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1 Introduction

The estimation of micromechanical parameters of discrete element method
(DEM) models is a nonlinear history-dependent inverse problem. In order
to reproduce the experimental measurements with high accuracy, this work
aims to develop a machine learning-based calibration toolbox named “Grain
learning”, which can extract grains from X-ray computed tomography (CT)
images and perform Bayesian parameter estimation for DEM models of dry
granular materials.

2 Bayesian Calibration

We first introduce a feature-based watershed algorithm which performs
multi-phase image segmentation and analysis empowered by the WEKA
machine-learning library [1]. A novel iterative Bayesian filter is developed to
estimate the posterior probability distribution of the micromechanical parame-
ters of a DEM model, conditioned to history-dependent experimental data. The
iterative application of conventional sequential Bayesian estimation [2,3] allows
the virtual granular material to learn from all previous experimental measure-
ments of the physical system being modeled in a fast and automated manner.

Bayesian calibration is conducted for DEM modeling of glass beads
under cyclic oedometric compression. Using the particle configuration result-
ing from the CT images, the representative volume of a glass bead packing is
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reconstructed in DEM simulations. The DEM packing governed by the simpli-
fied Hertz-Mindlin contact law and rolling resistance is then calibrated through a
iterative Bayesian filtering process, which is able to focus increasingly on highly
probable parameter subspaces over iterations. Three iterations are needed to
obtain excellent agreement between posterior predictions and experimental data
as well as accurate approximation of the posterior probability distribution as
shown in Fig. 1a. From the posterior probabilities, micro–macro correlations can
be obtained with known uncertainties (see Fig. 1b), which also help understand
the uncertainty propagation across various scales.

Fig. 1. (a) Posterior PDF estimated at the beginning (blue) and the end (red) of the
sequential Bayesian filtering. 2D projections of the posterior PDF in the above- and
below-diagonal panels are colored by the posterior probability densities. (b) Approxi-
mated posterior distributions for pairs of micromechanical parameters and macroscopic
quantities of interest at the maximum stress ratio state.

3 Validation

To demonstrate that the grains are successfully trained by the experimental
data, DEM modeling of elastic waves propagating through a long granular col-
umn is considered for model validation. The elastic moduli are experimentally
measured from ultrasonic traces received along the oedometric compression path.
The elastic moduli can be numerically calculated by (1) static probing: load the
representative volume with a small strain increment, and (2) dynamic probing:
agitate elastic waves through a long granular column constructed with the same
representative volume. The wave velocities obtained at different pressures using
the two approaches quantitatively agree with those measured in experiments,



134 H. Cheng et al.

Fig. 2. Comparison of elastic wave velocities predicted by the two probing methods
and measured in ultrasonic experiments. A wavelength of 100 times the mean particle
diameter is used as the source for agitating elastic waves

Fig. 3. Dispersion relations obtained by applying two-dimensional fast Fourier trans-
form to layer-averaged particle velocities.

having errors less than 10% for the former and 16% for the latter, as shown in
Fig. 2.

In addition to the good agreement between numerical predictions and exper-
imental data, the dispersion relation, namely elastic P- or S-wave velocities as
functions of frequency and wavenumber, can be obtained from the DEM simula-
tions as shown in Fig. 3, which is rather difficult in experiments. The initial slopes
that correspond to elastic moduli of a continuum agree well with the experimen-
tal values, thus validated the robustness of the calibrated DEM model. Although
not shown here, a variety of input frequencies and waveforms are considered dur-
ing the dynamic probing to investigate their effect on the dispersion relations.
While the dispersion curves are mostly unaffected by the source, the activated
frequency bands show dependency on the characteristics of input signals.
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4 Conclusions

The present study show the capability of the Grain learning toolbox for
calibrating DEM models of granular materials. The new iterative Bayesian filter
facilitates a fast and automated search in parameter space from coarse to fine
scales. The wave propagation simulations performed with the calibrated DEM
model agree well with the ultrasonic experiments conducted during the oedo-
metric loading. It is worth noting that although static and dynamic probing give
similar predictions for the elastic moduli of granular materials, the latter gen-
erally takes less computational time and provide more useful information than
the former.
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