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1.1. Climate	change	mitigation	

Weather patterns are changing, sea levels are rising, weather events are 
becoming more extreme, and greenhouse gas emissions are now at their 
highest levels in history*. Climate change is affecting every individual in 
every city on every continent. It imposes adverse effects on people, 
communities, and countries, disrupting regional and national economies.  

Global carbon emissions from fossil fuels stand at almost 37 GtCO2 per year 
and have grown by an average of 2.4% per year so far this century (Le Quere 
et al., 2018; Wilson and Staffell, 2018). Climate change mitigation refers to 
efforts to reduce or prevent emissions of greenhouse gases to limit the 
magnitude of long-term climate change. Mitigation may be achieved by 
switching to low-carbon energy sources and new technologies, expanding 
forests and other carbon sinks, improving the energy efficiency of 
equipment, or changing management practices and consumer behaviour. 
Therefore, climate change mitigation should take a multifaceted approach in 
its efforts to help countries move toward climate-resilient and low-emission 
futures. An emissions trading system, renewable energy standards, and other 
instruments have been developed to reduce emissions on the production 
side. Although economic incentives can be effective mechanisms for 
producers and are relatively easy to implement, mechanisms to affect 
demand-side emissions are potentially more complicated.  

The United Nations climate activities have expanded in their efforts to limit 
the global temperature increase to 1.5 °C above pre-industrial levels†. 
However, making decisions about sustainable development and climate 

                                                  

* Climate Change – United Nations Sustainable Development, 
https://www.un.org/sustainabledevelopment/climate-change-2/  

† United Nations Climate Change Conferences: COP21-23 
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change mitigation is no longer the sole purview of governments. There is an 
increasing shift in the literature towards a more inclusive concept of 
governance, which includes the contributions of various levels of 
government and non-governmental actors, as well as civil society. 
Households are now being recognised as agents of change, putting the 
challenge of behavioural change among energy consumers upfront.  

 

1.2. Demand‐side	solutions	for	climate	change	
mitigation	

Anthropogenic climate change – the most urgent among global challenges – 
refers to the combustion of fossil fuels and the resulting atmospheric 
emissions, primarily of CO2 caused by human activity (IPCC, 2014a; Stern 
et al., 2016a). This can affect planetary systems at all geographical scales and 
stretch over centuries. In the last few years, the discussions about climate 
change strongly stress the importance of demand-side solutions and shifts to 
transdisciplinary and bottom-up approaches in assisting climate mitigation 
efforts worldwide (Anderson et al., 2014; Creutzig et al., 2016; Creutzig et 
al., 2018b; Ebeling and Lotz, 2015; Grubler et al., 2018; Stern, 2016; Stern 
et al., 2016c). Improving education and raising awareness and 
human/institutional capacity on climate change mitigation is one of the 
targets of the UN Sustainable Development Goals (SDG13). 

Moving away from fossil fuels is set as a key mitigation strategy (IPCC, 
2014a; Peters et al., 2017). However, this needs a technological change 
along with the development of low-emission and low-consumption energy 
sources; it also requires social movements. Individuals play an essential role 
in bottom-up social movements transforming energy systems. By taking 
energy decisions, individuals affect more than their direct energy 
consumption. By being members of different social networks – 
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neighbourhood, family, school, friends, and colleagues – individual energy 
choices influence the decisions of others.  

 

1.2.1. Individual	behavioural	change	

Individual energy behaviour, especially when amplified through social 
context, shapes energy demand and, consequently, carbon emissions. By 
changing their behaviours, individuals can play an essential role in the 
transformation process towards a low-carbon society and global emissions 
reduction. International and national commitments will be more achievable 
if interventions take into account key psychological, social, cultural and 
organisational factors that influence energy choices, along with factors of an 
infrastructural, technical and economic nature. Broader engagement of 
social and behavioural sciences is needed to identify promising opportunities 
for reducing fossil fuel consumption. 

Behavioural changes regarding individual energy use take different forms 
(Table 1.1). Individuals can invest: either big, such as in solar panels and 
house insulation, or small, such as in buying energy-efficient appliances 
(A++ washing machines or low-wattage light bulbs). Alternatively, 
individuals may save energy by changing their daily routines and habits: by 
adjusting their thermostat or by switching off the extra lights. Finally, 
individuals could switch to a supplier that provides green(er) energy.  



General Introduction  

6 

 

Table	1.1:	Individual	behavioural	changes	regarding	energy	use	

Individuals’ energy behaviours Empirical evidence  

Investment 

Installing a solar power system 

Installing thermal solar power system 

Insulation: roof, floor, wall, … 

Installing efficient appliances  

Installing smart meters 

Mohandes et al. (2019); Abdmouleh et al. 
(2018); Cabeza et al. (2018); Seebauer 
(2018); Deng and Newton (2017); Buchanan 
et al. (2016); Rai and Henry (2016); Buryk et 
al. (2015); Ameli and Brandt (2015); Rai and 
Robinson (2015); Tran (2012); Chappin et al. 
(2007) 

Energy conservation 

Turn off extra devices 

Consciously use less electricity 

Run only fully loaded washing machines 

Tolerate lower (higher) temperatures in 
winter (summer) 

Hess et al. (2018); Jia et al. (2018); Nakano 
et al. (2018);  Rosenow et al. (2018); 
Thøgersen (2018); Thøgersen (2017); 
Amouroux et al. (2013); Faber et al. (2012); 
Mills and Schleich (2012) 

Switching supplier 

Switch from a conventional to a green 
supplier 

Switch to greener supplier 

Katz et al. (2018); He and Reiner (2017); 
Rommel et al. (2016); Yang (2014); 
McDaniel and Groothuis (2012); Tran (2012) 

 

Together, these individual choices impact aggregated energy consumption 
and carbon footprints. Understanding why, how and when households 
decide to pursue these choices is vital in assessing climate mitigation policies. 
Social sciences suggest a number of alternative approaches to conceptualising 
how people make decisions.   

	

Rational	decision‐making	

The traditional approach to understanding individual decision-making is 
based on the rational economic model or classical decision-making theory 
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(Bhattacharyya, 2011; Buchanan and Huczynski, 2016; Hunt and Evans, 
2009). Decision-making refers to making choices among alternative courses 
of action, which may also include inaction. The neoclassical approach 
assumes that rational fully informed individuals optimise their utility by 
making the best decision among a wide range of options. The optimal 
decision is constrained by a household’s budget. Theoretical models often 
assume a representative agent to allow for aggregation. If heterogeneity is 
introduced, it usually comes in the form of three to five representative 
income groups.	

Empirical research goes a step beyond purely constrained utility 
maximisation. The essential role of individual socio-economic characteristics 
in energy investments – e.g., technology adoption – is acknowledged in 
several studies. For example, it has been shown that income and probability 
of investing in energy-efficient technologies are positively correlated (Ameli 
and Brandt, 2015; Long et al., 2018; Mills and Schleich, 2009; Sardianou 
and Genoudi, 2013). Some studies report that individuals with a higher level 
of education are more likely to adopt energy-efficient technologies 
(Michelsen and Madlener, 2012; Mills and Schleich, 2010, 2012; Sardianou 
and Genoudi, 2013). The evidence on the impact of age is mixed. Mahapatra 
and Gustavsson (2008); Michelsen and Madlener (2012); Mills and Schleich 
(2012); Mills and Schleich (2009) suggest that there is a negative correlation, 
while other studies report that middle-aged people are more active in this 
regard compared to youngsters (Sardianou and Genoudi, 2013). 

Some studies highlighted the importance of dwelling characteristics for 
individual choices. The tenure status of the residence – owner or renter – 
appears to be an important driver of using energy-efficient technologies. In 
particular, owners are more likely than renters to invest in insulation and 
energy-efficient appliances (Ameli and Brandt, 2015; Davis, 2010; 
Gillingham et al., 2012). Some studies (Ameli and Brandt (2015); Michelsen 
and Madlener (2012); Mills and Schleich (2009)) also highlight other 
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dwelling characteristics such as type (e.g., detached-house, apartment), size, 
location (e.g., rural, urban), and age (Ameli and Brandt, 2015; Hamilton et 
al., 2013; Michelsen and Madlener, 2012; Mills and Schleich, 2009). 

 

Behavioural	change	theories	

The emotional parts of individuals’ brains still have a strong influence on 
their behaviours and choices. Thus, making a practical decision goes beyond 
just obtaining full information, which is impractical to estimate given the 
uncertainties in the consequences considered. Empirical studies in 
psychology and behavioural economics show that individual choices and 
behaviours often deviate from the assumptions of rationality: there are 
persistent biases in human decision-making (Frederiks et al., 2015; 
Kahneman, 2003; Niamir and Filatova, 2016; Niamir et al., 2018b; Pollitt 
and Shaorshadze 2013; Stern, 2013; Stern, 1992; Wilson and Dowlatabadi, 
2007). This implies that people do not necessarily pursue the ‘optimal 
choice’ even if it is economically beneficial for them to do so. Unfolding a 
decision-making process in stages may potentially reveal where different 
biases and barriers start to play a role and how they may impact a decision. 

Individual behavioural change is a multi-stage process. In application to 
environmental and energy-related choices, three behavioural change 
theories are commonly applied: theory of planned behaviour (TPB), norm 
activation theory (NAT), and value–belief–norm (VBN) theory. TPB, 
formulated by Ajzen (1980a) based on the theory of reasoned action, is one 
of the most influential theories in social and health psychology and is used in 
many environmental studies (Armitage and Conner, 2001; Onwezen et al., 
2013). TPB assumes that an intention to change behaviour is shaped by three 
main factors: human attitude towards a specific behaviour, subjective norms, 
and perceived behavioural control. NAT, initially developed by Schwartz 
(1977), operates in the context of altruistic and environmentally friendly 
behaviour. It is mostly focused on anticipating pride in doing the ‘right’ thing 
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and on studying the evolution of feelings of guilt. VBN theory (Stern, 2000; 
Stern et al., 1999) explains environmental behaviour and ‘good intentions’ 
such as willingness to change behaviour (Nordlund and Garvill, 2003; Steg 
and Vlek, 2009; Stern et al., 1999), environmental citizenship (Stern et al., 
1999), policy acceptability (De Groot and Steg, 2009; Steg et al., 2005), 
etc. In summary, TPB is focused on gain goal-frames, while NAT and VBN 
concentrate on normative goal-frames (Steg and Vlek, 2009). Some 
behavioural factors are common across these alternative conceptualisations 
of individual pro-environmental choices. While some empirical studies aim 
to test which of the theories better explain choices, others attempt to 
combine these theories to offer a more holistic view on individual decision-
making (Ameli and Brandt, 2015; Bamberg et al., 2015). Table 1.2 presents 
the diffusion of  behavioural theories used in environmental and energy 
studies.  

 

Table	1.2:	Behavioural	theories		

Theory/field Energy studies Other environmental studies 

TPB Zahedi et al. (2019); Adnan et al. 
(2018); Di Falco and Sharma 
(2018); Du et al. (2018); Kar and 
Zerriffi (2018); Kuo et al. (2018); 
Adnan et al. (2017); Cooper (2017); 
Raihanian Mashhadi and Behdad 
(2017); Park and Kwon (2017); Rai 
and Henry (2016); Rai and 
Robinson (2015); Faiers and Neame 
(2006) 

Al Mamun et al. (2018); Hao et al. 
(2018); Li and Hu (2018); Shin and 
McCann (2018); Gao et al. (2017); 
Tan et al. (2017); Timm and Deal 
(2017); Ceschi et al. (2015); 
Kiesling et al. (2012); Schwarz and 
Ernst (2009) 

NAT Niamir et al. (2018b); Nordlund et 
al. (2018) Niamir and Filatova 
(2016); Bator et al. (2014); Zhang 
et al. (2013a); Matthies et al. 
(2011); Nordlund and Garvill 
(2003) 

Wang et al. (2018); van der Werff 
and Steg (2015); Onwezen et al. 
(2013); Zhang et al. (2013b); De 
Groot and Steg (2009) 
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VBN Abrahamse and Steg (2011) Steg (2016); Steg et al. (2005); 
Poortinga et al. (2004) 

Combination 
of theories 

Liu et al. (2017); Sarkis (2017); 
Imanina et al. (2016); Botetzagias 
et al. (2014); Abrahamse and Steg 
(2009) 

Olsson et al. (2018) 

 

Abrahamse and Steg (2009) applied NAT and TPB to study the extent to 
which socio-demographic and psychological factors are related to 
individuals’ energy use and savings. They argue that NAT variables such as 
awareness and personal norms are more significant than TPB variables such 
as attitudes and perceived behaviour control in explaining energy behaviour. 
In addition, they mention that different types of energy methods appear to 
be related to different sets of variables. Onwezen et al. (2013) also consider 
the NAT and TPB integrated framework to get better insights into the role 
of pride and guilt in pro-environmental behaviour. Adnana et al. (2017) use 
the extended TPB in predicting individuals’ intentions towards the 
adaptation of electric and plug-in hybrid vehicles. In their framework, the 
three core components of TPB – attitudes, subjective norms, and personal 
norms – are used. Also, they add some socio-demographic control variables 
to test their impacts on intentions to adapt. Sarkis (2017) shows the 
importance of using behavioural change and decision-making models in 
illustrating consumers’ energy behaviours by comparing TPB and VBN. He 
argues that using any theoretically based framework to understand human 
behaviour is inheritably linked to individual psychological variables – beliefs, 
norms, and attitudes – which should be tested empirically. However, 
concrete studies of residential energy-related behavioural changes, verified 
by detailed empirical data, are rare (Bhushan et al., 2016; Stern et al., 
2016b). 
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1.2.2. Assessment	tools	

In the last decade, a variety of macro-economic models and assessment tools 
(Crespo Cuaresma, 2017; Fricko et al., 2017; Jiang and O’Neill, 2017; Kc 
and Lutz, 2017; Rao et al., 2017; van Vuuren et al., 2017) emerged and 
were predominately used to support climate change policy debates,  
particularly in the economics of climate change mitigation – e.g., GAINS*, 
PRIMES† and GLOBIOM‡ models. These comprehensive models address a 
broad range of policy issues by simulating the connections across all sectors 
of the economy, which requires theoretical and data consistency. In a multi-
sectoral model, computable general equilibrium (CGE) simulation begins 
with a general equilibrium condition followed by a policy shock – e.g., 
introduction of an emission trading system. There are also partial 
equilibrium models which are widely used in sector-specific policy analyses 
(Kotevska et al., 2013; Latta et al., 2013). These quantitative tools and 
assessment frameworks, which range from macro-economic assessments and 
cross-sectoral impacts (Kancs, 2001; Siagian et al., 2017) to detailed micro-
simulation models for a specific technology (Bhattacharyya, 2011; Hunt and 
Evans, 2009) may not be sufficient to provide reliable information for 
policymakers. Much can be done to make the assumptions in macro-
economic and integrated assessment models more realistic concerning the 
scale and nature of damage (Stern, 2016). These models usually assume that 
economic agents form a representative group(s), have perfect access to 
information and adapt instantly and rationally to new situations, maximising 
their long-run personal advantage. In reality, people make decisions shaped 

                                                  
* https://ec.europa.eu/clima/sites/clima/files/strategies/analysis/models/docs/gains_en.pdf 

† https://ec.europa.eu/clima/sites/clima/files/strategies/analysis/models/docs/primes_model_2013-
2014_en.pdf 

‡ https://ec.europa.eu/clima/sites/clima/files/strategies/analysis/models/docs/globiom_en.pdf 
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by their diverse preferences, socio-economic conditions, behavioural biases 
and social peer influence (Farmer and Foley, 2009). 

How can one account for this behavioural uncertainty when designing 
climate mitigation policies? To what extent is the proposed policy 
mechanism realistically implementable, and does it meet the real constraints 
of policymakers and requirements of Sustainable Development Goals? 
Which measures can reduce demand-side CO2 emissions and under what 
conditions?  

Different disciplines have provided essential pieces of this big jigsaw puzzle, 
but much remains to be done. There is a big gap between what the current 
assessment tools can do and what social science highlights as pro-
environmental behaviour in climate change mitigation movements. Social 
scientists and behavioural economists focus on the emotional and cognitive 
biases in the decision-making process. Namely, psychology theories predict 
motivation for individual energy behaviour change; behavioural studies 
demonstrate individual responses to the energy choices that depart from the 
‘perfect rationality’ expected of homo economicus (Ebeling and Lotz, 2015; 
IPCC, 2014a); social studies emphasise the role of socio-demographics, 
culture, habits and structural aspects of individual energy consumption; 
while economics elaborate on how, under rational decision-making, carbon 
pricing and other fiscal instruments can trigger a change in energy 
consumption and demand.  

In fact, policy instruments can activate demand-side solutions when they 
merge with the socio-economic context. The current climate change 
mitigation assessment tools need a truly interdisciplinary effort to address 
the posed questions. 
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1.3. Proposed	approach	

Agent-based computational modelling is considered the most promising 
approach to address the complexity of actors’ decisions in climate–energy–
economy models (Ebeling and Lotz, 2015; Gotts and Polhill, 2017; Rai and 
Henry, 2016; Stern, 2016; Stern et al., 2016a). Concerning the demand side 
and behavioural changes in energy consumption, this method is a 
frontrunner as it is designed to account for different lifestyles, bounded 
rationality and social influences (Abrahamse and Steg, 2009; Bamberg et al., 
2007; Onwezen et al., 2013; Steg, 2016). A synthesis of social science and 
energy research – combining contributions from economics, psychology, 
sociology, governance and policy, technological innovation, statistics, and 
energy modelling – can provide a broad perspective to improve the 
assessment tools.  

Figure	1.1:	Scientific	challenge
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1.3.1. Empirical	agent‐based	modelling		

Agent-based modelling (ABM) is a contemporary approach and powerful 
tool  for representing complex systems, where heterogeneous and adaptive 
agents interact spatially (Brown and Robinson, 2006; Farmer and Foley, 
2009; Filatova et al., 2013; Hong and Page, 2004; LeBaron and Tesfatsion, 
2008; Nyborg et al., 2016; Tesfatsion, 2006). Unlike other approaches, 
ABM is not limited to studies of perfectly rational agents or to abstract micro 
details in aggregate system-level equations. Instead, ABM can represent the 
behaviours – such as individual energy behaviours – using a range of 
behavioural theories. In addition, ABM provides functionality to examine 
how interactions of heterogeneous agents at the micro level give rise to the 
emergence of macro outcomes, including those relevant for climate 
mitigation such as adoption of low-carbon behavioural strategies and 
technologies over space and time (Rai and Henry, 2016). The ABM approach 
simulates complex and nonlinear behaviour that is intractable in equilibrium 
models. 

 

Heterogeneity	

Heterogeneity is an essential component of ABM; however, its range may 
vary. Individuals may differentiate from each other based on their socio-
economic characteristics – e.g., income, education, and age – and their 
dwelling characteristics – e.g., type and size of their residence. In contrast 
to traditional economic models that may, for example, differentiate 
households into five representative income groups, economic climate change 
ABM usually draws economic and demographic parameters of its agents 
directly from empirical distributions (Berger and Schreinemachers, 2006; 
Brown and Robinson, 2006; Grimm et al., 2006). Therefore, differences in 
individuals’ characteristics potentially lead them to different behaviours.    
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Bounded	rationality	

ABM is well suited to simulate boundedly rational behaviour (Gilbert, 2008; 
Rai and Henry, 2016; Stern, 2013). The concept of ‘decision’ bridges the 
distance between perfect rationality and behaviourally rich choices. A 
decision is a process through which the selection of one among numerous 
possible behaviour alternatives is performed (Barros, 2010; Simon et al., 
1997). Individuals are often bounded by their own previous experiences and 
their cognitive abilities (personal aspect), the influence of others (social 
aspect), and information availability. Depending on the context, there are 
several ways to model bounded rationality (Filatova and Niamir, 2018).  

 

Interactions	and	learning	

Theory on innovation diffusion describes how a number of connected people 
adopting a new behaviour can spread a norm change through a social 
network. A group benefits from a certain individual’s action, but no 
individual has sufficient incentive to act alone (Nyborg et al., 2016; Rogers, 
2003). In modelling system dynamics, interactions and learning are the core 
(Bao and Fritchman, 2018), which is unique to ABM. Individuals in ABM 
can modify future choices by learning from their own experience and 
through their interactions with the environment and other individuals. For 
instance, while in economics learning is based on how expectations about 
future prices are formed and updated through interactions within the market 
institution (Hunt and Evans, 2009; LeBaron, 2006), in an environmental and 
climate change context, AMB could be implemented as rule-based learning 
(Axtell and Guerrero, forthcoming 2018; Gerst et al., 2013; Gotts and 
Polhill, 2009; Polhill and Gotts, 2009; van Duinen et al., 2016). 

 

 

 



General Introduction  

16 

 

Out‐of‐equilibrium	dynamics	

Equilibrium assumes a relatively stable economic state. For example, 
fluctuations in the supply of and demand for energy instigate changes in 
energy prices. As economic theory posits, the supply and demand over time 
will converge to a steady state, and hence the price of energy will be 
relatively stable. However, standard neoclassical economics investigate 
situations when individual actions or expectations are in equilibrium with 
the outcome or aggregated behaviours. ABM goes further and enables us to 
discover how the economy behaves out of equilibrium when it is not in a 
steady state (Arthur, 2006; Tesfatsion, 2014).  

To conclude, ABM is a simulation approach used to study aggregated 
dynamics emerging from actions of heterogeneous individual agents, which 
make decisions and interact with each other according to theoretical and 
data-driven rules. Boundedly rational agents, their potential to learn, and an 
ability to unfold a decision process in stages, allows ABM to accommodate 
the complexity of human behaviour in energy systems (Gilbert, 2010; Rai 
and Henry, 2016; Stern, 2016).  

This method is actively used in energy applications to study national climate 
mitigation strategies (Gerst et al., 2013; Gotts and Polhill, 2017), energy 
producer behaviour (Aliabadi et al., 2017), renewable energy auctions 
(Anatolitis and Welisch, 2017), consumer adoption of energy-efficient 
technology (Chappin and Afman, 2013; Jackson, 2010; Palmer et al., 2015; 
Rai and Robinson, 2015), shifts in consumption patterns (Bravo et al., 
2013), the role of behaviour-changing feedback devices on energy demand 
(Jensen, 2017; Jensen et al., 2016), and changes in energy policy processes 
(Iychettira et al., 2017). Yet, in many cases, ABM still either lacks a 
theoretical framework (Groeneveld et al., 2017) or relevance to empirical 
data, especially when studying energy behaviour of households (Amouroux 
et al., 2013; Chappin et al., 2007).  
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1.3.2. Upscaling	individual	behaviour	change	

While ABM is a perfect tool to accommodate various theories and data, 
including qualitative behavioural data, it is usually used at rather small scales. 
Since ABM permits experimentation with numerous “what if” scenarios, it is 
essential to understand how model output data match empirical patterns and 
under what conditions. Even when the results fail to match empirical 
patterns, we can learn about the limits of our assumptions (Kwakkel and 
Jaxa-Rozen, 2016; Kwakkel and Pruyt, 2013; Premo, 2006). However, for 
integrated assessment model analyses, it is crucial to explore an extensive 
set of trajectories consistent with achieving the 1.5 °C target at national, 
regional or global scales. Moreover, models should account for uncertainties 
around the economy and technologies. Hence, advancing ABM to national 
and global scales implies not only increasing  the number of agents – from 
thousands to millions or billions – but also modelling of economy-wide 
processes that go beyond individual behavioural change (Verburg et al., 
2016).  

Different methods of scaling up need to be explored, ranging from 
developing full-scale macroeconomic models from the bottom up (Fagiolo 
and Roventini, 2017) to the integration of ABM with complementary macro 
models (Krook-Riekkola et al., 2017; Niamir and Filatova, 2015; Niamir et 

al., 2018c; Safarzyńska et al., 2013; Smajgl et al., 2009). Yet, scaling up the 
various behavioural factors and strategies into larger populations of agents is 
still a challenge. 

 

1.4. Research	questions		

This Ph.D. research aims at exploring the contribution of individual 
behaviour changes in mitigating climate change. To address this scientific 
challenge, one needs to have solid theoretical and empirical understanding 



General Introduction  

18 

 

of what constitutes behavioural changes in energy, and develop tools to 
aggregate these insights to quantitatively assess regional and national impacts 
of individual choices (Figure 1.2). In line with this research objective, four 
research questions are designed.  

1. What are the main factors influencing individual energy behavioural 
changes in the transition to a low-carbon economy?  

2. To what extent does heterogeneity in households’ attributes, social 
interactions, and learning impact regional energy demand over time? 

3. What are the macroeconomic impacts of individuals’ behavioural 
changes on carbon emissions?  

4. What is a systematic way of upscaling behavioural aspects of 
individual decision-making to assess macroeconomic impacts for 
climate change mitigation over time and space? 

 

 
	

Figure	1.2:	Research	approach	
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1.5. Outline	of	the	dissertation	

The dissertation consists of six chapters. Apart from the General 
Introduction and the Synthesis, there are four research chapters that 
systematically address the primary goal of the thesis step by step (Figure 
1.3). Each chapter deals with one or two specific research question(s): 
Chapter 1, the General Introduction, gives an overview of the background 
and research questions and the scientific challenge of the dissertation. Chapter 
2 introduces the main determinants of individuals’ energy behavioural 
change by analysing our households’ survey data. Chapter 3 shows the 
cumulative impacts of individual energy behaviour change by introducing the 
BENCH-v.1 model. Chapter 4 assesses the macroeconomic impact of 
individuals’ energy behaviour change on carbon emissions (BENCH-v.2 
model). Chapter 5 gives a solution to upscaling individual energy behaviour 
for climate change mitigation strategies. Chapter 6, the Synthesis, summarises 
and discusses the main findings and outlines perspectives for future research.  
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Figure	1.3:	Outline	of	the	dissertation	
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DEMAND‐SIDE	SOLUTIONS	FOR	CLIMATE	CHANGE	
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Applied Energy (Under review)  

 

 

 

 

 

 

 

Parts of this chapter also appeared in: 

- Niamir, L., et al. (2018). Impact of households’ behavioural change on the energy demand in a 
transition to low-carbon economy. IAEE International Conference, 10-13 June, Groningen-The 
Netherlands. 

- Niamir, L., et al. (2017). Household Energy Use and Behaviour Change Tracking Framework: From 
Data to Simulation. Conference on Complex Systems, 17-22 September, Cancun-Mexico. 
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Abstract	
	

Households are responsible for 70% of CO2 emissions and are important 
agents of change in any climate change mitigation strategy. While individual 
behaviour increasingly becomes a crucial element in energy transitions, 
bottom-up mechanisms facilitating them are not fully understood. To build 
a scientific understanding of individual energy use, we need to elicit how 
individuals choose to change their energy behaviour and which factors trigger 
or inhibit these decisions. This article explores individual energy 
consumption practices and behavioural aspects that may influence them. We 
quantitatively study the determinants of the three main energy actions: (1) 
investments in house insulation, installation of solar panels, and energy-
efficient appliances, (2) conservation of energy by changing energy-use habits 
(e.g., switching off unnecessary devices, turning down the heat, and using 
less energy), and (3) switching between energy suppliers (switching to a green 
supplier, to another green supplier or to another conventional supplier). To 
address this goal, we  designed and conducted a comprehensive survey 
among households (N= 1,790) in two EU regions: Overijssel, the 
Netherlands and Navarre, Spain. We quantitatively estimate how 
behavioural factors in combination with socioeconomic characteristics of 
households and structural attributes of dwellings may trigger or inhibit the 
three types of decisions by employing probit regression model and analysis. 
Our analysis demonstrates that awareness and personal and social norms are 
equally as important as monetary factors when it comes to individual energy 
actions. Education and structural dwelling factors appear to be very 
significant in bottom-up actions contributing to the reduction of the regional 
CO2 footprint from the residential sector. These results have implications 
for governmental regulations and policies aimed at facilitating demand-side 
solutions in a transition to a low-carbon economy. 
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2.1. Introduction	

Keeping greenhouse gas emissions below critical levels defined by the Paris 
Agreement is essential for effective climate change mitigation. These 
mitigation efforts vary from using renewable energy sources and new 
energy-efficient technologies to changing management practices and 
consumer behaviour. Significant attention is devoted to new energy 
technologies on both production and consumption sides. However, changes 
in individual behaviour and management practices as part of the mitigation 
strategy are often neglected (Creutzig et al., 2018a). Households are 
responsible for approximately 70% of global CO2 emissions (Hertwich and 
Peters, 2009). Yet, despite behavioural change being emphasized as a crucial 
component of mitigation strategies worldwide (Creutzig et al., 2016; 
Creutzig et al., 2018a; IPCC, 2014a), empirical studies on individual 
energy-related choices and behavioural factors impacting them are scarce. In 
particular, while there are surveys exploring the adoption of energy 
technologies (Ameli and Brandt, 2015; Kobus et al., 2015; Li et al., 2017; 
Mills and Schleich, 2012; Mills and Schleich, 2009; Rai and Henry, 2016; 
Stern et al., 2016a) and examining pro-environmental personal and social 
norms (Bamberg et al., 2007; Steg and Vlek, 2009; Vassileva et al., 2013), 
they are rarely considered in combination. Moreover, behavioural factors 
and energy-technology choices are usually reported in an aggregated format, 
ignoring the fact that various socioeconomic groups may exhibit different 
behavioural traits. This research contributes to the scholarly literature on the 
role of behavioural changes in the transition to a low-carbon economy. The 
increasing scholarly understanding of the bottom-up factors behind the 
demand-side potential for climate mitigation, could guide effective policy 
development and implementation that differentiates between various 
household groups and actions.  

The essential role of household socioeconomic characteristics on energy-
efficient investments (e.g., technology adoption) is acknowledged in several 
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studies. For example, a positive correlation has been shown between income 
and the probability of investing in energy-efficient technologies (Ameli and 
Brandt, 2015; Li et al., 2017; Long et al., 2018; Mills and Schleich, 2009; 
Sardianou and Genoudi, 2013; Vassileva et al., 2013). Some studies report 
that individuals with a higher level of education are more likely to adopt 
energy-efficient technologies (Michelsen and Madlener, 2012; Mills and 
Schleich, 2010, 2012; Sardianou and Genoudi, 2013). The evidence 
regarding the impact of age is mixed: some studies suggest that there is a 
negative correlation (Li et al., 2017; Mahapatra and Gustavsson, 2008; 
Michelsen and Madlener, 2012; Mills and Schleich, 2010, 2012; Mills and 
Schleich, 2009), other studies report that middle-aged people are more 
active in this regard compared to youngsters (Sardianou and Genoudi, 
2013). Notably, these behavioural patterns may differ per type of investment 
(Ameli and Brandt, 2015). Other studies highlight the importance of 
dwelling characteristics for individual choices. The tenure status of the 
residence (owned or rented) affect a likelihood of investments in energy-
efficiency in buildings. In particular, owners are more likely to invest in 
insulation and energy-efficient appliances than renters (Ameli and Brandt, 
2015; Davis, 2010; Gillingham et al., 2012). Other dwelling characteristics 
– such as type (e.g. detached-house, apartment), size, location (e.g. rural, 
urban), and age of dwellings – appear to be important drivers of households 
energy-efficient investments (Ameli and Brandt, 2015; Hamilton et al., 
2013; Michelsen and Madlener, 2012; Mills and Schleich, 2009; Wilson et 
al., 2018). Among behavioural factors, the literature brings attention to the 
importance of households’ awareness and personal interest for energy 
decisions (Hutchinson et al., 2006; Kobus et al., 2015; Matsui et al., 2014; 
Vassileva et al., 2013). The role of local communities and social movements 
in individual energy decisions is acknowledged in several studies (Ghorbani 
and Bravo, 2016; Ostrom, 2006, 2007).    

This article contributes to this discourse by reporting the results of an 
original large-scale survey (N=1,790) in two EU countries. We report 
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unique data on behavioural and socio-demographic factors of households and 
their dwelling characteristics, and offer a quantitative analysis of the main 
drivers and barriers related to household changes in energy-use behaviour. 
The key theories in psychology provide a solid ground for identifying 
potential behavioural factors that are relevant for an energy behaviour 
change. The goal is to quantify which factors – socioeconomic (e.g., income, 
age), behavioural (e.g., personal and social norms, knowledge and 
awareness about the environment, social influence) and structural (e.g., size 
and type of house) – trigger or attenuate a transition to a lower and greener 
energy footprint at the household level. The innovative contribution of this 
paper is threefold:  

(i) Empirical testing of theoretical concepts: relying on theories of 
individual decision making from psychology, it develops a conceptual 
framework that integrates a variety of behavioural factors potentially 
relevant for studying energy behaviour changes. The role of various 
behavioural factors is quantitatively studied using original survey data;  

(ii) Heterogeneity: our analysis goes beyond the current empirical 
literature on individual energy behaviour by focusing on detailed actions 
within the three main types of households’ choices: investment, 
conservation, and switching among providers. Within these three sets, 
we examine nine different actions and their dependence on both 
socioeconomic and behavioural characteristics of households as well as 
on structural dwelling factors. Hence, our quantitative assessment 
zooms beyond aggregates, acknowledging the fact that various 
socioeconomic groups may exhibit different behavioural traits for 
different actions;  

(iii) Comparative analysis: the two countries in our sample permit us to 
compare households’ choices and the role of behavioural factors across 
contexts. On the one hand, it allows testing whether behavioural factors 
included in the theoretical framework matter in different cases, 
strengthening the validity of the proposed theoretical framework. On 
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the other hand, a comparison across countries accounts for institutional, 
cultural and climatic factors that do affect households’ choices but are 
often difficult to capture explicitly. 

This research contributes to the scholarly literature on the role of 
behavioural changes in the transition to a low-carbon economy. The 
increasing scholarly understanding of the bottom-up factors behind the 
demand-side potential for climate mitigation, could guide effective policy 
development and implementation that differentiates between various 
household groups and actions. The paper proceeds as follows. The 
framework underpinning the survey is grounded in psychological theories 
aimed at understanding individual decision-making (Section 2.2). Section 
2.3 reports the survey design in the two EU cases. The empirical correlation 
analysis is complemented by the probit regression model to estimate the 
main determinants of household energy behavioural change (Section 2.4). 
Section 2.5 discusses wider policy implications of this study. 

 

2.2. Theoretical	framework	

Individual behaviour change is a multi-stage process. In application to 
environmental- and energy-related choices, three behavioural change 
theories are commonly applied: theory of planned behaviour (TPB), norm 
activation theory (NAT), and value–belief–norm (VBN) theory. TPB, 
formulated by Ajzen (1980a) and based on the theory of reasoned action, is 
one of the most influential theories in social and health psychology and has 
been used in many environmental studies (Armitage and Conner, 2001; 
Onwezen et al., 2013). TPB assumes that an intention to change behaviour 
is shaped by three main factors: human attitude toward a specific behaviour, 
subjective norms, and perceived behavioural control. NAT, originally 
developed by Schwartz (1977), operates in the context of altruistic and 
environmentally friendly behaviour. It is mostly focused on anticipating 
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pride in doing the “right” thing and on studying the evolution of feelings of 
guilt. VBN theory (Stern, 2000; Stern et al., 1999) explains environmental 
behaviour and “good intentions” such as willingness to change behaviour 
(Nordlund and Garvill, 2003; Steg and Vlek, 2009; Stern et al., 1999), 
environmental citizenship (Stern et al., 1999), and policy acceptability (De 
Groot and Steg, 2009; Steg et al., 2005). In summary, TPB is focused on 
gain goal-frames, while NAT and VBN theory focus on normative goal-
frames (Steg and Vlek, 2009). Some behavioural factors are common across 
these alternative conceptualizations of individual pro-environmental 
choices. While some empirical studies aim to test which of the theories 
explain choices better, others attempt to combine these theories to offer a 
more holistic view on individual decision-making (Ameli and Brandt, 2015; 
Bamberg et al., 2015). We follow the latter approach and introduce a 
framework that combines the strengths of the three key theories. 

 

Figure 2.1 illustrates our conceptual framework that represents household 
energy behavioural change as a dynamic process unfolding in stages. 
Knowledge and awareness can have an important role in triggering individual 
behaviour change (Bamberg and Moser, 2007; Desa et al., 2011; Kobus et 
al., 2015; Matsui et al., 2014; Niamir and Filatova, 2016; Niamir et al., 
2018b; Vassileva et al., 2013; Wilson et al., 2018). If individuals have 
enough knowledge and awareness about climate, environment and energy 
issues, a feeling of guilt develops and activates motivational factors, which 
may lead to energy-related behaviour change. Motivation is enhanced by 
personal and social norms (Abrahamse and Steg, 2009; Bamberg et al., 
2007), which can lead to a feeling of responsibility and provoke an individual 
to change their behaviour. When intentions for the latter are high, 
individuals do a formal feasibility assessment according their income, 
dwelling conditions and own perceived behavioural control. Individuals 
compare their current energy-use habits with alternatives, and if things can 
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be improved, the intention to pursue an alternative rises and may lead to a 
behaviour change. This conceptual framework combines some behavioural 
constructs that are common between TPB (in red) and NAT (in blue).  

 

 

 
Figure	2.1:	Conceptual	representation	of	multi‐stage	household	behavioural	change	

 

2.3. Methodology			

Following the theoretical framework (Figure 1), we developed a survey to 
quantify behavioural changes regarding energy use. We designed a household 
survey to capture drivers and barriers in a decision-making process regarding 
the three types of energy-related actions: investment, conservation, and 
switching providers. For example, an individual could: (I) invest in green 
energy technology (e.g., solar panels or improved insulation); (C) pursue 
conservation behaviour by changing his or her own energy-use habits (e.g., 
switching off unnecessary lights, or running the washing machine at a full 
load); or (S) switch from grey to green energy providers.  
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2.3.1. Questionnaire	design	

Our questionnaire contains five sections consisting of 55 main questions 
about sociodemographic characteristic (10), dwelling characteristics (6), 
energy consumption, behaviour and sources (20), personal attitudes and 
opinion (7), and social networks (12). The questions are designed in 
different formats based on the type and nature of information required 
(Appendix A): multiple choice (e.g. education level, dwelling type, source 
of energy), Likert-type scale and semantic differential (e.g. all behavioural 
factors), Dichotomous and open-ended question (e.g. energy consumption 
and behaviour,  social network). The questionnaire was also translated into 
Dutch and Spanish, in order to respondents have a freedom to choose their 
own preferable language among three languages (EN/NL/ES). 

 

2.3.2. Survey	and	responses	

We conducted the survey in two provinces in Europe that differ in terms of 
climate, culture, GDP, technology innovation and diffusion, renewable 
energy sources, institutional rules, and policies. In summer 2016, 1,035 
households in the Overijssel province, the Netherlands, and 755 households 
in the Navarre province, Spain, completed our online questionnaire (Figure 
2.2). 
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Figure	2.2:	Survey	case	studies:	the	Overijssel	province	in	the	Netherlands	and	the	Navarre	
province	in	Spain	

 

While interpreting any survey results (Section 2.4.1), the possibility of a 
response bias should be considered. The wording of questions and response 
scales (Ameli and Brandt, 2015), as well as the respondents’ tendency to 
answer questions untruthfully, particularity for behavioural factors when 
they may feel pressure to give socially acceptable answers (Donaldson and 
Grant-Vallone (2002), can all contribute to a response bias. To minimize the 
chance of response bias, our survey took a 3-fold approach by assuring cross-
questions, validation by an interdisciplinary team of experts (e.g., 
psychologist, energy economist, sociologist, governance and policy expert, 
statistician) and conducting pilot studies. In particular, to improve the survey 
quality and feasibility, we performed three pilot studies with: (a) a team of 
international experts (19 colleagues in the Netherlands and Spain); (b) a 
small sample of households in Overijssel; (c) a small sample of households in 
Navarre. The feedback from these pilots was integrated in the final 
questionnaire to increase its quality and the comprehension of questions by 
various participants. The final version of questionnaire was used for the large 
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scale survey and distributed using the survey infrastructure of Kantar TNS* 
in summer 2016. An  online multi-language, user-friendly, intelligent and 
interactive platform was provided (Appendix A). Kantar TNS (formerly 
known as TNS-NIPO) has many years of experience with carrying out 
surveys and assuring that a sample of respondents represents a target 
population. We received back 1,790 valid completed questionnaires. 

 

2.4. Results	and	discussion	

In addition to presenting the survey descriptive analysis (Section 4.1), we 
perform the correlation and probit regression analysis of the survey data to 
examine the drivers and barriers related to household behavioural change 
toward a low-carbon economy. Firstly, we check the correlations between 
the behavioural factors (latent variables) to assess the validity of different 
items in our theoretical framework and to quantitatively assess the strength 
of these factors in a decision process (Section 2.4.2). Secondly, we employ 
the probit regression analysis to estimate the link between individual 
household attributes (socioeconomic and behavioural factors) and the 
likelihood of choosing one of the energy-related actions that contribute to 
climate change mitigation (Section 2.4.3). 

 

2.4.1. Descriptive	analysis	

Table 2.1 provides descriptive statistics of the respondents in the two case-
study provinces. Corresponding summary statistics on the socio-

                                                  
* http://www.tnsglobal.com/ 
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demographic characteristics of the population in the two provinces are also 
provided. 

	

Table	2.1:	Socioeconomic	distribution	in	the	region	and	within	the	survey	sample:	Navarre,	
Spain;	Overijssel,	the	Netherlands	Source:	Eurostat,	2016	and	own	survey,	2016	

Factors Navarre, Spain Overijssel, the 
Netherlands 

Regional Survey sample Regional Survey sample 

Population 637,486  755  1,134,465 1,035 

Male population (in 
percentage) 

49% 43% 49.9% 53.6% 

Average  income (thousand 
Euro per year) 

18  Majority in 
income group 2 
(10-30) 

21 

 

Majority in 
income groups 2 
and 3 (10-50) 

Education levels  

(in percentage) 

ED 0-2 27.9% 16.4% 34.3% 47.8% 

ED 3-4  23.2% 22.8% 41.5% 26.6% 

ED 5-8 48.8% 60.8% 24.1% 25.6% 

 

Tables 2.2 and 2.3 provide a brief overview of the descriptive statistics of 
the respondents, which represent the target population well. This 
information illustrates the distribution of socio-demographic and dwelling 
characteristics.  
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Table	2.2:	Socio‐demographic	characteristic	of	surveyed	households.	Source:	own	survey,	2016	

Socio-demographic items Overijssel 
 

Navarre 

Gender * 
female 
male 

 
46.4 
53.6 
 
53 
 
3.0 
49.6 
21.6 
14.6 
9.6 
1.5 
 
49.9 
5.8 
5.5 
6.4 
23.6 
2.1 
6.6 
 
5.5 
34.7 
38.0 
13.5 
5.7 
1.0 
1.6 
 
7.1 
15.1 
42.3 
29.1 
6.3 

 
57.1 
42.9 
 
41 
 
2.0 
14.4 
22.8 
26.6 
30.5 
3.7 
 
57.8 
9.4 
14.2 
3.2 
5.6 
9.1 
0.5 
 
11.4 
46.8 
27.8 
8.7 
3.0 
0.9 
1.3 
 
10.2 
20.9 
48.6 
16.2 
4.2 

 
Age ** 

Education * 
primary (ISCED 0-1) 
secondary (ISCED 2-3) 
tertiary (ISCED 4-5) 
bachelor (ISCED 6) 
master (ISCED 7) 
doctorate (ISCED 8) 

Employment status * 
employee (full-time, part-time) 
self-employed 
unemployed 
homemaker (housewife/husband) 
retired 
student 
other 

Household annual income * 
less than 10 thousand euro 
10-30 thousand euro 
31-50 thousand euro 
51-70 thousand euro 
71-90 thousand euro 
91-110 thousand euro 
More than 120 thousand euro 

Level of economic comfort * 
very difficult to live 
difficult to live 
coping 
living comfortably 
living very comfortably 

* distribution is reported in percent  **reported as mean   
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Table	2.3:	Dwelling	characteristics	in	survey	sample.	Source:	own	survey,	2016	

Dwelling characteristics items Overijssel 
 

Navarre 

Type of residence a 
An apartment   
A house  

 
14.9 
85.1 
 
71 
29 
 
4.5 
35.7 
35.7 
15.2 
8.9 
 
4.4 
7.4 
15.8 
26.1 
25.4 
20.8 
 
15.7 
15.9 
11.7 
4.6 
4.6 
4.0 
43.5 

 
77.8 
22.2 
 
80.3 
19.7 
 
3.3 
62.0 
22.4 
6.5 
5.8 
 
7.2 
22.0 
26.4 
20.9 
14.8 
8.7 
 
11.7 
11.7 
7.8 
3.7 
3.1 
1.6 
60.3 

Tenure status a 
Own the residence 
Rent the residence 

Size of the residence a 
Less than 50 m²  
50 m² - 100 m²  
101 m² - 150 m²  
151 m² - 200 m²  
More than 200 m²  

Age of the residence a 
Less than 5 years  
5 to 10 years  
11 to 20 years  
21 to 35 years  
36 to 50 years  
More than 50 years  

Energy label a 
A  
B  
C  
D  
E 
F 
Don’t know 

* distribution is reported in percent   

Table 2.2 shows that our sample is sufficiently gender balanced in both case 
studies. Respondents in Navarre have a higher education level than in 
Overijssel, with the majority holding bachelor’s or master’s degrees. 
Regarding employment status, the majority of respondents in both cases are 
employed, followed by retired in Overijssel and unemployed in Navarre. 
More than half of the respondents in both provinces earn 10–50 thousand 
euros per year income. Nevertheless, there are more households with an 
income below 30 thousand euros in the Navarre case. This result may explain 
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why the level of economic comfort in Overijssel is higher compared to 
Navarre.  

The majority of respondents surveyed in Overijssel (85%) live in houses, 
while 78% of the Navarre respondents live in apartments. Most respondents 
in both provinces own the place in which they live. The housing stock is 
generally older in Overijssel than in Navarre. In both case studies, the 
majority of households were not aware of the energy rating of their residence 
(Table 2.3).  

Table 2.4 reports summary statistics on behavioural factors that could affect 
energy decisions of households. All behavioural factors are measured on a 
Likert scale of 1–7 (see Appendix A). It illustrates that knowledge and 
personal norms play the most important role in deciding whether to make 
any changes in a household-level energy use in both countries. Social norms 
and perceived behavioural control, which is often associated with financial 
factors among others, are more important for Spanish respondents compared 
to the Dutch.   

 

Table	2.4:	Importance	of	behavioural	factors	among	survey	respondents,	on	a	scale	from	1‐7.	
Source:	own	survey,	2016	

Behavioural items Overijssel 

 

Navarre 

Knowledge  Climate-Energy-Economy Knowledge 
(CEEK) 

4.2 (0.7) 5.0 (0.8) 

Climate-Energy-Economy Awareness 
(CEEA) 

4.9 (0.8) 5.4 (0.8) 

Energy Decision Awareness (EDA) 4.5 (1.0) 5.3 (1.1) 

Motivation 

 

Personal Norms (PN) 4.6 (0.9) 5.4 (1.0) 

Social Norms (SN) 3.3 (1.1) 4.5 (1.2) 
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Consideration Perceived Behaviour Control-investment 
(PBC1)  

4.4 (1.1) 5.0 

Perceived Behaviour Control-Conservation 
(PBC2) 

3.5 (1..4) 4.6 (1.4) 

Perceived Behaviour Control-Switching 
(PBC3) 

3.4 (1.4) 5.0 (1.3) 

 

Figure 2.3 shows the distribution of energy-related actions, which our 
survey respondents undertook in the last 10 years. Between 2006-2016 
Dutch households were more active in big investments including house 
insulation (6% more on I1) and solar panels (12.6% more on I2), and in 
switching to green providers (1.4 – 3.8% more on S1,1) compared to the 
Spanish respondents. The latter appeared more willing to change habits – 
6.6% more respondents in Navarre practice switching off unused devices 
(C1) and 30% more actively adjust daily household-appliances-use habits 
(C3) – compared to the Dutch.  

(a): Overijssel, the Netherlands (b): Navarre, Spain 

Figure	2.3:	Shares	of	survey	respondents	who	undertook	energy‐related	actions	in	the	past	
10	 years	 (2006‐2016),	 in	%.	 Here	 the	 blue	 I‐group	 refers	 to	 investments	 (I1	 –	 in	 house	
insulation,	I2	–	in	solar	panels,	I3	–	in	energy‐efficient	appliances);	the	orange	C‐group	refers	
to	 conservation	 due	 to	 a	 change	 in	 habits	 (C1	 –	 switching	 off	 unnecessary	 devices,	 C2	 –	
moderate	inside	temperature	regulation,	C3	–	adjusting	daily	habits	such	as	running	a	full‐
load	washing	machine);	 the	green	S‐group	refers	 to	switching	 (S1	–	 to	green	energy,	S2	–	
switching	to	another	green	provider,	S3	–	to	a	conventional	energy	provider).	Source:	own	
survey,	2016.	
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2.4.2. Correlation	analysis	

Table 2.5 presents the correlation matrix for the five latent variables 
representing behavioural factors for the Overijssel (upper triangular matrix) 
and Navarre (lower triangular matrix) provinces separately. In both cases, 
all five latent variables correlate positively and substantively. While personal 
norms (PN) correlate strongly with knowledge (CEEK) and awareness 
(CEEA, EDA), social norms (SN) have weak positive relationships: the 
correlation of knowledge and awareness (CEEK, CEEA, EDA) with social 
norms (SN) is two to three times smaller compared to personal norms (PN). 
Knowledge and awareness are more tightly connected to social networks for 
Spanish respondents compared to the Dutch.  

	

Table	2.5:	Correlation	of	latent	constructs	(knowledge	activation	and	motivation)	for	Overijssel	
(N=1,035,	upper	triangular	matrix‐	in	yellow)	and	Navarre	(N=755,	lower	triangular	matrix‐	in	
grey).	Source:	own	survey,	2016	

Variables CEEK  CEEA  EDA 

 

PN 

 

SN 

CEEK 

 

– 0.64 0.49 0.45 0.16 

CEEA 

 

0.66 – 0.79 0.71 0.21 

EDA 

 

0.53 0.76 – 0.76 0.22 

PN 

 

0.52 0.77 0.88 – 0.37 

SN 0.27 0.35 0.27 0.40 – 

 
Note: CEEK=climate–energy–economy knowledge; CEEA=climate–energy–economy awareness; 
EDA=energy decision awareness; PN=personal norms; SN=social norms 
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2.4.3. Regression	analysis:	understanding	households’	
likelihood	to	pursue	individual	level	climate	
mitigation	actions	

We assume that households’ decisions regarding energy use – investment 
(I), conservation (C), and switching (S) – are independent of each other and 
can occur simultaneously. Our survey differentiates between sub-actions 
within each category. A household may invest in house insulation (I1), install 
solar panels (I2) or buy energy-efficient appliances (I3). Alternatively, 
energy use improves by switching off unnecessary devices (C1), turning 
down the heater / air conditioner (C2) or using less energy by changing daily 
habits (C3) such as running a full-load washing machine. Lastly, a household 
may improve its energy footprint by switching to green energy (S1), or 
switching to another green (S2) or conventional (S3) energy provider. For 
each of the choices, we developed a statistical model of the household energy 
decision process based on the discrete “yes” or “no” decisions for the three 
actions (I, C, S) and their respective sub-actions using a probit regression 
model (Ameli and Brandt, 2015; Mills and Schleich, 2010). The expected 
utility of each of the sub-options is Modelled as follows: 

)1( 

௜௝ݕ
∗ ൌ ௜ߚ௜௝ݔ ൅	ɛ௜௝ 

 

where ݕ௜௝∗  is a latent variable that captures the utility of household ݆  associated 
with its choice to implement sub-option i related to energy investment, 
energy conservation, or switching (I1–S3). 	ݔ௜௝ is the vector of explanatory 
variables, including socioeconomic characteristics of the individuals, 
dwelling characteristics, energy-use patterns, financial and ownership 
situation, as well as indicators for personal and social norms.	ߚ௜ is the 
parameter vector that needs to be estimated based on the survey data using 
maximum likelihood econometric methods, and finally, ɛ௜௝ is the vector of 
error terms. Individual choice utilities and, hence, preferences of households 
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cannot be observed directly from the survey data and are modelled using the 
probit discrete choice model decision rule:  

 (2) 

௜௝ݕ ൌ ௜௝ݕ	݂݅		0
∗ ൏ 0 

௜௝ݕ ൌ ௜௝ݕ	݂݅		1
∗ ൒ 0 

 

This decision rule means that household j implements a particular sub-
action, i (I1–S3), when its expected utility is non-negative, and the 
household does not implement a particular sub-option when its expected 
utility is strictly negative (Eq. 2).  
Tables 2.6-8 present the results of the regression analysis using the probit 
model in STATA 14 for each of the sub-options and include the coefficient 
levels as well as their p-values. P-values associated with each of the 
regression parameters 	ߚ௜ indicate whether a particular variable is statistically 
significant, as well as the level of its statistical significance. We consider 1%, 
5%, and 10% levels of significance in the interpretation of the probit 
regression results.  

 

2.4.3.1. Factors	affecting	a	probability	of	a	household	to	invest	
We also observe that the country variable (ES vs. NL) has a strong (99% 
confidence interval) influence on taking a decision to install solar panels. 
Dutch households are more active in installing PVs. Naturally, country-
specific fiscal rules, climate change mitigation regulations, culture, and 
climate may act as drivers or barriers in our two case-study provinces. 

Under socio-demographic factors, education has a positive and very 
significant impact on insulation and PV installation (I1, I2 in Table 2.6). The 
probability of taking these actions increases with the level of education (95% 
confidence interval). Higher economic comfort leads to more investments 
in appliances (I3, 95% confidence interval). Households are ready to make 
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investments in energy-efficient appliances as soon as they can cope with their 
other expenses and live comfortably given their income. Also, we observe 
gender having a very significant (99% confidence interval) impact on 
installing solar panels (I2), with men being more likely to make this decision 
than women. Personal norms appear to be very significant in all three 
investment decisions and have a positive role: a higher level of personal 
norms leads to more investments (Table 2.6). 

Regarding the characteristics of the residence, we observe that type 
(apartment vs. house), age, and size have impacts on households’ big 
investment decisions (I1, I2). Type of residence is very significant (99%  
confidence interval): owners of houses are more eager to install solar panels 
and invest in insulation. Age of the residence has positive impacts (99% 
confidence interval) on the likelihood of being insulated. Older buildings 
tend to be insulated more often as compared to new buildings that already 
have high energy ratings. However, age has a negative impact (95% 
confidence interval) on the likelihood of installing solar panels, with more 
PVs installed on new buildings than on older ones. Size of residence has a 
positive and significant impact on large investments: owners of larger 
residences are more likely to invest in PVs or to insulate their houses. The 
fact that large houses are usually owned by people with higher incomes, and 
potentially have more energy leakage, makes insulation a priority for their 
owners among other energy-efficient decisions. Also, larger houses have 
larger rooftop areas to install PVs. We also found a meaningful correlation 
between the energy label of residence and investing in insulation (Table 2.6). 

In general, the probability of households investing is highly correlated with 
residents’ education level (95%), personal norms (90–99%), and type 
(99%) and size of their residence (90–95%). Hence, personal intentions, 
knowledge and awareness, and type and size of a house are core in promoting 
energy-efficient investments among households. 
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T
able	2.6:	Probit	regressions	(PR

.I)	on	investm
ent	decisions	(I1–I3).	D

ependent	variables:	investm
ents	in	insulation,	PV	installation,	and	energy‐

efficient	appliances	(N
=1,790)	

V
ariables

I1: Insulation 
I2: PV

 installation 
I3: Energy-efficient ap

p
liances 

coefficients 
p-value 

coefficients 
p-value 

coefficients 
p-value 

country 
0.1397251 

0.1340 
−

0.4265909 
0.0000

*** 
0.047433 

0.6110 
incom

e 
0.0149715 

0.6430 
−

0.0298901 
0.4530 

−
0.0226898 

0.4890 
gend

er 
0.0795755 

0.1980 
0.2792288 

0.0000
*** 

0.004528 
0.9420 

ed
ucation 

0.0563284  
0.0400

** 
0.0779388  

0.0190
** 

0.0294806  
0.2870  

eco-com
for t 

0.0523404  
0.2480  

0.0021244  
0.9690  

0.1059369  
0.0210

** 
age  

0.0008106  
0.0000

*** 
0.001021  

0.0000
*** 

0.0001881  
0.2360  

tenure  
−

0.1028189  
0.1670  

0.0462172  
0.6090  

−
0.0854744  

0.2500  
energy label 

−
0.0769971  

0.0650
* 

−
0.075806  

0.1320  
−

0.0575989  
0.1780  

typ
e  

0.4265  
0.0000

*** 
0.5005143  

0.0000
*** 

0.0904679  
0.3130  

age of resid
ence 

0.0883428  
0.0000

*** 
−

0.0577463  
0.0440

** 
−

0.031426  
0.1810  

size  
0.0857047  

0.0140
** 

0.1287344  
0.0010

*** 
0.0510185  

0.1530  
electricity  

0.0000182  
0.3820  

−
0.0000937  

0.0000
*** 

0.0000697  
0.0010

*** 
gas  

0.0000488  
0.0480

** 
0.0000127  

0.6980  
0.000008  

0.7500  
p

ersonal norm
s 

0.052849  
0.1000

* 
0.082771  

0.0350
** 

0.095038  
0.0030

*** 
social norm

s 
0.0020971  

0.9330  
0.003869  

0.9000  
−

0.0161594  
0.5160  

N
ote: * refers to 10%

 significance level, ** refers to 5%
 significance level, and *** refers to 1%

 significance level
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2.4.3.2. Factors	 affecting	 a	 probability	 of	 a	 household	 to	
conserve	energy		

Energy conservation actions (C1–C3) correlate significantly with the 
country dummy (Table 2.7). Specifically, Spanish households are more 
active in switching off unnecessary devices (C1, 99% confidence interval) 
and using less energy (C3, 99% confidence interval), while Dutch 
households are more likely to reduce their use of the heater / air conditioner 
(C2, 99% confidence interval).  

Analysis of socio-demographic factors highlights the roles of gender and 
economic comfort. Gender bias is observed under C2 and C3 decisions: 
women pursue more energy conservation compared to men. Moreover, we 
detect that households not satisfied with their current economic situation are 
more likely to try to save money by reducing their energy bill and switching 
off unnecessary devices (economic comfort, 95% confidence interval). 
Personal norms appear very significant and positive (99% confidence 
interval) for all three conservation actions. 

Type and energy label of residence emerge as important factors in conserving 
on heating/cooling (C2): people living in houses have an extra incentive to 
turn down the heating/cooling compared to people living in apartments. 
The worse the energy label, the higher the energy leakage and the more 
people try to conserve their energy use by reducing heating/cooling. 
Consequently, residences with low energy labels potentially have more 
energy leakage leading to growth in energy consumption and bills. To save 
energy and money, households either should invest in insulation (Table 6) 
or save energy by turning down the heating/cooling system and adapting to 
less comfortable temperatures. 

In summary, the likelihood of households conserving energy (C1–C3) 
correlates with personal norms and the type, energy label, and age of their 
residences. 
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T
able	2.7:	Probit	regression	conservation	(PR

.II).	D
ependent	variables:	sw

itching	off	devices	w
hen	not	in	use,	turning	dow

n	the	heater	/	air	
conditioner	and	generally	using	less	energy	(N

=1,790)	

V
ariables 

C
1: Sw

itch off or unp
lug d

evices  
w

hen not in use  
C

2: Turn d
ow

n the heater /  air 
cond

itioner 
C

3: U
se less energy 

coefficients 
p-value 

coefficients 
p-value 

coefficients 
p-value 

country 
0.2706158 

0.0080
*** 

−
0.3943574 

0.0000
*** 

0.7156096 
0.0000

*** 
incom

e 
−

0.0427815 
0.2340 

−
0.0076126 

0.8400 
−

0.0591228 
0.0800

* 
gend

er 
−

0.0125411  
0.8560  

−
0.1723292 

0.0160
** 

−
0.2067435  

0.0010
*** 

ed
ucation 

−
0.0233181  

0.4430  
0.0272647 

0.3920  
0.0256838  

0.3710  
eco-com

for t 
0.1049109  

0.0340
** 

−
0.0567201 

0.2740  
−

0.0145656  
0.7560  

age  
0.0001355  

0.4290  
−

0.0004648 
0.0090

*** 
0.0002276  

0.1630  
tenure  

−
0.0457255  

0.5770  
−

0.1251689 
0.1390  

−
0.0582215  

0.4490  
energy label 

0.0587441  
0.2060  

0.0965134 
0.0490

** 
0.0124117  

0.7750  
typ

e  
0.1060117  

0.2780  
0.3023552 

0.0030
*** 

0.0322179  
0.7290  

age of resid
ence 

−
0.0009385  

0.9710  
−

0.0716471 
0.0070

*** 
0.0019361  

0.9370  
size  

0.0169433  
0.6630  

−
0.0368238 

0.3740  
0.007845  

0.8280  
electricity  

0.000021  
0.3680  

−
0.0000 

0.9130  
0.0000149  

0.4950  
gas  

−
0.000005  

0.8500  
0.0000819 

0.0060
*** 

0.0000161  
0.5540  

p
ersonal norm

s 
0.1134906  

0.0010
*** 

0.1534471 
0.0000

*** 
0.1619213  

0.0000
*** 

social norm
s 

0.0108234  
0.6950  

−
0.0547073 

0.0590
* 

0.0261578  
0.3130  

N
ote: * refers to 10%

 significance level, ** refers to 5%
 significance level, and *** refers to 1%

 significance level 
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2.4.3.3. Factors	affecting	a	probability	of	a	household	to	switch	
energy	providers	

 Switching to another green provider (S2) correlates significantly with the 
country dummy (Table 2.8, %99). This result could reflect greater market 
competition between providers in Netherlands.  

Education plays an important role in the transition to green energies (S1, 
S2): households with higher levels of education are more likely to switch 
(95% confidence interval). In addition, this is the only place where we 
capture the correlation between income and household decisions (S3): lower 
income groups are more likely to switch to conventional providers. This 
result can be explained by these households seeking lower costs, which are 
still found with conventional energy providers. Personal norms appear 
significant (95% confidence interval) for switching to another green energy 
provider: households switching to greener energy have higher personal 
norms. 

Regarding the residence characteristics, age and energy rating come out as 
important. Owners of older buildings are more likely to switch to another 
green provider (99% confidence interval). Residences with a lower energy 
label rating tend to switch to a green provider (95% confidence interval).  

The decisions to switch to a green provider (S1) and from one green provider 
to another (S2) tend to have quite similar types of explanatory variables. 
However, in switching to another green provider, personal norms play an 
important role.
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T
able	2.8:	Probit	regression	on	sw

itching	(PR
.III).	D

ependent	variables:	sw
itching	supplier	–	from

	grey	to	green,	from
	green	to	another	green,	from

	
grey	to	another	conventional	provider	(N

=1,790) 

V
ariables 

S1: Sw
itch to green energy  

S2: Sw
itch to another green 

energy p
rovid

er 
S3: Sw

itch to another 
conventional p

rovid
er 

coefficients  
p-value  

coefficients 
p-value  

coefficients  
p-value  

country 
−

0.1739922  
0.1430  

−
0.2817241 

0.0070
*** 

0.1780758  
0.1020

* 
incom

e 
0.0379236  

0.3540  
−

0.0410168 
0.2680  

−
0.0634739  

0.1070
* 

gend
er 

0.0833157  
0.2960  

0.0357666 
0.6080  

0.0819696  
0.2660  

ed
ucation 

0.0856276 
0.0130

** 
0.0639826 

0.0380
** 

0.0266516 
0.4050 

eco-com
fort 

0.016136 
0.7710 

0.0036614 
0.9430 

−
0.021244 

0.6960 
age 

0.0010655 
0.0000

*** 
0.0006837 

0.0000
*** 

0.0005574 
0.0030

*** 
tenure  

0.073537  
0.4340  

−
0.0470855 

0.5730  
−

0.026532  
0.7630  

energy label 
−

0.0974067  
0.0730

* 
0.0245303 

0.5980  
0.0700238  

0.1560  
typ

e  
0.0618649  

0.5900  
0.0194978 

0.8460  
−

0.0912484  
0.3910  

age of resid
ence 

0.0129401  
0.6650  

−
0.0869868 

0.0010
*** 

−
0.0172708  

0.5280  
size  

0.0529026  
0.2340  

0.059853 
0.1280  

0.0601634  
0.1510  

electricity  
−

0.0000671  
0.0140

** 
0.0000291 

0.2200  
0.0000  

0.9820  
gas  

0.0000112  
0.7320  

−
0.0000382 

0.1850  
0.0001035  

0.0000
*** 

p
ersonal norm

s 
0.0648121  

0.1180  
0.080775 

0.0290
** 

−
0.0434834  

0.2560  
social norm

s 
0.0450193  

0.1620  
0.0355918 

0.2090  
−

0.0095217  
0.7500  

N
ote: * refers to 10%

 significance level, ** refers to 5%
 significance level, and *** refers to 1%

 significance level
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2.4.4. Predicted	probabilities	

Under the probit discrete choice model, the probability of a household 
implementing a sub-option (I1–S3) is Modelled as follows: 

 

 (3) 

ܲ	൫ݕ௜௝ ൌ 1หݔ௜௝൯ ൌ 	
exp൫ݔ௜௝	ߚ௜൯

1 ൅	exp൫ݔ௜௝	ߚ௜൯	
ൌ  ௜ሻߚ	௜௝ݔሺ	߉	

 

where ߉	ሺݔ௜௝	ߚ௜ሻ denotes the logistic cumulative distribution function (Ameli 
and Brandt, 2015). To follow the socio-demographic, structural, and 
behavioural factors’ magnitudes, we tested the marginal effect across a range 
of their values. Among all factors, personal norms and education 
demonstrated significant results. Also, the regression analysis (Sections 
2.4.3.1–2.4.3.3) unanimously showed the importance of these two factors. 
Figure 4 illustrates the effect of personal norms and education levels on nine 
household behaviours (I1–3, C1–3, S1–3).  

A higher level of personal norms increases the probability of energy 
investments (I1–3, blue lines), conservation (C1–3, orange lines), and 
switching to green providers (S1 and S2, green lines), in contrast to 
switching to another conventional supplier (S3, light green line). This result 
clearly shows that an increase in the level of personal norms leads to a large 
increase in the probabilities of transition to a low-carbon economy.  
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Figure	 2.4:	 Predicted	 probability	 of	 energy‐related	 actions	 (I1–S3)	 depending	 on	 personal	
norms	and	education	level	

   

2.5. Conclusions	and	policy	implications	

This article offers the strong evidence of the importance of behavioural 
factors in making energy-related decisions and in promoting behavioural 
solutions for climate change mitigation in Europe. We develop a conceptual 
framework rooted in behavioural theories from psychology and designed a 
questionnaire based on it. By using our survey data we quantitatively 
investigate the relevance of behavioural factors in this framework (Section 
2.4.2). Several behavioural factors (e.g., knowledge and awareness) 
influence personal norms: the higher the level of knowledge and awareness 
about environmental and climate issues, the higher the level of personal 
norms. The impact of the societal institutional rules – culture, fiscal rules, 
and regulations – on individuals is inevitable, as confirmed by the significant 
effect of the country dummy. Moreover, households are not making 
decisions in isolation: they are prone to the influence of interactions with 
peers in their social networks and local communities. In fact, social norms 
have an essential role in shaping personal norms. Together, personal and 
social norms can trigger individuals to make energy-efficient decisions.   
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We quantitatively assess nine different energy-related actions and their 
dependence not only on behavioural factors but also on socio-demographic 
and structural dwelling factors. Among dwelling characteristics, the type, 
size, and age of the residence have a strong influence on energy investments 
and conservation. As expected, people living in house are more eager to 
pursue large investments and have an extra incentive to save energy by 
turning down the heater / air conditioner. Analysis of socio-demographic 
factors highlights the role of education in household energy-related 
decisions, particularly in energy investments and in switching to green 
energy sources. Educated households are more active in improving their 
energy efficiency in both case studies. A higher level of education enables 
more insight, knowledge, and awareness of environment–climate–energy 
issues, which all consequently affect personal norms and lead to behaviour 
change.  The comparative analysis between two countries allows us to 
validate the conceptual framework by testing the relation of behavioural 
factors across contexts (Section 2.4.2). The country dummy serves as a 
proxy to capture to what extent differences in institutional, cultural and 
climatic factors affect households’ energy choices. Namely, our analysis 
shows that  Dutch households are more active in investing in house insulation 
(I1) and in installing PVs (I2). However, Spanish households pioneer in 
energy conservation by changing daily habits (C1, C3). We also find that 
switching to another green provider (S2) correlates significantly with the 
country dummy which  could reflect greater market competition between 
green providers in Netherlands.  

To conclude, the empirical analysis clearly demonstrates that behavioural 
factors, next to structural factors and education, play at least as important a 
role in energy decisions – investment, conservation, and switching – as 
monetary factors such as income. This result has implications for the type of 
governmental regulations and policies that can be implemented to facilitate 
the green transition. In particular, policies such as the provision of targeted 
information and social advertisements for the broader public in combination 



Demand-side solutions for climate change mitigation 

50 

 

with education to create more knowledge and awareness in the longer run 
could accompany and reinforce the effectiveness of other stimuli such as 
subsidies. Including special topics in educational programs can help to change 
the level of understanding, awareness, and individual norms of households. 
These so-called nudging or soft policy measures may prove more effective in 
promoting green energy solutions implemented by households compared to 
fiscal policy measures alone. A variety of policy instruments should be used 
with combinations of various financial, social, and other instruments in the 
policy mix complementing and reinforcing each other. 
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Appendix	A	

Figure	2.A.1:	Questionnaire	design,	different	type	of	questions.	Source:	own	online	survey,	
2016	
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Appendix	B	

Table	2.B.1:	Items	of	psychological	factors,	“Knowledge”.	Source:	own	survey,	2016	

Knowledge  
Climate-Energy-Economy Knowledge   
Climate change is caused by a hole in the earth’s atmosphere. 
Climate change issues should be dealt with primarily by future generations. 
 
Climate-Energy-Economy Awareness   
I believe that …. 

the effect of environmental issues on human health is worse than we realize. 
environmental issues, even in one region, affect other regions. 
environmental impacts are frequently overstated. 
environmental issues like climate change is caused by fossil fuels use. 
protecting the environment is a means of stimulating economic growth. 
nature is fragile and if we don’t take care of it properly, it could lose its balance. 
 

Energy Decision Awareness   
I believe that my energy source choice (renewables or fossil fuels) has an impact on the 
environment. 
I think avoiding fossil fuels use will help solve wider environmental issues. 

 
all	 items	 measured	 with	 Likert	 scales	 with	 labelled	 end‐points	 (1	 =”totally	 disagree”	 and	
7=“totally	agree”)	
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Table	2.B.2:	Items	of	psychological	factors,	“Motivation”.	Source:	own	survey,	2016	

Motivation 
Perceived Behavioural control  * 
I believe that …. 

the effect of environmental issues on human health is worse than we realize. 
I can help solve environmental, climate and energy problems. 
when I use fossil fuels, there are greenhouse gases emitted which threaten human 
health. 
every time we use coal, oil or gas, we contribute to climate change. 

Reducing my energy consumption is a personal willingness and self-motivation 

Social Norms ** 
I will reduce my energy consumption if … 

more practical information on how to reduce energy consumption at home 
funding out that my households uses more energy than similar households 
public labels which neighbors can see 
encouragement or actions of friends and family 
encouragement or actions of group/associations that I am part of them 
Governmental policies and subsidies (i.e. municipalities, provincial, national level) 

*	 all	 items	measured	with	 Likert	 scales	with	 labelled	 end‐points	 (1	 =”totally	 disagree”	 and	
7=“totally	agree”)	
**	 all	 items	measured	with	 Likert	 scales	with	 labelled	 end‐points	 (1	 =”not	 important”	 and	
7=“very	important”)	
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Table	2.B.3:	Items	of	psychological	factors,	“Consideration”.	Source:	own	survey,	2016.	

Consideration 
Perceived Behaviour Control-investment (PBC1)   
I would reduce my energy consumption, if more practical information on how I can invest in 
green energies (e.g. install solar panels) would be available. 
If there were subsidies I would produce part of my green energy consumption (e.g. install solar 
panel or fund a wind turbine). 
 
Perceived Behaviour Control-Conservation (PBC2) 
I would reduce my energy consumption if energy prices would be higher. 
I would reduce my energy consumption, if more practical information on how to reduce energy 
consumption at home would be available. 
 
Perceived Behaviour Control-Switching (PBC3) 
If I had enough information, it would be easier to switch to green energy  
If a renewable/green energy tariff was available at another energy provider, I would change my 
provider. 
If a better/cheaper offer was available at another energy provider, I would change my provider. 

 
all	 items	 measured	 with	 Likert	 scales	 with	 labelled	 end‐points	 (1	 =”totally	 disagree”	 and	
7=“totally	agree”)	
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TRANSITION	TO	LOW‐CARBON	ECONOMY:	ASSESSING	
CUMULATIVE	IMPACTS	OF	INDIVIDUAL	BEHAVIOURAL	
CHANGES	
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Abstract	

Changing residential energy demand can play an essential role in 
transitioning to a green economy. Environmental psychology suggests that 
behavioural changes regarding energy use are affected by knowledge, 
awareness, motivation and social learning. Data on various behavioural 
drivers of change can explain energy use at the individual level, but it 
provides little information about implications for macro energy demand on 
regional or national levels. We address this challenge by presenting a 
theoretically-based and empirically-driven agent-based model to track 
aggregated impacts of behavioural changes among heterogeneous 
households. We focus on the representation of the multi-step changes in 
individual energy use behaviour and on a quantitative assessment of their 
aggregated impacts on the regional level. We understand the behavioural 
complexity of household energy use as a dynamic process unfolding in stages, 
and explore the barriers for utilizing the full potential of a region for 
emissions reduction. We suggest a policy mix that facilitates mutual learning 
among consumers.  
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3.1. Introduction	

Anthropogenic greenhouse gas (GHG) emissions continue to rise (UNEP, 
2017). Keeping average global temperature below a critical limit of 1.5°C 
above pre-industrial levels calls for ambitious emission reduction efforts. To 
reduce carbon intensity economies throughout the world rely on social and 
technological changes. The distributed nature of renewables, increasingly 
competitive costs of renewable technologies, and new developments in 
smart grids and smart homes further help energy consumers to become 
active players in this domain (EC, 2017). Prevailing social norms, which 
shape individual decisions and which are shaped by them, could be a response 
to global environmental problems (Nyborg et al., 2016). To understand the 
role of individuals in a transition to low-carbon economy, calls for 
quantitative analysis of behavioural changes with respect to energy use.  

Residential energy use accounts for almost 24% of GHG emissions in 
Europe. Early assessments indicate that behavioural change alone can 
remove between 4% (McKinsey, 2009) and 5-8% (Faber et al., 2012) of the 
overall CO2 emissions. Quantifying aggregated impacts of household 
behavioural change is, however, a challenging task. The quantitative tools to 
support energy policy decisions range from assessment of macro-economic 
and cross-sectoral impacts (Kancs, 2001; Siagian et al., 2017), to single 
sector analysis of costs and benefits (Kumar, 2016), and detailed micro-
simulation models for a specific technology (Bhattacharyya, 2011; Hunt and 
Evans, 2009). Yet, behavioural shifts among households are often modelled 
in a rudimentary way assuming a representative consumer (a group), a 
perfectly informed choice based on rational optimization, and instantly 
equilibrating markets. Going beyond a stylized representation of a perfectly 
informed optimizer requires a theoretically and empirically solid alternative. 
The growing body of empirical literature in social sciences (Abrahamse and 
Steg, 2009; Bamberg et al., 2015; De Groot and Steg, 2009; Poortinga et 
al., 2004; Wall et al., 2007) acknowledges complex behavioural processes 
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among households who consider changes in their energy consumption and 
decide on related investments and use practices. A range of theories in 
environmental psychology consider attitudes, norms, perceived behavioural 
control, awareness and responsibility to be vital in the process of individual 
decision making regarding energy use (Abrahamse and Steg, 2009; Adnana 
et al., 2017; Karatasou and Santamouris, 2010; Onwezen et al., 2013). 
Importantly, these studies differentiate between intentions and actual 
changes in individual behaviour, and highlight the role of awareness, 
information and social peer influence on this process (Abrahamse and Steg, 
2011; Frederiks et al., 2015). Omitting these behavioural factors, which 
may serve as drivers or barriers, could be misleading when studying the role 
of the residential sector in a transition to a green economy.  

Empirical data about various behavioural drivers of change is essential for 
understanding energy use choices at the individual level. Yet, it provides 
little information about implications for macro energy demand and for the 
corresponding emissions footprint on regional or national level. Proper 
aggregation methods are in demand. Agent Based Modelling (ABM) is a 
simulation approach to study aggregated dynamics emerging from actions of 
heterogeneous individual agents, which make decisions and interact with 
each other according to theoretical and data-driven rules. Boundedly rational 
agents, their potential to learn, and an ability to unfold a decision process in 
stages, allows ABMs to accommodate the complexity of human behaviour in 
energy systems (Rai and Henry, 2016). ABM departs from using system-
level equations explicitly representing the behaviour of energy consumers, 
such as households, using a range of theories. This method is actively used in 
energy applications to study national climate mitigation strategies (Gerst et 
al., 2013), energy producer behaviour (Aliabadi et al., 2017), renewable 
energy auctions (Anatolitis and Welisch, 2017), consumer adoption of 
energy-efficient technology (Chappin and Afman, 2013; Jackson, 2010; 
Palmer et al., 2015; Rai and Robinson, 2015), shifts in consumption patterns 
(Bravo et al., 2013), and changes in energy policy processes (Iychettira et 
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al., 2017). ABM receives much attention currently in climate change 
mitigation discussions (Stern et al., 2016a). Yet, many ABMs still either lack 
a theoretical framework (Groeneveld et al., 2017) or relevance to empirical 
data, especially when studying energy-related behaviour of households 
(Amouroux et al., 2013; Chappin et al., 2007).  

This paper aims to quantitatively explore the impact of behavioural factors 
on the energy use of individual households and the aggregate dynamics of 
residential energy demand in a region., Its innovative contribution to the 
literature is threefold. Firstly, we extend individual energy demand 
Modelling based on economic factors alone, by explicitly accounting for 
potential behavioural drivers and barriers  in a formal model. Secondly, 
while acknowledging the importance of solid empirical behavioural data 
collected in harmony with recent findings in environmental psychology, the 
article introduces a simulation method that allows to aggregate individual 
behavioural and economic heterogeneity and captures dynamics in the 
aggregated regional trends looking beyond a snapshot of a survey. Thirdly, 
this article uniquely contributes to the growing body of literature on energy 
ABMs by focusing on the multi-step representation of individual energy use 
choices in a fully modelled energy market relying on theoretically and 
empirically-grounded agent rules. This combination of behavioural data 
collection via a survey with a simulation Modelling allows us to address the 
main research question: how do different cognitive stages and psychological 
and social processes affect individual energy choices, cumulative regional 
energy demand and corresponding CO2 emissions?  
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Table	3.1:	Overview	of	energy‐related	behaviours	in	the	housing	sector	

Energy-related 
behavioural changes  

Examples Last related factsheets 

Investment  
(Action 1) 

- Installing solar power system 
- Installing thermal solar power 
system 
- Roof/floor insulation 
- Installing efficient appliances  
- Installing smart meters 

Abdmouleh et al. (2018); 
Deng and Newton (2017); 
Buchanan et al. (2016); 
Rai and Henry (2016); 
Buryk et al. (2015); Ameli 
and Brandt (2015); Rai and 
Robinson (2015); Tran 
(2012); Chappin et al. 
(2007) 
 

Energy conservation 
(Action 2) 

- Turn off extra devices 
- Consciously use less electricity 
- Run only full load washing 
machines 
- Tolerate lower (higher) 
temperature in winter (summer) 
 

Thøgersen (2017); 
Amouroux et al. (2013); 
Faber et al. (2012); Mills 
and Schleich (2012) 

Switching a supplier 
(Action 3) 

- Switch conventional to green 
supplier 
- Switch to greener supplier 

He and Reiner (2017); 
Rommel et al. (2016); 
Yang (2014); McDaniel 
and Groothuis (2012); 
Tran (2012) 

 

The article proceeds as follows. By drawing on critical insights on 
behavioural change from environmental psychology, we illuminate the key 
factors of energy-related behaviour (Section 3.2) and present the design and 
summary of our survey (Section 3.3.1). We apply ABM to assess the 
cumulative impacts of individual behavioural changes with respect to energy 
use, accounting for socioeconomic heterogeneity, psychological factors and 
social network influence (Section 3.3.2). While grounding the model in 
these psychological and economic micro-foundations, we focus our analysis 
on the emerging macro properties (Section 3.4). The latter include macro 
trends in the diffusion of energy related practices among households 
(investments in energy efficient technical means, conservation due to 
changes in energy use habits or switching among energy sources), aggregated 
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changes in shares of renewable energy consumption and corresponding CO2 
emissions at the regional level. We argue that understanding the behavioural 
complexity of energy-related households’ decisions as a dynamic process 
unfolding in stages, uncovers barriers for utilizing the full emissions 
reduction potential of a region and calls for a policy mix that facilitates 
mutual learning among consumers (Section 3.5). 

3.2. Human	energy‐related	decision	process		

There are a number of actions households may pursue individually which 
impact their energy footprint. We categorize them into three main types of 
energy-related behavioural changes (Table 3.1). A household could make an 
investment (Action 1): either large, such as in solar panels and house 
insulation, or small, such as buying energy efficient appliances (A++ 
washing machine or light bulbs). Alternatively, households may save energy 
by changing their daily routines and habits (Action 2): by adjusting their 
thermostat  or by switching off the lights. Finally, households could switch 
to a supplier that provides green(er) electricity (Action 3). 

Empirical studies in psychology and behavioural economics show that 
consumer choices and actions often deviate from the assumptions of 
rationality: there are persistent biases in human decision-making (Frederiks 
et al., 2015; Kahneman, 2003; Niamir and Filatova, 2016; Pollitt and 
Shaorshadze 2013; Stern, 1992; Wilson and Dowlatabadi, 2007). It implies 
that people do not necessary pursue the ‘optimal choice’ even if it is 
economically beneficial for them to do so. Unfolding a decision-making 
process in stages may potentially reveal where different biases and barriers 
start to play a role and how they may impact a decision.  

Environmental psychology reveals various behavioural factors that are 
essential for understanding individual energy use decisions. Abrahamse and 
Steg (2009) study to what extent socio-demographic and psychological 
factors are related to the households’ energy use and savings by applying 
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Norm Activation Theory (NAT)* and Theory of Planned Behaviour (TPB)†. 
They argue that the NAT variables such as awareness and personal norms 
significantly add to the explanation of energy-related behaviour, more than 
the TPB variables such as attitudes and perceived behaviour control. In 
addition, they mention that different types of energy-related methods appear 
to be related to different sets of variables. Onwezen et al. (2013) also 
consider the NAT and TPB integrated framework in order to get better 
insights into the role of pride and guilt in pro-environmental behaviour. 
Adnana et al. (2017) use the extended TPB in predicting consumers’ 
intentions toward the adaptation of electric and plug-in hybrid electric 
vehicles. In their framework, the three core components of TPB – attitudes, 
subjective norms, and personal norms – are used. In addition they add some 
socio-demographic control variables to test their impact of intentions to 
adapt. Sarkis (2017) shows the importance of using behaviour change and 
decision making models in illustrating consumers energy behaviours by 
comparing TPB and the Value Belief Norm theory. He argues that using any 
theoretically based framework to understand human behaviour is inheritably 
linked to individual psychological variables – beliefs, norms and attitudes – 
which should be tested empirically. However, concrete studies of residential 

                                                  
* NAT is originally developed by Schwartz, S.H., (1977) Normative Influences on Altruism1, in: 
Leonard, B. (Ed.), Advances in Experimental Social Psychology. Academic Press, pp. 221-279. to 
study altruistic and environmentally friendly behavioural. The theory assumes that individual 
awareness and a responsibility one holds affect pro-environmental actions. 

† TPB is formulated by Ajzen, I. (1980b) Understanding Events - Affect and the Construction of 
Social-Action - Heise,Dr. Contemporary Psychology 25, 775-776. based on the Theory Reasoned 
Action. It is one of the most influential theories in social and health psychology (Armitage, C.J., 
Conner, M. (2001) Efficacy of the theory of planned behaviour: A meta-analytic review. British 
Journal of Social Psychology 40, 471-499, Onwezen, M.C., Antonides, G., Bartels, J. (2013) The 
Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-
environmental behaviour. Journal of Economic Psychology 39, 141-153.). TPB assumes that an 
intention to act is determined by 3 main factors: human attitude toward specific behaviour (action), 
subjective norm, and perceived behavioural control. 
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energy-related behavioural changes, verified by detailed empirical data, are 
rare (Bhushan et al., 2016; Stern et al., 2016a). 

Naturally, these various decision theories can be used in ABMs to go beyond 
the assumption of a rational optimizer with perfect information. However, 
only a few of ABMs in the energy and environmental domain employ them 
currently (Table 3.2). 

 
Table	3.2:	Use	of	various	decision‐making	theories	to	specify	behavioural	rules	in	environmental	
and	energy	ABM	

Theory / Field Energy Other Environmental 
(waste, agriculture, 

water) 
Theory of planned 
behaviour 

Haer et al. (2016); Raihanian 
Mashhadi and Behdad (2017); 
Rai and Henry (2016); Rai and 
Robinson (2015) 

Ceschi Ceschi et al. (2015); 
Kiesling et al. (2012); Schwarz 
and Ernst (2009) 

Norm activation theory Niamir and Filatova (2016) - 
Protection motivation 
theory 

- Haer et al. (2016); Krömker 
et al. (2008) 

Prospect theory - Koning et al (2017);  
Goal-framing theory Gotts and Polhill (2017); 

Polhill and Gotts (2017) 
Rangoni and Jager (2017) 

Maximization, either 
with perfectly or 
boundedly rational 
agents  

Cao et al. (2017); Vasiljevska 
et al. (2017); Gallo (2016); 
Gerst et al. (2013); Weidlich 
and Veit (2008) 

Jager et al. (2000); Filatova et 
al. (2011); Parker et al. (2003) 

Consumat approach Bravo et al. (2013) van Duinen et al. (2016); 
Jager et al. (2000) 

No theory framework Palmer et al. (2015); 
Amouroux et al. (2013); 
Chappin and Afman (2013); 
Chappin (2012); Chappin and 
Dijkema (2007) 

Groeneveld et al. (2017); 
Kamara-Esteban et al. (2016); 
Rounsevell et al. (2014); Liu 
et al. (2006); Gotts et al. 
(2003) 

 

Abrahamse and Steg (2009); Bamberg et al. (2007); Onwezen et al. (2013) 
have indicated that knowledge and awareness in particular play an important 
role in pro-environmental decisions. While its impact on individual 
responsibility and personal norms is discussed (Abrahamse and Steg, 2011), 
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the influence of individual awareness on the diffusion of energy-efficient 
practices and cumulative reduction in emissions is rarely studied. ABM can 
be a unique tool in order to perform quantitative analysis of aggregative 
consequences of either lack or presence of individual knowledge and 
awareness. The NAT theory, originally developed by Schwartz (1977), aims 
to explain altruistic and environmentally friendly behaviour. Personal norms 
are at the core of this theory, and are used to explain individual behaviour. 
Personal norms are determined by two main factors: awareness and 
responsibility, while in turn they are influenced by subjective norms and 
perceived behaviour control. In the NAT terminology, one should 
differentiate between personal norm, which is expectations that people hold 
for themselves, and subjective norms, which is the perceived social pressure 
to engage or not to engage in a behaviour. The awareness indicates 
knowledge that choosing (or not) a specific behaviour has certain 
consequences. The household feels responsibility for delivering a particular 
behaviour when they are sufficiently aware, and are motivated by their 
environment (Abrahamse and Steg, 2009; Onwezen et al., 2013; Schwartz, 
1977). 
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Figure	3.1:	Conceptual	representation	of	the	Norm	Activation	Theory	(Adapted	from	Schwartz	
1977,	De	Groot	and	Steg	2009).	A	decision‐making	process	 leading	to	a	particular	behaviour	
follows	5	main	consecutive	factors:	awareness,	responsibility,	personal	norms,	subjective	norms	
and	perceived	behaviour	control.	In	order	to	reach	to	a	particular	behaviour	(box	IV),	first	an	
individual	should	be	aware	about	an	issue	at	hand	(box	I).	A	sufficient	level	of	awareness	then	
leads	it	to	the	feeling	of	responsibility	(box	II).	Here	the	perceived	social	pressure	–	labelled	as	
subjective	norms	in	NAT	(the	linking	box	I‐II)	–	could	act	as	a	mediating	factor	that	raises	or	
suppresses	individual	awareness	and	feelings	of	responsibility.	Perceived	behaviour	control	(the	
linking	box	II‐	III)	indicates	an	extent,	to	which	performing	a	particular	behaviour	could	be	easy	
or	difficult	 for	an	 individual.	Finally,	personal	norms	 (box	 III)	represents	a	moral	obligation	
triggering	the	behavioural	change.	

 

To be able to reach a decision to pursue a particular behaviour (Box IV, Fig. 
3.1), an individual first needs to be aware of a problem (Box I, Fig. 3.1). A 
sufficient level of awareness then leads to understanding own individual 
responsibility, i.e. the consequences of own actions (Box II in Fig. 3.1). 
Subjective norms (that link Box I and II in Fig. 3.1) account for the perceived 
social pressure to engage or not to engage in a particular behaviour, e.g. solar 
panel installation in a neighbourhood could bring attention of households and 
raise their awareness, contributing to the feeling of responsibility. Subjective 
norms act as a mediating factor that either raises or suppresses individual 
awareness and feelings of responsibility. For instance, actions of friends and 
family, or neighbours could encourage an individual to pursue the same 
action, e.g. installing solar panels or changing daily energy use habits, which 
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reduce households’ energy consumption and, consequently, an electricity 
bill. When a household reaches a threshold of responsibility – implying that 
a person feels that her actions can make a difference- it assesses its perceived 
behaviour control (the link between Box II-III). Perceived behaviour control 
(PBC) characterizes the extent, to which performing a particular behaviour 
is easy or difficult. PBC indicates whether it is in one's control to execute a 
particular action. Would it be difficult/easy to install a solar panel? Can I 
afford it? If one feels that she has a degree of control over it, she moves to 
another stage where personal norms (Box III) are assessed to prioritize 
among actions. Personal norms include any rules one may have created for 
herself beyond or outside the prevailing subjective norms (Box I-II). For 
instance, a person may feel good when using energy from a renewable 
source. It is a value or principle that morally obliges individuals to either 
pursue a behaviour change or not. 

 

3.3. Methodology	

To investigate cumulative impacts of behavioural changes of households and 
their potential contribution to shifts in a regional residential energy demand, 
we integrate behavioural aspects of individual decision making into an energy 
market model. An extensive household survey and an empirical residential 
energy demand ABM, both grounded in the NAT framework (Figure 1), 
form a solid basis for our analysis. Empirical behavioural rules for agents in 
the simulation model are derived using the data from the households survey 
carried out in the Navarre region of Spain in 2016 (Section 3.3.1). The 
Behavioural change in ENergy Consumption of Households (BENCH) agent-
based model is designed to simulate the energy-related multi-stage decision 
making process in heterogeneous households, which differ in socio-
demographic factors and climate-energy-economy preferences (Section 
3.3.2). To reach any of the three decisions, household agents in BENCH go 
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through a decision-making process, which includes several stages (Figure 1) 
based on NAT. The architecture of the BENCH model follows its prototype: 
a stylized energy market ABM (Niamir and Filatova, 2015). Here we go far 
beyond that simple toy model by adding a multi-stage behavioural process of 
decision-making among households who consider energy-related decisions 
based on solid theoretical and empirical ground.  

 

3.3.1. Household	survey			

Navarre is a province in northern Spain, and consists of 272 municipalities. 
Navarre is a European leader in its use of renewable energy technologies. In 
2016 we ran a household survey over an extensive sample of respondents, 
N=755 households, using an online questionnaire (Appendix A). We 
designed the survey based on the environmental psychology literature to 
identify potential factors of households’ energy-related behavioural changes. 
Specifically, our household survey focuses on factors potentially affecting a 
decision-making process with respect to the three types of energy-related 
actions that households typically make: (1) investments to save or produce 
energy, (2) conservation of energy by changing consumption patterns and 
habits, and (3) switching to another energy source. The conceptual 
framework behind the survey based on the NAT (Section 3.2) assumes three 
main steps that lead to one of these actions: knowledge activation, 
motivation, and consideration (Figure 3.2). In each step, several 
psychological factors (e.g. awareness, personal norms, feeling guilt), 
economical (e.g. income), socio-demographic (e.g. educational level, age), 
social (e.g. subjective and social norms), structural and physical (e.g. energy 
label and ownership of dwelling) drivers and barriers are considered and 
estimated based on the NAT theory (Figure 1). Survey data indicates, which 
of these factors acts as a driver or as a barrier. Appendix A provides examples 
of questions used to measure each of the actions – investment, conservation 
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and switching – and the relevant behavioural factors affecting these 
decisions. 

 

 
Figure	3.2:	Conceptual	model	underlying	the	household	survey	

 

Figure 3.2 indicates the stages behind each decision, i.e. behavioural change, 
of a household. First, households should reach a certain level of knowledge 
and awareness about climate change, energy, and environment. If an 
individual in a  household is aware enough, she might feel guilt. Here personal 
norms (individual attitudes and beliefs) and subjective norms prevailing in a 
society add to her motivation. If a household gets motivated, she feels 
responsible to do something.  Still, none of them is enough to provoke an 
action or change behaviour. A household should consider her economic status, 
her house conditions (e.g. renting of owning), her current habits, and own 
perception of her ability to perform an action or change behaviour, i.e. own 
PBC. If a household reaches a certain level of intention, we can expect that 
she is going to make a decision or act. This conceptual model is designed to 
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investigate the multi-stage process of energy-related behaviour change of 
households. 

Tables 3.3-5 provide a brief overview of the survey sample to illustrate the 
distribution of the most important factors – including the key behavioural 
variables – across various income groups. The variation in these factors 
among surveyed households, as registered in the 2016 responses, is used to 
initialize* a population of heterogeneous agents in the ABM (Section 3.3.2).  

In addition to socio-demographic and energy use data (Table 3.3), we 
provide a summary of the distribution of behavioural factors (Table 3.4) and 
undertaken energy use choices (Table 3.5) reported by the households in our 
sample.  The behavioural factors listed in Table 3.4 are measured by means 
of a questionnaire in our survey (please see examples of the questions used 
to elicit these behavioural factors in Appendix A). Data from Tables 3.3 and 
3.4 is used to parameterize behavioural rules in the BENCH model as 
discussed further in Section 3.3.2.  

 

  

                                                  
* The dynamics in the model is further driven by interactions among agents: market interactions, 
e.g. due to changes in aggregate demand and corresponding price dynamics, and social interactions, 
e.g. exchanging information about knowledge and awareness regarding energy and environment. 
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Table	 3.3:	Descriptive	 statistics	 of	 the	 survey	 sample	 on	 socio‐demographic	 and	 structural	
characteristics,	Spain‐Navarre.	Source:	own	survey,	2016.	

Income 
groups, 

Thousands euro 
per year 

< 10 10 - 30 30 - 50 50 - 70 70 - 90 90 - 110 

 

>110 

Socio-demographic factors 

Share of 
population, % 
from the total 

11.39% 46.75% 27.81% 8.74% 3.05% 0.93% 1.32% 

Level of 
education, 

 

       

LCE user,  

% in each 
income group 

3.49% 4.25% 5.71% 3.03% 13.4% 0 0 

Annual 
electricity 
use, in kWh 

1932.6 1564.9 2036.2 2303.6 2394.9 1143 2261.9 

Structural and Physical (Housing) factors 

House energy 
label,  

 

       

House owner, 
% in each 
income group 

37% 78% 85% 94% 96% 86% 80% 
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Table	3.4:	Descriptive	statistics	of	the	survey	sample	on	psychological	factors,	Spain‐Navarre.	
Source:	own	survey,	2016.	

Income groups, 

Thousands euro per year 

<
 1

0 

10
 -

 3
0 

30
 -

 5
0 

50
 -

 7
0 

70
 -

 9
0 

90
 -

 1
10

 

>
11

0 

Psychological factors 

Awareness 
average on the scale 0 (not aware) -7 (very 
aware) 

5.23 5.20 5.13 5.24 5.45 5.15 5.30 

Personal norms 
 average on the scale 0 (weak) - 7 (strong) 5.35 5.40 5.36 5.43 5.47 5.16 5.46 

Subjective norms 
average on the scale 0 (weak) -7 (strong) 4.38 4.46 4.46 4.32 4.54 4.32 4.69 

Energy-efficient habits and patterns 
 average on the scale 1 (always) - 3 (seldom) 1.20 1.17 1.20 1.17 1.19 1.19 1.44 

PBC1 
average on the scale 0 (weak) - 7 (strong) 4.92 5.06 5.21 5.04 5.05 4.31 5.60 

PBC2 
average on the scale 0 (weak) - 7 (strong) 4.66 4.88 4.91 4.70 4.83 4.07 4.75 

PBC3 
average on the scale 0 (weak) - 7 (strong) 5.08 5.23 5.18 5.11 4.96 4.57 5.00 

 

Table 3.5 indicate that households in the Navarre region prefer an 
investment in energy efficient technology to either change in habits or 
switching to a greener electricity provider. Interestingly, this trend persists 
across all income groups. Conservation, which relates to changes in habits 
leading to a decrease in energy use, in general increases with income level. 
Pro-environmental behaviour is more likely to occur in the middle-high 
rather than in lower income groups, while the top income group (7) falls out 
as an exception in this trend. It shows that households in the top income 
group are more interested in investment rather than conservation and 
switching, which economically makes sense. Switching receives the lowest 
share in comparison to the two other actions (investment and conservation). 
Yet, we observe some switching happening among the middle-low income 
households. 
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Table	3.5:	Descriptive	 statistics	of	 the	 survey	 sample	on	already	undertaken	energy‐related	
actions,	Spain‐Navarre.		Source:	own	survey,	2016.	

Income groups, 
Thousands euro per year 

<
 1

0 

10
 -

 3
0 

30
 -

 5
0 

50
 -

 7
0 

70
 -

 9
0 

90
 -

 1
10

 

>
11

0 

Action 1 (investment),    
% in each income group 

59.3 63.1 55.7 48.4 52.1 71.4 60 

Action 2 (conservation), 
% in each income group 

4.6 3.3 5.2 7.5 8.6 14.2 0 

Action 3 (switching),       
% in each income group 

0 0.56 0.95 1.51 0 0 0 

 

3.3.2. 	Agent‐based	model	of	residential	energy	choices	

The BENCH model is designed to investigate a process of individual 
(household) energy-related decision-making, and to study the cumulative 
impacts of behavioural changes among heterogeneous households over time 
and space. BENCH primarily focuses on the residential demand side with a 
possibility to represent feedbacks between the energy supply and the 
residential demand in a retail energy market. The decision-making of energy 
producers on the supply side is Modelled simplistically as profit 
maximization, given the available set of technologies that come as exogenous 
scenarios at initialization (Niamir and Filatova, 2015). The supply side is 
Modelled explicitly within the model to enable market dynamics, in 
particular the market clearing procedure, and to trace feedbacks between 
individual household behavioural changes and cumulative impacts of excess 
of grey/green energy demand or supply through adapting prices. Thus, in 
the current model there are two representative electricity provider agents 
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(grey and green) and 3468 household agents, which are geographically 
spread over the territory of a province in Spain (Navarre) in this application. 
We create the synthetic population of households in BENCH by drawing the 
households’ economic and behavioural characteristics from the survey data, 
using either averages or the exact empirical distributions depending on the 
simulation experiment (Table 3.6). To expand our 755 sample to a larger 
population, we use the actual proportion of population in the Navarre region 
in each income group to scale up; this data comes from the Eurostat 
Households Budget dataset (2010). After identifying how many households 
should belong to which income class, we draw other economic, energy use 
and behavioural characteristics from the survey data summarized per income 
class in Tables 3.3, 3.4 and 3.5. The model is coded in NetLogo 5.2 with 
GIS extension (Wilensky, 1999). We used open source applications, such as 
PostgreSQL and R, for the spatio-temporal and statistical analyses. 

 

Demand	side	

The demand side in BENCH consists of heterogeneous households with 
different socio-economic characteristics, preferences, and awareness of 
environment and climate change, which lead them to various energy 
consumption choices and actions. As it is illustrated in Figure 3.4, based on 
different internal and external barriers and drivers, households have 
different knowledge and awareness levels about the state of the climate and 
environmental issues (Box I), motivation levels to change their energy 
related behaviour (Box II), and consideration levels (Box III) when they 
perform costs and utility assessments. This decision process closely follows 
the conceptual NAT-based framework (Figure 3.1) behind the household 
survey (Figure 3.2) and applies to all the three groups of energy-related 
actions (Table 3.1). All household attributes could potentially be 
heterogeneous and change over time and space. All the variables in 
knowledge activation, motivation and consideration are measured in 
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comparable ways with the Likert scale, ranging from 1(low) to 7 (high) in 
the survey.  

 

 
Figure	3.3:	Representation	of	the	dynamics	flows	within	the	BENCH	model	

 

At initialization, household knowledge and awareness (K) is assigned a value 
based on the survey data. We estimate an average of climate-energy-
environment knowledge (CEEK), awareness (CEEA), and energy-related 
decision awareness (EDA) values, each measured on a 7 score Likert scale. 

 

 (1) 

ܭ ൌ
Average	ሺܭܧܧܥ, ,ܣܧܧܥ ሻܣܦܧ

7
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Further, on each time step household agents calculate their current 
individual level of knowledge and awareness (Low or High) based on the K value 
(equation 1). If households are aware enough, that is they have a high level 
of knowledge and awareness above the threshold of 4 out of 7, then they are 
tagged as “feeling guilt” and proceed to the next step to assess their 
motivation.  

Household personal norms (PN) and subjective norms (SN) are checked to 
calculate their motivation (M, Eq2).  

(2) 

ܯ ൌ
Averageሺܲܰ, ܵܰሻ

7
 

 

Motivation may differ for each of the three main actions. For example, a 
household may have a high level of motivation for installing solar panels, and 
is tagged with “responsibility” for Action1 (investment) and proceeds to the 
next step (consideration). At the same time, it may not pass the threshold 
value (4) in motivation for changing energy use habits or switching to another 
energy supplier (Actions 2 and 3), and thus does not go into the consideration 
step on those two actions. 

Thirdly, if household agents have a high motivation level and feel 
responsibility, they consider the psychological (e.g. PBC), structural 
(housing attributes) and institutional factors to assess utility and costs of a 
specific action. Then, households with high level of consideration are tagged 
as “high intention”. Their intention (C, equation 3) is measured based on 
consideration factors. 

(3) 

ܥ ൌ
ܥܤܲ
7
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In the consideration stage, as well as the motivation stage, we differentiate 
between actions. In investment for instance, the dwelling ownership status 
(owner or rental dwelling), the energy label of the dwelling, and perceived 
behavioural control over the perceived affordability of an investment are 
assessed. For the initialization of BENCH, all these main variables, awareness 
(K), motivation (M), and intention (C), are calculated based on the survey 
data (Section 3.3.1 and Appendix A).  

Fourthly, if a household agent has high intentions to undertake any of the 
three main actions for making an energy decision, we calculate its 
expectations about utility (U) based on its current energy source status 
(green or grey energy user). Energy economics (Bhattacharyya, 2011) 
assumes that households receive utility (Eq 4) from consuming energy (E) 
and a composite good* (Z) under budget constrains (Eq.6): 

(4) 

ܷ ൌ .ߙ	 ܼ	 ൅ .ߚ	  ܧ

ܧ ൌ ܳ	.		ܲ 

Here α	is a share of an individual annual income spent on the composite good 
and β is a share spent on energy, with	α൅βൌ1; Q is the amount of electricity 
consumption in Kwh and P is price of electricity. We further extend it by 
including the influence of knowledge and awareness (K), motivation (M) and 
consideration (C) estimated using equations (1)-(3): 

(5) 

ܷ ൌ .ߙ ܼ	 ൅ .ߚ	 ܧ ൅ ܭ ൅ܯ ൅  ܥ

                                                  
* A composite good is a typical assumption in microeconomics (Varian, H.R. (1992) 
Microeconomic analysis, 3rd ed. Norton, New York.) to represent all other goods besides the one 
under study. In our case, it can be expressed as a part of a household budget to be spend on anything 
but energy, e.g. food, transport, housing. 
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On each time step t, Z is calculated based on the household total budget (Y), 
energy consumption (E), and economic costs or benefits involved in action 
1 (I), 2 (ߠ௘), and 3 (ߠ௣): 

(6) 

ܼ௧ ൌ ௧ܻ െ ሺ	ܧ௧ିଵ ൅ ௧ܫ ൅	ߠ௧
௘ ൅	ߠ௧

௣ሻ 

 

Hence, both behavioural and economic factors affect households’ decisions. 
To summarize, the household agents consider economic constrains in two 
stages. Firstly, whether pursuing an action (e.g. investment, switching or 
conservation) is affordable comes under individual perceived behavioural 
control assessment initialized from the survey data. Secondly, each 
individual utility is constrained by a household’s budget (Eq. 4-6), which is 
shared between energy consumption and a composite good. The behavioural 
factors (Eq.5) just extend the traditional economically-constrained utility 
(Eq4.). Any economic costs associated with pursuing an action – investment, 
conservation or switching – affect households’ available budget (Eq. 6). 

Finally, to make their energy decisions, households first analyze their utility 
expectations (among three actions) to find the highest one and then compare 
it with their current utility. For instance, a household is going to perform an 
investment action if the following condition holds:  

(7) 

௧ܷ
ଵ ൐ ሼ	ݔܽܯ ௧ܷ

ଶ	, ௧ܷ
ଷሽ			ܦܰܣ			 ௧ܷ

ଵ ൐ ௧ܷିଵ
ଵ  

 

All the three actions that constitute behavioural change regarding residential 
energy use among households - investment, energy conservation, and 
switching to green provider - are assessed using this four-step procedure. 
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Supply	side	

The supply side is presented by two energy providers, which deliver 
electricity from either low carbon energy (LCE) or fossil fuel based (FF) 
sources. Initial shares of electricity production and energy production costs 
for the two energy producers come from macroeconomic data derived from 
the EXIOMOD CGE model* under the business as usual (SSP2) scenario. 
We acknowledge that this simplified assumption does not account for 
difference between day/night tariffs, fixed tariff schemes, technology 
diffusion, innovation and learning on the supply side. Ideally, one could 
integrate the BENCH model with a more advanced energy supply model 
(Kowalska-Pyzalska et al., 2014; Salies, 2012). Yet, given the focus of this 
article, we leave this for future work. The current simplified supply side 
Modelling implies that (i) only aggregated annual demand and supply are 
compared excluding a possibility to study behaviour in peak energy use 
hours, (ii) scenarios with various tariff schemes and regulations on the supply 
side of the energy market have limited application here potentially leading 
to quicker energy price adjustments, (iii) technological innovation and 
learning do not yet affect costs of energy production. These are important 
directions in which this model can be extended or where it can link to others 
in energy supply simulations. 

Energy providers are Modelled as profit seeking agents. In this simplified 
retail electricity market, expected profits are calculated based on expected 
prices (Plce	,	Pff), and shares of LCE and FF based energy planned for the next 
time step to maximize profits. Expected profit is calculated based on total 
expected revenue (R) and total production cost (C):  

 

                                                  
* The EXIOMOD CGE model is designed at TNO in the Netherlands. 
https://repository.tudelft.nl/view/tno/uuid:3c658012-966f-4e7a-8cfe-d92f258e109b/ 
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(8) 

ܲ ൌ ܴ െ  ܥ

 

We consider cumulative price growth ሺCPG), market price of electricity (P), 
and electricity production (Q) to estimate the total revenue for an electricity 
producer (equation 9). The CPG and Q come exogenously from the 
EXIOMOD macrodata, while P is endogenously defined on an annual basis: 

(9) 

ܴ ൌ CPG	 ∗ 	P	 ∗ 	Q 

 

Market	clearing	

Based on the review of ABM markets (Niamir and Filatova, 2015; Tesfatsion, 
2006), Niamir and Filatova (2017) discuss five alternative market clearing 
procedures. In addition to the neoclassical Walrasian auctioneer, simulated 
markets often use a random matching, an order book, a bilateral trade or a 
gradual price adjustment. We choose the latter approach to model price 
expectation formation as it seems to represent the retail electricity market 
more accurately (Federico and Vives, 2008; Niamir and Filatova, 2015). 
Following LeBaron (2006), we assume that each time step the price ( ௧ܲ

௘ሻ for 
each type of electricity (e	ൌ	ሾLCE;FFሿ) is anchored to the price in the previous 
year ( ௧ܲିଵ

௘ , Eq	10ሻ.	 It further gradually adjusts depending on the excess of 
supply ܵ௘	ሺ ௧ܲିଵ

௘ ሻ or demand ܦ௘	ሺ ௧ܲିଵ
௘ ሻ in the previous time step. For example, 

if there was more grey electricity produced than demanded in t-1, then price 
for FF in period t will decrease, creating a disincentive for electricity 
suppliers to opt for FF. It is assumed that this adjustment occurs gradually, 

meaning that prices change only to a proportion (μ) of the demand/supply 
excess.  
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(10) 

௧ܲ
௘ ൌ ௧ܲିଵ

௘ ൅ ሺ	௘ܦሺ	ߤ	 ௧ܲିଵ
௘ ሻ െ	ܵ௘	ሺ ௧ܲିଵ

௘ ሻሻ 

 

Each time step t households and electricity provider agents make their 
decisions based on these price expectations ( ௧ܲ

௘ሻ, which are updated after the 
aggregate market demand (ܦ௧௘) and supply (ܵ௧௘) are known in the next period 
t+1. Thus, households form expectations about their utility (U, Eq. 4-6) 
based on the expected price ( ௧ܲ

௘, Eq. 10) and follow a satisfying behaviour 
by choosing a better option among the available ones (Eq.7) giving this 
limited information. Moreover, the households agents change their energy 
use decisions following a cognitive process (see 3.2.1) inspired by 
psychological theories (Niamir & Filatova, 2016). Hence, there is always a 
possibility of a behavioural change at the individual level driven by updates 
in expectations, prices and behavioural factors. It implies that this ABM 
market does not settle in a unique equilibrium , as would be the case in 
markets with rational optimizers and perfect information. 

In this approach households are satisfied by choosing an action that gives 
them higher – but not necessary maximal – utility through forming 
expectations about utility of an action vs. status quo (inaction) based on the 
previous period prices for LCE and FF energy. The new energy prices for 
both types of energy ( ௧ܲ

௘) and market shares of LCE and FF electricity are 
emergent outcomes of changes in individual energy demand of many 
interacting heterogeneous household agents in our model. At the last stage, 
utilities of households and profits of providers are updated based on new 
prices ( ௧ܲ

௘).  

 

3.3.3. Experiments	setup	

In line with the research question, we design several model experiments 
(Table 3.6). Namely, we explore: (1) the impact of heterogeneity in 
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household attributes such as income and electricity consumption 
(comparison of Exp1 and Exp2); (2) the additive effect of psychological 
factors, such as personal norms and social norms (comparison of Exp3 and 
Exp4); and (3) the influence of interactions through social networks and 
learning (information diffusion), on the energy-related decisions 
(comparison of Exp5 and Exp6). In all cases, we study behavioural changes 
among households differentiating between 3 actions: energy investment, 
conservation and switching. For each we assess the following macro-metrics: 
the diffusion of each of the three types of behavioural actions among 
households over time, and the changes in saved energy and CO2 emissions.  
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H
EP
	

1.20	
(average,	survey)	

(1.00‐3.00)	
(survey	
distribution)	

(1.00‐3.00)	
(survey	
distribution)	

(1.00‐3.00)	
(survey	
distribution)	

(1.00‐3.00)	
(survey	
distribution)	

(1.00‐3.00)	
(survey	
distribution)	

Psychological	factors	

CEEK
	

‐	
‐	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
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(1‐7)		
(survey	
distribution)	

CEEA
	

‐	
‐	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

ED
A
	

‐	
‐	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

P
N
	

‐	
‐	

5.37	
(average,	survey)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

SN
	

‐	
‐	

4.45	
(average,	survey)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

P
B
C1
	

5.03	
(average,	survey)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	

(1‐7)		
(survey	
distribution)	
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Impact of heterogeneity in household economic attributes (Exp1, Exp2): the 
household agents in the BENCH model are differentiated by a number of 
economic and physical factors. Namely: annual income in euro (Y); annual 
electricity consumption in Kwh (C); household status in terms of being a 
green or grey electricity user (HS); dwelling tenure status showing whether 
a household is an owner or a renter (DT); energy label of a dwelling (DEL) 
varying from A to F; and the household energy use routines and habits (HEP) 
(Appendix A). Most of these data is directly observable and registered in 
traditional datasets such as census or Eurostat microdata. Yet, the 
information is often aggregated to a national, regional or income group level. 
To test the impact of using average values for each attribute (see Y, C, HS, 
DT, DEL and HEP, Table 6) vs. their empirical distribution we initialize the 
synthetic population in BENCH with the values either equal to the average 
of our survey (Exp1) or their empirical distribution (Exp2). Hence, in Exp1 
household agents are all alike. In Exp2 individual agents differ on the 
attributes Y, C, HS, DT, DEL and HEP. Yet, the average values of these 
attributes in Exp2 are equal to the homogeneous value of these parameters 
in Exp1, making the two populations on average the same.   

Impact of behavioural attributes and behavioural heterogeneity (Exp3, 
Exp4): Individual decisions, including energy use choices, could be 
influenced by behavioural barriers and stimuli. In addition to the rational 
decision maker model of an individual household (Exp1 and 2), we explore 
cumulative regional level impacts of behavioural factors affecting individual 
agents’ choices (Exp3 and 4). The psychological aspects impacting 
households’ energy related decisions include individual knowledge and 
awareness (CEEK, CEEA and EDA), motivation (PN, SN), and perceived 
behavioural control over the 3 types of actions (PBC1-PBC3). Appendix A 
clarifies the definitions and survey measures used to quantify these attributes 
and Tables 3-5 provide summary statistics of the corresponding survey 
responses. We run two experiments to test the impact of heterogeneity in 
the behavioural factors, which are rarely directly observable and are often 
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omitted when Modelling energy demand. In Exp3 we initialize the 
population of agents using the survey data on household behavioural 
attributes (CEEK, CEEA, EDA, PN, SN, Table 6) with the consideration of 
the heterogeneity in knowledge and awareness (CEE, CEEA, EDA). For the 
population of households in Exp4 the values of these attributes are drawn 
from their corresponding empirical distributions from our survey. As 
before, the average values of behavioural attributes in the heterogeneous 
population in Exp4 are equal to the homogeneous value of these parameters 
in Exp3, making the two populations on average the same.   

Impact of social network interactions and learning (Exp5, Exp6): agent-
based simulations offer an opportunity to go beyond static behaviour and 
explore the impacts of learning and information exchange via social 
networks, which are argued to be important in the diffusion of energy-
efficient practices among households (Rai and Robinson, 2015). We extend 
the previous experiments by directly Modelling information exchange 
among households regarding their knowledge (CEEK, CEEA and EDA, 
Exp5 in Table 6). We assume that households engage in social interactions 
with maximum 8 neighbours surrounding their current location. While 
knowledge may be passive, we test the impact of learning by assuming that 
household agents also can exchange opinions about their awareness and 
motivation (CEEK, CEEA, EDA, PN, SN, Exp5 and Exp6 in Table 6). We 
employ an opinion dynamics model (Acemoglu and Ozdaglar, 2011; 
Degroot, 1974; Hegselmann and Krause, 2002; Moussaid et al., 2015) in 
which agents compare values of their own behavioural factors – awareness 
and motivation – with those of their 8 closest neighbours, and adjust their 
value to become the mean of the 9 compared values. Therefore, Exp5 and 6 
study the regional level impacts of the micro-level diffusion of information 
on awareness and motivation of heterogeneous households transmitted 
through social networks. 
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3.4. Results	and	Discussion		

In what follows, we present the results of the BENCH model by tracking 
individual and cumulative impacts of behavioural changes among 3468 
individual households in the Navarre region in Spain over 14 years (2016-
2030). Given the stochastic nature of ABMs, we perform multiple (N=100) 
repetitive runs of each simulation experiment (Lee et al., 2015). All the 
results presented below report the mean values across 100 runs to assure 
that resulting values are not an artifact of a random seed number but a stable 
trend considering the assumptions of each experiment.  

 

3.4.4. The	role	of	economic	heterogeneity:	income	and	
housing	factors		

In Exp1 all household agents have the same income, electricity consumption, 
and dwelling conditions. They are assumed to be rational as they encounter 
no behavioural biases such as those that could be driven by psychological 
(personal norms and attitudes) or social factors (influence of social network). 
To assure that the benchmark is comparable to the population with 
heterogeneous agents, for this experiment we parameterize agents with the 
averages of the survey data. Given our survey parameterization, it appears 
inefficient for this population of representative agents in Exp1 to take any 
action. Namely, the household agents in the model would pursue any of the 
energy-related actions – investment, conservation, or switching – only when 
those improve their status quo. In Exp1, the representative agent 
parameterized with the means of the survey data compares its current utility 
of business as usual with taking one of the 3 actions. However, the latter 
appears to be lower for this stylized homogeneous population of households. 
Exp1 results hardly relate to reality, in which households are heterogeneous 
in incomes, dwellings types, energy use habits and behavioural factors 
affecting individual energy choices. Exp1 is designed to set a baseline of an 
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energy market with homogenous and rational households, resembling a 
representative rational agent set up common in aggregated models. 

In Exp 2 we add the heterogeneity to the agents’ economic and housing 
attributes. Here we have households with various incomes, electricity 
consumption, and dwelling conditions parameterized using our survey data. 
Note that in both the baseline experiment and in Exp 2 knowledge 
activation, motivation, and the learning process are not activated (Table 
3.6). Thus, agents from different income groups residing in houses of 
different quality are still homogenous in terms of their behaviour decision 
process. Figure 3.4 shows that introducing the heterogeneity to the 
household economic and housing attributes produces a significant increase in 
the diffusion of energy-related actions, and that this trend is nonlinear. We 
observe that the diffusion of actions continues for 14 years (2016-2030) on 
average across 100 simulation runs. Interestingly, the simulation trends 
show that households are more eager to invest, for example in solar panels 
and insulation, and to change energy-use habits (600 and 572 households 
respectively) rather than to switch to a green supplier (17 households, 
accounting just for 0.5% of the entire population). Our survey data also 
reveals that currently the majority of respondents in the Navarre region 
prefer to invest rather than follow the other two actions (Table 3.5). There 
could be different reasons behind this outcome, ranging from the past 
economic policies, e.g. taxes and subsidies, to a lack of knowledge and 
motivation for other two actions (energy conservation and switching). Our 
survey indicates that there is a lack of information on how household could 
save energy and lack of motivation to change a supplier. In general, 
electricity prices in Spain are high compared to the European average and 
there is less choice in terms of suppliers and renewable energy sources 
(Ciarreta et al., 2014, 2017). This may partially explain why households do 
not see much benefits in switching to an alternative energy source. The 
interest in investments could be also an echo of the past. There were many 
governmental subsidies for installing solar panels in early 2000s (del Río and 
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Unruh, 2007), fuelling the flow of information and motivations toward this 
particular energy-efficient action. This might change over time based on 
changes in policies and households’ awareness.  

 

 
Figure	3.4:	Diffusion	of	energy‐related	actions	among	household	heterogeneous	economic	and	
housing	attributes	(Exp2).	The	grey	bounds	around	the	curves	indicate	the	uncertainty	intervals	
across	100	Monte	Carlo	runs.	

 

 
Figure	3.5:	Cumulative	saved	energy	(kWh)	by	heterogeneous	(in	economic	and	physical	and	
housing	attributes)	households’	energy‐related	actions	(Exp2).	
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Figure 3.5 presents the amount of the saved energy (kWh) due to the 
households’ energy-related actions reaching up to 6000 kWh by 2030. The 
saved electricity (kWh) is unequally distributed among various income 
groups and various types of energy-efficiency of buildings (Table 3.7). In this 
table the contribution percentage (%) of each individual group in the total 
saved energy is reported in the parenthesis. As a matter of fact, the two 
richest household groups –  from 90 to 110+ thousand euro per year –  are 
behind in this energy saving process. It may have to do with the fact that a 
rich household lifestyle creates a norm for an energy-intensive behaviour. 
The pioneers are, however, the first 3 bottom income groups: contributing 
91% and 93% cumulatively in 2020 and 2030. The households in the second 
income group (10-30 thousand euro per year) contribute more than 50% to 
this energy-related effort. There is also a slight change in the distribution of 
this effort across the income groups over time between 2020 and 2030 but 
the general trend remains. The distribution across dwellings with different 
energy labels is less extreme: the households residing in buildings with A and 
B energy labels save each about 30% of energy gained within this region 
through their behavioural change actions.  

 

Table	3.7:	Distribution	of	the	climate	mitigation	efforts	among	various	socio‐economic	groups	
and	dwelling	types,	assuming	households	are	heterogeneous	in	economic	and	physical	attributes	
(Exp2).	MWh	(percent	(%),	contribution	of	each	individual	group	in	total	saved	energy)	

Socio-economic groups Cumulative saved electricity, in MWh 

2020 2030 

In
co

m
e 

gr
ou

p
s 

(t
ho

us
an

d
s 

eu
ro

 p
er

 y
ea

r)
 1 ( < 10) 229 (15%) 1371 (16%) 

2 (10-30)  811 (53%) 4756 (56%) 

3 (30-50) 348 (23%) 1818 (21%) 

4 (50-70) 103 (7%) 426 (5%) 

5 (70-90) 17 (1%) 58 (1%) 

6 (90-110) 0 (0%) 0 (0%) 

7 ( > 110) 10 (1%) 44 (1%) 
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D
w

el
li

ng
 e

ne
rg

y 
la

be
l A 461 (30%) 2572 (30%) 

B 444 (29%) 2390 (28%) 

C 290 (19%) 1610 (19%) 

D 166 (11%) 968 (11%) 

E 85 (6%) 7550 (6%) 

F 73 (5%) 382 (5%) 

 

In fact, Exp1 and 2 present an outcome that is to be expected if we assume 
that households make energy-related decisions in a rational manner. In other 
words, if a household foresees any gain in utility by undertaking an action, 
the behaviour change occurs immediately. In practice the latter is a process 
involving several stages and factors that potentially all serve as barriers to the 
individually-optimal state and the efficient level of diffusion of positive 
energy-use practices at the societal level (Cleveland and Ayres, 2004; 
Malama et al., 2015). This optimistic view on human rationality may be the 
reason behind the overestimation of diffusion of PVs, or insulation practices 
and green electricity by models grounded in the rational optimizer agent. In 
order to be able to take a wider view and integrate empirical social science 
knowledge on barriers and triggers along an individual path towards a 
specific action (Figure 3.2), we run the next set of experiments with our 
ABM.  

 

3.4.5. The	role	of	behavioural	heterogeneity:	psychological	
factors	

To quantify individual psychological drivers in household energy-related 
decisions and the cumulative impacts of these decisions, we compare Exp3 
and 4. Both experiments extend Exp2 by adding the knowledge activation 
and motivation stages in household decision process (Section 3.3.1), thus 
Modelling the cognitive process of decision making rather than assuming that 
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it is a one-shot choice. In both experiments, the knowledge activation 
elements – CEE knowledge, CEE awareness and ED awareness – are 
heterogeneous and initialized based on the empirical distribution from the 
survey (Table 3.6, Appendix A). Factors relevant at the motivation stage – 
personal and subjective norms – are considered homogenous and are set to 
the average of the survey data in Exp3. In Exp4 they are heterogeneous 
following our survey distributions (Table 3.6). The outcomes of Exp3 
indicate what happens if we explicitly assume that decision-making is a 
process influenced by behavioural factors such as awareness and motivation. 
Thus, the BENCH model encompasses two additional stages before any actual 
action takes place. We present the runs of Exp3 with households endowed 
with heterogeneous awareness and homogeneous motivation to trace their 
effects separately*. Exp4 demonstrates a scenario when individual 
households process these steps in a heterogeneous manner. Neither Exp3 
nor 4 considers any learning processes (Table 3.6). 

                                                  
* We also ran a scenario with activating both behavioural processes but keeping both homogeneous. 
The results indicate there is not significant changes and it has quite a similar trend as the Exp2. 
Activating the behaviour process matters only when it is heterogeneous (Exp3 and 4).  
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										(a)																																																															(b)	

Figure	 3.6:	Diffusion	 of	 energy‐related	 actions	 among	 households	when	 agents,	which	 are	
heterogeneous	 in	 economic	 and	 housing	 factors,	 replace	 a	 one	 shot	 decision	 process	 by	 a	
cognitive	one	relaying	on	psychological	factors.	(a)	Propagation	of	the	3	types	of	behavioural	
changes	 in	 a	 population	 of	 agents	 with	 diverse	 awareness	 and	 knowledge	 activation	 but	
homogeneous	motivation.	(Exp3);	(b)	Propagation	of	the	3	types	of	behavioural	changes	in	a	
population	of	agents	with	diverse	awareness	as	well	as	diverse	motivation	(Exp4).	

 

 
Figure	3.7:	Saved	energy	in	kWh	(Experiment	3,	4	and	Experiment	2	as	a	benchmark).	

 

Exp1 and 2 assume a rational optimizer agent that undertakes an energy-
related choice immediately if utility of an action exceeds the status quo. In 
contrast, Exp3 and 4 (Figure 3.6) assume the presence of psychological 
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factors as a barrier when society evolves. We anticipate that the presence of 
psychological factors (knowledge and awareness about environment, and 
personal and subjective norms) could amplify or attenuate households desire 
to pursue any of three groups of energy actions. In other words, 
psychological factors could act as a driver and stimulate households, or 
alternatively they also maybe a barrier preventing households to pursue the 
actions as explicitly captured by BENCH (see Section 3.3.2). In our case – 
Navarre, Spain – these psychological factors in general act as a barrier and 
the number of households that would like to take action reduces. Namely, 
in Exp2 all agents, for whom it is economically efficient to undertake one of 
the three energy-related actions, would do that as soon as it becomes 
profitable. In contrast, in Exp3 and 4 individuals take an action only if the 
preceding cognitive steps are successful: i.e. a household holds pro-
environmental knowledge and awareness about consequences of its actions 
while being motivated enough to go on with an action that is economically 
efficient. Table 3.8 compares the results of Exps 2, 3 and 4. As soon as we 
add psychological factors, in the first year of trade (2017) there is a significant 
increase in the number of households’ actions. However, later they act as a 
barrier and fewer households prove to be willing to change their behaviour. 
Figure 3.7 illustrates how much energy heterogeneous households could 
save cumulatively by changing their behaviour in the presence of behavioural 
factors (Exp3 and 4) in comparison to the baseline (Exp2). Thus, the 
aggregate energy savings at the regional level are reduced by approximately 
67% (3790 MWh) due to the impact of psychological barriers in the 
knowledge activation stage e.g. lack of knowledge and awareness among 
individuals (Exp3). Assuming that individual decisions are influenced both at 
the knowledge activation and motivation stages (Exp4), drops the regional 
energy savings by 80% (4542 MWh) compared to a one-shot individual 
decision immune to behavioural barriers. In other words, we might be 
employing just between 20-36% of the energy saving potential that 
individual behavioural changes have to offer. This illustrates the extent and 
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importance of addressing the psychological aspects of potential individual 
behavioural changes with respect to energy use. 

 
Table	3.8:	Distribution	of	the	climate	mitigation	efforts	among	various	socio‐economic	groups	
and	dwelling	types,	assuming	households	are	affected	by	psychological	factors	and	may	exhibit	
behavioural	heterogeneity	(Exp3	and	Exp4).	MWh	(percent	(%),	contribution	of	each	individual	
group	in	total	saved	energy)	

Socio-economic 
groups 

Cumulative saved electricity, in MWh 

2020 2030 

Experiments Exp3 Exp4 Exp3 Exp4 

In
co

m
e 

gr
ou

p
s 

(i
n 

th
ou

sa
nd

s 
eu

ro
 p

er
 

ye
ar

) 

1 ( < 10) 173 (11%) 79 (10%) 471 (12%) 325 (15%) 

2 (10-30)  468 (31%) 235  (28%) 1546 (40%) 843 (40%) 

3 (30-50) 234 (16%) 170 (21%) 855 (22%) 454 (21%) 

4 (50-70) 401 (27%) 194 (23%) 645 (17%) 283 (13%) 

5 (70-90) 202 (13%) 118 (14%) 291 (8%) 176 (8%) 

6 (90-110) 24 (2%) 20 (2%) 27 (1%) 27 (1%) 

7 ( > 110) 7 (0%) 10 (1%) 10 (0%) 17 (1%) 

D
w

el
li

ng
 e

ne
rg

y 
la

be
l A 230 (15%) 169 (20%) 764 (20%) 458 (24%) 

B 508 (34%) 235 (28%) 1269 (33%) 672 (34%) 

C 438 (29%) 224 (27%) 960 (25%) 424 (22%) 

D 164 (11%) 105.4 (13%) 436 (11%) 219 (11%) 

E 114 (8%) 71.4 (8.6%) 290 (8%) 122 (6.3%) 

F 54 (4%) 20.4 (2.4%) 126 (3%) 40.8 (2.1%) 

Total (compared to the 
Exp2 in percent) 

1509 (99%) 826 (54%) 3845(45%) 2125 (25%) 

 

Table 3.8 reports the distribution of saved electricity (MWh) gained through 
the energy-related behaviour change of heterogeneous households among 
different income groups and different types of housing. Similar to Exp2, in 
Exp3 and Exp4 the lower-income households in the income group 2 and the 
households residing in the “B” energy label dwellings pioneer in saving 



Chapter 3 

97 

 

energy. However, there is a significant reduction in each group in 
comparison to Exp2. 

  

3.4.6. The	role	of	learning	process	and	social	network	

Previous experiments study the diffusion of the three types of energy-related 
behaviour changes assuming that household agents are static, do not interact 
with other households directly (only through aggregated demand that 
influences the price signals on the market) and do not learn. To explore the 
impact of raising knowledge, awareness and information diffusion on the 
region’s energy footprint via the individual learning process and social 
network we design Exp5 and 6. Here we examine the effect of the learning 
process and the social network on households’ energy-related decisions.   

 

 
									(a)	 																																																												(b)	

Figure	3.8:	Diffusion	of	households’	energy‐related	actions	(a)	in	a	population	of	heterogeneous	
agents	learning	via	their	social	network	during	the	knowledge	activation	stage	(Exp5),	and	(b)	
a	population	of	heterogeneous	agents	learning	via	their	social	network	during	both	knowledge	
activation	and	motivation	stages	(Exp6).	
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Exp5 extends Exp4 by allowing agents to exchange knowledge and spread 
awareness about energy and climate through the word of mouth. In other 
words, households could exchange their information with their neighbours, 
which can either raise or lower knowledge and awareness regarding LCE. 
Figure 8a shows the result of Exp5. The total count of the three types of 
household actions is significantly higher (1784 households take an action), 
while there is more intention for investments rather than for the two other 
actions. Moreover, the diffusion of household actions does not plateau 
around year 2025 but continues till year 2030.  

 

 
Figure	3.9:	Saved	energy	in	kWh	(Experiments	5,	6	and	Experiment	2	as	a	benchmark).	It	shows	
that	 adding	 social	network	and	 learning	 in	 knowledge	 activation	 stage	 (Exp5)	 and	 then	 in	
knowledge	activation	and	motivation	stages	(Exp6)	helps	households	to	save	more	energy	by	
changing	 their	 behaviour.	 For	 instant,	 following	 the	 Exp6	 strategy,	 households	 could	 save	
approximately	3800	MWh	more	energy.	

 

Exp6 further extends this learning by introducing opinion dynamics 
regarding household motivation to act. In this experiment, households learn 
from each other and this has effect on the knowledge and motivation levels 
(Figure 3.8b). The learning influence could lead to either a decrease or an 
increase of individual motivation. In our simulation, as households involved 
in the social network learn from each other, we observed an increase in the 
diffusion of all 3 actions (3604 households in total in Ex6). Thus, the energy 
conservation and switching propagates to a 5.3% portion of population if 
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learning occurs in two stages as in Exp6 as compared to 3.7% in Exp5. 
Consequently, spreading the knowledge and motivation regarding energy 
efficient practices via social networks helps decreasing the regional energy 
use by 78.2% and 145.7% correspondingly compared to Exp2 (Figure 3.9).  

 

Table	3.9:	Distribution	of	the	climate	mitigation	efforts	among	various	socio‐economic	groups	
and	 dwelling	 types,	 assuming	 agents	 learn	 from	 each	 other	 by	 exchanging	 information	 on	
knowledge	 and	 motivation	 via	 social	 networks	 	 (Exp5	 and	 Exp6).	 MWh	 (percent	 (%),	 a	
contribution	of	each	individual	group	in	total	saved	energy).	

Socio-economic groups Cumulative saved electricity, in MWh 

2020 2030 

Experiments Exp5 Exp6 Exp5 Exp6 

In
co

m
e 

gr
ou

p
s 

 

1 ( < 10) 533 (11%) 1051 (12%) 710 (9%) 1870 (13%) 

2 (10-30)  2192 (44%) 3764 (44%) 3852 (50%) 7205 (49%) 

3 (30-50) 1280 (25%) 2266 (27%) 2012 (26%) 3884 (26%) 

4 (50-70) 629 (12%) 871 (10%) 689 (9%) 1088 (7%) 

5 (70-90) 211 (4%) 346 (4%) 257 (3%) 462 (3%) 

6 (90-110) 37 (1%) 99 (1%) 37 (0%) 102 (1%) 

7 ( > 110) 150 (3%) 139 (2%) 163 (2%) 139 (1%) 

D
w

el
li

ng
 e

ne
rg

y 
la

be
l A 1112 (22%) 2331 (27%) 2452 (32%)  5151 (35%) 

B 1660 (33%) 2764 (32%) 2280 (30%) 4396 (30%) 

C 1034 (21%) 1683 (20%) 1443 (19%) 2510 (17%) 

D 514 (10%) 704 (8%) 637 (8%) 1079 (7%) 

E 426 (8%) 677 (8%) 519 (7%) 1127 (8%) 

F 284 (6%) 378 (4%) 394 (5%) 487 (3%) 

Total  

(compared to the Exp2 in 
percent) 

5031 (331%) 8537 (562%) 7722 (91.%) 14751 
(174%) 
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Notably, when social learning takes place the uptake of Actions 1-3 
continues in all income groups (Table 3.9) and is most popular among 
owners of houses with the energy label B, as before (Tables 3.7 and 3.8).  

 

3.4.7. Macro	impacts	of	individual	energy‐related	
behavioural	changes	

Figure 3.10 summarizes the outcomes of all the experiments in terms of 
diffusion of energy-related behavioural changes. The significant change in the 
total number of households deciding to either invest in energy efficient 
technology, or to conserve energy by changing habits, or to switch to a green 
energy provider occurs when we add heterogeneity to the awareness (Exp3) 
and let households interact with each other in a social network (Exp6). 
Spread of opinions about pro-environmental awareness and motivation 
among heterogeneous households amplifies the diffusion of behavioural 
changes in a society. The gray bounds around the curves indicate the 
uncertainty intervals across 100 repetitions of the same experiment under 
different random seeds. Comparing the Exp2 (in black) and 6 (in red), we 
observe that the uncertainty decreases. This has to do with the fact that the 
micro foundations for agents’ attributes, individual behavioural rules and 
social interactions in BENCH become more empirically based fueled by our 
survey data when moving from Exp 2 to Exp 6. 

The pro-environmental individual energy choices and changes in these also 
have significant economic consequences (Figure 3.11). Economic benefits of 
an individual investment action (Action 1) come from saving energy through 
employing energy-efficient equipment, e.g. installing solar panels. The 
investment costs are subtracted from these cumulative benefits to get the net 
benefits of investment. When individuals change energy use habits (Action 
2) their economic benefits come purely from paying a lower energy bill due 
to more conservative energy consumption. In the case of switching (Action 
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3) to a green (or greener) energy provider, the economic costs or benefits 
come from a price difference between green and grey electricity.  

Changes in households’ energy choices have an impact on their carbon foot-
print. Figure 3.12 presents the dynamics of the cumulative CO2 emissions 
saved due to households making investments in solar panels (Action 1). The 
importance of learning and social interactions is again very pronounced here: 
the comparison of the baseline Exp2 (black line) and Exp6 (blue line) 
indicates that social interactions and learning among households boosts the 
saved CO2 emissions by 82% in 2030. 

 

 

Figure	3.10:	Diffusion	of	households’	energy‐related	actions	measured	as	the	total	number	of	
households	pursuing	either	investment,	conservation	or	switching.	A	baseline	Experiment	2	(in	
black)	assumes	that	households	are	heterogeneous	in	economic	and	housing	attributes.	Adding	
psychological	factors	and,	thus	behavioural	heterogeneity	(Exp3	in	yellow	and	Exp4	in	green),	
decreases	 the	 total	 number	 of	 households	 pursuing	 an	 energy‐related	 action.	 However,	
activating	 individual	 learning	and	social	networks,	boosts	the	diffusion	of	the	energy‐related	
actions	(Exp5	in	blue	and	Exp6	in	red).	



Transition to low-carbon economy 

102 

 

 

Figure	3.11:	Cumulative/Regional	economic	net	savings	as	a	result	of	 individual	households	
energy‐related	actions,	in	euro											

 

 

Figure	 3.12:	 Saved	 CO2	 emissions	 (in	 tons)	 resulting	 from	 households	 energy‐related	
investments	(installing	solar	panels)											
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3.5. Conclusions	and	policy	Implications	

Promoting energy efficient behaviour of households is a major challenge and 
an opportunity for policy-makers. The potential of reducing emissions 
through behavioural change becomes even more important in the light of the 
Paris agreement. The scientific challenge is to develop methods to 
quantitatively assess aggregated impacts of individual changes in energy use 
given rich behavioural representation of residential energy demand. The 
paper addresses this challenge by combining an extensive household survey 
and an empirical ABM, which together form a solid basis for our analysis. 
This methodological setup permits us to focus on unfolding the behavioural 
complexity in household energy use in stages, each supported by theory and 
survey data. In particular, with this approach one can explore such questions 
as: What are the main behavioural drivers and barriers of energy-related 
household choices? What is the impact of psychological factors in terms of 
energy and economic benefits? Can we quantify the impact of social 
networks in these processes?  

The household survey carried out in 2016 in Navarre, Spain is rooted in 
Norm Activation Theory and elicits information on the types of social 
interactions, through which people exchange information about energy use.  
The agent-based BENCH model designed based on this survey allows us to 
study large-scale regional effects of individual actions and to explore how 
they may change over time. The model explicitly treats behavioural triggers 
and barriers at the individual agent level, assuming that energy use decision 
making is a multi-stage process. We present the results of simulations over 
14 years (2016-2030) assuming the business as usual (SSP2) scenario for the 
model supply side that provides the growth of energy production till 2030. 
By running several simulation experiments, we add complexity gradually to 
explore the impact of heterogeneity, psychological factors and learning and 
social network impacts on energy-related behavioural changes of households 
and aggregated provincial impacts of these changes.  
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We report that pro-environmental individual energy choices and behavioural 
changes depend on social interactions and learning at different stages of 
households’ decision making. Cumulatively these individual choices have 
significant economic consequences. Economic benefits of an individual 
energy-related behavioural change come from their net savings. A household 
energy bill may decrease due to (i) becoming a partial energy producer (by 
installing solar power system) and consequently buying less energy from the 
grid, or (ii) due to changing consumption and conserving energy, or (iii) due 
to the price difference between green and grey electricity and new price 
offers by energy suppliers. The results illustrate that spreading knowledge 
and motivation regarding energy efficient practices via social networks helps 
decreasing the provincial energy use by 14751 MWh, while increasing the 
private economic benefits by up to 46000 Euro (Figure 3.11) and preventing 
more than 3200 tons of CO2 emissions (Figure 3.12). In line with the survey 
data (Table 3.5), the BENCH simulations show that households in the 
Navarre region in Spain are likely to invest with energy conservation coming 
as the second best option and switching to green suppliers being the least 
preferred choice. These results are contingent on the data used for the model 
initialization and could be influenced by past policies, such as subsidies for 
solar in Navarre (del Río and Unruh, 2007). The explorative scenarios in 
Exp2-Exp6 offer insights on the nature of mechanisms affecting individual 
choices, their aggregated consequences and the direction of their influence. 
To increase the predicative power of such behaviourally rich models as 
BENCH, one should ideally compare aggregated model results with NUTS2 
reginal data on investments for 2016 and 2017 (or switching for that matter, 
conservation is hardly registered in the census or Eurostat data). Given the 
bottom up nature of ABMs, validation has always been a challenge for this 
class of models (Carley, 1996; Richiardi et al., 2006; Windrum et al., 
2007). While this article offers a solid case on validation micro-foundations 
of agents’ rules, access to the regional level panel data is much desirable to 
assure validation of the aggregated trends. 
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These results imply that in the design of energy demand policies aiming at 
behavioural changes more points-of-action can be discerned than just making 
the energy saving alternatives more attractive, financially or otherwise. The 
presence of behavioural barriers can diminish the potential for energy and 
emission savings by anywhere between 63%-80%. Thus, the policy mix 
should also aim at encouraging and facilitating mutual learning processes for 
consumers, both with respect to knowledge and motivation.  Accompanying 
information and policy instruments that change values have the potential to 
greatly contribute to the effectiveness of the more conventional policy 
approach. Future work may focus on testing an interplay of information and 
economic policies (subsidies, taxes), calling for more advanced modelling of 
both demand (e.g. account for discounting) and supply (production costs, 
tariffs, technological learning). The theoretically and empirically grounded 
Modelling tools such as the agent-based BENCH model can serve as a useful 
instrument to quantify the regional impacts of seemly qualitative and 
untraceable individual behavioural aspects. Understanding the cumulative 
impacts of behavioural processes and effect of policies on different socio-
economic consumer groups in an artificial regional economy could provide 
a valuable platform for participatory experiments (Glynn et al., 2017). Such 
a simulation platform could support engagement of stakeholders. It offers 
possibilities for decision-makers to explore various policy mixes combining 
price instruments (subsidies and taxes) with various targeted information 
policies to amplify the positive effect of individual behavioural changes 
regarding energy use.  
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Appendix	A	

In 2016 we ran a household survey over an extensive sample of respondents, 
N=755 households, using an online questionnaire in Navarre province, 
Spain*. The questionnaire was distributed using the survey infrastructure – 
subject pool, sampling methods and contact channels – of Kantar TNS. All 
the questions that form the basis of this survey are developed by the authors 
and validated by expert group†. Kantar TNS (formerly known as TNS 
NIPO) has many years of experience with carrying out surveys and assuring 
that a sample of respondents represents a target population. Table 3.A.1 
presents basic description of the two populations. The sample represents the 
population in terms of income and gender. The education level is a bit higher 
in the sample as compared to the regional population, with the middle group 
of ‘upper secondary and post-secondary’ education matching well between 
the two populations. The data on region is reported based on Eurostat 
Household Budget Surveys (HBSs), 2016. 

 

 

 

 

 

 

 

 

 

                                                  
* Navarre is a province in northern Spain, and consists of 272 municipalities. 

† Consist of 15 experts: social scientists, statisticians, psychologists, governance and policy 
scientists, economists, sociologists, agent-based model developers.	
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Table	3.A.1:	Navarre	socio‐economic	distribution	in	region	and	survey	sample	

Factors Regional Survey sample  

Population 637,486  800  

Male population (in percentage) 49% 43% 

Average  income (thousand Euro per year) 18  Majority in 
income group 2 
(10-30) 

Education 
levels  

(in 
percentage) 

Less than primary, primary and 
lower secondary education 

27.9 16.4% 

Secondary education, upper 
secondary and post-secondary  

23.2 22.8% 

Tertiary education and more 48.8 60.8% 

 

We designed the survey based on the environmental psychology literature 
to identify potential factors of households’ energy-related behavioural 
changes. Specifically, our household survey focuses on factors potentially 
affecting a decision-making process with respect to the three types of energy-
related actions that households typically make: (1) investments to save or 
produce energy, (2) conservation of energy by changing consumption 
patterns and habits, and (3) switching to another energy source. The 
conceptual framework behind the survey based on the NAT (Section 3.2) 
assumes three main steps that lead to one of these actions: knowledge 
activation, motivation, and consideration.  Survey questions used to measure 
the behavioural factors relevant for energy use choices of individual 
households.  Following tables (A.2-4) show what is the main items in these 
three main stages -knowledge activation, motivation, and consideration- and 
how we measured each of these items.  

Knowledge and awareness (K) is measured as a combination of the three main 
items: CEE knowledge, CEE awareness and ED awareness (Section 3.3.2). To 
measure each of these items (CEEK, CEEA, EDA) we rely following questions, 
inspired by the standard measures used in the behavioural literature. Table 
A.2 shows example questions of each knowledge activation items. 
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Table	3.A.2:	Knowledge	activation	items	

Knowledge and awareness (K) 
Climate-Energy-Economy Knowledge   
Tick the box that comes closest to your opinion of how true or untrue you think it is. a 

Climate change is caused by a hole in the earth’s atmosphere. 
… 

Climate-Energy-Economy Awareness   
To what extent do you agree or disagree with each of the following statements? I believe 
that... b 

Protecting the environment is a means of stimulating economic growth. 
… 

Energy Decision Awareness   
To what extent do you agree or disagree with each of the following statements? I believe 
that... b 

My energy source choice (renewables or fossil fuels) have an impact on the 
environment  
… 

a	this	items	measured	with	Likert	scales	with	labelled	end‐points	(1	=”definitely	not		true”	and	
7=“definitely	true”)		
b	this	 items	measured	with	Likert	scales	with	 labelled	end‐points	(1	=”strongly	disagree”	and	
7=“strongly	agree”)		
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Motivation (M) as presented in Section 3.3.2, is evaluated based on Personal 
norms (PN) and Subjective norms (SN). Table 3.A.3 brings example questions 
that we asked to measure PN and SN. 

 

Table	3.A.3:	Motivation	items	

Motivation 
Personal Norms (PN) 
To what extent do you agree or disagree with each of the statements? I believe that... a 

I believe that every time we use coal, oil or gas, we contribute to climate change. 
… 

How likely would you reduce your energy consumption under the following conditions? I would 
reduce my energy consumption… b 

because of personal willingness and self-motivation 
… 

Subjective Norms (SN) 
How likely would you reduce your energy consumption under the following conditions? I would 
reduce my energy consumption... b 

funding out that my households uses more energy than similar households 
there is some governmental policies and subsidies (i.e. municipalities, provincial, 
national level) 
… 

a	this	 items	measured	with	Likert	scales	with	 labelled	end‐points	(1	=”strongly	disagree”	and	
7=“strongly	agree”)		
b	this	items	measured	with	Likert	scales	with	labelled	end‐points	(1	=”very	unlikely”	and	7=“very	
likely”)		

 

Consideration (C) is measured based on the level of  perceived behaviour control 
which is differ in three actions (PBC1, PBC2, PBC3) and Energy-efficient habits 
and patterns (HEP). Table 3.A.4 shows example questions that we asked 
households to measure their PBC based on three actions and their 
conservation habits and patterns.  
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Table	3.A.4:	Consideration	items	

Consideration 
Energy-efficient habits and patterns (HEP) a 
How often do you perform the following actions in your daily life? 

rinse the dishes before putting them in the dish washer 
turn off the light in unoccupied room 
air dry laundry rather than using a washer dryer 
only run full loads when using washing machines or dish washers 
… 

Perceived Behavior Control-investment (PBC1)  
To what extent do you agree or disagree with each of the following statements? b 

I would reduce my energy consumption, if more practical information on how I can 
invest in green energies (e.g. install solar panels) would be available. 
If there were subsidies I would produce part of my green energy consumption (e.g. 
install solar panel or fund a wind turbine). 
… 

Perceived Behavior Control-Conservation (PBC2) 
To what extent do you agree or disagree with each of the following statements?  b 

I would reduce my energy consumption if energy prices would be higher. 
How likely would you reduce your energy consumption under the following conditions? I would 
reduce my energy consumption… c 

if more practical information on how to reduce energy consumption at home would 
be available 
… 

Perceived Behavior Control-Switching (PBC3)  

To what extent do you agree or disagree with each of the following statements? b 
If I had enough information, it would be easier to switch to green energy  
If a renewable/green energy tariff was available at another energy provider, I would 
change my provider. 
If a better/cheaper offer was available at another energy provider, I would change my 
provider. 
… 

a			this	items	measured	with	Likert	scales	with	labelled	end‐points	(1	=”seldom”	and	3=“almost	
always”)	
b	 	this	items	measured	with	Likert	scales	with	labelled	end‐points	(1	=”strongly	disagree”	and	
7=“strongly	agree”)	
c		this	items	measured	with	Likert	scales	with	labelled	end‐points	(1	=”very	unlikely”	and	7=“very	
likely”)	
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Abstract	

In the last decade, instigated by the Paris agreement and United Nations 
Climate Change Conferences (COP22 and COP23), the efforts to limit 
temperature increase to 1.5°C above pre-industrial levels are expanding. 
The required reductions in greenhouse gas emissions imply a massive 
decarbonization worldwide with much involvement of regions, cities, 
businesses and individuals in addition to the commitments at the national 
levels. Improving end-use efficiency is emphasized in previous IPCC reports 
(IPCC, 2014b). Serving as the primary ‘agents of change’ in the 
transformative process towards green economies, households have a key role 
in global emission reduction. Individual actions, especially when amplified 
through social dynamics, shape green energy demand and affect investments 
in new energy technologies that collectively can curb regional and national 
emissions. However, most energy-economics models (usually based on 
equilibrium and optimization assumptions) have a very limited 
representation of household heterogeneity and treat households as purely 
rational economic actors. This paper illustrates how computational social 
science models can be used to address this gap. We demonstrate the 
usefulness of such behaviourally-rich agent-based simulation models by 
simulating various behavioural and climate scenarios for residential 
electricity demand and compare them with the business as usual (SSP2) 
scenario. Our results show that residential energy demand is strongly linked 
to personal and social norms. The intensity of social interactions and learning 
plays an equally important role for the uptake of green technologies as 
economic considerations, and therefore in addition to carbon-price policies 
(top-down approach), implementing policies on education, social and 
cultural practices can significantly reduce residential carbon emissions.  
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4.1. Introduction	

The efforts to limit temperature increase to 1.5°C above pre-industrial 
levels are expanding supported by United Nations Climate Activities*. In 
order to limit global warming to this critical level, they set an aim to achieve 
a balance between sources of anthropogenic emission and sinks of 
greenhouse gases in the second half of this century†. Electricity generation 
from fossil fuels contributes the second largest share (28.4%) of global 
greenhouse gas emissions‡. Decarbonization of the economy will require 
massive worldwide efforts and strong involvement of regions, cities, 
businesses and individuals in addition to the commitments at the national 
levels (Grubler et al., 2018). Public climate mitigation efforts should ideally 
be aligned with private interests to improve the speed and efficiency of this 
process. Individual actions, especially when amplified through social 
dynamics, shape green energy demand and affect investments in new energy 
technologies that collectively can curb regional and national emissions. 
Serving as primary ‘agents of change’ in the transformative process towards 
green economies, households play a key role in global emissions reduction. 
Hence, there is a demand for tools that, next to economic considerations, 
can assess their cumulative emissions given the diversity of behaviour and a 
variety of psychological and social factors influencing it. 

                                                  
* United Nations Climate Change Conferences: COP21-23 

† The Paris agreement  

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement 

‡ U.S. Energy Information Administration (2016). Electricity Explained – Basics 
https://www.eia.gov/energyexplained/index.php?page=electricity_in_the_united_states 
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The International Energy Agency (IEA) reported that the global energy-
related carbon dioxide emissions stagnated for a third straight year in 2016*. 
This is a result of growing renewable power generation, a switch from coal 
to natural gas, as well as improvements in energy efficiency and end-user 
awareness. Subsidies, an emissions trading system, renewable energy 
standards, and other instruments have been developed to reduce emissions 
on the supply side of the energy market. Although economic incentives are 
effective mechanisms to influence energy producers, mechanisms to affect 
the demand side are less straightforward (Creutzig et al., 2018a; Zhang et 
al., 2017). Given the scale of the impact that households’ choices have on 
energy consumptions and emissions, it puts them at the epicenter of the 
international policy and research agenda†.  

Bin and Dowlatabadi (2005) report that more than 40% of total CO2 
emissions in United States is directly influenced by households’ activities; 
Baiocchi et al. (2010) show around 52%, or 358 million tones CO2 emissions 
come through indirect household consumption in United Kingdom. As 
households get greater awareness of the value and the need for sustainable 
energy practices, the public concerns on climate change and energy-related 
behaviours are slowly growing. Some first rough assessments indicate that 
behavioural change alone can contribute to 4%-8% (Faber et al., 2012; 
McKinsey, 2009) of overall CO2 emissions reduction. Gadenne et al. (2011) 
study the influence of consumers environmental beliefs and attitudes on 
energy-related behaviours and find that people have been paying more 

                                                  
* https://www.iea.org/newsroom/news/2017/march/iea-finds-co2-emissions-flat-for-third-
straight-year-even-as-global-economy-grew.html 

† Cities and Climate Change Science Conference, Edmonton-Canada, March 5-7, 2018  

https://www.ipcc.ch/meetings/cities/	
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attention to environmental issues nowadays, while many efforts have been 
made to promote a green consumer lifestyle.  

Only limited tools are available to assess their cumulative emissions given 
the diversity of behaviour and a variety of psychological and social factors 
influencing it beyond pure economic considerations (Niamir et al., 2018b). 
Many macro models, e.g. general equilibrium models are predominately 
used to support climate change policy debates, particularly in the economics 
of climate change mitigation (Babatunde et al., 2017). These models usually 
assume that economic agents form a representative group(s), have perfect 
access to information and adapt instantly and rationality to new situations, 
maximizing their long-run personal advantage. However, in reality people 
make decisions driven by their diverse preferences, shaped by socio-
economic conditions, behavioural biases and social peer influence (Farmer 
and Foley, 2009). Therefore, policymakers require supporting decision 
tools, that may explore the interplay of economic decision-making and 
behavioural heterogeneity in households’ energy choices when testing 
common climate mitigation policies (e.g. carbon pricing) and socio-
economic pathways in a world with changing climate (e.g. SSPs).  

The aim of this article is to provide such tools through a combination of a 
new bottom-up simulation method grounded in an empirical survey to 
extract heuristic rules on energy consumption behaviour for individual 
agents. For this purpose, we use an agent-based model in which the agents 
– individual households with detailed socio-economic characteristics – are 
taking decisions about a range of realistic actions related to their household 
electricity supply while being exposed to economic (e.g. carbon price) as 
well as psychological and social pressures (e.g. promotion of green 
electricity).  

After introducing the methodology in Section 4.2, we present in Section 4.3 
results from an analysis of different micro-scenarios of households in a 
European region (Overijssel, Netherlands) up to the year 2030. We quantify 
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the changes in household electricity demand from conventional and green 
suppliers when varying psychological as well as economic incentive 
parameters. While we focus on one region as a proof of concept here, there 
are several ways to upscale and cover larger areas (Niamir et al., 2018c). 

 

4.2. Methodology	

The quantitative tools to support energy policy decisions range from 
assessment of macro-economic and cross-sectoral impacts (Kancs, 2001; 
Siagian et al., 2017), to detailed micro-simulation models for a specific 
technology (Bhattacharyya, 2011; Hunt and Evans, 2009).  Agent-based 
modelling (ABM) is a powerful tool for representing the complexities of 
energy demand, such as social interactions and spatial constraints and 
processes (Farmer and Foley, 2009; Filatova et al., 2013). Unlike other 
approaches, ABM is not limited to perfectly rational agents or to abstract 
micro details in aggregate system-level equations. Instead, ABM can 
represent the behaviour of energy consumers – such as individual households 
– using a range of behavioural theories. In addition, ABM has the ability to 
examine how interactions of heterogeneous agents at micro-level give rise 
to the emergence of macro outcomes, including those relevant for climate 
mitigation such as an adoption of low-carbon behavioural strategies and 
technologies over space and time (Rai and Henry, 2016). The ABM approach 
simulates complex and nonlinear behaviour that is intractable in equilibrium 
models.  

To assess the impact of individual behaviour on carbon emissions, we went 
beyond classical economic models and the stylized representation of a 
perfectly informed optimizer. Therefore, we further developed the BENCH* 

                                                  
* The Behavioural change in ENergy Consumption of Households (BENCH) agent-based model 
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agent-based model (Niamir et al., 2018b) by strengthening the alignment of 
behavioural and economic factors under different climate policy scenarios. 
We calibrated the BENCH-v.2 model using data on households’ energy-
related choices from a survey specially designed for this purpose (Section 
4.2.3) and administered in a European region of Overijssel, The Netherlands 
(1383 households). The BENCH-v.2 calculates changes in electricity 
consumption annually and implied carbon emission -based on the primary 
source of energy- by simulating individuals’ behaviours (Section 4.3). 

 

4.2.1. Overview:	individual	energy	behaviour	

There is a number of energy-related actions which individuals may pursue to 
influence their electricity consumption and, consequently, their carbon 
footprint. We categorize them into three main types of behavioural changes. 
An individual can make an investment (action A1), either large (such as 
installing solar panels) or small (such as buying energy-efficient appliances, 
e.g. A++ washing machine). Alternatively, individuals can save energy by 
changing their daily routines and habits (action A2) -e.g. by switching off the 
extra lights and adjusting a thermostat/air conditioner. Finally, households 
can switch to a supplier that provides green electricity (action A3) (Niamir 
and Filatova, 2017). 

Driven by the empirical evidence from environmental behavioural studies 
(Abrahamse and Steg, 2011; Bamberg et al., 2007; Bamberg et al., 2015; 
Mills and Schleich, 2012; Onwezen et al., 2013; Steg and Vlek, 2009), the 
BENCH-v.2 model assumes that a decision regarding any of the three actions 
(A1-A3) is driven by psychological and social factors in addition to the 
standard economic drivers such as prices relative to incomes (Niamir et al., 
2018b). Behavioural factors including personal norms and awareness may 
either amplify the economic logic behind a decision-making or impede it, 
serving either as a trigger or a barrier (Figure 4.1). It is a scientific challenge 
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to combine the behavioural (emotional) and the economic parts of the 
decision-making process in a formal model. Here we present the simplest 
option assigning weights to the behavioural part by calculating households 
intentions toward a specific energy-efficient action derived from our 
household survey dataset.  

 

 
Figure	4.1:	Factors	affecting	household	decision‐making	regarding	their	energy	use	

 

4.2.2. Survey	and	empirical	data		

Our household survey is designed to elicit factors and stages of a decision-
making process with respect to the three types of actions that households 
typically make (A1 investment, A2 conservation and A3 switching). The 
conceptual framework behind the survey assumes three main steps that lead 
to one of these actions: knowledge activation, motivation, and consideration 
(Niamir et al., 2018b).  Before considering action, households need to reach 
a certain level of knowledge and awareness about climate change, energy and 
the environment. If an individual in a household is aware enough, she might 
feel guilt. Here personal norms (individual attitudes and beliefs) and 
subjective norms prevailing in a society add to her motivation. If households 
get motivated, they feel responsible to do something. Still, none of these 
factors are enough to provoke an action to change the energy use behaviour. 
A household needs to consider its economic status, its house conditions (e.g. 
renting of owning), its current habits, and own perception of its ability to 
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perform an action or change behaviour. If a household reaches a certain level 
of intention, it is going to decide or act.  

To elicit data on an interplay of behavioural and economic factors, we 
conducted a survey in a European region (NUTS2 level) in 2016: Overijssel 
province in The Netherlands (NL21), see Figure 4.2. The data on the 
behavioural and economic factors affecting household energy choices were 
collected using an online questionnaire (N= 1,035 households in Overijssel) 
and serve as empirical micro-foundation of agent rules in the BENCH-v.2 
model. The variations in socio-demographic and psychological factors among 
the respondents are further used to initialize a population of heterogeneous 
agents in the ABM (Section 4.2.3). The differentiation per income group 
also allows to potentially connect with other micro and macro statistical data 
if needed.  

 

 

 

 

 

 

 

 

                 

 

4.2.3. BENCH	agent‐based	model	

Compared to its first version (Niamir et al., 2018b), the BENCH ABM has 
been further developed and modified to investigate the macro impact of 

Figure	4.2:	Survey	case	study:	Overijssel	province‐The	Netherlands
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cumulative individual behavioural change on carbon emissions. In particular, 
in this application we extended BENCH by: (a) introducing three 
representative electricity producers (grey, green and super green); (b) 
further improving the model engine, which now treats behavioural and 
economical parts explicitly (Section 4.2.1). In the behavioural part, the 
psychological and social aspects of a household’s behaviour change and 
decision making are evaluated (Section 4.2.3). If there is high intention, 
household agents proceed with assessing the typical economical utility 
(Section 4.2.3). In the economical part households’ utilities based on the 
three actions(A1-A3) are calculated and compared (Figure 4.3).  

Further changes compared to the original BENCH include: (c) improvements 
in social dynamics and learning algorithms by introducing and simulating two 
ways of  households’ interactions (Section 4.2.3);  (d) running a carbon price 
scenario as a top-down strategy to investigate impacts of policies on 
household behavioural change (Section 4.2.3); (e) the results of simulations 
in terms of CO2 emissions (tones per capita) to compare between scenarios 
(Section 4.3.1) to get a better overview on the impacts of individuals’ 
behaviour on carbon emissions over time and space. The role of each action 
(A1-A3) in these trajectories is also estimated till 2030 (Section 4.3).   

Household agents in BENCH-v.2 are heterogeneous in socio-economic 
characteristics, preferences, and awareness of environment and climate 
change, so they can pursue various energy-efficient choices and actions. 
Namely, they vary in six economic attributes: (1) annual income in euro, (2) 
annual electricity consumption in  kWh, (3) household status in terms of 
being a grey, green or super green electricity user, (4) dwelling tenure status 
- owner or renter; (5) energy label of their dwelling varying from A to F; 
and (6) the household energy use routines and habits measured in the survey 
in terms of frequency of performing a particular energy-consuming action. 
Data for all these variables come from the survey. The annual growth value 
of socio-economic variables representing households’ income, electricity 
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consumption, and consumption of other goods (in 5 quintiles) for the 
Overijssel province comes from the EXIOMOD* computable general 
equilibrium (CGE) model (Filatova et al., 2014). The behavioural and social 
aspects impacting households energy decisions also vary among agents and 
include: (1) personal norms†, which are values that people hold (Schwartz, 
1977), e.g. feeling good when using energy efficient equipment; (2) 
subjective norms‡, which are perceived social pressure on whether to engage 
in a specific behaviour motivated by observing energy-related actions of 
neighbors, family and friends’; and (3) perceived behavioural control 
(Section 4.2.3). These behavioural and social variables are updated over time 
(annually) through social dynamics and learning procedures (Section 4.2.3). 
Agents’ decision processes closely follow the conceptual framework (Figures 
1 and 3) behind the household survey and apply to all three types of energy-
efficient behaviours (A1-A3). 

 

Behaviour	part	

Based on different internal and external barriers and drivers, households 
have different knowledge and awareness levels about the state of the climate 
and environment, motivation levels to change their energy behaviour, and 

                                                  
*  Within the COMPLEX project funded by the EU FP7 program, the BENCH model was 
integrated with a CGE EXIOMOD. The EXIOMOD CGE model is developed at TNO in the 
Netherlands. https://repository.tudelft.nl/view/tno/uuid:3c658012-966f-4e7a-8cfe-
d92f258e109b/ 

† Personal norms are attached to the self-concept and experienced as feelings of a moral obligation 
to perform a certain behavior (Schwartz, S.H., (1977) Normative Influences on Altruism1, in: 
Leonard, B. (Ed.), Advances in Experimental Social Psychology. Academic Press, pp. 221-279.) 

‡ Subjective norms are determined by the perceived social pressure from others for an individual 
to behave in a certain manner and their motivation to comply with those people's views (Ham, 

M., Jeger, M., Frajman Ivković, A. (2015) The role of subjective norms in forming the intention 
to purchase green food. Economic Research-Ekonomska Istraživanja 28, 738-748.) 
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consideration levels when they perform costs and utility assessments. All 
household attributes are heterogeneous and change over time and space. All 
the variables in knowledge activation, motivation and consideration are 
measured in comparable ways using Likert scale, in the range of 1-7 as in the 
survey. Here 1 stands for the lowest, 7 is the highest level (Niamir et al., 
2018a; Niamir et al., 2017). 

 

 
Figure	4.3:	A	household’s	decision‐making	algorithm	in	the	BENCH‐v.2	agent‐based	model		

 

Niamir et al. (2018b) described how households’ knowledge and awareness 
(K) and motivation (Mn) are measured and calculated at the model 
initialization stage based on the survey data. In summary, K is based on 
climate-energy-environment knowledge (CEEK), climate-energy-
environment awareness (CEEA), and energy-efficient decision awareness 
(EDA) values. If households are aware enough, that is they have a high level 
of knowledge and awareness above the threshold of 5 out of 7, then they are 
tagged as “feeling guilt” and proceed to the next step to assess their motivation 
(Mn) for particular actions. Households’ personal norms (PNn) and subjective 
norms (SNn) are assessed to calculate their motivation (Mn).  In this paper, 
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motivation may differ for each of the three main actions (nൌ	ሼ1,2,3ሽ). For 
example, a household may have a high level of motivation for installing solar 
panels, and is therefore tagged as “responsible” for action1 (investment) and 
proceeds to the next step (consideration). At the same time, it may not pass 
the threshold value in motivation for changing energy use habits or switching 
to another energy supplier, and thus does not go into the consideration step 
on those two actions. If household agents have a high motivation level and 
feel responsible, they consider the psychological (e.g. perceived behaviour 
control*), structural (housing attributes) and institutional factors (e.g. 
subsidies) to assess utility and costs of a specific action (Section 4.2.3). Then 
households with high level of consideration are tagged as “high intention”. In 
the consideration stage, as well as the motivation stage, we differentiate 
between actions. In investment (A1) for instance, the dwelling ownership 
status (SF, owner or renter), and perceived behavioural control over the 
investment (ܲܥܤଵ) are checked and evaluated (δ1). While the ownership 
status is not essential in conservation (A2) and switching (A3), δ2  and δ3  are 
calculated just based on perceived behavioural controls (PBC2 and PBC3) All 
this is captured by the following equations: 

(1) 

ܭ ൌ
,ܭܧܧܥሺ	ܩܸܣ ,ܣܧܧܥ ሻܣܦܧ

7
				 ;	 

௡ܯ ൌ
ሺܲ	ܩܸܣ ௡ܰ, ܵ ௡ܰሻ

7
				 ;			 

ሺ݊		݂ܫ ൌ ܨܵ		݀݊ܽ	1 ൌ 1ሻ		ሺ	ߜଵ ൌ
ଵܥܤܲ
7

	ሻ		݈݁݁ݏ	ሺ	ߜଵ ൌ 0ሻ			; 

ሺ݊		݂ܫ ൌ 2	ሻ		ሺ	ߜଶ ൌ
ଶܥܤܲ
7

	ሻ			; ሺ݊		݂ܫ			 ൌ 3	ሻ		ሺ	ߜଷ ൌ
ଷܥܤܲ
7

	ሻ			 

 

                                                  
* Own perception of her ability to perform an action or change behaviour. 
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Economic	part	

The economic part estimates utility of an individual agent for undertaking 
any of the three main actions. Energy economics (Bhattacharyya, 2011) 
assumes that households receive utility from consuming energy (E, here 
super green, green or grey) and a composite good (Z) under budget 
constraints: 

(2) 

ܷ ൌ 	ܼ ⋅ ߙ ൅ ܧ ⋅ ሺ1 െ  	ሻߙ

 

Here α is the share of individual annual income spent on the composite good.  

Niamir et al. (2018b) extend this standard utility by including the influence 
of knowledge and awareness (K) and motivation (Mn) and adding actions’ 
intention (ߜ௡) as a weight on the behavioural part: 

(3) 

ܷ ൌ ሺܼ ⋅ ߙ ൅ ܧ ⋅ ሺ1 െ ሻሻߙ ⋅ ሺ1 െ ௡ሻߜ ൅ ሺܭ ൅݊ܯሻ	.  ௡ߜ

 

This weight is calculated and normalized using the survey data. 

 

Social	dynamics	and	learning	

Heterogeneous households engage in interactions and learn from each other. 
In particular, they can exchange information with neighbours, which may 
alter own knowledge, awareness, and motivation regarding energy-related 
behaviour. Here we employ a simple opinion dynamics model (Acemoglu 
and Ozdaglar, 2011; Degroot, 1974; Hegselmann and Krause, 2002; 
Moussaid et al., 2015). Agents compare values of their own behavioural 
factors – knowledge, awareness, and motivation – with those of their eight 
closest neighbours, and adjust their values for a closer match. In different 
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scenarios (Table 4.1), we introduce two types of interactions for households: 
slow and fast dynamics. Following the slow dynamics, households in an 
active neighbourhood* interact with maximally two neighbours (households 
3 and 4 in figure 4.4.a), and a household(s) with lower than average value of 
the whole neighbourhood increases their current value by 5% (Figure 4.4.a). 
In the fast dynamics configuration, all households in an active neighbourhood 
exchange of opinions and learn from each other (Figure 4.4.b, Eq.4). In 
addition, the related perceived behaviour control (ܲܥܤ௡) of a household that 
already took an action (household 5 in Figure 4.4) is raised by 5% (Eq.5).  

 
 

1	 2	 3	

4	 5	 6	

7	 8	 9	

 

1	 2	 3	

4	 5	 6	

7	 8	 9	

(a) (b) 

Figure	4.4:	 Social	dynamics	and	 learning	 in	an	active	neighbourhood	where	household	 “5”	
undertook	an	action	at	time	t.	(a)	Slow	dynamics:	households	3	and	4	are	affected	and	engage	
in	 social	 learning.	 (b)	Fast	dynamics:	all	households	 in	 the	neighbourhood	are	affected	and	
engage	in	social	learning	

 

(4) 

ܺ ൌ ሼܭܧܧܥ, ,ܣܧܧܥ ,ܣܦܧ ܲ ௡ܰ, ܵ ௡ܰሽ	, ݊ ൌ ሼ1,…9ሽ			;							 

ሺܺ௡௧ሻሻ	ሺܺ௡௧ሻ,݉݁݀݅ܽ݊	ሺ݉݁ܽ݊	ݔܽܯ	݂ܫ	 ൒ 	ܺଷ
௧					ሺܺଷ

௧ାଵ ൌ 	ܺଷ
௧ ൅ 0.05 ⋅ ܺଷ

௧ሻ			; 

ሺܺ௡௧ሻሻ	ሺܺ௡௧ሻ,݉݁݀݅ܽ݊	ሺ݉݁ܽ݊	ݔܽܯ	݂ܫ	 ൒ 	ܺସ
௧					ሺܺସ

௧ାଵ ൌ 	ܺସ
௧ ൅ 0.05 ⋅ ܺସ

௧ሻ 

                                                  

* An	active	neighbourhood		is	the	one	where	at	least	one	out	of	eight	neighbours	undertakes	an	energy‐
efficient	action. 
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(5) 

ହܥܤܲ
௧ାଵ ൌ ହܥܤܲ		

௧	 	൅ 0.05 ⋅ ହܥܤܲ
௧	; 

 

Carbon	emissions	and	pricing		

In this research we investigate CO2 emissions implied by households’ 
electricity consumption which is supplied from power plants using different 
kinds of fuels. Carbon dioxide emission factors for electricity have been 
derived as the ratio of CO2 emissions from fuel inputs of power plants 
relative to the electricity delivered. CO2 emission factors of each fuel type 
are used as defined in IPCC (2006). Three different kinds of electricity 
suppliers are considered, between which the households can choose: “grey”, 
“brown”, and “green”. The assumptions regarding fuel mixes and the 
resulting net CO2 emission factors are listed in Table 4.1.  

 

Table	4.1:	Fuel	mix	of	supplier	and	CO2	emission	factors	

Supplier type % Coal % Gas % Renewable tCO2/kWh 

 

Grey 100 0 0 0.0009 

Brown 0 100 0 0.0003 

Green 0 0 100 0 

 

To estimate the impact of climate policies, namely a carbon price, we design 
and add climate policy scenarios by including carbon price in the utility 
estimations of households. 
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4.2.4. End‐user	scenarios	

Traditionally, rational optimization models such as CGE models, have been 
used to predict household energy consumption under various socio-
economic scenarios including Shared Socioeconomic Pathways (SSP)*. Here 
the Baseline scenario represents this traditional economic setup where 
rational and fully-informed households make optimal decisions. Therefore, 
we use aggregated residential electricity consumption from the EXIMOD 
model downscaled to the regional level. The Baseline scenario (grey dash-
line in Figures 4.5,4.6,4.9) is an output of this CGE model under SSP2 
(business as usual).  

We use this Baseline scenario as a benchmark to compare the output of our 
behaviourally rich ABM. Four end-user scenarios in BENCH.v2 are designed 
to explore the impacts of heterogeneity in household attributes such as 
income and electricity consumption, social dynamics (bottom-up approach) 
and carbon price pressure (top-down approach) strategies on the individual 
and aggregated households behavioural change (Table 4.2). In all cases, based 
on the energy behaviour change of households, we assess the following 
macro-metrics: the diffusion of each of the three types of behavioural actions 
(A1-3) among households over time, and the changes in carbon emissions 
reduction. 

 

 

 

 

 

                                                  
* https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about 
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Table	4.2:	End‐user	scenario	settings:	Climate	Policy	and	Human	Behaviour	scenarios	

BENCH.v2 
scenarios 

Social dynamics Carbon Price 

Scenario SD 

 

Slow dynamics 

In an active neighbourhood: households interact with 
maximum two neighbours  

- 

Scenario FD 

 

Fast dynamics 

In an active neighbourhood: households interact with all 
available neighbours 

- 

Scenario SDC 

 

Slow dynamics 

In an active neighbourhood: households interact with 
maximum two neighbours 

25 Euro/ton by 2030 

Scenario FDC 

 

Fast dynamics 

In an active neighbourhood: households interact with all 
available neighbours 

25 Euro/ton by 2030 

 

4.3. Results	and	discussion	

We present the results of the BENCH.v2 simulations by tracking individual 
and cumulative impacts of behavioural changes on carbon emissions among 
1383 individual households in the Overijssel provinces over 14 years (2016-
2030). Given the stochastic nature of ABMs, we perform multiple (N=100) 
repetitive runs of each simulation experiment (Lee et al., 2015).  

 

4.3.1.		Behavioural	scenarios		

In scenario SD the heterogeneous households with various income, 
electricity consumption, and dwelling conditions go through a cognitive 
process to decide whether to pursue any behavioural change or not. Figure 
4.5 shows that introducing heterogeneity to the household economic and 
housing attributes leads to a reduction in carbon emissions resulting from 
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changes in the residential electricity consumption in comparison to the 
baseline (grey dash-line), CO2 emissions resulting from residential 
electricity consumption decrease 5% by 2030 by simply adding 
heterogeneity in household attributes and preferences. The decrease 
indicates a difference between a scenario with a representative agent vs the 
one where we disaggregate a representative consumer assuming a 
distribution of economic and housing attributes and interactions among 
households in the neighbourhood (Figure 4.5-black line).  

Scenario FD shows what happens if we have more intense social dynamics 
within a neighbourhood – households have more opportunities to interact 
and learn – therefore the diffusion of information is faster inside society. The 
blue line in Figure 4.5 illustrates the impact of fast social dynamics alone, 
which delivers another 4.3% more reduction in carbon emissions by 2030 
compared to scenario SD. 

 

 
Figure	4.5:	Macro	impact	of	heterogeneous	households	behavioural	change	on	CO2	emissions	
over	 time.	 Behavioural	 scenarios	 (SD,	 FD)	 and	 baseline	 scenario	 (2017‐2030).	 The	 shaded	
bounds	around	the	curves	indicate	the	uncertainty	intervals	across	100	runs.	
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Table	4.3:	Avoided	CO2	emissions	(tons	per	capita)	resulting	from	households	energy‐efficient	
actions,	share	of	each	action	is	reported	in	parenthesis;	under	behavioural	scenarios	(SD,FD),	
2030.		

Actions  Scenarios 

SD FD 

A1: Investment 0.01 (9.3%) 0.03 (10.7%) 

A2: Conservation  0.04 (26%) 0.08 (26.1%) 

A3: Switching  0.10 (64.8%) 0.20 (63.3%) 

 

Table 4.3 shows which actions (A1-A3) contributed the most to the 
cumulative CO2 emission savings. Our results indicate that such behavioural 
changes as investments in solar panels (A1) may deliver between 9%-11%, 
conserving electricity by using less or changing their daily habits and usage 
patterns (A2) and switching to brown and green electricity supplier (A3) 
contribute 26% and 63%-65% in CO2 reduction correspondingly. Our 
survey also shows that around 11% of households in Overijssel province 
already installed solar panels, this indicates households that already made an 
investment before 2016, are willing to switch to green supplier or save 
energy through changing their usage pattern. We observe that intensive 
social learning and diffusion of information (scenario FD) has more impact 
on A3 and A2. 

 

4.3.2.		Climate	scenarios		

To assess the impact of climate policies, an introduction of a carbon price in 
particular, we design the scenario SDC. Here the carbon price is introduced 
in the year 2017 and increases linearly to 25 euro per ton by 2030 on the 
grey (primary of coal) and brown (primary of natural gas) assuming 0.0009 
ton CO2 per kWh coal and 0.0003 ton CO2 per kWh natural gas emission 
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factors. Carbon pricing significantly encourages individual behavioural 
changes leading to additional 25% of CO2 reduction in SDC compared to the 
SD scenario (Figure 4.6). This indicates that carbon pricing has a significant 
impact on switching to green suppliers since they are offering electricity at a 
lower price, and alternatively simply using less electricity to save energy 
costs. This is confirmed by the detailed breakdown of energy-related actions 
over time (Table 4.4). 

In the scenario FDC we examine the effects of combining both behavioural 
heterogeneity, intensive social learning and climate policy on households 
energy decisions and consequently on their carbon footprint. Figure 6 shows 
that by combining the carbon price tax (25 Euro per ton) and households 
behavioural dynamics, we observe a significant reduction in CO2 emissions 
of household electricity consumption by 55% in 2030 compared to the 
baseline. 

 

 
Figure	4.6:	Macro	impact	of	heterogeneous	households	behavioural	change	combing	(bottom‐
up)	 strategy	 and	 carbon	 price	 pressure	 (top‐down)	 strategy	 on	 CO2	 emissions	 over	 time.	
Combining	behavioural‐climate	scenarios:	combination	of	carbon	price	and	slow	and	fast	social	
dynamics	 (SDC,	 FDC)	 (2017‐2030).	 The	 shaded	 bounds	 around	 the	 curves	 indicate	 the	
uncertainty	intervals	across	100	runs.	
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As soon as the carbon price is introduced, the number of households’ energy-
related actions increases, leading to 1.3-2.1 times more CO2 emission 
reduction per capita compared to behavioural scenarios (SD and FD) 
depending on the slow and fast social dynamics. In a world with slow social 
dynamics, the carbon price raises the number households choosing to switch 
from grey/brown electricity to the brown/green one (action A3) 
significantly to 3.5 times in compared to SD.  Yet, as social interactions 
intensify, households who willing to invest (A1) take a lead and switching 
(A3) stand for the second and CO2 emissions reduce up to 5.5 and 4.8 times 
respectively in compared to SD.  At the same time the number of households 
who are interested in conservation and saving electricity by changing their 
habits and usage patterns (A2) increases 1.5 times as soon as the carbon price 
applies; it remains the same with combination of slow and fast social 
dynamics (SDC, FDC). This express that the top-down strategy –carbon 
pricing- notably activates the monetary part of individuals’ decisions which 
lead to investment and switching.  

 

Table	4.4:	Avoided	CO2	emissions	(tons	per	capita)	resulting	from	households	energy‐efficient	
actions,	share	of	each	action	is	reported	in	parenthesis;	under	behavioural	and	climate	scenarios	
(SDC,FDC),	2030.		

Actions  Scenarios 

SDC FDC 

A1: Investment 0.07 (18.4%) 0.30 (17.4%) 

A2: Conservation  0.04 (9.6%) 0.16 (9.0%) 

A3: Switching  0.27 (72%) 1.27 (73.6%) 
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4.3.3.		Capturing	non‐linearities	

Figure 4.7 illustrates that an increase in the intensity of social interactions 
across all 4 scenarios consistently leads to higher diffusion of actions A1-A3, 
implying that these behavioural changes deliver more CO2 savings per capita 
under fast social learning rather than slow. At the same time, when fast social 
learning combined with top-down strategies –climate scenario (FDC)– it 
triggers significant changes in investment and switching, e.g. under FDC 
scenario investment and switching respectively leading to 4 and 5 times 
increase in comparison to SDC scenario. It quantitatively confirms that an 
effectiveness of a market-based climate policy is improved when 
accompanied by an information provision policy. 

 

 
Figure	4.7:	Diffusion	of	households’	actions	under	behavioural	and	climate	scenarios	

 

The BENCH-v.2 agent-based model gives us this opportunity to simulate 
complex and nonlinear behaviour that is intractable in equilibrium models. 
In figure 8, we reveal that while their combined effect is better than that of 
social dynamics or carbon price alone, the trend is non-linear. SD and SDC 
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scenarios comparison demonstrates carbon price add more 25% CO2 
emission reduction. Examining SD and FD scenarios shows increasing social 
interactions alone reduces 4% CO2 emission. However applying both carbon 
price and social interactions cuts down CO2 emissions to 55% (21% more 
than rational models could estimate). 

 

 
Figure	4.8:	The	BENCH‐v.2	agent‐based	model	simulated	complex	and	nonlinear	behaviour	that	
is	intractable	in	equilibrium	models.	SD	and	SDC	comparison	shows	carbon	price	reducing	25%	
CO2	 emissions	 (yellow	 box).	 FD	 shows	 increasing	 social	 interactions	 alone	 reduces	 9%	 CO2	
emissions	(green	box).	However,	applying	both	carbon	price	and	social	interactions	cuts	down	
CO2	emissions	by	55%	(21%	more	than	rational	models	could	estimate).			

 

4.3.4.		Sensitivity	of	emission	reduction	actions	towards	
carbon	price	

Acknowledging the debate on the optimal level of a carbon tax, we 
performed a sensitivity analysis on the carbon price. We ran two additional 
scenarios – FDC10 and FDC50 – by varying the carbon price from 10 
(FDC10) to 50 (FDC50) Euro per ton by 2030. Figure 5.9 illustrates the 
CO2 emissions per capita resulting from individual behavioural changes A1-
A3 assuming intensive social interactions under 3 carbon price values: 10 
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Euro/ton (FDC10), 25 Euro/ton (FDC25) and 50 Euro/ton (FDC50). 
According to Figure 8, the BENCH-v.2 model is sensitive to the carbon price. 
As expected, the higher the carbon price the more CO2 emission reduction 
is observed.  

 

 
Figure	4.9:	Dynamics	of	CO2	emission	reduction	from	individual	behavioural	changes	(A1‐A3)	
under	different	carbon	price	scenarios	(€10,	€25	and	€50	per	ton).	The	shaded	bounds	around	
the	curves	indicate	the	uncertainty	intervals	across	100	runs.	

 

4.4. Conclusions	and	policy	implications	

The potential of reducing CO2 emissions through behavioural change 
becomes even more important in the light of the Paris agreement. To 
promote behavioural changes among households, a range of market-based as 
well as other behavioural nudging policies (e.g. information) could be used. 
Yet, many models assume that economic agents from a representative 
group(s), have perfect access to information and adapt instantly and 
rationally to a new situation. This paper focuses on estimating cumulative 



Chapter 4 

137 

 

impacts of energy-related behavioural changes of individual households on 
CO2 emissions by comparing behavioural and climate policy scenarios. 

Here we apply the BENCH-v.2 ABM to shed light on the effects of individual 
decisions in the complex climate-energy-economy system and explore the 
impact of socio-economic heterogeneity, social dynamics, and carbon 
pricing on their energy-related decisions over time in the Overijssel province 
of the Netherlands. While this study focuses on a relatively small 
geographical region, there are no principal barriers to upscale and apply the 
concept to a larger region, provided that sufficient statistical data are 
available (Niamir et al., 2018c). 

The results indicate that accounting for demand side heterogeneity provides 
a better insight into possible transitions to a low-carbon economy and 
climate change mitigation. The model with household heterogeneity 
represented in socio-demographic, dwelling and behavioural factors, shows 
rich dynamics and provides more-realistic image of socio-economics by 
simulating economy through the social interactions of heterogeneous 
households. We analysed four end-user scenarios, which vary from the 
baseline scenario by introducing agent heterogeneity, intensity of social 
interactions among households (slow or fast) and lack or presence of carbon 
price (€10, €25 or €50 per ton). By comparing the behavioural and climate 
end-user scenarios, we estimate the relative impact of bottom-up drivers 
(social dynamics and learning on the diffusion of information) and top-down 
market policies (carbon price) on carbon emission reduction. The impact of 
household attributes heterogeneity and social dynamics brings 5%-9% CO2 

emission reduction by 2030. Adding carbon price cuts CO2 emission down 
to 55% compared to the baseline scenario, which mimics the traditional 
economic setup of a rational representative fully-informed household who 
makes the optimal decision.  

It should be noted that in this research we only focus on the demand side of 
the electricity market and calculated CO2 emissions caused by residential 
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demand. Future work could focus on integrating this behaviourally rich 
demand side Modelling with dynamics of the electricity production side in 
the market with detailed modelling of various energy sources. 

The results imply that the design of climate mitigation policies aiming at 
behavioural changes should go beyond making the energy-related 
alternatives more attractive financially. In a transition to low-carbon 
economy, individuals become more than just consumers. In order to 
facilitate this transition, the broader view on social environment, cultural 
practices, public knowledge, producers technologies and services, and the 
facilities used by consumers are needed to design implementable and 
politically feasible policy options (Bressers and Ligteringen, 2007). 
Accordingly, the policy mix should also aim at encouraging and facilitating 
social interactions between individuals (households) and promoting and 
diffusing information that they need. Such accompanying information and 
value based policy instruments have the potential to greatly contribute to the 
effectiveness of conventional price-based policies. Therefore, the various 
financial, social and other instruments in the policy mix should be designed 
as a coherent set to reinforce each other, optimizing the joint effectiveness. 
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Abstract	

Households are responsible for a major share of global greenhouse 
emissions. Academic and policy discourses highlight behavioural changes 
among households as an essential strategy for combating climate change. 
However, the formal models used to assess the impacts of such policies face 
limitations in tracing the cumulative impacts of individual adaptive behaviour 
of heterogeneous households. This paper suggests a systematic way to scale 
up heterogeneous individual energy behavioural changes to trace their 
macroeconomic cross-sectoral impacts. To achieve this goal, we combine 
the strengths of macroeconomic computable general equilibrium models and 
microsimulation agent-based models. We illustrate the integration process 
of these two opposed modelling approaches by linking data-rich macro and 
micro models. Following a three-step approach, we investigate the dynamics 
of cumulative impacts of changes in individual energy use under three 
behaviour scenarios. The findings of this softly-linked model indicate that 
the education and age structure of different EU regions leads to an unequal 
distribution of benefits of the green economy transition between pioneering 
and lagging regions. Heterogeneity in individual sociodemographics (e.g. 
education and age), structural characteristics (e.g. type and size of 
dwellings), behavioural and social traits, and spatial characteristics (e.g. 
urban vs. rural) and social interactions amplify these differences, causing 
nonlinearities in market dynamics..  

 

 

 

 

 

  



Economy-wide impacts of climate change mitigation behaviour among heterogeneous agents 

142 

 

5.1. Introduction	

Energy consumption is the primary culprit behind anthropogenic global 
warming. Humanity’s demand for energy is satisfied by consuming fossil 
fuels as well as renewable energy sources, leading to varied greenhouse gas 
emission (GHGs) footprints. Households are responsible for 70% of 
global GHGs (Hertwich and Peters, 2009). In Europe, one quarter of direct 
total energy consumption and GHGs comes from households*. Academic 
and policy discourses highlight behavioural changes among households as an 
essential strategy for reducing GHG emissions and combating climate change 
(Dietz et al., 2013; Doppelt and Markowitz, 2009; Faber et al., 2012; 
McKinsey, 2009). An individual’s decision-making is, however, known to 
deviate from rational and perfectly informed optimization process, calling 
for a thorough understanding of behavioural aspects (Abrahamse and Steg, 
2011; Bamberg et al., 2007; Bamberg et al., 2015; Poortinga et al., 2004; 
Raaij, 2017; Stern et al., 2016a). Gadenne et al. (2011) study the influence 
of households’ environmental beliefs and attitudes on energy behaviours. 
They find that people pay more attention to environmental issues nowadays, 
following intensive efforts to promote a green consumer lifestyle. Beliefs and 
lifestyle preferences define personal choices, which could reduce an 
individual’s carbon footprint. Investing in insulation, renewable energy 
sources (e.g. installing PVs) and in energy-efficient appliances are the most 
common decisions households take to reduce GHGs†. Given the impact 
household energy consumption has on emissions and an emerging shift in 
social norms, individual behavioural change has become central in the 
discourse on climate change mitigation (Creutzig et al., 2018b; Rai and 
Henry, 2016; Stern et al., 2016a). 

                                                  
* https://climatepolicyinfohub.eu/node/71/pdf 

† https://www.carbonfootprint.com/minimisecfp.html 



Chapter 5 

143 

 

Policy-makers and stakeholders rely on decision support tools to assess 
future changes in energy markets and the economy as a whole. 
Macroeconomic Computable General Equilibrium (CGE) models serve as 
standard tools for quantitative policy assessments in climate change 
mitigation (Babatunde et al., 2017; Fujimori et al., 2017; IPCC, 2014a; 
JRC, 2014; Rive et al., 2006; Vandyck et al., 2016). Macroeconomic 
models focus on investments and consumption patterns in different sectors 
associated with GHGs reduction policies by simulating markets for factors 
of production and foreign exchange, with equations that specify supply and 
demand behaviour. CGE models are strong in tracing cross-sectoral impacts 
and linking to readily-available datasets. These models are able to generate 
new equilibria by introducing a policy shock. Carbon taxes, emission 
reduction targets, emission trading, renewable energy, energy efficiency, 
and  carbon capture and storage are the main research questions addressed 
by sophisticated CGE models for energy policy assesments (Babatunde et al., 
2017). However, these macroeconomic and CGE models assume a rational 
representative agent who makes optimal decisions under budget constraints, 
perfect information and competitive markets (Babatunde et al., 2017; 
Farmer et al., 2015; Stern, 2016). Morevoer, while relying on quantity and 
price adjustments via a market equilibrium, CGEs implicitly reflect past 
behaviour. Their parameters are partly calibrated and the rest of their driving 
equations are econometrically estimated using time-series data. Therefore, 
macroeconomic models are suitable for testing the economic effects of 
GHGs reduction policies for short-horizons (IPCC, 2014a), making it 
difficult to integrate behavioural changes. Hence, their validity and capacity 
to provide unbiased climate mitigation policy advice is debated (Creutzig et 
al., 2018a; Farmer and Foley, 2009; Farmer et al., 2015; Isley et al., 2015; 
Stern, 2016).  

In contrast to this macroeconomic “top-down” approach, “bottom-up” 
micro-simualtion models focus on behaviorally- and technologicaly-rich 
representation of energy demand and supply, out-of-equilibrium dynamics, 
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social interactions and learning (Bhattacharyya, 2011; Farmer et al., 2015; 
Hunt and Evans, 2009). Prominent among bottom-up approaches is agent-
based modelling. Agent-based models (ABMs) compliment macro-economic 
models by accommodating heterogeneity, adaptive behaviour and 
interactions, bounded rationality, and imperfect information. These features 
make ABM a popular method in energy studies (Anatolitis and Welisch, 
2017; Isley et al., 2015; Lamperti et al., 2018; Rai and Henry, 2016; Rai 
and Robinson, 2015; Stern et al., 2016a; Stern et al., 2016b). However, 
their empirical use for climate mitigation policy support is limited due to the 
high-data intensity required to specify individual behavioural rules. 
Moreover, there are difficulties with the generalization and scaling up of 
ABM results (Humphreys and Imbert, 2012; Lamperti et al., 2018), making 
the assessment of economy-wide impacts difficult.  

Exploring synergies by combining the two approaches has long been a 
temptation in science (Krook-Riekkola et al., 2017; Melnikov et al., 2017; 

Parris, 2005; Safarzyńska et al., 2013; Smajgl et al., 2009). Linking ABMs 
and CGE models could ameliorate their weaknesses, covering the trade-offs 
between complexity and realism. CGE models are strong in simulating 
cross-sectoral impacts in a national and regional economy, while ABMs 
zoom into a specific sector such as residential energy, where behavioural 
heterogeneity is known to be important (Farmer and Foley, 2009; Rai and 
Henry, 2016; Smajgl et al., 2009; Stern, 2016). Several scholars have 

attempted to integrate ABM and CGE models. Safarzyńska et al. (2013) 
propose an elegant way to integrate the evolutionary dynamics of ABMs into 
a CGE model, but leave it at the conceptual level without an 
implementation. Smajgl et al. (2009) employ a ABM and CGE model for 
integrated policy impact assessment. Meanwhile, Krook-Riekkola et al. 
(2017) highlight the importance of a soft-linking approach.  They propose 
and discuss the soft-linking of CGE and partial equilibrium models when 
assessing national energy policies. They develop a transparent process to 
transfer simulation results between model. Melnikov et al. (2017) explore 



Chapter 5 

145 

 

the mitigation effects on household energy consumption by using a 
recursive-dynamic and forward-looking downscaling method for the CGE 
model using a survey data. However, both approaches still miss 
behaviourally-rich representation of individual choices and social 
interactions. Moreover, an empirical example of resolving the key 
methodological differences between ABM and CGE modelling while 
aligning with data is missing. The current paper addresses this 
methodological gap by demonstrating how the aggregated impacts of 
household energy behaviour changes delivered by an empirical ABM could 
be further scaled up and connected to the macroeconomic dynamics of a 
CGE model. The objective of this paper is twofold: (1) to present a 
systematic way to link ABM and CGE models targeting individuals’ 
heterogeneity and behavioural changes; and (2) to study the impacts of 
climate change mitigation behaviour across scales, from individuals to the 
EU.   

 

5.2. Methodology	

CGE models are a popular instrument for ex-ante policy analysis and are 
widely used by governments, the European Commission and academia in 
their policy studies. CGE models rely on advancements in micro-economic 
theory that represent the aggregate behaviour of main economic agents 
(household, firms and governments) and interactions between them via 
supply-chain and trade links. CGE models are well-suited for the analysis of 
various financial policies such as taxes and subsidies (for example CO2 tax) 
and much less for analysing behavioural changes. To trace macro level 
effects, CGE models aggregate preferences of various actors by assuming a 
representative rational fully-informed agent that is capable of making the 
optimal choice. Behavioural changes, including behavioural climate change 
mitigation actions, for example driven by increased level of knowledge about 
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climate change in society and shifts in preferences, are difficult to integrate. 
To be able to analyse the macro-economic and sectoral impacts of such 
behavioural changes, CGE models rely on complimentary modelling tools 
such as AMBs. The current paper employs the strengths of ABMs to capture 
and aggregate behavioural changes, social interactions and learning, and the 
strength of CGE models to trace cross-sectoral impacts and indirect effects. 
The scientific challenge is in aligning two types of models that differ on a 
number of key assumptions: (1) CGE models work with a representative 
agent (group) while ABMs assume heterogeneity in attributes and behaviour; 
(2) agents in CGE are assumed to be fully rational and have adaptive 
expectations while ABMs proliferate in tackling research problems where 
bounded rationality is relevant; (3) CGE models are designed to resolve via 
the assumption of a unique equilibrium while ABMs are designed to study 
out-of-equilibrium dynamics and an evolution across equilibria. 

In what follows, we outline the main principles of each modelling approach 
and their core processes that are most relevant for the purpose of this article 
(Sections 5.2.1 and 5.2.2). Our ABM and CGE models are aligned 
conceptually and in terms of data flows to ensure a smooth integration. The 
flow of information in our modelling exercise is from the ABM model for 
two individual EU regions to the CGE model via upscaling the ABM results 
to the rest of the EU NUTS2 regions. We do not consider any direct 
feedback from the CGE model and ABM models at this moment because of 
the non-financial nature of the behavioural changes in ABM. The CGE to 
ABM link is indirect, by introducing a scenario of EU income growth rates. 
Aggregated impacts of individual behavioural changes are estimated for a 
range of behavioural scenarios (Section 5.2.3). Behavioural changes in ABM 
are influenced by various non-monetary factors such as knowledge and 
awareness that depend upon the education level and gender of individuals. 
Introducing a direct link from CGE to ABM and allowing for mutual 
feedback is a promising direction of future work, that, among other benefits, 
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will enable the evaluation effects of joint price-based and information climate 
mitigation policies at multiple scales.  

General Equilibrium (CGE) models is a popular instrument for ex-ante 
policy analysis and are widely used by governments, European Commission 
and the academia in their policy studies. CGE models rely on advancements 
in micro-economic theory that represent the aggregate behaviour of main 
economic agents (household, firms and governments) and interactions 
between them via supply-chain and trade links. CGE models are well-suited 
for the analysis of various financial policies such as taxes and subsidies (for 
example CO2 tax) and much less for analysing behavioural changes. To trace 
macro level effects, CGE models aggregate preferences of various actors by 
assuming a representative rational fully-informed agent that is capable of 
making the optimal choice. Behavioural changes, including behavioural 
climate change mitigation actions, for example driven by increased level of 
knowledge about for climate change in the society and shifts in preferences, 
are difficult to integrate. To be able to analyse the macro-economic and 
sectoral impacts of such behavioural changes CGE models rely on 
complimentary modelling tools such as Agent-based Models (AMBs). The 
current paper employs the strengths of ABMs to capture and aggregate 
behavioural changes, social interactions and learning, and on the strength of 
CGE models to trace cross-sectoral impacts and indirect effects. The 
scientific challenge is in aligning two types of models that differ on a number 
of key assumptions: (1) CGE models work with a representative agent 
(group) while ABMs assume heterogeneity in attributes and behaviour; (2) 
agents in CGE are assumed to be fully rational and have adaptive 
expectations while ABMs proliferate in tackling research problems where 
bounded rationality is relevant; (3) CGE models are designed to resolve via 
assuming a unique equilibrium while ABMs are designed to study out-of-
equilibrium dynamics and an evolution across equilibria. 
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In what follows we outline the main principles of each modelling approach 
and their core processes that are most relevant for the purpose of this article 
(Sections 5.2.1 and 5.2.2). Our ABM and CGE  models are aligned 
conceptually and in terms of data flows to assure a smooth integration. The 
flow of information in our modelling exercise is from ABM model for two 
individual EU regions to the CGE model via upscaling the ABM results to 
the rest of EU NUTS2 regions. We do not consider any direct feedbacks 
from CGE model and ABM models at this moment because of the non-
financial nature of the behavioural changes in ABM. The CGE to ABM link 
is indirect by introducing a scenario of EU income growth rates. Aggregated 
impacts of individual behavioural changes are estimated for a range of 
behavioural scenarios (Section 5.2.3). Behavioural changes in ABM are 
influenced by various non-monetary factors such as knowledge and 
awareness that depend upon education level and gender of individuals. 
Introducing a direct link from CGE to ABM and allowing for mutual 
feedbacks is a promising direction of future work, that, among others, will 
permit to evaluate effects of joint price-based and information climate 
mitigation policies at multiple scales.		

	

5.2.1. Agent‐based	model	(BENCH	model)	

General	description		

The BENCH ABM (Niamir et al., 2018b; Niamir et al., 2018d) is developed 
to study shifts in residential energy use and corresponding emissions driven 
by behavioural changes among individuals. Households in BENCH are 
heterogeneous in socio-demographic characteristics (e.g. income, age, 
education), dwelling characteristics (e.g. type, size, age), energy 
consumption patterns (e.g. electricity and gas consumption, energy 
provider), and behavioural factors (e.g. awareness, personal norms, social 
norms). This ABM is spatially explicit, with behavioural rules of agents 
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calibrated based on the survey data for two EU NUTS2 regions: Navarre, 
Spain and Overijssel, The Netherlands (Niamir et al., 2018d). Compared to 
its previous versions, BENCH-v.3 presented in this article has been further 
developed to investigate the role of individual energy behavioural changes in 
a low-carbon economy transition. Namely, agents’ utility function is 
modified to align empirically-grounded energy decisions from the 
households’ survey with macroeconomic dynamics in our data-driven CGE 
model. This enables us to systematically upscale individual differences in 
decisions and behavioural traits to national and EU levels. In particular, 
BENCHv.3 focuses on energy investments that households may decide to 
undertake: significant investments in house insulation (I1) or solar panels 
(I2), and more modest investments in energy-efficient appliances (I3). 

 

Main	processes	in	the	model		

Following the Theory of Planned Behaviour and Norm Activation Theory 
from psychology, we assume that bounded rational households in BENCH-
v.3 make decisions following a number of cognitive stages: knowledge 
activation, motivation and consideration (Figure 1). Households differ in 
knowledge and awareness about climate, environment and energy issues (k, 
cee.aw, ed.aw), personal (pni) and social norms (sni), and perceived 
behavioural controls (pbci). These behavioural factors are initiated in BENCH-
v.3 based on the original survey data (Niamir et al. (2018b); Niamir et al. 
(2018d). High level of knowledge and awareness (i.e. mean k, cee.aw, ed.aw 
is above the empirical threshold) triggers a “feeling guilt” among agents. Such 
individuals proceed to evaluate the motivational factors: personal and social 
norms (pni , sni) for each action (I1-I3). If individuals are highly motivated 
and “feel responsible”, the perceived behaviour controls* (pbci), and the 

                                                  

*	Own	perception	of	their	ability	to	perform	an	action	or	change	behavior	
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dwelling ownership status (owner or renter) are evaluated to assess 
“intentions”. Individuals with a high level of  intention proceed to estimate 
utilities, which are formulated as a discrete choice problem here. Household 
agents follow these stages for each action: when deciding whether to invest 
in insulation, solar panels or energy-efficient appliances. 

 

 
Figure	 5.1:	 Cognitive	 process	 behind	 individual	 behavioural	 changes	 (e.g.	 energy‐efficient	
investments):	BENCH‐v.3	ABM	structure.	

 

Households in BENCH v.3 make choices based on the indirect utility function 
(Eq.1). As the inverse of the expenditure function when prices are constant, 
it reflects individual preferences for different energy actions under budget 
constraints. 

)1( 

௜ܸ௝ ൌ 	෍ݔ௜௝ߚ௜ 	൅	ɛ௜௝ 
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The utility of individual j associated with choice i ( ௜ܸ௝) is calculated based on 

the vector of explanatory observed and latent variables (	ݔ௜௝) – including 
socio-economic characteristics of the individuals, dwelling characteristics, 
and financial and ownership situation, as well as behavioural factors – and 
the parameter vector (	ߚ௜) estimated using a probit regression (Niamir et al. 
(2018b); Niamir et al. (2018d). Finally, ɛ௜௝ is the vector of error terms. An 
individual chooses a particular sub-action (i) – energy investment, 
conservation or switching – when their utility is non-negative: 

 )2( 

	݂ܫ ௜ܸ௝ ൒ 0				ሺܣ௜௝ ൌ ௜௝ܣ	݁ݏ݈݁		݁ݑݎܶ ൌ  ሻ݁ݏ݈ܽܨ

 

Social interactions are proven to influence individual choices (Bamberg et 
al., 2007; Bamberg et al., 2015; Nyborg et al., 2016; Rai and Henry, 2016). 
In BENCH-v.3 , agents exchange information following a simple opinion 
dynamics model (Moussaid et al., 2015). When a neighbour takes an action 
(I1-I3), it may alter knowledge, awareness and the motivational factors 
regarding energy choices of others in this peer group. Namely, individuals 
compare own behavioural factors (k, cee.aw, ed.aw, pni, sni, pbci) with those of 
their closest neighbours, and gradually adjust them (Eq.3). We run various 
scenarios of this social learning (see 2.3). 

 )3( 

ܺ ൌ ൛ ௝݇, ܿ݁݁. ,௝ݓܽ ݁݀. ,௝ݓܽ ,௜௝݊݌ ,௜௝݊ݏ  ;				௜௝ൟܾܿ݌

ሺܺ௝	ሺ݉݁ܽ݊	ݔܽܯ	݂ܫ	
௧ሻ,݉݁݀݅ܽ݊	ሺܺ௝

௧ሻሻ ൒ 	 ௝ܺ∗
௧ 					ሺܺ௝∗

௧ାଵ ൌ 	 ௝ܺ∗
௧ ൅ 0.02 ⋅ ௝ܺ∗

௧ ሻ 
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Data	

The BENCH model is calibrated based on an empirical dataset. We designed 
and conducted the survey in two provinces in Europe for the purpose of this 
research. In 2016, 1035 households in the Overijssel province, the 
Netherlands, and 755 households in the Navarre province, Spain, filled out 
our online questionnaire (Niamir et al. (2018b); Niamir et al. (2018d). 
Appendix A provides more detail on our case studies.  

	

Outputs	

The agent-based BENCH.v3 model tracks the individual and cumulative 
impacts of three energy behavioural changes (investments on insulation, PVs 
installation and energy-efficient appliances) among heterogeneous 
individuals in the Overijssel and Navarre provinces over 34 years (2016-
2050). We report the number of individuals pursuing a particular action (I1-I3), 
the cumulative electricity and gas consumption, and saved carbon emissions. Given 
the stochastic nature of ABMs, we perform multiple (N=100) repetitive 
runs of each simulation experiment (Lee et al., 2015).  

 

5.2.2. Spatial	CGE	mode	(EU‐EMS	model)	

General	description		

EU-EMS is a spatial computable general equilibrium (SCGE) model 
developed by PBL Netherlands Environmental Assessment Agency. The 
sectoral and geographical dimensions of the model are flexible and can be 
adjusted to the needs of a specific policy or research question. The model is 
used for policy impact assessment and provides sector-, region- and time-
specific model-based support to Dutch and EU policy makers on structural 
reforms, growth, innovation, human capital and infrastructure policies. The 
current version of EU-EMS covers 276 NUTS2 regions of the EU28 Member 
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States and each regional economy is disaggregated into 63 NACE Rev. 2 
economic sectors*. Goods and services are consumed by households, 
government and firms, and are produced in markets that can be perfectly or 
imperfectly competitive. Spatial interactions between regions are captured 
through trade of goods and services, factor mobility and knowledge spill-
overs. This makes EU-EMS particularly well suited for analysing policies 
related to human capital, transport infrastructure, R&I and innovation.  

In the current application of the model, we have aggregated the economic 
sectors to the following six large groups, following the Eurostat classification 
of the economic sectors according to their R&D intensity: (1) Traditional, 
(2) Low-tech industry, (3) Medium-tech industry, (4) High-tech industry, 
(5) Knowledge intensive services and (6) Other services.  

  

Main	processes	of	the	model	

Following the tradition of comprehensive empirical CGE models, EU-EMS 
uses large datasets of real economic data in combination with complex 
computational algorithms to assess how the economy reacts to changes in 
governmental policy, technology, availability of resources and other external 
macro-economic factors. The EU-EMS model consists of (a) the system of 
non-linear equations, which describes the behaviour of various economic 
actors, and (b) a very detailed database of economic, trade, environmental 
and physical data. The core part of the model database is the Social 
Accounting Matrix, which represents in a consistent way all annual 
economic transactions. 

EU-EMS accounts for the (a) feedback between price and demand/supply 
quantities, and (b) interactions between economic agents at the macro and 
sectorial level. Therefore, it gives the economic relations between all 

                                                  

*	https://ec.europa.eu/eurostat/documents/3859598/5902521/KS‐RA‐07‐015‐EN.PDF	
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industry sectors via their intermediate use. The EU-EMS model is a dynamic, 
recursive over time model, involving dynamics of capital accumulation and 
technology progress, stock and flow relationships and adaptive expectations.  

The model equations are neo-classical in spirit, assuming cost-minimizing 
behaviour by producers, average-cost pricing and household demands based 
on optimizing behaviour (see Appendix B for details). The CGE model 
database consists of tables of transaction values and elasticities: dimensionless 
parameters that capture behavioural response. The database is presented as 
a Social Accounting Matrix, which covers an entire national economy, and 
distinguishes a number of sectors, commodities, primary factors and types 
of households. As a classical CGE model, EU-EMS represents the behaviour 
of the whole population group or of the whole industrial sector as the 
behaviour of one single aggregate agent. It is further assumed that the 
behaviour of each such aggregate agent is driven by certain optimization 
criteria such as maximization of utility or minimization of costs. Appendix B 
provides detailed representation of the EU-EMS model and its main 
equations.  

 
Figure	5.2:	Circular	economic	flow	in	the	CGE	EU‐EMS	model	 	

Factors	of	
production	
markets

Firms

Product markets

Households
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Data	

The The EU-EMS model uses a comprehensive database that has detailed 
regional dimensionality for the EU28 countries and includes them as 
consisting of 276 NUTS2 regions. The database* of the model has been 
constructed by PBL using the combination of national, European and 
international data sources and represents a detailed regional level (NUTS2 
for EU28 plus 34 non-EU countries) multi-regional input-output (MRIO) 
table for the world. The main datasets used for the construction of this 
MRIO include the 2013 OECD database, BACI trade data, Eurostat regional 
statistics, and national Supply and Use tables, as well as the detailed regional 
level transport database of DG MOVE called ETIS-Plus†. The later dataset 
allows us to estimate the inter-regional trade flows at the level of NUTS2 
regions that are currently not available from official statistical sources. The 
aggregated groups of the sectors can be directly linked to the econometric 
analysis and estimations that have been done for Total Factor Productivity 
(TFP) projections using the EU-KLEMS database‡. 

 

Outputs	

The EU-EMS model produces detailed dynamics of regional GDP, 
production and value added by region and by economic sector, interregional 
trade flows by the type of commodity, electricity and gas consumption per 
region and sector, employment by regional and economic sector, household 
income and consumption, and governmental revenues and spending. For the 
purpose of this article we limit the presentation of the main CGE output to 

                                                  
* http://themasites.pbl.nl/winnaars-verliezers-regionale-concurrentie/  

†	http://viewer.etisplus.net/		

‡ http://www.euklems.net/  
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Gross Domestic Product (GDP), percentage change in the electricity consumption per 
NUTS2 region, country and the entire EU. 

	

5.2.3. Scenarios	

We run three behavioural scenarios in BENCH-v.3 ABM differentiating 
between the intensity of social interactions and the speed of learning. 
Households heterogeneous in income, electricity and gas consumption and 
dwelling conditions follow a cognitive process to decide whether to pursue 
any energy investment. The awareness (k, cee.aw, ed.aw) and motivation (pni 
, sni, , pbci) of agents are updated as soon as at least one household in the 
neighbourhood pursues an action (I1-I3). Based on the scope of the 
neighbourhood, this social learning may occur at either a slow or fast pace. 
Under slow dynamics (Baseline scenario), an individual in an active 
neighbourhood interacts with a maximum of four neighbours (Fig. 3.a). 
Under fast dynamics (scenario FD), all eight individuals  in an active 
neighbourhood exchange opinions and learn from each other (Fig. 3.b). 
Scenario FD indicates the upper limit of the bottom-up diffusion of pro-
environmental social norms driven by households alone without any policy 
support. In the Baseline and FD scenarios, individuals with the value of their 
behavioural attributes – ݇ ௝, ܿ݁݁. ,௝ݓܽ ݁݀. ,௝ݓܽ ,௜௝݊݌ ,௜௝݊ݏ  ௜௝ – lower than that ofܾܿ݌
their neighbours adjust by increasing the value of  by 2% (Eq.3). 

Informative dynamic (scenario ID) assumes an information policy – e.g. social 
advertising and the promotion of pro-environmental behaviour – that raises 
the level of knowledge and motivation in the entire population. Hence, at 
initialization all households agents start with 2% higher values on behavioural 
attributes, before engaging in any social learning. The ID scenario highlights 
the importance of information diffusion and promoting strategies focused on 
behavioural climate mitigation. It assumes that all individuals do update their 
knowledge and motivation when the information policy applies. The 
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processes of shaping an information campaign and of its diffusion (immediate 
or with delay for certain parts of the population) is beyond the scope of this 
paper.  Scenario ID assumes that all agents update their knowledge when an 
information campaign is in action, and illustrates how a public policy could 
support the bottom-up process by amplifying pro-environmental social 
norms. 

  

	 	

(a)	 Slow	 dynamics:	 random	 4	
households	 are	 affected	 and	
engage	in	social	learning	

(b)	 Fast	 dynamics:	 all	 households	
in	the	neighbourhood	are	affected	
and	engage	in	social	learning	

Figure	5.3:	Social	dynamics	and	learning	in	a	neighbourhood	where	an	individual	undertook	
an	action	at	time	t.	

	

In addition to the three behavioural scenarios in the BENCH.v3 ABM, the 
EU-EMS CGE model includes the demographic projections from Eurostat 
until 2050, and TFP projections by economic sector based on our own 
econometric analysis. Hence, the macroeconomic and demographic 
scenarios are combined with the slow/fast/informative dynamics scenarios 
about micro-level behaviour with respect to electricity and gas use by 
heterogeneous households. 
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5.2.4. Upscaling	individual	behavioural	changes:	linking	
ABM	and	CGE		

ABM and CGE models each have their own assumptions, strength and 
weaknesses. We attempt to overcome the latter by linking the two models. 
To pursue this aim in a systematic manner, we take a step-wise approach to 
bridge the ABM with the CGE model (Fig.5.4.).  

Step 1: We run the ABM model for two individual NUTS2 regions in the 
Netherlands and Spain. Our ABM calculates the extent of behavioural 
changes among heterogeneous household agents who evolve through a 
cognitive process (knowledge activation, motivation and consideration, 
Fig.1) before reaching a more rational stage where the discrete-choice utility 
maximization is activated. The main outcomes of the ABM model that are of 
use to the CGE model include the relative changes in electricity and gas use 
as well as the total investments made by various types of individuals who 
decide to undertake actions I1-I3. The CGE model EU-EMS, however, 
operates at the level of all 276 EU28 NUTS2 regions, and needs to use the 
regional changes in energy consumption and investments of the 
representative households as an input. Hence, the behavioural patterns 
emerging at the Overijssel and Navarre provinces for different households 
need to be scaled not only up to the national level, but up to the entire EU.  

Step 2: We take an intermediate step to derive the changes in investments, 
gas and electricity consumption across households of different age and 
education levels for all 276 EU28 NUTS2 regions based on the outcomes of 
two regional ABMs. To do this, we define behavioural patterns for a group 
of households in the Dutch and Spanish regional ABMs separately, 
aggregated by age and education level. Following Eurostat classification, we 
work with 12 age-education groups (see Table 5.A.2, Appendix A). For each 
of the 12 groups, we estimate a number of households pursuing an action 
(I1-I3) and calculate the corresponding average gas and electricity savings 
and investments. The behavioural patterns –awareness, motivations, 
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intentions and likely actions– across 12 groups differ between the two 
countries in our survey sample, and so they do in the regional ABMs. To 
utilize the information regarding the cultural aspects of each region in the 
best way, we create the mapping between NUTS2 regions of the EU28 with 
the two ABM regions according to their perceived cultural distance (Kaasa 
et al., 2016). The Dutch region is associated in the mapping with the 
Scandinavian and Western European regions, whereas the Spanish region is 
associated with the Eastern European and Mediterranean regions. Ideally, 
we would use survey behavioural data for each of the EU28 states. In the 
absence of such data, this approach is the best approximation we could find 
to account for cultural differences using the available data at hand. 

Since behavioural changes vary primarily among households with different 
age and education levels, the changes in these characteristics over time are 
crucial. Hence, we employ demographic projections for the period until 
2050. The only regional NUTS2 level projections that have been done for 
the EU28 are EUROPOP2008* projections of Eurostat. Population 
projections of Eurostat provide information about the development of the 
population until 2050, detailed by age and gender groups. Furthermore, 
Eurostat population projections at NUTS2 level are combined with IIASA 
Global Education Trends (GET) scenario projections† related to the share of 
high, medium and low-educated persons in each EU country. This allows us 
to construct population projections by age and education level for the period 
2020-2050 for each NUTS2 region of the EU28. These NUTS2-level 
population projections till 2050 match with the scaled-up mapping of 
behavioural patterns of 12 groups in our ABM. Hence, now age and 

                                                  

*	https://ec.europa.eu/eurostat/documents/3433488/5564440/KS‐SF‐10‐001‐EN.PDF/d5b8bf54‐
6979‐4834‐998a‐f7d1a61aa82d  
†	
http://www.iiasa.ac.at/web/home/research/researchPrograms/WorldPopulation/Projections_2014.h
tml	
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education information can be linked with the emerging behavioural patterns 
of the agent-based BENCH v.3 model to create NUTS2 specific – that is, 
corresponding to the population structure of that region – inputs into the 
spatial EU-EMS CGE model.  

Step 3: Finally, we use the predicted population structure by age and 
education level for the period 2020-2050 to calculate aggregated changes in 
the residential use of gas and electricity for each NUTS2 regions of EU28 on 
the basis of calculated averages for each of the 12 individual groups. The EU-
EMS CGE model estimates the cross-sectoral impacts of these shifts in the 
aggregated residential energy demand that impacts GDP projects. The linked 
ABM-CGE model quantifies the cumulative impacts of behavioural changes 
among heterogeneous households at the level of 276 EU28 NUTS2 regions. 
This allows us to understand the impacts of various behavioural scenarios 
within the CGE framework, including distributional effects across these EU 
regions. An important direction of future work would be to develop direct 
two-way linkages between the two models, with the CGE-generated GDP 
projections feeding back into the ABM. 

 
Figure	5.4:	Upscaling	individuals	behavioural	change	via	linking	ABM	and	CGE	models.	
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This step-wise approach to linking the ABM and CGE models allows us to 
address the key methodological challenges: 

‐ From representative to heterogeneous agents: 
Heterogeneous households in the ABM are matched with 
representative households in the CGE model. Aggregation occurs 
along the two dimensions that impact relevant behavioural changes 
among households most: age and education levels. This is done using 
detailed information about the structure of the population by age and 
education in each NUTS2 region for the period 2020-2050 while 
keeping behaviour heterogeneous across the 12 groups.   

‐ From perfect to bounded rationality: Agents in our ABM are 
boundedly rational due to the presence of behaviour factors that 
precede discrete choice utility estimate: subjective knowledge and 
awareness, motivation, and intention to consider a change in 
behaviour, which are all prone to social influence. The use of the 
ABM allows us to assess the impacts of pure behavioural changes in 
the CGE model and calculate their broader economic impacts. The 
rest of the economy in the CGE model – e.g. households’ decisions 
on a labour market, decisions of firms, clearing of the markets – still 
operates in line with the rationality principles, allowing for the 
coherent treatment of macro-economic processes in the EU-EMS 
CGE. 

‐ From an equilibrium to adaptive dynamics with social 
learning: The CGE model is based on assumptions of market 
equilibrium and interlinkages between different agents, sectors and 
markets in the economy. The ABM treats agents’ decisions as a 
cognitive process in the presence of social interactions and 
fast/slow/informative learning. 
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5. Results	

5.3.1. From	 behavioural	 patterns	 in	 	 survey	 data	 to	
cumulative	impacts	in	two	provinces	(Step	1)	

Firstly, we run the BENCH.v3 ABM for two EU provinces (Overijssel and 
Navarre) under three behavioural scenarios (Baseline, FD and ID). We report 
the regional impacts of the energy behaviour choices of heterogeneous 
households: the diffusion of each of the three types of behavioural actions 
among heterogeneous households over time, the changes in electricity and 
gas consumption, saved CO2 emissions, and the amount of investment. 

Figure 5.5 illustrates the dynamics of electricity and gas saving in the two 
EU provinces as a result of  households’ energy investments. The general 
trend is as expected: faster learning boosted by an information campaign 
leads to more investments in solar panels (I2) and in appliances (I3), and 
consequently to higher electricity savings in both provinces. Intensive social 
learning boosts  electricity savings by 40% and 100% in Overijssel and 
Navarre (FD vs Baseline, Fig.5.5.a and Table 5.1). In addition, electricity 
savings increase by 14% and 22% in two provinces if pro-environmental 
awareness is raised through an information policy (ID vs FD, Fig.5.5.a and 
Table 5.1). 

 

(a) electricity (b) gas 

Figure	5.5:	Saved	energy	(kWh)	per	households	as	a	result	of	investments	(I1‐I3)	under	three	
behavioural	scenarios	in	two	EU	provinces	over	34	years	(2017‐2050).	Source:	BENCH‐v.3	
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However, it does not hold for investments in insulation (I1) and 
corresponding gas savings. Informative strategy (ID) has a mixed impact on 
insulation investments in Navarre (crossing of FD and ID curves in Fig.5.5.b) 
and the opposite effect in Overijssel (ID delivers 26% lower gas savings 
compared to FD, Fig.5.5.b). The difference between provinces may be 
driven by different climate and institutional conditions and the gas prices in 
the two countries. In addition, comparing FD and ID scenarios shows that an 
information policy and social interactions among neighbours impact 
households’ insulation decisions in a non-linear way. 

Table 5.1 shows the amount of CO2 emission savings that households’ energy 
behaviour changes could deliver, and at what investment cost. Intensive 
social interaction (FD scenario) leads to 1.4 and 2 times more saved CO2 
emissions in Overijssel and Navarre compared to the Baseline. As expected, 
information policy along with social interactions (ID scenario) amplify the 
impact 1.1 and 1.2 times more on top of the FD scenario in Overijssel and 
Navarre respectively. We observe a non-linear pattern in total investments 
(Euro per households) under behavioural scenarios over time. When 
information policy (ID scenario) is activated, Dutch households invest 17% 
more compared to the FD scenario in 2020 and this then drops in 2050 (20% 
less than the FD scenario). Spanish household investments in the ID scenario 
increases up to 33% in 2030 and then drops by 5% compared to the FD 
scenario. These nonlinearities emerge from households’ preferred actions 
(I1-3) unequally distributed over time and space (Table 5.1). The three 
investment actions incur different costs: while investments in energy 
efficient appliances (I3) is the most popular one (59% in NL and 69% in ES), 
they form the smallest share of investments in the overall actions in euro. 
These results are a pure effect of individual changes driven by behavioural 
factors: we do not include any price-based scenarios (subsidies for green or 
taxes on grey energy) or changes in technological costs in this article. The 
last row of Table 1 illustrates the diffusion of Euro investment per actions in 
two provinces over time.
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5.3.2. Scaling‐up	behavioural	scenarios	to	national	and	EU	
levels	(Step	2)	

After analysing the dynamics in households’ behavioural changes in two 
provinces over time, we switch to understanding how they change over 
space. Using population projection scenarios for the EU28, we assess how 
many households in each age-education group tend to pursue one of the 
investment actions (Table 5.2). Since behavioural patterns in the survey vary 
considerably across these sociodemographic groups, scaling up of the 
provincial patterns from ABM to the entire country changes the patterns in 
actions. The share of preferred actions in two countries changes over time 
(Table 5.2). A majority of households – 75.9% and 68.1% – in Spain and 
the Netherlands intend to invest in energy-efficient appliances (I3) by 2050. 
The second-best investment action in both cases is to install PVs (I2= 20.1% 
and 22.5% in 2050). Investments in insulation (I1) is the least popular action 
(4.1% and 9.4% in NL and ES correspondingly) and it stays stable over time 
(2020-2050). However, I1 and I2 are expensive investments compared to I3 
and consume larger shares of Euro investment (82% in 2050).  

Figure 5.6 shows percentage changes in the residential electricity 
consumption as a result of scaling up the output of the empirical ABM with 
the population change scenario. Electricity consumption resulting from 
individual behavioural changes decreases between 56.2-69.5% and 13.8-
63.8% by 2050 in the Netherlands and Spain correspondingly. Importantly, 
there is significant spatial heterogeneity in how behavioural changes diffuse 
and what regions emerge as laggers or pioneers in bottom-up investments in 
energy-efficiency. If behavioural patterns elicited through our survey hold in 
the next few decades, it could be expected that the Limburg, Drenthe, and 
Zeeland provinces in the Netherlands and the Castile-Leon and Asturias 
regions in Spain will be pioneers compared to others in respective countries. 
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Table	5.2:	Share	of	actions	in	two	countries	over	time.	Source:	scaled‐up	BENCH‐v.3	results.	

  2020 2030 2050 

The share of 
preferred 
actions, in 
percentage 
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Figure	 5.6:	 Percentage	 change	 in	 electricity	 consumption	 in	 2050	 from	 the	 base	 2015,	
calculated	as	a	result	of	scaling	up	the	outcomes	of	ABM	model	with	population	changes	in	“Fast	
dynamics”	scenario.	Source:	scaled‐up	BENCH‐v.3	results.	

 

5.3.3. From	regional	to	national	and	EU28	economy	(Step	3)	

Scaled–up outputs of the ABM are used as input to the simulation setup of 
the spatial CGE model. Namely, information from BENCH-v.3 on the 
decrease in households’ use of electricity and gas is used in order to 
exogenously modify the minimum  subsistence level of households’ 
consumption of the respective services in EU-EMS (see Appendix B on the 
description of households’ demand modelling for more information). A 
reduction in the consumption of gas and electricity by households results in 
a higher budget share that becomes available for other types of consumption. 
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Improvements in energy efficiency may either trigger an increase in energy 
use (“rebound effect”) or lead to its reduction, causing a shift in households’ 
spending from energy to other consumption goods. Depending on 
households’ consumption patterns, such shifts in consumption might result 
in higher values of GDP over time.  

Figures 5.7 and 5.8 illustrate ABM behavioural patterns scaled up through 
the CGE model for the two countries under different behavioural scenarios. 
Our analysis demonstrates that households with higher education levels are 
more likely to change their behaviour compared to low educated people. In 
both countries, households in the middle education level (ISCED 3 and 4; 
see Appendix table 5.A.2) are pioneers in saving gas and electricity in 2050, 
followed by households with high education levels (ISCED 5, 6, and 7; see 
Appendix table 5.A.2). Importantly, among these higher educated 
households, younger members (20-40) are more active. In particular, the 
Dutch youth saves up to 17% and 74% more electricity and gas compared to 
40+ households under the FD scenario.  

Among the pioneers (g6-8, i.e. middle educated and 20+ age; see Appendix 
table 5.A.2), Spanish households save 1.9-2.8 and 1.0-1.4 times more gas 
and electricity compared to Dutch households depending on groups and 
behavioural scenarios. Intensive social dynamics (FD scenario) has a stronger 
impact on saving gas, while the informative ID scenario activates more 
households in saving electricity.  
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(a) gas (b) electricity 

Figure	5.7:	 Saved	 energy	per	 capita	 	 (electricity	and	gas)	as	a	 result	of	households	 energy	
investments	among	12	sociodemographic	groups	under	behavioural	scenarios	(FD,ID)	 in	two	
countries.	Source:	EU‐EMS	and	BENCH‐v.3	

	
(a) the Netherlands (b) Spain 

Figure	 5.8:	Diffusion	 of	 households	 investments	 per	 capita	 and	 per	 action	 (insulation,	 PVs	
installation,	 energy‐efficient	 appliances)	 among	 12	 sociodemographic	 groups	 under	 the	
informative	dynamics	scenario	in	two	province.	Source:	EU‐EMS	and	BENCH‐v.3	

 

As expected, PVs get more of a share of the investments in both countries 
(Figure 5.8). Households in groups 6-8 invest 110-160 and 160-180 Euros 
per capita on PVs in Netherlands and Spain respectively, while insulation in 
Spain (82 Euros per capita) and EE appliances in Netherlands (37 Euros per 
capita) are second in household investments.  

The EU-EMS model operates at the level of NUTS2 regions of the EU28, 
and hence enables the calculation of the regional impacts of various 
behavioural scenarios on GDP. Figures 5.9 illustrates the difference in 
regional GDP levels in 2050 between the Baseline and FD scenarios. Most of 
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the EU28 regions benefit from the behavioural changes, which leads to a 
decrease in energy consumption, with a few regions affected negatively. The 
level of overall GDP impacts depends on the size of the region in terms of 
population and its share of highly-educated youth. Regions with a larger 
population as well as the regions with a higher share of highly-educated 
people benefit more from the behavioural changes since they save more 
electricity and gas.  

 
Figure	5.9:	Deviation	in	the	levels	of	regional		GDP	under	“Fast	dynamics”	scenario	compared	
to	Baseline	in	2050	as	an	aggregated	effect	of	households’	behavioural	changes,	in	millions	
Euros.	Source:	EU‐EMS	and	BENCH‐v.3	

 

As Figure 5.10 illustrates, there is a strong positive correlation between the 
Baseline GDP per capita (which is also positively correlated with the share of 
highly educated persons) and the benefits in terms of additional economic 
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growth per capita from the modelled behavioural changes. This means that 
rich and economically well-developed regions receive higher benefits from 
promoting behavioural changes in the long-run compared to the lagging 
regions.  

 

 
Figure	5.10:	Correlation	between	changes	in		GDP	per	capital		under	“Fast	dynamics”	scenario	
and	the	level	of	regional		GDP	per	capita		under	“Baseline”	scenario	in	1000	Euros	per	individual	
in	2050.	Source:	EU‐EMS	and	BENCH‐v.3	

 

This phenomena raises the question of whether the distribution of economic 
benefits skewed towards rich and well-developed regions increases the 
overall interregional inequality in Europe. Economists often measure 
regional disparities using Theil’s T inequality index (Eq. 4), the absolute 
value of which indicates the distance from equality. To understand how 
behavioural changes under our scenarios impact EU28 regional disparities, 
we calculate this index for the period 2015-2050 (Figure 5.11).  
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Where o  is the GDP of each NUTS2 region, i is the GDP per capita in 

each region as a measure of regional income, and  is the average GDP per 
capita across the EU28 NUTS2 regions.  

The dynamics of Theil’s T inequality index demonstrate that the inequality 
between regions decreases in the period of large investments in energy 
savings (2025-2035) and then starts to increase again over time, indicating 
the non-linear nature of the process. However, the regional inequality in 
2050 does not reach the level of 2015, indicating the positive overall impact 
of behavioural changes on equality. Despite this, changes in inequality due 
to the implementation of behavioural scenarios remain modest.  

 

 
Figure	5.11:	Dynamics	of	the	Theil‐T	income	inequality	index	over	time	under	“Fast	dynamics”.	
Source:	EU‐EMS	and	BENCH‐v.3.	



Economy-wide impacts of climate change mitigation behaviour among heterogeneous agents 

174 

 

5.4. Discussions	and	Conclusions	

The potential of individual behavioural changes in reducing carbon emissions 
attracts considerable attention as one of the climate change mitigation 
strategies (Creutzig et al., 2016; IPCC, 2014a; Niamir et al., 2018b). 
Comprehensive empirical CGEs, which support quantitative climate change 
mitigation policy assessments, are strong in tracing cross-sectoral impacts, 
feedback in the economy as a whole and in linking to readily-available 
datasets. However, their econometrically-estimated equations reflect past 
behaviour, making it difficult to integrate behavioural changes (Babatunde et 
al., 2017; Farmer and Foley, 2009). Moreover, while empirical evidence 
suggests that individual decision-making deviates from a rational and 
perfectly informed optimization process, the latter is the core of CGE 
models (Farmer et al., 2015; Stern, 2016; Wilkerson-Jerde and Wilensky, 
2015). ABMs compliment macroeconomic models by accommodating 
heterogeneity, adaptive behaviour and interactions, bounded rationality, and 
imperfect information (Rai and Henry, 2016). While ABMs are strong in 
aggregating heterogeneous adaptive behaviour, they operate on smaller 
scales of neighbourhoods, cities and regions, omitting feedback to the rest of 
the economy and cross-sectoral impacts. Survey data is increasingly used to 
specify individual behavioural rules, yet this behavioural data is not always 
compatible with the data used in macro models. Linking ABMs and CGE 
models could ameliorate their weaknesses, if the two types of models are 
coherently aligned conceptually and data-wise to benefit from their 
strengths. Methodologically, this article contributes to the ongoing debate 

(Krook-Riekkola et al., 2017; Parris, 2005; Safarzyńska et al., 2013; Smajgl 
et al., 2009) on linking these two alien approaches by presenting a method 
of systematic upscaling of individual heterogeneity and social dynamics to 
combine ABM and CGE models. The three-step upscaling approach creates 
a soft-link between ABM and CGE models that permits tracing the 
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macroeconomic and cross-sectoral impacts and indirect effects of individual 
energy behavioural changes: 

1. From behavioural patterns in survey data to cumulative impacts in two provinces 

Using our survey data, we specify behavioral rules in the ABM, developed 
to study shifts in provincial residential energy use and corresponding 
emissions driven by behavioural changes among heterogeneous individuals. 
The BENCH.v3 ABM tracks individual and cumulative impacts of three 
energy behavioural changes: significant investments in house insulation (I1) 
or solar panels (I2), and more modest investments in energy-efficient 
appliances (I3), in the Overijssel and Navarre provinces over 34 years (2016-
2050). We introduce three behavioural scenarios (Baseline, FD and ID) 
differentiated by the intensity of social interactions and the speed of learning 
among households. Our analysis confirms that faster learning boosted by an 
information campaign (FD vs Baseline scenarios) leads to more investments 
(I2, I3), and consequently to higher electricity savings (40%-100%) in both 
provinces. In addition, electricity savings increase by 14%-22% in two 
provinces if pro-environmental awareness is raised through an information 
policy (ID vs FD scenarios). However, ID has a mixed impact on insulation 
investments (I1) and gas consumption in Navarre and the opposite effect in 
Overijssel (ID delivers 26% lower gas savings compared to FD). 

2. Scaling-up behavioural scenarios to the national and EU levels 

Using the population projection scenarios for the EU28, we scale the 
dynamics in household energy behavioural changes in two provinces over 
time up to national and EU levels. Namely, we define behavioural patterns 
for a heterogeneous group of households in the Dutch and Spanish regional 
ABMs. For each of the 12 age-education groups, a number of households 
perusing an action (I1-3) is estimated together with the average investments, 
and gas and electricity savings. The analysis reveals that in the Netherlands 
and Spain that the majority of households – 75.9% and 68.1% – intend to 
invest in energy-efficient appliances (I3) by 2050. The minority – 4.9% and 
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9.4% – want to invest in insulation (I1); this trend is stable over time (2020-
2050). Electricity consumption resulting from individual behavioural 
changes decreases between 51-71% (the Netherlands) and 51-66% (Spain) 
by 2050. In addition, if behavioural patterns and triggers for change elicited 
through our survey hold in the next decades, it can be expected that the 
Limburg, Drenthe and Zeeland provinces in the Netherlands and the Castile-
Leon and Asturias regions in Spain will become pioneers compared to others 
in respective countries. 

3. From regional to the national and EU28 economy  

To estimate the macroeconomic and cross-sectoral impacts of individual 
energy behavioural changes, we link the up-scaled ABM output to the CGE 
EU-EMS model. The BENCH-v.3 behavioural patterns in each of the 12 age-
education groups – changes in heterogeneous households’ electricity and gas 
consumption – exogenously modify the minimum subsistence level of 
households’ consumption of the respective services in EU-EMS. The ABM-
CGE results indicate that households with higher education levels are more 
likely to change their behaviour compared to less educated people. 
Importantly, among these higher educated households, younger people (20-
40) are more active. In particular, Dutch youth saves up to 17% and 74% 
more electricity and gas compared to 40+ households under the FD scenario. 
In the ABM-CGE model, the reduction in households’ energy consumption 
due to their behavioral changes makes a higher budget share available for 
other types of consumption. Meanwhile, improvements in energy efficiency 
may either trigger an increase in energy use (“rebound effect”) or lead to its 
reduction, causing a shift in households’ spending from energy to other 
consumption goods. Therefore, such shifts in behavioral consumption 
patterns result in higher values of regional GDP over time. The analysis of 
EU-EMS results indicates that most of the EU28 regions benefit from the 
behavioural changes and lead to the decrease in energy consumption, with a 
small number of regions being affected negatively. Importantly, regions with 
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larger population as well as the regions with higher share of highly-educated 
people benefit more from the behavioural changes since they save more 
electricity and gas.  

The insights of this modeling exercise offer two conclusions. Firstly, we 
demonstrate the feasibility and importance of introducing heterogeneity and 
behavioural-rich dynamics in assessing climate change mitigation polices. 
We develop a transparent soft-linkage step-wise process to integrate an 
empirical behaviourally-rich ABM and a spatial CGE model. To the best of 
our knowledge, this is the first attempt to link empirical ABM and CGE to 
estimate the macroeconomic impacts of individual energy behavioural 
changes. 

Secondly, this research demonstrates that the regional dimension is 
important for a low-carbon economy transition. Some regions lag behind 
while others are pioneers, due to the heterogeneity in individuals’ 
sociodemographics (e.g. education and age), structural characteristics (e.g. 
type and size of dwellings), behavioural and social traits, and spatial 
characteristics (e.g. urban vs. rural). In addition, the inequality between 
regions decreases in the period of large investments (2015-2035) and starts 
to increase over time following it. However, the regional inequality in 2050 
does not reach the level of 2015. Hence, the soft-link integrated ABM-CGE 
model elicits dynamic effects of climate change mitigation behavioural 
solutions and traces how regional demographics may amplify economy-wide 
impacts of individual energy use practices.  

Future work could focus on a two way dynamic integration – hard-link – 
whereby two empirical models could be linked using software wrappers or 
modern web-interfaces for models’ integration (Belete et al., 2018). In 
addition, the ABM could benefit from integrating this behaviourally rich 
demand side modelling with dynamics of dwelling stock. The static and aging 
housing should be replaced by scenarios of its structural development and 
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technological progress in new urban developments (e.g. zero-carbon 
footprint buildings) and refurbishing old housing stock in cities. 
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Appendix	A	

The agent-based BENCH v.3 model is parameterized using the survey data on 
socio-demographic, economic, structural and behavioural attributes of 
households and their dwelling characteristic (Table 5.A.1).  

 

Table	5.A.1:	Survey	data	on	households’	characteristics	and	behavioural	intentions.	The	data	is	
used	to	parameterize	households’	behaviour	in	the	BENCH.v3	ABM.	Source:	Niamir	et	al.	(2018d)	

Factors Overijssel Navarre 

Socio-demographic characteristics  

Gender  
Female: 46.4% 

Male: 53.6% 

Female: 57.1% 

Male: 42.9% 

Age, years 53 41 

Education, 
ISCED* 

  

Annual income, 
in thousand Euros 
per year 

  

Dwelling  characteristics 

                                                  
* https://ec.europa.eu/eurostat/statistics-
explained/index.php/International_Standard_Classification_of_Education_%28ISCED%29#Implementation_of_ISCED
_2011_.28levels_of_education.29 
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Type of 
residence  

Apartment : 14.9%  

House: 85.1% 

Apartment : 77.8% 

House: 22.2% 

Tenure status 
Owner: 71% 

Renter: 29% 

Owner: 80.3% 

Renter: 19.7% 

Size of residence  

  

Age of residence  

  

Behavioural characteristics, value on the 1-7 scale 

CEE Knowledge  4.2 (0.7) 5.0 (0.8) 

CEE Awareness  4.9 (0.8) 5.4 (0.8) 

ED Awareness  4.5 (1.0) 5.3 (1.1) 

Personal Norms 4.6 (0.9) 5.4 (1.0) 

Social Norms  3.3 (1.1) 4.5 (1.2) 

Perceived 
Behaviour 
Control  

4.4 (1.1) 5.0 (1.3) 

 

The actions and patterns of behavioural processes of heterogeneous 
households in BENCH-v.3 are further aggregated per socio-demographic 
group (Table 5.A.2). Education level and age appear to be the main 
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determinants of households’ energy-efficiency investments according to the 
survey results (Niamir et al., 2018d).  

 

Table	5.A.2:	Socio‐demographic	groups,	based	on	the	Eurostat	classification 

Group number  Education level (1-3) Age group (1-4) 

G1 Low (ISCED 0-2) 1 (younger than 20) 

G2 Low (ISCED 0-2) 2 (20-40 years old) 

G3 Low (ISCED 0-2) 3 (40-60 years old) 

G4 Low (ISCED 0-2) 4 (older than 60) 

G5 Middle (ISCED 3-4) 1 (younger than 20) 

G6 Middle (ISCED 3-4) 2 (20-40 years old) 

G7 Middle (ISCED 3-4) 3 (40-60 years old) 

G8 Middle (ISCED 3-4) 4 (older than 60) 

G9 High (ISCED 5-8) 1 (younger than 20) 

G10 High (ISCED 5-8) 2 (20-40 years old) 

G11 High (ISCED 5-8) 3 (40-60 years old) 

G12 High (ISCED 5-8) 4 (older than 60) 

 

We estimate the annual change in the population in all EU28 NUTS2 regions 
using the projections from EUROPOP2008 Eurostat (Fig. 5.A.1). 
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Figure	5.A.1:	Average	annual	percentage	change	in	the	population	of	EU28	NUTS2	regions	in	
the	period	2015‐2050	
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Appendix	B	

This section provides the technical details of the EU-EMS CGE model. 

Regional	structure	of	the	model	

Regions differ by the type of production sectors which dominate overall 
production activities in the region. Some specialize in traditional sectors like 
agriculture, whereas others specialize in modern sectors such as finance and 
industry. Those sectors are characterized by different level of agglomeration 
and its importance. Traditional sectors do not experience any agglomeration 
effects whereas modern sectors do and that allows some sectors to grow 
faster than the other ones. The prototype model will incorporate the 
regional difference in sectoral specialization and hence the difference of 
agglomeration economies between the regions. 
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AUS Australia ARG Argentina 
AUT Austria BGR Bulgaria 
BEL Belgium BRA Brazil 
CAN Canada BRN Brunei Darussalam 
CHL Chile CHN China 
CZE Czech Republic CHN.DOM China Domestic sales only 
DNK Denmark CHN.PRO China Processing 
EST Estonia CHN.NPR China Non processing goods 

exporters 
FIN Finland COL Colombia 
FRA France CRI Costa Rica 
DEU Germany CYP Cyprus 
GRC Greece HKG Hong Kong SAR 
HUN Hungary HRV Croatia 
ISL Iceland IDN Indonesia 
IRL Ireland IND India 
ISR Israel KHM Cambodia 
ITA Italy LTU Lithuania 
JPN Japan LVA Latvia 
KOR Korea MLT Malta 
LUX Luxembourg MYS Malaysia 
MEX Mexico PHL Philippines 
MEX.GMF Mexico Global Manufacturing ROU Romania 
MEX.NGM Mexico Non-Global 

Manufacturing 
RUS Russian Federation 

NLD Netherlands SAU Saudi Arabia 
NZL New Zealand SGP Singapore 
NOR Norway THA Thailand 
POL Poland TUN Tunisia 
PRT Portugal TWN Chinese Taipei 
SVK Slovak Republic VNM Viet Nam 
SVN Slovenia ZAF South Africa 
ESP Spain RoW Rest of the world 
SWE               Sweden  
CHE                Switzerland  
TUR                Turkey  
GBR                United Kingdom  
USA                United States  
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Household	preferences	and	governmental	sector	

The households’ and governmental demand for goods and services is 
represented by the Linear Expenditure System (LES)  that is derived as a 
solution to the Stone-Geary utility maximisation problem: 

)5( 

  ri

r ri ri
i

U C
   

The resulting demand system where rI  denotes households’ disposable 

income and 
riP
	
are consumer prices of goods and services that include 

taxes, subsidies, transport and trade margins can be written as follows 

(6) 

1
ri ri ri r rj rj

jri

C I P
P

  
 

      
 

  

 

Households always consume a certain minimum level of each good and 
services where this level reflects the necessity (or price elasticity) of the good 
or service.  Necessities such as food have low price elasticity and hence 
higher minimum level of consumption. The disposable income of the 
households consist of wages, return to capital, social transfers from the 
government minus the income taxes and households’ savings.  

The government collects production, consumptions and income taxes. The 
tax revenue is further used to pay social transfers and buy goods and services 
for public consumption. The governmental savings can be either endogenous 
or exogenous in the model depending on the type of simulation and the type 
of chosen macro-economic closure.  
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Firms	production	

Domestic production D
riX is obtained using the nested-CES production 

technology of Capital-Labour-Energy-Materials (KLEM) type, where K is 
the capital, L is the labour, E is the energy and M is the materials. Figure II.2 
represents the nests in the KLEM production function used in the model 
with services between used according to the fixed Leontief input coefficients 
in the production process. The energy in the model is differentiated between 
electricity and other types of energy with some substitution possibilities 
between them. The labour is differentiated according to three education 
levels according to International Labour Organisation (ILO) classification 
[ref].  

The domestic production is generated according to nested production CES 
function that is described by the following set of composite CES functions 
that follow the production structure from top to the bottom nest 

(7) 

    ,
, ,

1/

(1 )
M KLE

M KLE M KLED
ri ri ri ri riX a M a KLE

         

(8) 

    ,
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(11) 
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Where ria , rib
,
 ric , rid  and rief  are the share parameters of the 

corresponding production function nests and 
,M K L E 	,	

,E K L ,	
,K L ,	 E  and 

L  represent the substitution possibilities for each of the production 

function nests. The inputs into the production are denoted as riM  input of 

materials, riKLE  composite capital-labor-energy nest, riE  energy inputs,

riKL composite capital-labor nest, riK  capital input, riL labor input, 
N E L E C
riE input of non-electric energy, ELEC

riE input of electric energy and E D
rieL  

inputs of labor by type of education e. 

 

 
Figure	B‐1:		Structure	of	KLEM	production	functions	in	the	model	
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International	and	inter‐regional	trade	

The total sales riX  of tradable goods and services i  in region r  in the model 

is an Armington Constant Elasticity of Substitution (CES) [ref] composite 
between domestic output D

riX and imports M
riX such that 

(12) 

   
1/ i

i iD D M M
ri ri ri ri riX X X

 
       

 

Where D
r i and M

ri  are the calibrated share parameters of the CES function 

and 
1i

i
i





  with i being the Armington elasticity of substitution 

between domestic and imported tradable goods and services.  The elasticity 
of substitution varies between different types of goods and services 
depending on the available empirical estimates. In case of non-tradable the 
composite is equal to the domestically produced product.  

Imported goods can come from various regions and countries represented in 
the model and the composite imported goods and services are represented 
by CES composite that uses a higher Armington elasticity of substitution as 
compared to the upper Armington nest. We assume as in the GTAP model 
that the elasticity of substitution between the same type of goods and services 
coming from different countries is twice as large as the elasticity of 
substitution between domestic and aggregate imported goods and services. 
The aggregate imported good is calculated according to the following CES 
composite function 

(13) 
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Where T
sri  is the calibrated share coefficient of the CES production function,

T
sriX  is the flow of trade in commodity i  from country sto country r .The 

coefficient 
1T

T i
i T

i





  where T
i is the elasticity of substitution between 

commodities produced in different countries.  

 

Labour,	capital	and	goods	markets	

Market equilibrium in the economy results in equalization of both monetary 
values and quantities of supply and demand. Market equilibrium results in 
equilibrium prices that represent in case of CGE models the solution to the 
system of nonlinear equations that include both intermediate and final 
demand equations as well as accounting constraints that calculate 
households’ and government incomes, savings and investments as well as 
trade balance. EU-EMS model represent a closed economic system meaning 
that nothing appears from nowhere or disappears into nowhere in it. This 
feature of the CGE model constitutes the core of the Walrasian equilibrium 
and ensures that even if one excludes any single equation of the model it will 
still hold. This is the property of CGE models called Walras law that tells us 
that in the closed economic system if n-1 markets are in equilibrium the last 
nth market will also be in equilibrium.  

In our EU-EMS model the static equilibrium is described by the set of 
commodity and factor prices, total outputs, final demands of households and 
government, investments, savings  and net transfers from abroad such that 
(1) markets for goods and services clear, (2) total investments are equal to 
total savings, (3) total households consumption is equal to their disposable 
income minus savings, (4) total governmental consumption is equal to its net 
tax revenues minus transfers to households minus savings, (5) total revenue 
of each economic sector is equal to its total production costs and (6) 
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difference between imports and exports is equal to the net transfers from 
abroad.  

 

Recursive	dynamics		

EU-EMS is a dynamic model and allows for the analysis of each period of the 
simulation time horizon. This horizon is currently set at 2050 but it can be 
extended to longer time periods. For each year of the time horizon, EU-
EMS calculates a set of various economic, social and environmental 
indicators. The economic growth rate in EU-EMS depends positively on 
investments in R&D and education. By investing in R&D and education each 
region is able to catch up faster with the technological leader region and 
better adopt its technologies. 

Time periods in EU-EMS are linked by savings and investments. By the end 
of each time period, households, firms and government in the model save a 
certain amount of money. This money goes to the investment bank, 
distributing it as investments between the production sectors of the various 
regions. The allocation decisions of the investment bank sectors depend on 
the sector’s financial profitability. The model runs in time steps of five years 
for the period 2015-2050.  

The capital stocks evolve according to the dynamic rule presented below, 
where the capital stock in period t is equal to the capital stock in period t-1 
minus the depreciation plus the new investments into the capital stock 

(14) 

1 (1 )tri t ri i triK K I    

  

At the end of each period there is a pool of savings rS  available for 

investments into additional capital stocks of the sectors. This pool of savings 
comes from households, firms and foreign investors. The sector investments 
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triI  are derives as a share of the total savings in the economy according to 

the discrete choice formula 

(15) 
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(16)  
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Where 1t riWKR  denotes the  capital remuneration rate, rg the steady-state 

growth rate, riB the calibrated gravity attraction parameter and  the speed 

of investment adjustments. 
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6.1. Introduction	

It has been proven that human activities and the associated increasing 
emissions of greenhouse gases (GHGs) are the main reasons for global 
warming (Hertwich and Peters, 2009; IPCC, 2014b; Oreskes, 2004). On a 
global scale, households influence, directly and indirectly, 72% of GHG 
emissions (Hertwich and Peters, 2009), and Baiocchi et al. (2010) report 
that 74% of total consumer emissions of CO2 are influenced by households 
(directly and indirectly) in the UK. Among this 74%, 12.6% comes from 
direct household domestic energy consumption. Based on Eurostat, 
household energy consumption is the main cause of  the observed GHG 
emissions. European households are responsible for almost one-quarter 
of total energy consumption in Europe.* CO2 is one of the gases that 
contribute to the greenhouse effect and is the most important long-lived gas 
that "forces" climate change.† Decarbonization of the economy requires 
massive worldwide efforts and a strong involvement of regions, cities, 
businesses, and individuals in addition to commitments at national levels 
(Creutzig et al., 2018a; Grubler et al., 2018). 

Mitigating anthropogenic climate change requires urgent understanding of 
which human activities are more culpable, what causes them, and how we 
can effectively change them. However, explaining and affecting human 
behaviour is a difficult task since human nature is complex and 
heterogeneous. Quantitative tools to assess cumulative household emissions, 
given the diversity of behaviour and a variety of psychological and social 
factors influencing it beyond purely economic considerations, are scarce.	

                                                  
* Total energy arriving at and consumed by end users, such as households, industry, agriculture, 
and so forth.  https://climatepolicyinfohub.eu/household-contribution-buildings-carbon-
footprint 

† https://climate.nasa.gov/causes/ 
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Current economic energy models (usually based on equilibrium and 
optimization assumptions) provide very limited representations of 
household heterogeneity and treat households as purely rational decision-
making units.  

This Ph.D. research aims to assess the contribution of individual behaviour 
changes to climate change mitigation at different scales. To address this 
scientific challenge, I have: (a) designed and conducted a comprehensive 
household survey to explore how individuals choose to change their energy-
related behaviour and what factors trigger or inhibit these choices (Chapter 
2); (b) designed and developed simulation tools to aggregate these insights 
and quantitatively assess regional and national impacts of individual choices 
(Chapters 3 and 4); and (c) investigated and presented a solution to upscaling 
individual energy behaviour for climate change mitigation strategies 
(Chapter 5). This dissertation addresses a number of research questions. The 
following section offers an overview of findings on each of them one-by-one.  

 

6.2. Overview	of	findings	

Research Question 1: What are the main factors influencing individual 
energy behavioural changes in the transition to a low-carbon economy?  

To address this question, I analysed contributions of households’ 
behavioural, socio-demographic, and structural dwelling characteristics 
based on the unique data from an extensive survey (N=1,790) from two 
provinces in EU member states (Niamir et al., 2018d). The goal was to 
quantify which factors – socioeconomic (e.g., income, age), behavioural 
(e.g., personal and social norms), and structural (e.g., size and type of 
house) – trigger or attenuate a transition to a lower-energy footprint at the 
household level. To address this goal, I examined determinants of three 
individual energy behaviours: investment, conservation, and switching to 
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“green” providers by employing correlation and probit regression analyses. 
The innovative contribution of this paper is threefold:  

- Empirical testing of theoretical concepts: Relying on theories on 
individual decision making from psychology, this thesis develops a 
conceptual framework that integrates a variety of behavioural factors 
potentially relevant for studying energy behaviour changes. The role 
of various behavioural factors is quantitatively studied using original 
survey data. 

- Heterogeneity: Our analysis goes beyond the current empirical 
literature on individual energy behaviour by focusing on detailed 
actions within the three main types of household choices: 
investment, conservation, and switching among providers. Within 
these three sets, we examine nine different actions and their 
dependence on both socioeconomic and behavioural characteristics 
of households as well as on structural dwelling factors. Hence, our 
quantitative assessment exceeds aggregates, acknowledging the fact 
that various socioeconomic groups may exhibit different behavioural 
traits for different actions. 

- Comparative analysis: The two countries in our sample permit us to 
compare households’ choices and the role of behavioural factors 
across contexts. On the one hand, it allows testing of whether 
behavioural factors included in the theoretical framework matter in 
different cases, strengthening the validity of the proposed theoretical 
framework. On the other hand, a comparison across countries 
accounts for institutional, cultural, and climatic factors that do affect 
households’ choices but which are often difficult to capture 
explicitly. 

A survey was designed and conducted in two provinces in Europe that differ 
in terms of climate, culture, GDP, technology innovation and diffusion 
processes, renewable energy sources, institutional rules, and policies. 
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During the summer of 2016, 1,035 households in the Overijssel province, 
Netherlands (NL), and 755 households in the Navarre province, Spain (ES), 
completed an online questionnaire. The analysis of this data provides strong 
evidence of the importance of behavioural factors in making energy-related 
decisions and in promoting behavioural changes which are essential for a 
transition to a low-carbon economy in Europe. Several behavioural factors, 
such as knowledge and awareness, influence personal norms (0.45-0.77 
correlation). The higher the level of knowledge and awareness about 
environmental and climatic issues, the higher the level of personal norms. 
The impact of the societal, institutional rules – culture, fiscal rules, and 
regulations – on individuals is inevitable, as confirmed by the significant 
(99% confidence interval) effect of the country variables (NL vs. ES). 

Moreover, households are not making decisions in isolation, as they are 
prone to being influenced by peers in their social networks. Social norms 
have an essential role in shaping personal norms. Together, personal and 
social norms can trigger individuals to make energy-efficient decisions. 

Among dwelling characteristics, the type, size, and age of the residence have 
a strong influence on energy investments and conservation. As expected, 
people living in a house are more eager to pursue larger investments than 
people renting an apartment (0.4-0.5, 99% confidence interval). They also 
have more incentives to save energy by turning down the heater/air 
conditioner (0.3, 99% confidence interval). Analysis of socio-demographic 
factors highlights the role of education in household energy-related 
decisions, particularly in energy investments and in switching to green-
energy sources. Educated households are more active in improving their 
energy efficiency in both case studies (0.05-0.08, 99% confidence interval). 
A higher level of education enables more insight, knowledge, and awareness 
of the environment in terms of climate–energy issues, which all, 
consequently, affect personal norms and lead to a behavioural change. 
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To conclude, the empirical analysis demonstrates that behavioural factors, 
next to structural factors and education, play at least as important a role in 
energy use decisions – investment, conservation, and switching – as 
monetary factors, such as income. 

 

Research Question 2: To what extent does heterogeneity in households’ 
attributes, social interactions, and learning impact regional energy 
demand over time?  

Survey data provide invaluable information about the behavioural patterns 
of heterogeneous households, yet the aggregated impacts of these individual 
decisions are not evident. To quantify the cumulative impacts of household 
behavioural changes on regional dynamics of saved energy and CO2 
emissions, I designed a computational agent-based model. The BENCH 
model, which is based on the survey data, permits the study of the large-
scale, regional effects of individual actions and exploration of how they may 
change over time. The model explicitly treats behavioural triggers and 
barriers at the individual agent level, assuming that decision making about 
energy use is a multi-stage cognitive process. This thesis presents the results 
of simulations over 14 years (2016–2030), assuming the business-as-usual 
(SSP2) scenario for the supply side, which provides for the growth of energy 
production till 2030. By running several simulation experiments, I add 
complexity gradually to explore the impact of heterogeneity, psychological 
factors, and learning and social networks on the energy-related behavioural 
changes of households and the aggregated provincial impacts of these 
changes. The results indicate that pro-environmental individual energy 
choices and behavioural changes depend on social interactions and learning 
at different stages of households’ decision making. Cumulatively, these 
individual choices have significant economic consequences. 

The simulation and analysis show that when household economic and 
housing attributes are heterogeneous, there is a significant increase in the 
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diffusion of energy actions and that this trend is nonlinear. The results 
illustrate that spreading knowledge and motivation regarding energy-
efficient practices via social networks helps to decrease the provincial energy 
use by 14,751 MWh, while increasing the private economic benefits by up 
to 46,000 Euro and preventing more than 3,200 t of CO2 emissions by 2030.  

 

Research Question 3: What are the macroeconomic impacts of 
individuals’ behavioural changes on carbon emissions?  

To assess the impact of individual behaviour on carbon emissions, the 
BENCH-v.1 agent-based model (Niamir et al., 2018b) is developed further 
by strengthening the alignment of behavioural and economic factors under 
different climate policy scenarios. I calibrated the BENCH-v.2 model using 
data on households’ energy-related choices from the survey described above 
(Question 1). The BENCH-v.2 (Niamir et al., 2018e) calculated changes in 
electricity consumption annually and implied carbon emissions based on the 
primary source of energy by simulating individuals’ behaviour under 
different end-user behavioural and climate scenarios.  

The results indicate that accounting for demand-side heterogeneity provides 
a better insight into possible transition pathways to a low-carbon economy 
and climate change mitigation. Namely, the model including household 
heterogeneity, as represented by socio-demographic, dwelling, and 
behavioural factors, shows rich dynamics and provides a more realistic image 
of socioeconomics by simulating the economy through the social interactions 
of heterogeneous households. I analysed four end-user scenarios, which 
varied from the baseline scenario through the introduction of agent 
heterogeneity, the intensity of social interactions among households (slow 
or fast), and the lack or presence of carbon price (€10, €25, or €50 per ton). 
By comparing end-user scenarios, the relative impact of bottom-up drivers 
(social dynamics and learning on the diffusion of information) and top-down 
market policies (carbon price) on carbon emission reduction are estimated. 
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The impact of household attribute heterogeneity and social dynamics brings 
about a 5%-9% CO2 emission reduction by 2030. Adding carbon price cuts 
CO2 emission down to 55% compared to the baseline scenario, which 
mimics the traditional economic setup of a representative rational, fully-
informed household making the optimal decision. 

 

Research Question 4: What is a systematic way of upscaling 
behavioural aspects of individual decision-making to assess 
macroeconomic impacts for climate change mitigation over time and 
space?  

ABM and Computable General Equilibrium (CGE) models each have their 
own assumptions, strengths, and weaknesses.	As a typical macroeconomic 
model, a CGE model has a “top-down” approach, in contrast with 
behaviourally-rich, “bottom-up,” out-of-equilibrium ABM simulations.	To 
trace macro-level effects, CGE models aggregate the preferences of various 
actors by assuming a representative rational, fully-informed agent capable of 
making the optimal choice. Behavioural changes, including behavioural 
climate change mitigation actions, for example, driven by an increased level 
of knowledge regarding climate change in society and shifts in preferences, 
are difficult to integrate. To be able to analyse the macroeconomic and 
sectoral impacts of such behavioural changes, CGE models rely on 
complimentary micro-modelling tools such as AMBs.  

This dissertation presents a novel method for the systematic upscaling of 
individual heterogeneity and social dynamics by combining the strengths of 
the ABM and CGE models. The three-step upscaling approach suggested in 
this thesis creates an integrated ABM-CGE model that permits tracing the 
macroeconomic and cross-sectoral impacts and indirect effects of individual 
energy behavioural changes. Chapter 5 of this dissertation presented the soft 
link of the BENCH-v.3 ABM and EM-EMS CGE models.  
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Here, the BENCH model (Niamir et al., 2018b; Niamir et al., 2018e) has 
been developed further to investigate the role of individual energy 
behavioural changes in the transition to a low-carbon economy. Namely, 
agents’ utility functions are modified to align empirically-grounded energy 
decisions from the households’ surveys with macroeconomic dynamics in 
our data-driven CGE model. In particular, BENCH-v.3 focuses on energy 
investments that households may decide to undertake: significant 
investments in house insulation (I1) or solar panels (I2) and more modest 
investments in energy-efficient appliances (I3). The BENCH-v3 model tracks 
the individual and cumulative impacts of three energy behavioural changes 
among heterogeneous individuals in the Overijssel and Navarre provinces 
over 34 years (2016-2050).  

EU-EMS is a spatial computable general equilibrium (SCGE) model 
developed by the PBL Netherlands Environmental Assessment Agency	and	
is used for policy impact assessment. The current version of EU-EMS covers 
276 NUTS2 regions of the EU28 member states. Goods and services are 
consumed by households, government, and firms and are produced in 
markets that can be perfectly or imperfectly competitive. Spatial interactions 
between regions are captured through the trade in goods and services, factor 
mobility, and knowledge spill-overs.  

In order to link BENCH-v.3 and EM-EMS, a novel systematic three-step 
method is presented: 

- From behavioural patterns in survey data to cumulative impacts in two 
provinces: The BENCH-v.3 is presented to study shifts in provincial 
residential energy use and corresponding emissions driven by 
behavioural changes among heterogeneous individuals. Particularly, 
the BENCH-v.3 model tracks individual and cumulative impacts of 
three energy behavioural changes – significant investments in house 
insulation (I1) or solar panels (I2) and more modest investments in 
energy-efficient appliances (I3) – in the Overijssel and Navarre 
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provinces over 34 years (2016-2050). Here, three behavioural 
scenarios (Baseline, FD, and ID) are introduced, which  are 
differentiated according to the intensity of social interactions and the 
speed of learning among households. The analysis shows faster 
learning boosted by an information campaign, as expected, leads to 
more investments (I2, I3) and, consequently, to higher electricity 
savings (40%-100%) in both provinces (FD vs Baseline scenarios). In 
addition, electricity savings increase 14%-22% more in two 
provinces if pro-environmental awareness is raised through an 
information policy (ID vs FD scenarios). However, ID has a mixed 
impact on insulation investments (I1) and gas consumption in 
Navarre and the opposite effect in Overijssel (ID delivers 26% lower 
gas savings compared to FD). 

- Scaling-up behavioural scenarios to national and EU levels: Here, with the 
help of population projection scenarios for EU28, the dynamics in 
household energy behavioural changes in two provinces over time 
are scaled up to national and EU levels. To do this, behavioural 
patterns for a group of households are defined in the Dutch and 
Spanish regional ABMs separately. For every 12 education-age 
household groups, the number of households perusing an action (I1-
3) is estimated, and, correspondingly, average gas and electricity 
savings and investments are calculated. The analysis shows that, in 
the Netherlands and Spain, the majority of households,75.9% and 
68.1%, respectively, intend to invest in energy-efficient appliances 
(I3) by 2050. Minorities, 4.9% and 9.4%, respectively, are willing 
to invest in insulation (I1) and these percentages stay stable over time 
(2020-2050). Electricity consumption resulting from individual 
behavioural changes decreases between 51-71% and 51-66% by 
2050 in the Netherlands and Spain, respectively. Importantly, there 
is significant spatial heterogeneity in how behavioural changes are 
diffused and what regions emerge as lagers or pioneers in bottom-up 
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investments in energy-efficiency. If behavioural patterns elicited 
through the survey hold in the next decades, one could expect that 
Limburg, Drenthe, and Zeeland provinces in the Netherlands and 
Castile-Leon and Asturias regions in Spain will pioneer compared to 
others in respective countries.	

- Behavioural changes and their impacts on regional economies, from regional 
changes to EU28 GDP impacts: The EU-EMS CGE model is presented 
to facilitate the tracing of the macroeconomic and cross-sectoral 
impacts and indirect effects of individual energy behavioural changes. 
In this step, the scaled-up BENCH-v.3 information, namely, changes 
in heterogeneous households’ electricity and gas consumption, is 
used to modify exogenously the minimum subsistence level of 
households’ consumption of the respective services in EU-EMS. The 
analysis of scaled-up BENCH-v.3 behavioural patterns through EU-
EMS shows households with higher education levels are more likely 
to change their behaviour compared to low-educated people. 
Importantly, among these higher-educated households, younger 
members (20-40) are more active. Particularly, Dutch youths save 
17%-74% more electricity and gas compared to 40+-age households 
under the FD scenario. The changes (reduction) in households’ 
energy consumption resulting from their behavioural changes make 
a higher budget share available for other types of consumption. 
Meanwhile, improvements in energy efficiency may either trigger an 
increase in energy use (“rebound effect”) or lead to its reduction, 
causing a shift in households’ spending from energy to other 
consumption goods. Therefore, such shifts in behavioural 
consumption patterns results in higher values of GDP over time. The 
analysis of  the EU-EMS results indicates that most of the EU28 
regions benefit from the behavioural changes and lead to the decrease 
in energy consumption, with a small number of regions being 
affected negatively. Importantly, regions with a larger population as 
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well as the regions with a higher share of highly-educated people 
benefit more from the behavioural changes since they save more 
electricity and gas.		

	

To conclude, Chapter 5 of this dissertation brought attention to the potential 
of heterogeneous individual energy behavioural changes in terms of the 
transition to a low-carbon economy at national and  EU levels. Moreover, it 
highlighted that this transition varies from one region to another. Some 
regions are lagging behind and others are moving ahead due to heterogeneity 
in individual sociodemographic (e.g., education and age) and structural 
characteristics (e.g., type and size of dwellings), behavioural and social 
traits, and spatial characteristics (e.g., urban vs. rural). In addition, the 
analysis on the inequality index shows the inequality between regions is 
decreasing in the period of large investments in insulation, PVs, and energy-
efficient appliances and starts to increase over time after this period. 
However, the regional inequality, in 2050, does not reach the level of 2015. 
This tool is ideal for studying the dynamic effects of climate change 
mitigation policy measures targeted at changes in individual energy use 
practices. 

 

6.3. Innovation	

This dissertation contributes to the scientific efforts to bridge the gap 
between a stylized representation of human decision-making in current 
energy-economy models and the rich evidence on pro-environmental 
behaviour that social sciences provide. The models, data, and insights 
delivered by this dissertation make a number of innovative contributions to 
science: 
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The unique micro-level dataset on behaviour: By designing and 
conducting a comprehensive survey among households in two European 
regions, I explored the individual energy consumption practices and 
behavioural aspects that may influence them. Notably, this dissertation 
investigated the internal and external drivers that can change the behavior of 
households and which ones are barriers that can delay the decision process 
(Chapter 2). The novelty of this work is fourfold:  

- Empirical testing of the proposed theoretical framework: Relying on 
theories on individual decision making from psychology, a 
conceptual framework is developed. It integrates a variety of 
behavioural factors potentially relevant for studying energy 
behaviour changes and is quantitatively studied, verified, and 
validated using the survey data. 

- Heterogeneity: The quantitative assessment in this dissertation goes 
beyond aggregates and examines nine different actions and their 
dependence on both socioeconomic and behavioural characteristics 
of households as well as on structural dwelling factors, 
acknowledging the fact that various socioeconomic groups may 
exhibit different behavioural traits for different actions. 

- Statistical and econometric analysis:  This dissertation quantitatively 
estimates how behavioural factors in combination with 
socioeconomic characteristics of households and structural attributes 
of dwellings may trigger or inhibit the nine types of decisions by 
employing the probit model and analysis. 

- Comparative analysis: The two countries in the sample permits me to 
compare households’ choices and the role of behavioural factors 
across contexts. It allows testing whether behavioural factors 
included in the theoretical framework matter in different cases, 
strengthening their validity. Moreover, by making a comparison 
across countries, one could account for institutional, cultural, and 
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climatic factors that do affect households’ choices but are often 
challenging to capture explicitly. 

 

Empirical agent-based models: In this dissertation, a novel decision-
making tool is developed to support policy decisions on climate change 
mitigation. For the first time, an agent-based model takes into account 
explicitly the behavioural heterogeneity in individual energy choices 
supported by survey data in two countries. Much attention is paid to the 
importance of individual energy behavioural change and social dynamics in 
climate change mitigation by developing an empirical regional decision-
support tool (Chapters 3 and 4).  Its innovative contribution to the literature 
is threefold: 

- From equilibrium to out-of-equilibrium model: The current decision-
making frameworks and tools available to policymakers address a 
broad range of policy issues, assuming  that economic agents form a 
representative group(s), have perfect access to information, and 
adapt instantly and rationality to new situations. However, in reality, 
people make decisions driven by their diverse preferences, as shaped 
by socioeconomic conditions, behavioural biases, and social peer 
influences. This thesis went beyond classical economic models and 
the stylized representation of a perfectly informed optimizer. Firstly, 
I extend individual energy demand modelling based on economic 
factors alone by accounting explicitly for potential behavioural 
drivers and barriers in a formal model.  A simulation method 
(BENCH model) is introduced; it allows one to aggregate individual 
behavioural and economic heterogeneity and captures dynamics in 
the aggregated regional trends by looking beyond a snapshot of a 
survey. 

- Theoretically and empirically grounded models: The individual agents in 
the BENCH model change their energy use decisions following a 
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cognitive process inspired by psychological theories. In terms of 
environmental- and energy-related choices, three behavioural 
change theories are commonly applied: theory of planned behaviour 
(TPB), norm activation theory (NAT), and value–belief–norm 
(VBN) theory. Based on these theories, I developed a framework 
which supports the cognitive process of individuals’ energy decision-
making in the BENCH model. The BENCH model is calibrated based 
on our empirical data set. 

- From learning to behavioural scenarios: Individuals in the BENCH ABM 
can adapt future choices by learning from their own experience and 
through their interactions with other individuals. I designed and ran 
several behavioural scenarios in BENCH ABM by differentiating the 
intensity of social interactions and the speed of learning, assuming an 
information policy (e.g., social advertising and promotion of pro-
environmental behaviour). I estimated the macroeconomic impacts 
of energy behavioral changes of individual households by comparing 
these behavioural scenarios and conventional and price-based 
policies 

To conclude, this research contributes uniquely to the growing body of 
literature on ABMs by focusing on the multi-step representation of 
individual behavioural change based on theoretically and empirically 
grounded agent rules. 

 

Novel systematic upscaling method: We investigate a systematic way to 
scale-up the individual energy behavioural change that combines the 
strengths of ABMs and CGE models to trace the macroeconomic and cross-
sectoral impacts and indirect effects. The originality of this work is twofold: 

- Unique method: During the last 20 years, CGE models have been used 
as standard tools for quantitative policy assessments. These models 
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rely on advancements in microeconomic theory that represent the 
aggregate behaviour of main economic agents and interactions 
between them via supply-chain and trade links. To be able to analyse 
the macroeconomic and sectoral impacts of behavioural changes, 
CGE models can rely on complimentary modeling tools, such as 
AMBs. I employed the strengths of the ABM to capture and aggregate 
behavioural changes, social interactions, and learning and, on the 
strength of CGE models, to trace cross-sectoral impacts and indirect 
effects. ABM and CGE models each have their own assumptions, 
strengths, and weaknesses. We attempt to overcome the latter by 
linking the two types of models. To the best of my knowledge, this 
is the very first attempt to link empirical ABM and CGE models to 
estimate the macroeconomic impacts of individual energy 
behavioural changes. 

- Unique, rich datasets: In addition to the household survey, which was 
designed and conducted to support this research, I wrote a research 
proposal and successfully obtained access to Eurostat households’ 
microdata sets. These rich datasets gave me the opportunity to start 
bottom-up simulation modeling of household energy choices and 
integrate them further into a macroeconomic model. Therefore, I 
traced equilibrium, as well as out-of-equilibrium dynamics, by 
linking BENCH ABM and EU-EMS CGE models. 

 

6.4. Policy	and	societal		implications	

The theoretically and empirically grounded modelling tools, such as the 
BENCH model, can serve as useful instruments with which to quantify 
regional impacts of qualitative and untraceable individual behavioural 
aspects. Understanding the cumulative impacts of behavioural processes and 
the effects of policies on different socioeconomic consumer groups in an 
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artificial regional economy can help in participatory experiments. The model 
can serve as a simulation platform to support the engagement of 
stakeholders. It offers policymakers ways to explore various policy mixes 
combining price instruments (subsidies and taxes) with various targeted 
information policies to amplify the positive effect of individual behavioural 
changes regarding energy use. The insights delivered by this dissertation 
bring attention to a number of policy and societal implications: 

 

Behaviour matters: Human consumption, in combination with a growing 
population, contribute to climate change by increasing the rate of GHG 
emissions (Dietz and Rosa, 1997; Dietz et al., 2007; IPCC, 2014b).	Over 
the last decade, instigated by the Paris agreement, the efforts to limit global 
warming have been expanding. However, significant attention is being 
devoted to new energy technologies on both the production and 
consumption sides, while changes in individual behaviour and management 
practices as part of the mitigation strategy are often neglected (Creutzig et 
al., 2018a). Within this dissertation, I brought attention to the role of 
individual behaviors by assessing their macroeconomic impacts in the 
transition to a low-carbon economy. The understanding of how bottom-up 
processes can impact climate mitigation guides us to effective development 
and implementation of policies. 

 

Heterogeneity is the key: In reality, people make decisions driven by their 
diverse preferences, which are shaped by socio-economic conditions, 
behavioural biases, and social peer influences (Farmer and Foley, 2009). 
Therefore, effective policymaking requires decision-supporting tools that 
can explore the interplay between economic decision-making and 
behavioural heterogeneity in households’ energy choices when testing 
climate mitigation policies. Within this dissertation, I applied the BENCH 
ABM to shed light on the effects of individual decisions on climate change 
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mitigation. The model with household heterogeneity in socio-demographic, 
dwelling, and behavioural factors shows rich dynamics and provides a more 
realistic image of socioeconomics by simulating an economy accounting for 
the social interactions of heterogeneous households. In Chapter 2, by 
employing a probit regression model and analysis, I quantitatively estimated 
how behavioural factors, in combination with socioeconomic characteristics 
of households and structural attributes of dwellings, can trigger or inhibit 
individual decisions. Analysis of sociodemographic factors highlighted the 
role of education in household energy-related decisions, particularly in 
energy investments and in switching to green- energy sources. Educated 
households are more active in improving their energy efficiency in both case 
studies. A higher level of education enables more insight, knowledge, and 
awareness of environmental, climate, and energy issues, which all, 
consequently, affect personal norms and lead to behaviour changes. Among 
dwelling characteristics, the type, size, and age of the residence have a strong 
influence on energy investments and conservation in both case studies. As 
expected, people living in houses are more eager to pursue large investments 
and have extra incentives to save energy by turning down the heater/air 
conditioner compared to people living in apartments. In Chapter 3, our 
simulation and analysis demonstrated that the two wealthiest household 
groups – from 90,000 to 110,000 or more euros per year – are lagging 
behind in making useful energy-related decisions. It may have to do with the 
fact that a wealthy household lifestyle creates a norm for energy-intensive 
behaviour. The pioneers are the first three bottom-income groups: 
contributing 91% and 93% cumulatively in 2020 and 2030, respectively. 
The households in the second income group (10,000-30,000 euros per year) 
contribute more than 50% of this energy-related effort. Moreover, I 
explored the heterogeneity among behavioural factors (e.g., knowledge, 
awareness, and personal and social norms), and the results showed that they 
play at least as important a role as monetary factors, such as income.  
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Social norms are essential: Social norms have an essential role in shaping 
personal norms. Households are not making decisions in isolation, as they 
are prone to being influenced by peers in their social networks and local 
communities. A group benefits from certain individual actions, but no 
individual has sufficient incentive to act alone. Together, personal and social 
norms can trigger individuals to make energy-efficient decisions. In addition, 
the impact of the societal and institutional rules – culture, fiscal rules, and 
regulations – on individuals is inevitable, as confirmed by our case studies. 

 

One region affects other regions: By scaling up individual energy choices 
to the EU level, the other side effects of the cumulative impact of individual 
behaviour changes are discovered (Chapter 5). The transition to a low-
carbon economy varies from one region to another, and one single region 
could affect another region(s). Some regions lag behind and some move 
ahead due to heterogeneity in individuals’ sociodemographic (e.g., 
education and age), structural characteristics (e.g., type and size of 
dwellings), behavioural and social traits, and spatial characteristics (e.g., 
urban vs. rural).  

  

Policy as a package (set of policies): As discussed earlier, individuals are 
more than just consumers in climate change mitigation. Therefore, climate 
mitigation policies should go beyond economic cost-benefit incentives (e.g., 
subsidies and taxes). Firstly, the social environment, cultural practices, 
public knowledge, producer technologies and services, and facilities used by 
consumers should all be considered when designing implementable and 
politically feasible policy options. Secondly, various financial, social, and 
other instruments in the policy mix should be designed as a coherent set to 
reinforce each other, optimizing their joint effectiveness. In particular, 
policies, such as the provision of targeted information, social 
advertisements, and power of celebrities for the broader public in 
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combination with education, can be used to create more knowledge and 
awareness in the longer run and could accompany and reinforce the 
effectiveness of other stimuli, such as subsidies. These types of policies (soft 
policies) may prove to be more effective in promoting green-energy 
solutions implemented by households compared to fiscal policy measures 
alone. 

To conclude, this dissertation suggests a policy package as an essential 
strategy for climate change mitigation. Such a package could combine the 
following policies: (a) short-term, conventional, price-based policies (e.g., 
carbon price, taxes); (b) nudging and soft policies (e.g., education, 
information dissemination); and (c) unbounded regional-to-global policies 
(e.g., based on NSDS, SDGs), of which the latter two could be considered 
(semi-) long-term strategies.  

 

6.5. Outlook	to	future	work	

As this research focuses on the residential demand side, much attention is 
paid to the importance of individual energy behavioural change and social 
dynamics in climate change mitigation. The macroeconomic and cross-
sectoral impacts and indirect effects of individual energy behavioural change 
are estimated through an original, bottom-up, soft-link method. The future 
work can go in two main directions: advancing the modelling and exploring 
the philosophy and ethics of climate change.  

From the modelling perspective, further research is needed on: (1) Integrating 
this behaviourally rich demand-side modelling with the dynamics of dwelling 
stock. Static and aging housing should be replaced by scenarios of structural 
and technological progress in new urban development (e.g., zero-carbon-
footprint buildings) and refurbishing old housing stock in cities. (2) Improve 
modelling and analysis of dynamics of institutions and collective action (e.g. 
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local initiatives). (3) Furthermore, the agent-based model could benefit from 
improved modelling and analyses of the energy supply side to assure market 
feedbacks (Tesfatsion, 2018).This will also allow detailed endogenous 
modeling of various energy sources and technological learning. (4) Linking 
to transport model may be another interesting direction for future research. 
For example, household energy demand is expected to change due to the 
penetration of electric vehicles and self-driving public and private transport. 
(5) While this thesis presents a soft link between the two models (ABM and 
CGE), ideally, one should pursue a two-way, dynamic integration (hard-
link) in which the two empirical models would be linked using software 
wrappers and modern web interfaces for  integration (Belete et al., 2018).  
(6) Large number of parameters and multidimensionality of the generated 
data in ABMs, are a challenge in further exploring and understating results 
(Lee et al., 2015). Combining exploratory analysis (Kwakkel and Jaxa-
Rozen, 2016; Kwakkel and Pruyt, 2013; Premo, 2006)and data mining 
techniques to understand the model’s behaviour and its sensitivity to initial 
configurations of its parameters would be an interesting topic to explore in 
the future. From the philosophical and ethical perspective, researchers could 
focus on how climate change impacts values and norms (Nyborg et al., 
2016). Importantly, any action on climate change challenges ethical issues of 
responsibility across individuals, nations, and generations (Gardiner and 
Hartzell-Nichols, 2012). 
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Summary	

Climate change is one of the major global environmental challenges faced by 
humanity in the 21st century. Global carbon emissions from fossil fuels stand 
at almost 37 GtCO2 per year and have grown by an average of 2.4% per 
year so far this century. Based on the latest the global carbon budget report, 
in 2018 CO2 emissions are still on track to rise by 2.7% (range: 1.8% to 
3.7%). Among these, households – directly and indirectly – are responsible 
for more than 70% of carbon emissions. Hence, decarbonization of the 
economy requires massive worldwide efforts and a strong involvement of 
regions, cities, businesses, and individuals in addition to commitments at 
national levels. While climate mitigation is expanding, UN confirms that we 
need to urgently and sharply bend the emissions curve by accelerating these 
efforts to keep the temperature increase to 1.5°C above pre-industrial 
levels. In the last few years, the discussions about mitigation strategies stress 
the importance of demand-side solutions and shifts to transdisciplinary and 
bottom-up approaches in assisting climate mitigation efforts worldwide. The 
IPCC Special Report on 1.5 degrees names ‘behavioural and lifestyle 
changes’ as a vital climate change mitigation strategy complimentary to 
technological measures. Yet, despite behavioural change being emphasized 
as a crucial component of mitigation strategies worldwide, empirical studies 
on individual energy-related choices and behavioural factors impacting them 
are scarce. Individual energy behaviour, especially when amplified through 
social context, shapes energy demand and, consequently, carbon emissions. 
By changing their behaviours, individuals can play an essential role in the 
transformation process towards a low-carbon society and global emissions 
reduction. However, explaining and affecting human behaviour is a difficult 
task since human nature is complex and heterogeneous. As a result, 
quantitative tools to assess cumulative household emissions, given the 
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diversity of behaviour and a variety of psychological and social factors 
influencing it beyond purely economic considerations, are scarce.  

This dissertation highlights the potential of behavioural changes among 
heterogeneous households regarding energy use and their role in mitigating 
climate change. To do so,  (a) a comprehensive household survey is designed 
and conducted to explore how individuals choose to change their energy 
behaviour and what factors trigger or inhibit these choices; (b) simulation 
tools are designed and developed to aggregate these insights and 
quantitatively assess regional and national impacts of individual choices on 
carbon emissions; and (c) a novel method to upscale individual energy 
behaviour for climate change mitigation strategies is presented. 

The determinants of the main types of households’ energy 
behaviour: investments in house insulation, installation of solar panels, and 
energy-efficient appliances; conservation of energy by changing energy-use 
habits (e.g., switching off unnecessary devices, turning down the heat, and 
using less energy); and switching between energy suppliers are studied based 
on the unique data from an extensive survey (N=1,790) from two provinces 
in EU member states. By employing correlation and probit regression 
analyses the relationships between individual household attributes 
(socioeconomic, structural and behavioural factors) and the likelihood of 
choosing one of the energy actions that contribute to climate change 
mitigation are quantitatively assessed. The empirical analysis demonstrates 
that behavioural factors, next to structural factors and education, play at least 
as important role as do monetary factors, such as income. 

An agent-based simulation model is designed and developed to 
quantify the cumulative impacts of household behavioural changes on 
regional dynamics of saved energy and CO2 emissions. This model builds up 
on the advances in agent-based modelling applied in the energy domain, and 
adds theoretically and empirically-grounded individual behavioural rules that 
drive households’ energy-related choices. The results of this novel model 
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indicate that accounting for the demand-side heterogeneity provides better 
insights into possible transition pathways to a low-carbon economy and into 
potential of behavioural changes as a climate change mitigation strategy. In 
order to facilitate this transition, the broader view on the social 
environment, cultural practices, public knowledge, producers technologies 
and services, and the facilities used by consumers are needed to design 
implementable and politically feasible policy options. Accordingly, the 
policy mix should also aim at encouraging and facilitating social interactions 
between individuals/households and promoting and diffusing information 
that they need. Such accompanying information and value-based policy 
instruments have the potential to greatly contribute to the effectiveness of 
conventional price-based and technology-effectiveness policies.  

Aggregating behavioural changes of heterogeneous individuals: 
this dissertation brought attention to the potential of heterogeneous 
individual energy behavioural changes in terms of the transition to a low-
carbon economy at national and EU levels by presenting a novel method for 
the systematic upscaling of individual heterogeneity and social dynamics 
(micro-macro models integration). This tool is ideal for studying the 
dynamic effects of climate change mitigation policy measures targeted at 
changes in individual energy use practices. The result shows that this 
transition varies from one region to another. Some regions are lagging 
behind and others are moving ahead due to heterogeneity in individual 
sociodemographic (e.g., education and age) and structural characteristics 
(e.g., type and size of dwellings), behavioural and social traits, and spatial 
characteristics (e.g., urban vs. rural). 
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Samenvatting	

Klimaatverandering is één van de grootste uitdagingen voor de mensheid in 
de 21e eeuw. Wereldwijde koolstofemissies van fossiele brandstoffen 
bedragen bijna 37 GtCO2 per jaar en zijn deze eeuw tot dusver met 
gemiddeld 2,4% per jaar gegroeid. Uit het laatste wereldwijde 
koolstofbudgetrapport blijkt dat in 2018 de CO2-uitstoot nog steeds met 
2,7% stijgt (spreidingsbreedte: 1,8% tot 3,7%). Huishoudens dragen met 
meer dan 70% - direct en indirect - bij aan deze koolstofemissies. Daarom 
vereist de decarbonisering van de economie naast de verplichtingen op 
nationaal niveau aanzienlijke wereldwijde inspanningen en een sterke 
betrokkenheid van regio's, steden, bedrijven en individuen. Terwijl 
klimaatmitigatie toeneemt, bevestigt de VN dat we de emissiecurve 
dringend en scherp moeten buigen: inspanningen om de temperatuurstijging 
binnen 1,5°C te houden ten opzichte van de pre-industriële periode moeten 
versnelt worden. De afgelopen jaren benadrukken de discussies over 
mitigatiestrategieën het belang van oplossingen aan de vraagzijde, evenals 
verschuivingen naar transdisciplinaire en bottom-up benaderingen om de 
wereldwijde klimaatmitigatie-inspanningen te ondersteunen. Het 
zogenaamde 1,5-gradenrapport van het Intergouvernementele Panel voor 
Klimaatverandering (IPCC) noemt ‘veranderingen in gedrag en levensstijl’ 
als een essentiële strategie voor mitigatie van klimaatverandering, die 
complementair is aan technologische maatregelen. Ondanks het feit dat 
gedragsverandering wordt benadrukt als een cruciaal onderdeel van 
wereldwijde mitigatiestrategieën zijn empirische studies over individuele 
energie-gerelateerde keuzes en over de gedragsfactoren die deze keuzes 
beïnvloeden schaars. Individueel energiegedrag, vooral als het versterkt 
wordt door de sociale context, bepaalt de energievraag, en, als gevolg, de 
koolstofemissies. Daarom kunnen individuen door gedragsverandering een 
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essentiële rol spelen in de wereldwijde emissiereductie en in de 
transformatie naar een koolstofarme samenleving. De complexiteit en 
heterogeniteit van de menselijke natuur maken het uitleggen en beïnvloeden 
van menselijk gedrag echter moeilijk. Zodoende, gezien de diversiteit aan 
gedrag en de verscheidenheid aan psychologische en sociale factoren die 
gedrag naast puur economische overwegingen beïnvloeden, zijn 
kwantitatieve hulpmiddelen voor het beoordelen van cumulatieve 
huishoudelijke emissies schaars. 

Dit proefschrift benadrukt het potentieel van gedragsveranderingen bij 
heterogene huishoudens met betrekking tot energieverbruik en hun rol bij 
het verzachten van de klimaatverandering. Om dit te doen, is (a) een 
uitgebreide enquête onder huishoudens uitgezet om te onderzoeken hoe 
individuen ervoor kiezen hun energiegedrag te veranderen en welke factoren 
deze keuzes veroorzaken of belemmeren; zijn (b) simulatiehulpmiddelen 
ontworpen en ontwikkeld om voorgaande inzichten samen te voegen en om 
de regionale en nationale effecten van individuele keuzes op koolstofemissies 
kwantitatief te beoordelen; en is (c) een nieuwe methode voorgesteld om 
individueel energiegedrag op te schalen voor strategieën ter bestrijding van 
klimaatverandering.  

De bepalende factoren voor het energiegedrag van de 
belangrijkste types huishoudens: investeringen in woningisolatie, 
installatie van zonnepanelen en energiezuinige apparaten; energiebesparing 
door verandering van energieverbruiksgewoonten (bijvoorbeeld onnodige 
apparaten uitschakelen, temperatuur verlagen, en minder energie 
gebruiken); en de overstap naar andere energieleveranciers worden 
onderzocht op basis van de unieke gegevens van een omvangrijke enquête 
(N = 1.790) uit twee provincies in EU-lidstaten. 

Door correlatie- en probit-regressieanalyses toe te passen worden de relaties 
tussen individuele kenmerken van huishoudens (socio-economische, 
structurele en factoren m.b.t. gedrag) en de waarschijnlijkheid om één van 
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de acties te kiezen die energieverbruik verlagen en bijdragen aan 
klimaatmitigatie kwantitatief beoordeeld. De empirische analyse laat zien dat 
gedragsfactoren, naast structurele factoren en opleiding, minstens een even 
belangrijke rol spelen als monetaire factoren, zoals inkomen. 

Een agent-based simulatiemodel is ontworpen en ontwikkeld om de 
cumulatieve effecten van gedragsveranderingen van huishoudens op de 
regionale dynamieken van besparing van energie en CO2-emissies te 
kwantificeren. Dit model bouwt voort op agent-based modellen die in het 
energiedomein worden toegepast, en voegt op basis van theoretische en 
empirische inzichten individuele gedragsregels toe die de energie-
gerelateerde keuzes van huishoudens beïnvloeden. De resultaten van dit 
innovatieve model tonen aan dat rekening houden met de heterogeniteit aan 
de vraagzijde betere inzichten biedt in mogelijke transitiepaden naar een 
koolstofarme economie en in het potentieel van gedragsveranderingen als 
klimaatmitigatiestrategie. Om deze transitie door het ontwerp van 
uitvoerbare en politiek-haalbare beleidsopties te faciliteren is een bredere 
visie nodig op de sociale omgeving, culturele gewoontes, algemene kennis, 
technologieën en diensten van producenten en de faciliteiten die 
consumenten gebruiken. Bijgevolg moet de beleidsmix ook gericht zijn op 
het stimuleren en faciliteren van sociale interacties tussen 
individuen/huishoudens en het bevorderen en verspreiden van informatie 
die zij nodig hebben. Dergelijke begeleidende informatie en op waarden 
gebaseerde beleidsinstrumenten kunnen aanzienlijk bijdragen aan de 
effectiviteit van conventionele beleidsmaatregelen op het gebied van prijs en 
technologie-effectiviteit. 

Gedragsveranderingen van heterogene individuen aggregeren: 
dit proefschrift vestigt de aandacht op het potentieel van heterogene 
individuele gedragsveranderingen met betrekking tot energie voor de 
transitie naar een koolstofarme economie op nationaal en EU-niveau door 
een nieuwe methode voor de systematische opschaling van individuele 
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heterogeniteit en sociale dynamieken voor te stellen (integratie van micro-
macro modellen). Deze tool is ideaal voor het bestuderen van de dynamische 
effecten van beleidsmaatregelen voor klimaatmitigatie gericht op 
veranderingen in individuele energieverbruiksgewoontes. Het resultaat laat 
zien dat de transitie van regio tot regio verschilt. Sommige regio's blijven 
achter en anderen lopen op kop vanwege de heterogeniteit in individuele 
socio-demografische factoren (bijv. opleidingsniveau en leeftijd), structurele 
kenmerken (bijv. het type en de grootte van woningen), gedrags- en sociale 
kenmerken en ruimtelijke kenmerken (bijv. stedelijk vs. landelijk). 
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