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ABSTRACT 
 
The design of an optimal road pricing scheme is not a trivial problem. Following the 
Dutch government’s kilometre charge plans, this paper focuses on the optimisation of 
link based toll levels differentiated in space and time. The optimal toll level design 
problem is formulated as a bi-level mathematical program. In the upper level we 
minimise an object function, e.g. the average travel time in the network, using a fixed 
number of price categories. At the lower level a dynamic traffic assignment model is 
used to determine the effects of differentiated road pricing schemes on the traffic 
system. Focus of the paper is on the upper-level where optimal toll levels are 
approximated. In the optimisation procedure different variants of a pattern search 
algorithm are tested in a case study. Inspection of the solution space shows that 
many local minima exist, so the selection of the initial solution becomes important. In 
the case study however it appears that in all local minima the value of the objective 
function is almost the same, indicating the fact that many different toll schemes result 
in the same average travel time. The case study is also used to test the performance 
of the different variants of the pattern search algorithm. It appears that it is beneficial 
to change more variables at a time and to use a memory to remember where 
improvement of the objective function has been made. First tests on a medium scale 
network showed that it is possible to apply the framework on this network, though 
further computational improvements are needed to apply the framework to large 
scale networks, for example by parallel processing.  
 
1 INTRODUCTION  
 
Within the world of traffic engineering, road pricing is considered as a measure that 
may alleviate several problems in the current transport system: congestion, 
environmental damage, use of unsustainable recourses, use of space, etc. Some 
successful practical cordon based applications of road pricing exist (for instance 
Singapore, London, Stockholm). The Dutch government plans to develop a link 
based, time, space, and vehicle type differentiated toll system. Thus the amount of 
toll a car driver has to pay depends a. o. on the number of kilometres driven, but also 
on the time of travel, the route chosen, and the vehicle. Main goal of this system is to 
achieve a fairer system where heavy users of the transport system pay more than 
occasional users, and where the toll level follows demand: the higher demand, the 
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higher the price. Further, with a toll system as proposed also other objectives may be 
met. Model studies have shown that as a result of toll measures problems concerning 
congestion, CO2 and air quality can be alleviated. Now this paper addresses an 
important question: given a network and a demand, what is an optimal toll scheme to 
reach a certain policy objective. 
 
This paper is structured as follows. Based on a concise review of the literature of 
optimising road pricing with dynamic traffic assignment models, the problem is 
defined and formulated mathematically, using a limited solution space. A solution 
approach is then discussed, which results in a solution algorithm with different 
variants. The variants of the solution algorithm are tested two case studies: a small 
network with different initial solutions and a bigger network with one initial solution. 
We describe the setup of these tests and the results in succeeding sections. Finally, 
conclusions are presented, including possible future improvements of the framework. 
 
1.1 Literature review 
 
The problem of congestion pricing has been studied from different modelling 
perspectives and under various assumptions: marginal cost pricing / second best 
pricing, different policy objectives, static / dynamic, fixed / elastic demand, link-based 
/ path-based / zone-based pricing. In this study we did not aim to carry out an 
extensive literature review on the history of road pricing research. Such a review is 
for example given in Joksimovic et al. (2005). We focussed on dynamic models and 
bi-level modelling approaches for optimising road pricing measures. 
 
In Yang and Bell (1997) a static elastic demand model with queues is given and a bi-
level programming approach is used to select the first best tolling policy that replaces 
delays with an equivalent level of the tolls. Verhoef (2002) studied static second best 
pricing with perfect driver information and elastic demand.  
 
Dynamic models with time varying network conditions and link tolls have been 
addressed. Arnott et al. (1990) compares the effect of various pricing policies 
(uniform, time-varying, and step tolls). Huang and Yang (1996) and Wie and Tobin 
(1998) developed dynamic first best pricing models for general transportation 
networks, with the important drawback that application of the model is limited to 
destination specific tolling. In Joksimovic et al. (2005) and Viti et al. (2003) the 
problem of optimal tolling is formulated as a bi-level mathematical program. Supply, 
i.e. the transport network is modelled as a directed weighted graph, where the 
weights are a combination of travel time and toll, which may differ in time. Demand is 
modelled as a given OD-matrix and is input to the problem. In the upper level the 
policy objective (e.g. minimisation of congestion or total travel time) is formulated as 
objective function, which depends on the value of the design variables: the space 
and time differentiated toll levels. Some of the stakeholders’ demands (e.g. minimum 
and maximum price levels) are formulated as constraints. Travel times depend on the 
amount of traffic in the network. These are determined in the lower level, where some 
form of a dynamic user equilibrium is assumed. Thus in the upper level tolls are set to 
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minimise for instance travel times, in the lower level the travel times are determined, 
given the tolls. In order to solve the problem, an optimisation was carried out for a 
small hypothetical network and a straightforward pricing scheme (constant toll or two 
different tolls in two time periods, only at one tolling location). The search algorithm 
that was used is a straightforward exhaustive search algorithm, that can only be 
applied in very simple networks.  
 
In this paper we follow this approach and we develop an optimisation method that 
can be used for larger networks, and also allows for more space and time 
differentiation in toll schemes. Because the computation times involved to evaluate 
the lower level, more intelligent search algorithms must be used. Furthermore, we 
consider distance based tolls instead of tolls per passage.   
 
2 PROBLEM DEFINITION 
 
As was mentioned in the introduction besides improving the fairness of the transport 
system another objective of the road authority for the introduction of tolls might be to 
improve system performance (for example to minimise average travel time). This is 
achieved by choosing optimal tolls within realistic constraints and subject to the traffic 
assignment. The road authority selects feasible values for tolls to optimise its own 
objective function, while network users face these tolls and adapt their route and 
departure time decisions to minimise their individual travel cost, resulting in changes 
in the dynamic flow pattern. In response, the road authority will adapt the tolls, and 
travellers will respond again. 
 
We now consider an ordered set of predefined prices 1 1 2{ ,..., }, ...m mP p p p p p= < < <

at P
, 

where  and p is in €/km. For each time window t a price 1 0p ≥ π ∈  is assigned to 
each link a in the network. The order of the price in set P is defined in the following 
function: ( )o vatπ =  if at vpπ = . An initial assignment is based on the level of service of 
the link, e.g. when the flow-capacity ratio is high, the price of the link will also be high. 
Additionally, the location of the link (rural versus urban) is important. In principle, 
every link could be assigned its own price. In this paper however we reduced the 
solution space because each model evaluation is time consuming. To achieve this, 
the links and time windows are categorised in groups which will have the same toll 
level. Starting from the initial solution, we try to improve the toll setting further. From a 
mathematical viewpoint, we chose to use a discrete solution space, because gradient 
based methods, like steepest descent or Powel’s method, require a lot of 
computation time. In every iteration a numerical gradient has to be computed and the 
line search sub problem has to be solved. For more information on these search 
techniques, see Fletcher (1987). 
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2.1 Notation 
 
Sets and indices 

,a b A∈  Links 
n N∈   Nodes 
i I N∈ ⊆  Origins 
j J N∈ ⊆  Destinations 
,t w T∈  Time windows 
p P∈   Toll categories  

ijr R∈   Routes between OD pair ij 
g G∈   Groups of links 
h H∈   Groups of time windows 
 
Variables 
tk  Length time window t (h) 

al  Length link a (km) 

ac  Capacity link a (veh/h) 

agµ  Index groups links: equals 1 if link a is in link group g, and equals 0 otherwise  
(binary) 

whθ  Index groups time periods: equals 1 if time window w is in time window group  
h, and equals 0 otherwise (binary) 

atu  Average inflow on link a during time period t (veh/h) 

atτ  Average travel time on link a during time period t (h)  

atC  Congestion indicator: equals 1 if 0,6at asυ ≤  and equals 0 otherwise 

as  Free flow speed link a (km/h) 

atυ  Average speed on link a during time period t (km/h) 
N  Total number of travellers in the network 
 
Decision variable 
atπ  The link price link a during time period t: 1 min m, np p axπ π= = (€/km) 

 
2.2 Objective functions 
 
Three different objective functions have been researched. Minimisation of average 
travel time is used to test the optimisation procedure. The total congestion and total 
revenue are also investigated. The objective functions are: 

min ( ) /
at

at at t
a t

u k
π

τ∑∑ N     (1) 

min
at

at a a
a t

C l c
π ∑∑      (2) 

max
at

at at t a
a t p

u k l
π

π∑∑∑     (3) 
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2.3 Constraints 
 
To reduce the solution space we use link groups and time window groups. All links 
are assigned to a unique group and within a group all links get the same price. The 
same holds for the time windows. This is enforced by the following constraints:  

max

max

(1 ) , ,

(1 ) , ,

ag bg at bt
g

ag bg at bt
g

a b a t

a b a t

π η η π π

π η η π π

− + ≥ ∀ >

− − + ≤ ∀ >

∑

∑
  (4) 

max

max

(1 ) , ,

(1 ) , ,

th wh at aw
h

th wh at aw
h

a t w t

a t w t

π θ θ π π

π θ θ π π

− + ≥ ∀

− − + ≤ ∀

∑

∑

>

>
  (5) 

In this formulation the toll level is not free, but has to be chosen from a limited 
number of price categories: 

1{ ,..., }at mP p pπ ∈ =       (6) 
In the lower level it is determined how the travellers respond to the tolls that were set 
in the upper level. It is assumed that users of the system may alter their routes and 
departure times. This is modelled as a dynamic stochastic user equilibrium (DSUE), 
where users minimise their individual perceived generalised costs (a weighted sum of 
toll, travel time, and schedule delays). The use of perceived costs achieves a more 
realistic user equilibrium, because not every individual from a heterogeneous 
population experiences the same disutility for the same route (e.g. comfort, speed, 
nice views, etc.). This results in the constraint:  

,atu satisfies DSEU a t∀      (7) 
 
2.4 Solution space 
 
The mathematical formulation is such that the solution space is discretised in several 
ways. First in the upper level, the toll level is discretised by stating that the price is an 
element of P, links are divided into link group from a set G , and the time is divided 
into intervals in H. Thus we are trying to find optimal values for matrix , with 
elements 

Π

hg Pπ ∈ . Thus the number of possible solutions for Π is *G HP , which is 
huge (e.g. 5 price categories, 4 time windows, and 3 link groups yield 2.44*108 
possible solutions). 
 
3 SOLUTION APPROACH 
 
For the lower level DSUE we have used a macroscopic dynamic equilibrium model 
(INDY), see Bliemer et al., 2004; Bliemer, 2004), To INDY a departure time choice 
model was added as described in Bliemer and van Amelsfort (2008), see Figure 1. 
Input for the model are a network, an OD-matrix, a PAT-profile, a fixed route set, and 
a toll setting. 

© Association for European Transport and contributors 2008  5



 

 
Figure 1: Computation of the effects of a toll setting. The procedure terminates when DSUE 
is reached. 
 
One run of the lower level model is time consuming and an exhaustive grid search of 
all possible solutions becomes already infeasible with a only a limited number of 
price categories, link groups and time windows. As an alternative, a local search 
algorithm is used, which is called pattern search (Michalewicz and Fogel, 2000). 
Such an algorithm starts with an initial solution, and considers whether neighbours of 
this solution give improvement or not. In our case a neighbour is defined as follows: 
 
Definition 

1Π is called a (h,g)-neighbour of 2Π  if 1 2 , ( , ) ( , )fe fe f e h gπ π= ∀ ≠ and 
1 2( ) ( )hg hgo oπ π− 1= where ( )hgo vπ =  if hg vpπ = , as defined earlier.  

Furthermore,  is the right (h,g)-neighbour of 1Π 2Π  if they are (h,g)-neighbours and 
and the left-(h,g) neighbour if 1( ) ( )hg hgo oπ π− 2 1= 11 2( )hgo oπ π( )hg − = −  

 
When no neighbour gives an improvement anymore, the algorithm terminates. When 
the objective function is convex, this is the global minimum. However, in Joksimovic 
et al. (2005) was showed that the objective function can already be non convex in a 
simple three link network, so it is likely that the objective function is non convex in a 
general network. The optimal toll setting from the optimisation algorithm will therefore 
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likely be a local minimum. There exist search algorithms that are capable of escaping 
from a local minimum, like tabu search, simulated annealing and genetic algorithms, 
see for example Michalewicz and Fogel (2000). However, these algorithms use many 
function evaluations (model runs on the lower level) which is computational 
expensive so, we have chosen to concentrate on the pattern search algorithm. 
 
3.1 Variants of pattern search 
 
The design variables of this problem consist of the toll matrix Π . The basic pattern 
search algorithm in this research is given in Algorithm 1. The objective function value 
can be seen as a function of the toll setting π : ( )z π .  
n = iteration number, nπ = toll vector in iteration n, 0π = initial toll vector, = dummy 
variable 

d

 
Algorithm 1 
Initialise: n=1, 1 0:π π=  
FOR h = 1 to |H| 
 FOR g = 1 to |G| 
  Now suppose (w.l.o.g.) n

hg vpπ =  

  Define d (if the right (h,g)-neighbour of 1:hg vp += nπ exists) 

  IF 11( ,..., ,..., ) ( )n n
hg HG z nz dπ π π<  

  THEN :n
hg

1
1vpπ , +
+= : 1n n= +  

  ELSE d (if the left (h,g)-neighbour of 1:hg vp −= nπ exists) 

  IF 11( ,..., ,..., ) ( )n n
hg HG z nz dπ π π<  

  THEN :n
hg

1
1vpπ , +
−= : 1n n= +  

  ELSE :n
hg

1
vpπ ,  + = : 1n n= +

 END 
END  
This loop is repeated until no improvement in ( )z π occurs anymore.  
 
3.2 The way to select the next variable 
 
When little is known about the shape of the objective function, it is hard to determine 
the best order in which to select variables. However, the order of the variables can 
have influence on the results and the speed of the search algorithm, because the 
order determines the route of the algorithm through the solution space. In Algorithm 1 
this order is determined by the structure of the FOR loop. The order can as well make 
the algorithm terminate in another local minimum. Another aspect of this topic is to 
use a single order or to use multiple orders when a new loop begins. These multiple 
orders can be predetermined, random, or use information of former iterations. In 
Table 1 an overview is given of the experiments on this topic in this research.  
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Table 1:  Properties of the variants of pattern search tested in this research 
Patternsearch Way to select next variable When improvement 
P1 Like in algorithm 1 Like in algorithm 1 
P2 Change g and h in the for loops in 

algorithm 1 
Idem as patternsarch1 

P3 Change all variables within a group at the 
same time i.e. compute 

or compute 11 1 2( ,..., , ..., ,..., )n n
h h hG HGz d d dπ π

11 1 2( ,..., , ..., ,..., )n n
g g Hg HGz d d dπ π  

Idem as patternsarch1 

P4  
 

Randomly select a hgπ from the set of 
variables without a label. When a 
variable gives no improvement, add a 
label to it. 

Idem as patternsarch1 

P5 Idem as patternsearch2.  While 
11( ,..., ,..., ) ( )n n

hg HGz d z nπ π π<

2hg vd p +=

2hg vd p −

, 
define etc. or 

= etc. 
P6 Idem as Patternsearch1, but after the 

first execution of the FOR loop, skip 
variables which did not give improvement 
in the former FOR loop.   

Save the new value of the 
variable, add variable to 
the improvement list, and 
select the next variable. 

Former iterations are stored in each variant 
 
3.3 When a solution gives improvement 
 
What to do after improvement is an important question, because it can influence the 
direction in which the algorithm develops. One strategy is to stay with a variable 
when improvement is occurred with the argument that it is likely that more 
improvement is possible in this variable (P5, see Table 1). This strategy has the 
danger that it ignores other directions in which more improvement is possible. To 
prevent this phenomenon a strategy can be used in which after improvement in one 
variable, the new value is saved, but a next variable is selected (P1 to P4). Finally, in 
patternsearch6 the improved variables are stored in an improvement list. These 
variables are tried to improve further in the next iterations, until no further 
improvement is possible. Then, all variables are tried again to be improved, etc.  
 
4 CASE STUDY 1 
 
The modelling framework is first applied to a small case study, in order to gain 
information on the shape of the objective function and the behaviour of the variants of 
the search algorithm.  
 
The test network based on the real network of the town of Delft in the western part of 
the Netherlands. It contains two main highways: the A13 and the A4. The rest of the 
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network consists of urban roads (see Figure 2). The network further consists of 12 
centroids, 137 links and 90 nodes. 

 
Figure 2: The first test network (Delft). 
 
The time period is an AM peak, from 7:00 AM to 9:00 AM. In order to include some 
warm-up and cool down time to fill and empty the network, the modelled time period 
is from 6:00 AM to 10:00 AM. Some fixed preferred arrival time profile is used, 
corresponding to this peak period. In the situation without tolls ( 0,0Π is a matrix filled 
with zero’s), the average travel time in the network is . Most traffic 
travels along the A13: at 7.30AM queues start to form there in front of on- and off-
ramps. Around 8PM smaller queues develop on the A4 and on the urban roads. So a 
clear distinction exists between busy highways (A13), quiet highways (A4), and other 
roads (town).  

0,0( ) inz Π = 28.1m

 
Now the sets H, G, and P are defined. In this test network it is chosen to create three 
link groups: . The morning peak is divided in 4 time-intervals of 
each 30 minutes, so . The 
warm-up and cool-down period have no toll. Then five price categories ranging from 
€0.00 per km to €0.20 per km are defined, with a step size of €0.05, 
so . 

{ ,A13,A4}G town=
{7H

0.05,0.10,0.15,0.20}

: 00 7 : 30,7 : 30 8 : 00,8 : 00 8 : 30,8 : 30 9 : 00}= − − − −

{0.00,P =
 
4.1 The initial solution 
 
A carefully chosen, initial solution can strongly contribute to the fast achievement of a 
good solution. In Table 2 three different values for 0Π  are presented. Most analyses 
in this research have been executed with 0,1Π . This initial toll vector is based on the 
reference run, with busy roads getting a higher price. The other two initial solutions 
are chosen such that they differ significantly from 0,1Π .  
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Table 2: Three initial toll solutions 

 Initial solution 1: 
0,1Π  

 0,1( ) minz 25.25Π =

 Initial solution 2: 
0,2Π  

0,2( ) 27.83minz Π =  

Initial solution 3: 
 0,3Π

31.95Π =0,3( ) minz
Toll level (€/km) Toll level (€/km) Toll level (€/km) Time 

period town A13 A4 
 

town A13 A4  town A13 A4 
6:00-7:00 0 0 0 0 0 0 0 0 0
7:00-7:30 0 0 0 0.20 0.20 0.20 0 0.20 0
7:30-8:00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0 0.20
8:00-8:30 0.15 0.20 0.15 0.20 0.20 0.20 0 0.20 0
8:30-9:00 0.05 0.10 0.05 0.20 0.20 0.20 0.20 0 0.20

9:00-10:00 0 0 0 

 

0 0 0 0 0 0
 
4.2 Experimental results 
 
In the following sections the results of the numerical experiments are presented. 
First, all 6 variants of the pattern search algorithm are tested with initial solution 0,1Π . 
The three best variants are selected, and their behaviour using the other initial 
solutions is then tested. Finally the effect on two different objective functions is 
investigated.   
 
Table 3: Results achieved with the different pattern search algorithms using initial solution 

 0,1Π
 Search 

algorithm 
*Π  *

1( )z Π  
(min) 

Number of iterations to 
termination of algorithm

P1 *
5Π  23.11 80 

P2  *
4Π  23.07 95 

P3 *
7Π  23.34 38 

P4-1 *
2Π  22.90 74 

P4-2 *
10Π  24.22 22 

P4-3 *
10Π  24.22 37 

P4-4 *
10Π  24.22 51 

P5 *
10Π  24.22 42 

P6 *
3Π  22.90 65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.3 Performance of the variants of pattern search 
 
In Table 3 the results of all 6 variants of pattern search with 0,1Π  are presented. P4 
has a random component, so it is executed 4 times with different random seeds (sub-
variants P4-1 – P4-4). In this section and in the next section 10 different local minima 
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were found (  to *
1Π *

10Π ), so indeed the objective function is not convex. The best 
objective function value is an average travel time of 22.90 minutes, compared to 

. This value is achieved by two different search algorithms at two 
different local minima  and 

0,1( ) 25.25 nz Π = mi
*
2Π *

3Π . Both computation time and objective function 
value are used to assess the variants. The best result is achieved by P6: this variant 
only uses 65 iterations to find the best value. P4 also achieved this value in P4-1, but 
in P4-2 to P4-4 a much worse local minimum has been found, so overall this is not a 
good variant. P1 and P2 achieved a little worse objective function value, but used 
considerably more iterations to reach that value, so the performance is worse. P3 
has a little worse objective function value again, but uses less iterations to reach this 
value. P5 does not achieve a good average travel time value in this case and it uses 
many iterations, so it is not a good variant. The development of the average travel 
time throughout iterations when executing the best three variant (P1, P3, and P6) is 
compared in Figure 3, which illustrates the performance differences of these 
algorithms. 

ion
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Figure 3: The development of the average travel time value throughout iterations, using the 
pattern search algorithms P1, P3 and P6. 
 
4.4 Different initial solutions 
 
Since the objective function is not convex and because we use a local search 
algorithm like pattern, the chance of ending up in a local minimum is high. The 
search algorithm variants are therefore tested with 2 other initial solutions. In Table 4 
the results are presented and it can be concluded that all three variants perform quit 
good. In fact the impact of another initial solution on the end solution of the objective 
function is relatively small. Yet, this is also the result of the flat shape of the objective 
function since each combination of initial solution and variant of pattern search 
results in another end-solution but the values of the objective function are 
comparable. Thus, the objective function is such that many local minima (toll-
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settings) exist, that produce almost equal average travel times. The only difference is 
the number of iterations that is required. Obviously the worse the initial solution is the 
longer it takes to reach an optimum. Further it appears that variant P3 needs the 
least amount of iterations for all initial solutions 
 
Table 4: The effect of different initial solutions 

Search 
algorithm 

Initial toll 
solution 

Resulting 
toll setting 

Objective 
function 
value (min) 

Number of iterations 
to termination of 
algorithm 

P1 0,1Π  *
5Π  23.11 80 

P1 0,2Π  *
8Π  23.46 125 

P1 0,3Π  *
6Π  23.30 95 

P3 0,1Π  *
7Π  23.34 38 

P3 0,2Π  *
5Π  23.11 74 

P3 0,3Π  *
9Π  23.68 91 

P6 0,1Π  *
3Π  22.90 65 

P6 0,2Π  *
1Π  22.72 139 

P6 0,3Π  *
6Π  23.30 110 

 
4.5 Differences between local minima 
 
As mentioned earlier, 10 different local minima were found ( *

1Π  to ). In every 
resulting toll setting, a similar structure can be observed, which follows the peak in 
the traffic demand: the tolls start low, then increase, and finally decrease again. In 
each of these local minima, 

*
10Π

22 0.20π = , so here it is clear that the toll should be on the 
maximum level. For the other variables different combinations occur, within the 
mentioned rough structure. Furthermore, in most local minima the toll values in link 
group ‘town’ are lower than in the other two link groups.  
 
In order to illustrate these observations, Table 5 shows three examples of these local 
minima: the best found solution , a solution with relatively low toll values, , and 
a solution with a relatively bad average  travel time value, 

*
1Π *

3Π
*
10Π , which quite differs 

from  and is close to initial solution *
1Π 0,1Π .  

 
 
 
 
 
 
 
 

© Association for European Transport and contributors 2008  12



 

Table 5: Three local minima 
 *

1Π  
 *

1( ) minz Π = 22.72

 *
3Π

*
3( ) minz Π = 22.90   

*
10Π

24.22*
10( ) minz Π =

Toll level (€/km) Toll level (€/km) Toll level (€/km) Time 
period town A13 A4 

 
town A13 A4  town A13 A4 

6:00-7:00 0 0 0 0 0 0 0 0 0
7:00-7:30 0 0 0.05 0 0 0 0 0 0
7:30-8:00 0.15 0.20 0.15 0.20 0.20 0.10 0.20 0.20 0.20
8:00-8:30 0 0.05 0.20 0 0.15 0.10 0.05 0.20 0.15
8:30-9:00 0 0.10 0.20 0 0.10 0.10 0.05 0.15 0.05

9:00-10:00 0 0 0 

 

0 0 0 0 0 0
 
4.6 Effects on total revenue and total congestion 
 
Until now all tests were performed where the object function was the average travel 
time. Earlier other objective functions were defined, i.e. the total revenue and total 
congestion. The total revenue of the different toll settings varies highly: the highest 
revenue is 35.5% higher than the lowest revenue, while the corresponding average 
travel time only differs 6.6%. The total congestion level also varies differently than the 
average travel time. This is probably caused by the indicator formulation of the 
congestion objective function: a link is either congested or not, while the travel time 
on a link can vary continuously. Optimisation with respect to another objective 
function would thus result in different solutions, as could be expected.  
 
5 CASE STUDY 2 
 
After testing the optimisation framework in case study 1, we apply the resulting 
framework on a more realistic network to test the practical feasibility of the 
framework.  
 
The network includes the city of The Hague and the two surrounding towns of Delft 
and Zoetermeer. It contains several motorways, urban roads, and rural roads (see 
Figure 4). The network further consists of 168 centroids, 1891 links and 1133 nodes.  
 
The same time period is modelled as in case 1 [6:00AM – 10:00AM] and again a 
fixed preferred arrival time profile is used. The preferred arrival time profiles were 
calibrated by comparing historical traffic counts and resulting equilibrium assignment 
results. In the situation without tolls, the average travel time in the network is 

. Around 7.30 AM queues start to form on motorways running into 
the city of the Hague. Around 8PM smaller queues develop on several locations on 
other roads.  

0,0( ) 17.5minz Π =

 
Again the sets H, G, and P are defined. Because one iteration needs more 
computation time here, only two link groups and only three time intervals are defined. 

, so the group other contains rural roads and motorways. 3 time-{ ,G urban other= }
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intervals of each 60 minutes are defined, so 
. The periods before and after this period 

have no toll. Further, three price categories instead of five are defined:  
. 

{6 : 30 7 : 30,7 : 30 8 : 30,8 : 30 9 : 30}H = − − −

{0.00,0.10,0.20}P =

 
Figure 4: The second test network (Den Haag, Zoetermeer, Delft) 
 
5.1 The initial solution 
 
In Table 6 the initial solution for case 2 is shown. Again, this initial toll vector is based 
on the reference run, with busy link group and time combinations getting a higher 
price.  
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Table 6: The initial solution and the resulting solution 
 Initial solution:  

 

0Π
in0( ) 17.0mz Π =

 Resulting solution: *Π  
 *( ) 16.3minz Π =

Toll level (€/km) Toll level (€/km) Time 
period urban other 

 
urban other 

6:00-6:30 0 0 0 0 
6:30-7:30 0 0.20 0 0.10 
7:30-8:30 0.10 0.20 0.10 0.10 
8:30-9:30 0.10 0.10 0.20 0.10 

9:30-10:00 0 0 

 

0 0 
 
5.2 Experimental results 
 
Since we are interested to test the optimisation on larger networks, only the variants 
P1 and P2 of pattern search are used. Both algorithms end up in the same solution 

 (see Table 6), so the relative improvement w.r.t. no tolls is 6.7%. 
Both algorithms use approximately the same number of iterations to reach this value: 
P1 uses 22 iterations and P2 uses 24 iterations. The number of iterations is 
approximately 3 times smaller than in case 1, because the number of variables is 
smaller. An optimisation in case 1 with only 6 variables resulted in 24 iterations as 
well. One iteration takes 12 times more computation time than in case 1, this is 
directly caused by the bigger network. So a larger network does not imply more 
iterations in the optimisation algorithm, it only implies longer computation times in the 
lower level model. In total, the computation time in case 2 is about 4 times longer 
than in case 1.  

*( ) 16.3minz Π =

 
The network of case 2 is still not a very big network. When this framework is applied 
to bigger networks, it is not computationally feasible anymore in the current setting. 
One possibility is to further reduce the number of link groups and time intervals, 
which makes the framework less useful, because little differentiation is left. Another 
possibility is to introduce parallel computing. In that case the search algorithm has to 
be slightly adapted, in order to evaluate different toll settings in parallel on different 
computers, which will reduce computation times.  
 
6 CONCLUSIONS 
 
The optimal toll level design problem is formulated as a bi-level mathematical 
program and an approximation approach is presented for finding the optimal toll 
levels in space and time differentiated, link based pricing, with the objective to 
minimise average travel time. Different variants of the search algorithm have been 
compared and the effect of a different initial solution is treated. 
 
Application of different variants of the pattern search algorithm to the case study 
showed that it is possible to achieve considerable improvements in the value of the 
average travel time compared with the situation without tolls and with an initial toll 
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solution. Multiple local minima have been found, but the average travel time value is 
comparable in most local minima. The risk to end up in a bad local minimum is small, 
because different initial solutions all gave acceptable solutions.  
 
When the algorithm saves in what variables improvement has been made, better 
average travel time values have been achieved within the same computation time. 
When the algorithm changes more than one variable at a time, considerably shorter 
computation times can be achieved with only slightly worse average travel time 
values. 
 
This paper showed that it is possible to apply a pattern search algorithm in this 
context on a large scale network. When this framework is applied, it is yet only 
computationally feasible with little space and time differentiation and a few price 
categories, so this definition is important. Furthermore, the definition of the objective 
function strongly determines the resulting toll setting, so it should be carefully 
considered. The second, realistic case study showed that a positive effect of road 
pricing on average travel time exists, but it is not big. In the case studies, elastic 
demand was not included, but this will in reality increase the effect of road pricing. It 
is likely that general findings in this research also apply for other networks, though 
this is not shown in this paper. Future application of this framework to other networks 
is recommended. When this framework is applied to bigger networks, further 
improvements in the lower level are needed, as many possibilities for parallelisation 
are still unused. The behaviour of other search algorithms in this context like 
simulated annealing is as well an interesting topic for future research.  
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