the piezo-viscous regime and be ”frozen” in the
typical bell shape. This regime can obviously not be approximated by
classical rolling sliding motion.

Having shown that the boundary layer velocity gives a good film
thickness prediction, it is now time to analyse another aspect of the
inlet boundary layer: the waviness amplitude reduction.

4. Amplitude reduction

In a rolling EHL contact the pressures are sufficiently large to gen-
erate large deformations of the solid surfaces, i.e. the EHL domain is
also called ”piezo-viscous elastic”, where ”elastic” means that the
elastic deformations are one or several orders of magnitude larger than
the film thickness.

However, in the inlet boundary layer, surface roughness or surface
waviness gives rise to local pressure variations, that can significantly
alter the waviness amplitude. This waviness modification is defined by
the amplitude reduction theory for line contacts [16,52] and for cir-
cular contacts [20,53]. These predictions were experimentally vali-
dated by Sperka et al. [54]. For a two dimensional isotropic waviness,

Fig. 1. Asymptotic (dry) impact analysis, contact radius a a/ * (black) and radius
velocity v v/ * (red). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 2. Lubricated impact analysis, contact radius velocity for = −M 200 10000
(left to right), =L 10.

Fig. 3. Calculated film (black) and approximated (red). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. Zoom of calculated film (black) and approximated (red). (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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the waviness deformation is given by:
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In a classical rolling contact the definition of the waviness ampli-
tude is simple: observe the film thickness at a fixed position ( =X 0) and
monitor the maximum and the minimum film values. The deformed
amplitude Ad is defined as = −A H H( )/2d max minT T .

Two additional difficulties appear in the impact contact problem:
the waviness is frozen in (it does not change over time). The second
difficulty is that the film thickness is not constant, but has a compli-
cated shape. As such the amplitude reduction is defined by the first
deformed waviness (completely inside the contact). Fig. 5 shows the
computed waviness inside ( <X 1) and outside ( >X 1) the contact
zone (Hwavy). At the moment of maximum impact, the waviness de-
formation is defined by:

= = = − =dH X Y H X Y H X Y( , 0) ( , 0) ( , 0)wavy smooth (17)

The waviness deforms only a little in the center of the contact,
whereas the deformation increases towards =X 1. By definition

→A A/ 0d i for →X 1 as the boundary layer velocity tends to zero and
∇ → ∞!2

As such the deformed amplitude is defined by the amplitude of the

wave nearest to =X 1 at the moment of maximum impact. The local∇2
parameter is defined using λ times the local velocity.

Thus one can now plot the amplitude reduction curve A A/d i as a
function of the local ∇2 and the result is given in Fig. 6.

5. Conclusion

The current paper studies the point contact impact problem. It
shows that the dimensionless Reynolds equation for the impact problem
and the rolling sliding problem can be written in an identical way. The
impact problem notation features an impact time =t δ v/0 0, whereas the
rolling/sliding problem uses the transit time =t a u/ m0 . During impact
the boundary layer velocity changes, giving rise to a complex bell-
shaped film geometry. During a significant part of the impact the
boundary velocity evolves linearly with time. It was shown that this
linear velocity evolution linked with the classical relation ∝h u0.67 al-
lows for a good first order film shape prediction.

Finally, it was shown that the waviness inside an impacting contact
deforms and that this deformation varies over the contact. Close to the
contact centre the deformation is smallest, whereas it increases towards
the contact periphery. The waviness deformation behaviour ∇A A/ ( )d i 2
is similar to the trends observed in the rolling sliding contact. When
including the local boundary layer velocity in the ∇2 parameter, good
quantitative agreement with the amplitude reduction theory was ob-
tained.

Appendix

Johnson [28] gives an approximation of the Hertzian deformation δ as a function of time t, using t* as the impact time.
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with an impact time ∈t t[0,2 ]* , however, it will be more convenient to use
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with an impact time ∈ −t t t[ , ]* * . The Hertzian deformation is linked to the contact radius a through =δ a R/ x
2 . As Rx is a constant we can write

= = ⎛
⎝

⎞
⎠

a
a

δ
δ

πt
t

cos
2* * * (20)

as we are interested in the contact radius around its maximum value, for t close to 0, we can use the Taylor expansion of order two

= −a
a

π t
t

1
8*

2 2

*2 (21)

because of the Taylor expansion, the impact time is no longer t2 * which can easily be remedied by removing the constants from the equation

Fig. 5. Waviness amplitude over the contact at the moment of maximum im-
pact.

Fig. 6. Impact waviness amplitude reduction (dots) versus prediction (solid
line).
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by time derivation the velocity of the contact radius can be obtained
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−
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For t close to zero, a linear relation between velocity and time is observed.

= −v t
v

t
t

( )
* * (24)

It is obvious that this simplification should be accurate around the time of maximum impact, =t 0, however, even around =t t* it closely
approximates the asymptotically infinite velocities.

The impact time is given by Johnson as =t 2.94* and by Wijnant [55] as =t 2.69* . The last value is closest to the =t 2.7* value observed in this
work.
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