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Abstract

We measure the gender homophily (and other network statistics) on large-scale online book markets: amazon.com
and amazon.co.uk, using datasets describing millions of books sold to readers. Large book networks are created by
sales (two books are connected if many readers have bought both books) and can recommend new books to buy. The
networks are analysed by the gender of their first author: is book consumption assortative by gender?

Book networks are indeed gender-assortative: readers globally prefer to read from one author gender (the global
assortativity coefficients by gender is around 0.4). Although 33% of first authors among all books are female, female
books are not proportionally sold together with male books: an average of 20% (and median of 11%) of books co-
bought with male books are female books. Instead, female books make up on average more than half of the books
co-bought with other female books.

The gender makeup of literary genres and structural book communities show that the gender homophily originates
in a gender skew not only in certain literary genres (a fact known from prior studies), but even more strongly in certain
book communities, with these book communities spanning multiple literary genres.

Keywords: Book, network, gender, homophily, genre, community

1. Introduction

Large, English-language online book markets sell individual books to individual readers, but also provide, on the
webpages of most books, sales-based recommendations for other books. Two large groups of people (book authors,
and their anonymous book readers) interact indirectly on these markets, via books. Book sales create salient ties
among the books: if, over a period of time, a substantial number of the readers have bought both book A and book
B on amazon.com, the website will record a sales-driven, co-buying tie between A and B. A link to book B will
be posted by Amazon on the product page for book A, which will essentially act as a book recommender for future
readers, and is likely to be self-reinforcing. The sales ties between books then form a book network: an information
network which models our aggregated reading habits. Our global reading preferences can be studied over these large
network models, more effectively than by surveying or measuring the reading habits of a small number of readers.

In this study, we focus on research questions related to gender: Do readers read books from both genders of
authors (in other words, across all the readers’ preferred literary genres, is there diversity between genders?) Is there
instead a statistical preference of readers for one gender of authors, a preference which even spans literary genres, and
which is measurable as gender homophily (or gender assortativity) in the book network? Are there gender-skewed
clusters of books, or effective ‘reading bubbles’, for the readers on these online book markets?

These research questions are complex, and combine a number of simple questions, such as asking how many
readers prefer exactly which subset of literary genres and in what proportion, and then asking which literary subgenres
are gender-skewed in authorship. The related work has partial answers for these simpler questions: on a small number
and size of datasets, prior studies have shown that gender preferences exist in what regards the writing of books
(for example, there are literary genres where female authors dominate sales, and likewise for men), and the reading
of books (male readers tend to appreciate certain literary subgenres, such as short stories or paranormal romance, at
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different ratios than female readers). However, no prior studies exist which answer the question whether global gender
homophily is present in the network of real-world book sales, and whether there exist global gender-skewed reading
bubbles.

In content networks such as those formed by book sales, research questions related to gender are important. When
clusters or communities of books in the book network are shown to be heavily segregated by the gender of their
authors, then some readers are primarily exposed to authors of a single gender, thus removing the diversity of point
of view which is otherwise available on the global book market1. We show here that strong gender homophily exists
in book networks. Similar degrees of homophily were found before in other social networks [18], with the lower
diversity in the opinion present in a group likely to reinforce itself in time and lead to a segregation of views [13]).
We give detail to the related work in Section 2.

Summary of findings

We find that global gender assortativity in online book networks exists, and is partly ‘baseline’ homophily, namely
caused by a difference in the ratios of male and female authors: female authors of English-language or English-
translated books with high sales ranks on amazon.com and amazon.co.uk make up around 33% of all authors, and
are thus less represented as authors than in the general population. Another 6% of authors are ungendered collectives.

Substantial homophily above the baseline is also present. The natural preference of readers for various subsets of
literary genres, combined with the often skewed gender makeup of literary genres, and also combined with further
reader preference within a genre, leads to a relatively high global gender assortativity (a nominal assortativity coeffi-
cient of 0.47-0.50, where a value of 0 is neutral, and a value of 1 is completely assortative). We also see substantial
differences in the distributions of local assortativity metrics between male and female books (the mean and median
ratio of ties to female books from male books are only around 20% and 11%, respectively, compared to 56-62% from
female books).
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Figure 1: Female-authored books in orange, male books in blue, collectively authored books in white: examples of gender-segregated book
communities based on amazon.co.uk book sales (British book communities C3 and C1; see Section 4 for more information)

Exclusively male and exclusively female book communities (so, reading bubbles) exist. These book communities
are books clustered together solely based on the sales ties created by their readers (rather than clustered on other book
information, such as its literary genre, or author name). Figure 1 shows two gender-segregated book communities
among amazon.co.uk books: on the left, a community of 3328 fiction books (of which 99.85% female-authored),
and their literary genres (of which 80% from the Romance genre); on the right, a community of 597 also fiction,
but mostly male-authored books (0.50% female authors, with 89% of all books from the Fiction genre). A detailed
analysis of the data is in Section 4.

1While our data does not reveal the gender of the book readers themselves, we conjecture, based on previous studies of book reviews [26],
societal homophily [18] and cultural preferences [7], that the readers showing a very skewed preference for female-written books are themselves
in most cases female, and likewise for men.
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Data collection

We analyse book metadata (including a book’s ISBN, author names, and literary genre) and the undirected book
co-buying relationships for over 3 million print books. This study focuses on books on sale online by Amazon on
the British and the American book markets—both large and mainly English-language markets, on which Amazon is
a leading online seller. The data for a unique ISBN was crawled from the book’s public Amazon web page. In many
cases, the same book, with the same ISBN, is on sale on both national markets; separate crawls on amazon.co.uk

and amazon.com then yield largely the same book metadata, but different co-buying relationships. In many cases,
the same title is also sold as different editions, with different ISBNs, on the two markets, so not only the co-buying
relationships will differ, but also some of the book metadata.

We collected British data (778 005 books) and American data (1 461 206 books) in the last quarter of 2017,
specifically for this study. We denote these two datasets by UK17 and US17, respectively. A third, older, American-
only dataset (filtered here down to 972 717 books) was acquired in an unspecified period between 1996 and 2014 for
prior research [17], and is denoted here by US14.

UK17 and US17 were crawled starting from the top 100 best-sellers across all book genres, with the collection
limited to books with good sales ranks (between 1 and 1 million, as reported by Amazon), plus all their immediate
co-bought books, regardless of the sales rank of the latter. The relatively high sales rank, at least at one end of each
tie between two books, ensures that the relationship between the books is significant, i.e., that a substantial number
of readers have consumed both books. We cannot explain the difference in size between these two crawls. Since
the internal structure of the networks is similar (for example, the average degree of the books in the two networks is
similar), a likely explanation is the fact that, on the British Amazon, items other than print books have high sales rank,
in a higher proportion than on the American Amazon.

The crawling methodology for the raw US14 dataset is not known; from the original dataset, we use all the books
with at least one co-bought book (which is also present in the data), regardless of any sales ranks. Despite any
differences in crawling method, we find consistent results across the three datasets.

Summary of method

We make use of established descriptive statistics from the area of network science [19], suitable for the empirical
study of large network structures, including that of information networks (such as citation networks, the web, or
recommender networks similar to our book networks) and online social networks. These descriptive statistics come in
two categories, as follows. The simpler network metrics are statistics about individual vertices in the network, such
as the vertex degree (number of co-bought books), or the local clustering coefficient, which describes the density of
reciprocal connections in the immediate neighbourhood of a vertex. More complex network metrics describe instead
the entire network. This is the case for the global coefficient of assortative mixing in the network (where the mixing
is studied based on any ‘category’ of the vertex, such as its degree or, in particular, its gender). It is also the case for
the global form of any metric describing individual vertices. For more insight on the choice of descriptive statistics
for networks, see [19].

As a preliminary step, we run a network analysis to extract common network measures and metrics for these
book networks, such as their degree distribution, their global and average local clustering metrics, and their global
assortativity by vertex degree. The results, e.g., a non-assortativity by degree and a power-law distribution of vertex
degrees, confirm prior measurements over other Amazon product networks.

Then, the gender study of the book networks starts with a process of gender resolution, in which 88% of the books
in the datasets are assigned the true (rather than perceived) gender of their first author; the remaining books have
gender unknown. The gender resolution is done using a number of corpora of first names, full names, and collective
names (i.e., names of associations and institutions), all annotated with their gender, and reflecting the real population
in the United States and the United Kingdom.

On the basis of gender-annotated vertices, we compute global and local gender assortativity metrics, and run
statistical tests to show substantial differences in the local ties of, separately, male, female, and collective books.
Finally, an analysis of the gender makeup of literary genres, and a structural analysis on the communities present in
the book network (including their genre and gender makeup) show that gender homophily is local to certain genres
and, in particular, it is local to certain book communities. A detailed description of this methodology is in Section 3.
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2. Related work

In this section, we survey prior studies relevant to the main research question of measuring the homophily, or
assortative mixing, in recommender book networks by the gender of the authors. Three categories of prior work are
described below, and their current results are compared to those of this study.

Gender preferences when authoring, reading, and reviewing books

Gender in authoring. It is known that book authors do not have uniform success across the various literary genres:
there are genres where female authors are more successful than male authors, and the reverse is also true. 2012 data
on the volume of UK book sales of all time, containing only the sales numbers for the top 100 best sellers, shows that
female authors sold more books than male authors in the general Fiction genre (and this genre overwhelms the list of
best sellers) [8]. The top author, J. K. Rowling, is classified as writing in the subgenre Children’s Fiction; the data
shows this subgenre as being entirely female-written: all the bestselling authors in Children’s Fiction are female. The
opposite is true for another Fiction subgenre, Crime, Thriller & Adventure, where all the bestselling authors are men.

The gender of book authors was also surveyed more broadly, per literary genre, using a sample of 0.5 million
English-language books crawled from goodreads.com (a website popular in the US) in [25]. Each author name was
classified to a gender based on the first name, with ambiguous first-name instances removed from the data. This recent
study shows that substantial differences in authorship exist in some genres, such as romance and comics books. Male
authors are in the majority in most genres, except for children, adult, fantasy, suspense and cook books.

A similar case to book writing is the writing of pages in online encyclopedias, such as the free-content Wikipedia,
where everyone can edit: a strong gender skew in the makeup of the editors of these pages is hypothesised to lead to
systemic biases into the content of the encyclopedia. This has recently been confirmed: the narrow gender diversity
of the Wikipedia editor community (under 10% of Wikipedia editors are women [10]) leads to notable women being
covered and featured in many language editions of Wikipedia, but the way women are portrayed starkly differs from
the way men are portrayed, with both structural and lexical gender bias present [28]. Women’s pages are more linked
to men’s pages than vice versa. On a lexical level, romantic and family relationships are much more frequently covered
in women’s articles than in men’s.

This study adds the following value to this existing work: our statistics strengthen the knowledge that certain
genders of authors prefer (or simply are more successful in) certain literary genres, from the male-dominated Sports
and Technology genres, to the female-dominated Romance. We show this using larger data than in any previous work,
and in particular using data from different sources than before. As our Amazon data models all the real-world book
sales, rather than the books popular on Goodreads, our statistics carry with a better degree of confidence.

Gender in reading and reviewing. For this study, we do not have access to data on the gender of the book readers
themselves; only some prior work gained some knowledge on the question of how readers and writers associate in
terms of gender.

The readers studied in [25] (namely, readers who wrote reviews on Goodreads) appear close to gender-balanced
for most large literary genres. However, this result may not reflect the readers of books in the general population,
since different ratios of male and female readers may choose to write public reviews, and also since Goodreads has a
76% female user base. Furthermore, genres overlap, are not well defined in all cases, and are composed of thematic
subgenres whose readership may be gender-biased rather than balanced.

Also on a sample of 0.5 million Goodreads books, [26] measures the preference and appreciation of male and
female readers towards (a) book genres, (b) the gender of authors, and (c) the book reviews written by fellow readers
of one gender or another. The reviews available per book are ranked by Goodreads with an unknown algorithm,
which may have lead to a sampling bias. Nevertheless, among the highly ranked reviews, male readers review more
highly than females (and thus, may generally prefer) books from non-fiction genres, with the most male appreciation
measured in genres such as biography, history, memoir and politics. Male readers also rate many fiction subgenres
more highly than women: short stories, horror, crime, male-male romance and general literature. Female readers are
instead seen to review more highly than men some romance subgenres (paranormal, contemporary, chick lit).

These results show that the literary genres have internal ‘gender lines’, namely there exist subgenres strongly
appreciated by only one gender (such as the female preference for paranormal romance), while the loosely defined
genre as a whole may instead be more highly rated by male readers (a fact found to be true in this dataset for the

4



romance genre). Also in [26], Goodreads reviewers rate authors of their own gender more highly, in most book
genres. This result is intuitive, and can be motivated by people’s inherent preference for certain cultural themes which
resonate best with their own life experience.

Gender homophily in book networks

While this is the first analysis of gender mixing in book networks, in our own preliminary work, we did a smaller-
scale analysis of the oldest dataset also used here, US14, of around 1 million amazon.com books. Those preliminary
results also showed strong local and global gender assortativity in book sales [6], and is included in this extended
study.

Gender homophily in other information or social networks

In the general population, gender bias when forming ties, as well as a tendency to cluster by gender, have also
been measured. For example, in an in-person Dublin community of hundreds of teenagers, males were predominantly
in male-only clusters and females in female-only clusters, with male clusters usually larger [12]. In online social
networks, the tendency towards gender segregation is clear, and more accentuated for male users [27] (on the gender-
balanced Spanish social network Tuenti). In two samples of thousands of member profiles from MySpace, with a
small female majority, both genders prefer as friends the majority gender, a choice more marked in females for their
closest friend [24].

Gender homophily, both at and above the baseline, is documented, in various professional or other content-based
social networks, in early studies (a number of which were surveyed in [18]): in a study (dated 1995) looking at
political discussion networks, men have much higher levels of segregation than women, with 84% of men discussing
politics only with other men. The authors of [18] conjecture that content-based relationships are more gendered than
personal relationships, and work ties with men of status are used to gain advice, respect, mentoring, and access to
information by both men and women. Other studies before 1997, surveyed in [18], also found that, at all levels in
organizations, there are strong gender differences, with the minority gender having far more gender-balanced networks
than the majority gender.

Newer studies (as recent as 2017) confirm the existence of skewed prosociality with gender in the networks formed
by research professionals: [16] finds that, while researchers in general are prosocial, with 60%-80% sharing their own
research material (publications and data), prosociality was most prominent from male to male, and less likely among
all other combinations of genders. The authors conclude that this pattern suggests that male-exclusive networks exist
in science, likely caused by an evolutionary history promoting strong male bonds. A study of collaboration structures
in various engineering disciplines [11] also highlights a gendered scientific production, in which female engineers,
although publishing in higher-impact journals, receive lower recognition (fewer citations) from the community. Both
genders reproduce the male-dominated scientific structures by repeatedly collaborating predominantly with men. In
collaboration structures in natural sciences, women are underrepresented in prestigious authorships compared to men,
and this is accentuated in articles with the highest citation rates; there is a large negative correlation between the
female representation in an authorship and the impact factor of the journal [2].

3. Method

The book network is an undirected graph G = (V, E), where a vertex v ∈ V is a print book, assigned an ISBN,
and an edge (v, u) is an undirected also-bought relationship, i.e., either v was one of the books bought by the same
Amazon customers as u (on Amazon’s product web page for u), or vice versa. Either one or both Amazon web pages
(for books v and u) may yield such an edge. Since Amazon limits the also-bought section of each web page to 100
products, both pages are valuable to retrieve these edges. There is no inherent directionality to this relationship, as the
timeline of customers buying the books is not recorded on the web page of any book.

Of the metadata for each book, this study sets as vertex attributes the book’s ISBN (e.g., 0099590085, a best
seller at the time of this study), the list of author names, if such a list is given on the product page (e.g., Yuval Noah
Harari), and the book’s category (or literary genre) as annotated by Amazon (e.g., the three-level Science & Nature
. Biological Sciences . Evolution, from which we use the first level, here Science & Nature). We analysed literary
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genres containing a substantial number of books (at least 500). The genre field is not present in the older US14 dataset,
so genre-based analyses are only done over UK17 and US17.

We made an effort to acquire good-quality author records for the books in all three datasets. The book records in
the US14 data did not include an author field at all; author records we crawled separately for this study from Amazon,
by ISBN. The book records in the 2017 crawl (UK17, US17) had their author retrieved from Amazon. For all datasets,
we collected a partial second set of author names by looking up each ISBN in the public OpenISBN records2. In a
minority of cases, the Amazon first author was not identical with the OpenISBN first author; we carried forward the
Amazon first author (as generally this was cleaner data), except in the cases when this was empty or equivalent (e.g.,
Unknown, Not Available).

3.1. Network analysis

We first analyse the three raw book networks structurally. We report standard graphs metrics such as the net-
work size, the standard global [15] and average local [29] clustering coefficients, and Newman’s global assortativity
coefficient by vertex degree [21]. We also verify that the degree distribution fits to a power-law function3.

The global clustering coefficient, in the range [0, 1], is the probability that any two vertices are connected, con-
ditional on them sharing at least one neighbour; a low value can indicate a network with relatively small clusters
compared to the overall size of the network. The local variant of this coefficient computes this degree of transitive
connection only within the neighbourhood of individual vertices; the average local clustering coefficient is higher than
(and need not correlate with) the global version, as it weighs sparse neighbourhoods equally as dense ones (while in
the global version, dense neighbourhoods weigh higher).

Newman’s global assortativity coefficient is a standard metric which measures whether vertices in the graph prefer
to link to (or mix with) similar, rather than dissimilar vertices, according to discrete characteristics of each vertex; in
this case, the characteristic is the degree of each vertex. (Later, we also calculate this metric over another characteristic:
the gender of book authors.) This global assortativity coefficient takes values in [−1, 1]; it is zero in a network where
vertices link randomly, and takes a high positive value when high-degree vertices associate preferentially with other
high-degree vertices (and likewise for low-degree vertices).

3.2. Gender resolution for the first author

The first step in the gender analysis resolves each first author into a discrete gender, i.e., assigns each vertex an
attribute from the set {male, female, collective, unknown}. We aim for the true, rather then the perceived, gender of an
author, so misleading pseudonyms (pen names), gender-neutral first names, and collective names formed based on the
name of an individual are all assigned the true gender manually.

We first obtain a list of over 10 000 collective full author names present in any of the datasets; this set consists of
authors such as Oxford University Press, Cambridge International Examinations, Department of Agriculture, Editors
of Bicycling Magazine, or Dorling Kindersley Publishing, which cannot be assigned a definite gender. This list is
extracted from the book datasets themselves, by filtering the author records for keywords which signal a collective
(Library, Press, Department, Editors, etc.) and then manually inspecting the entries selected to remove names not
belonging to this category (e.g., Clare Press, a female fashion journalist and author). Then, all books whose authors
remain in this list are classified as collective. Doing this as a first step is crucial, because attempting to classify some
of these collective names as if they were individuals (taking the first word as the first name) leads to incorrect gender
resolution in cases such as Peter Pauper Press, Herb Lester Associates Limited, Kenneth Grahame Society, or Marco
Polo Travel Publishing, which are publishers, rather than the male individuals they were named after. This is shown
as Step 1 in Figure 2.

The majority of the remaining authors are classified by extracting from the author’s full name their first name, and
querying gender-annotated corpora of first-name use in the real population (Steps 3-4 in Figure 2). Three data sources
are used:

2www.openisbn.com, accessed 2017.
3For power-law fitting, we use the Python powerlaw package, which implements the power-law fitting method from [9].
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Figure 2: Steps in resolving the gender of an author

1. a corpus of annotated first names collected by the School of Computer Science at Carnegie Mellon University
(CMU)4, which categorizes approximately 5000 female and 3000 male first-name variations;

2. a probabilistic library5 for gender detection based on first names, with data sourced across a number of years
for all births in the United States and the United Kingdom;

3. our own list of manually gender-annotated first names from non-English-speaking countries, present among the
authors whose books are sold (perhaps in translation) on the US and UK English-speaking markets (e.g., Björn
is a decidedly male, and Geneviève a female first name).

This first-name lookup, if executed as such, will occasionally lead to incorrect classifications, as there exist cross-
gender pen names (James Tiptree Jr is the pseudonym of the female science-fiction writer Alice Bradley Sheldon, and
Magnus Flyte is the male pseudonym of a duo of female fiction authors), as well as ambiguous first names: over 300
first names from the CMU corpus are used by either gender (e.g., Evelyn, Chris, Dana). For this reason, Step 2 in
Figure 2 precedes the first-name lookup, and it categorizes the full names of those authors in the dataset who have
cross-gender or ambiguous first names, by relying on the authors’ surnames to make a difference.

For Step 2, we manually searched for Amazon or Internet author pages, or other concrete indication of the gender
these authors subscribe to. These results make up new annotated lists of full author names (over 1000 female and 1500
male; e.g., Dana Andrew Jennings is a male American journalist and author, while Dana Sachs is a female American
novelist). This list includes authors who use initials exclusively, but whose gender is known despite this (e.g., P. K.
Hallinan, a male author of children’s books). It also includes authors whose first names are nicknames, or are unusual
and cannot otherwise be resolved to a gender, e.g., Shoo Rayner and Crockett Johnson are men’s pen names, and
Yellow Tanabe and Banana Yoshimoto are women’s. The list also contains a small number of collective or anonymous
authors whose gender is clearly predominantly female (e.g., Girlguiding UK) or male (e.g., Men’s Fitness). Note that
this gender-annotated author data may (in theory) have a small number of inaccurate entries, e.g., in the case when
there exist two published authors with identical full names, an ambiguous first name, but different actual genders and
books authored.

Other authors do use initials (at least occasionally), but their first names are publicly known (e.g., the art historian
E. H. Gombrich is Ernst Hans). To be able to categorize the most popular such authors, we manually build a dictionary
from author name with initials to complete author name, using Wikipedia and the wider Internet; this dictionary
currently contains 400 names. This first name is then used for gender classification (Step 3 in Figure 2). Two
published authors with identical names using initials may exist, in which case we have aggregated both into the name
of the most popular author.

4www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/, accessed 2017.
5www.github.com/malev/gender-detector, accessed 2017.
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Finally, we evaluate the overall accuracy of this process of gender resolution in a manual verification step.
The outcome of the gender resolution is graph G with an added vertex attribute for the gender. We then denote

by Gk = (Vk, Ek) that subgraph of G = (V, E) including only vertices of known gender, i.e., from which vertices of
unknown gender (and any adjacent edges) have been eliminated (Vk ⊆ V and Ek ⊆ E).

3.3. Global discrete assortativity by gender
Once the gender of the books is resolved and vertices have genders assigned, Newman’s discrete assortativity

coefficient r [21] by categorical vertex features is applicable to the book graph Gk.
The definition of r (equation (2) in [21], pasted as equation 1 below for completion) denotes by i or j any iterator

over the vertex categories (over Gk, i, j ∈ {male, female, collective}). From among all edges in Gk, that fraction of
edges which connect two books from any two gender categories i and j is denoted ei j. The focus of the discrete
assortativity coefficient is on assessing the actual occurrence of same-gender co-buying relationships when compared
to random chance. For this, the term

∑
i eii is the fraction of same-gender edges occurring in Gk. Then, ai denotes

that fraction of edges of which one end is a book from gender category i; for an undirected graph, this may be either
end. In a randomly wired graph, the term

∑
i a2

i would give the fraction of occurring same-gender edges. rk is the
normalized difference between actual and random fractions of same-gender edges in Gk,

rk =

∑
i eii −

∑
i a2

i

1 −
∑

i a2
i

. (1)

No assortative mixing is present in the graph if rk = 0, such as the case of a randomly wired graph. If the graph is
such that

∑
i eii = 1, then it has perfect assortativity, and rk = 1. Perfect disassortative mixing occurs when

∑
i eii = 0

(and rk is negative, but not necessarily −1).
An amount of bias may seep into the calculation of rk if book buyers, after reading a book by author A, are more

likely to consume books by the same author A, which raises the value of the term
∑

i eii. To remove that association
bias, we also define rd, a refinement of Newman’s discrete assortativity coefficient: instead of over Gk, rd is calculated
using Equation 1 over the filtered graph Gd = (Vk, Ed) from which same-author edges were removed, so any edge in
Ed links two different author names (Ed ⊆ Ek).

3.4. Local discrete assortativity by gender
In the case of graphs where assortative mixing varies wildly from subgraph to subgraph, a local discrete assor-

tativity coefficient by categorical vertex features is informative. For a vertex v in Gd, we denote v’s one-hop edge
neighbourhood (the set of all edges ending at v) by Ed

v , and v’s one-hop edge neighbourhood of category i (the set of
all edges between v and a vertex u of category i) by Ed

vi. Then, φd
vi is the fraction of edges local to v ending in a vertex

of category i,

φd
vi =
|Ed

vi|

|Ed
v |
. (2)

We provide basic statistics for these local coefficients, specifically for the vertex category i = female. We use the
simpler notation φv to mean φd

v female. Table 1 summarizes the notation presented in this section.

Table 1: Notation
G = (V, E) full book network
Gk = (Vk, Ek) G including only books with known gender, Vk ⊆ V , Ek ⊆ E
Gd = (Vk, Ed) Gk excluding same-author edges, Ed ⊆ Ek

rk global discrete (gender) assortativity coefficient over Gk

rd global discrete (gender) assortativity coefficient over Gd

φv local discrete (female) assortativity coefficient for vertex v in Gd

We compare the three samples for φv resulted from segmenting Vk into three disjoint subsets, by gender (so, v will
denote in turn a male, female, or collective book). A Kolmogorov-Smirnov two-sample test [30] computes a numerical
distance D between the empirical distribution functions of any two of these samples, with the null hypothesis that the
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samples originate from the same distribution. The test is non-parametric, and distribution-free. We run the test over all
three pairs of φv samples, male vs. female, collective vs. female, and collective vs. male books. If the null hypothesis
is rejected by the test (low p value and a relatively high D statistic above 0), books from different genders associate
differently in terms of local ties to (here) female books.

3.5. Book community detection by co-buying relationships

To identify the structural communities in our large book networks, we use the efficient multilevel (Louvain)
community-detection algorithm [3]. Maximizing the modularity of a partitioning (a value between -1 and 1 mea-
suring the density of links inside as compared to between communities) is computationally hard [4]. Due to this fact,
and the relatively large size of our book networks, a desirable performance factor for an algorithm for community
detection is its complexity; the Louvain algorithm was shown to be particularly efficient over multi-million-vertex
networks [3].

The Louvain technique is an iterative and hierarchical approximation suitable for multi-million vertex graphs: it
first computes small communities by optimizing the local modularity in the neighborhood of each node; these are then
modelled as ‘supernodes’, with the original graph becoming a smaller, weighted graph, which is also partitioned. The
process repeats until the modularity of the partitioning doesn’t increase.

We report the modularity of the partitioning, and analyse the book communities obtained in terms of size and size
distribution, gender makeup and literary genre(s). The set of literary genres are largely, but not entirely, identical
between the US and the UK markets. While an intuitive assumption is that book communities map well over literary
genres, in our preliminary study [6] we observed that this was not necessarily the case: book communities are multi-
genre, although in some cases one genre dominates. Due to this, the mapping between communities and literary
genres is two-dimensional.

4. Results

4.1. Network analysis: clustering, degree distribution, and degree assortativity

Table 2 summarizes basic network statistics for the three datasets; all metrics pertain to the raw book networks
(three instances of the undirected graph G), before resolving the gender of the first author. All networks are mostly
connected. Despite the differences in size and crawling methodology among the book networks, their average de-
grees and clustering coefficients are consistent, and match the four generic Amazon co-purchasing product networks
publicly available at the time of writing in the Stanford Large Network Dataset Collection [14].

Table 2: Network statistics (over graph G)
UK17 US17 US14

network size |V | (number of books) 778 005 1 461 206 972 717
number of co-buying relationships |E| 16 182 063 32 347 573 17 588 632
maximum degree of a book 4 618 8 323 5 739
degree average, stdev 41.59 ± 73.87 44.28 ± 89.86 36.16 ± 68.38
size of largest connected component 777 792 1 461 081 931 318
global clustering coefficient 0.151 0.130 0.158
average local clustering coefficient 0.433 0.439 0.429
global assortativity coefficient by degree -0.037 -0.036 -0.031

The clustering coefficients (low in the global, and medium in the local variant) indicate more connectivity in the
neighbourhoods of high-degree books, so the presence of vertex clusters in the network, with relatively small clusters
compared to the overall network size. (An analysis of the concrete graph clustering is shown later in Section 4.4.)

Newman’s degree-based assortativity coefficients (with values close to −0.03) show mostly non-assortative mixing
by degree. This is akin to other real-world networks, such as the web (0.065 computed over a graph of 269 504
undirected hyperlinks among web pages from a single domain, in [20]), but is unlike the positive, and sometimes high
(up to 0.400) assortativity measured in almost all human social networks, which is likely due to a higher transitivity
of connection in human societies [22].
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Figure 3: Degree histograms, probability density functions (PDF), and power-law fit

The three degree distributions on the raw books networks fit to power-law distributions, i.e., their probability
density function (PDF, or normalised histogram) can be described asymptotically by P(d) ∼ d−α, meaning that the
likelihood that a vertex has degree d in this network decreases by a power of d. Figure 3 shows the three degree
distributions as histograms (top row) and also as a PDF and its power-law fit, with exponents α around 3.1 and a good
fit over the empirical data for mid-range degrees above 100 (bottom row). This holds for other real-world networks,
such as the web, with most exponents between 2 and 3 [1]. Thus, online book networks are scale-free: they lack a
characteristic degree, as the vertices have dominating low degrees, but also a long tail of high degrees.

4.2. Gender analysis: statistics and assortativity

Around 88% of the books had their gender resolved (Table 3); the remaining have their gender annotated as
unknown in graph G, and are removed to construct Gk and Gd.

Table 3: Gender statistics (over graphs Gk and Gd)
UK17 US17 US14

% books with known gender 88.2% 87.9% 88.0%
number of books with known gender |Vk | 686 507 1 284 512 855 519
number of co-buying relationships |Ek | 13 125 164 26 507 425 14 421 568
gender ratios in Gk (% of male, female, collective books) 61.6% 32.4% 6.0% 60.7% 33.2% 6.1% 61.0% 33.8% 5.2%
global gender assortativity rk 0.471 0.498 0.485
number of co-buying relationships |Ed | 11 233 395 22 278 441 12 636 474
global gender assortativity rd 0.370 0.392 0.405
average local gender assortativity φv

(among male, female, collective books) 0.198 0.562 0.234 0.203 0.577 0.250 0.197 0.590 0.257
median local gender assortativity φv

(among male, female, collective books) 0.111 0.571 0.143 0.115 0.600 0.149 0.103 0.619 0.163

We evaluate to what extent the gender resolution is correct, over random samples of 100 books (whose first authors
were resolved into a gender), one from each of the three datasets. We verify the gender results for these records
manually; of the 300 instances, we found 2 wrong calls: a French first name whose gender is different in English than
in French, and a collective name misinterpreted as an individual person. We conclude that, while incorrect instances
exist, their numbers are not significant, and do not threaten the validity of the results.

Among the books with known gender, a majority (over 60%) have a male first author, and around 33% a female
first author (Table 3). Newman’s global coefficients of assortativity by gender (rk and rd, i.e., with and without same-
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author links) are above 0.47 and 0.37, respectively: the book networks display overall assortativity by gender, i.e.,
preferential attachment of same-gender books, above random chance.

The local coefficients of assortativity with female books (φv) in Gd vary substantially with the gender of vertex v
itself. On average, only roughly 20% of the books co-bought with books v written by male first authors have female
first authors; the median is lower, at 10-11% across the three datasets. In contrast, both the average and the median φv

over books v by female authors are 56-62% (Table 3, where the φv values are given as ratios in [0, 1]).

0.0 0.5 1.0
Book  value

100

101

102

103

104

105

B
oo

k 
co

un
t

 avg UK17
male books

 histogram

0.0 0.5 1.0
Book  value

100

101

102

103

104

105

B
oo

k 
co

un
t

 avg UK17
female books

 histogram

0.0 0.5 1.0
Book  value

100

101

102

103

104

105

B
oo

k 
co

un
t

 avg UK17
collective books

 histogram

0.0 0.5 1.0
Book  value

100

101

102

103

104

105

B
oo

k 
co

un
t

 avg US17
male books

 histogram

0.0 0.5 1.0
Book  value

100

101

102

103

104

105

B
oo

k 
co

un
t

 avg US17
female books

 histogram

0.0 0.5 1.0
Book  value

100

101

102

103

104

105

B
oo

k 
co

un
t

 avg US17
collective books

 histogram

Figure 4: Histograms of three φv samples: books v of male (left), female (center) and collective (right) gender. US14 is similar and omitted.

The histograms of the three φv samples are shown in Figure 4; US14 is similar, and is omitted from the figure.
The distribution of φv where the gender of v is male (Figure 4, left) is in contrast with that where the gender of v is
female (center) and collective (right). The Kolmogorov-Smirnov two-sample tests (statistics in Table 4) reject the null
hypothesis that male and female (also: collective and female) books associate similarly, with a D statistic above 0.5
in all cases.

Table 4: Kolmogorov-Smirnov statistics: distance D (with confidence level p) between the empirical distributions of φv where v are male, female,
or collective books

UK17 US17 US14

distance male-female D = 0.500, p < 0.001 D = 0.506, p < 0.001 D = 0.517, p < 0.001
distance collective-female D = 0.445, p < 0.001 D = 0.434, p < 0.001 D = 0.429, p < 0.001
distance male-collective D = 0.059, p < 0.001 D = 0.074, p < 0.001 D = 0.094, p < 0.001

4.3. Genre analysis: gender distribution with literary genre
Among the books with resolved gender (graph Gk), in both UK17 and US17, there are a total of 34 literary genres

with at least 500 books per genre. We aggregate all books in Gk either (a) without a stated genre, or (b) in minor
genres containing under 500 books into the default genre called Other. Amazon’s American genres differ slightly in
name from the British ones (e.g., the British Crime, Thrillers & Mystery aligns to the American Mystery, Thriller &

Suspense).
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Figure 5: The size and gender breakdown of major literary genres in UK17 and US17

Figure 5 (bottom) shows the breakdown of each literary genre by the gender of the first author, for both UK17 and
US17; the genres are shown in ascending order of the percentage of female first authors per genre, and in comparison
to the global ratio of female authors across all genres in Gk (shown as a horizontal line). Figure 5 (top) adds the size
of each genre, i.e., its book count; these counts add up to the size of graph Gk. A small minority of relationship-
oriented genres are largely female: British Romance (approximately 14 000 books) is 94% female, and American
Romance (also 14 000 books) is approximately 95% female. On the other hand, British History (30 000 books),
Comics & Graphic Novels (19 000 books), Computing & Internet (9 000 books), and Humour (2 000 books) are
all 80-85% male. Similarly, American Sports & Outdoors is 87% male, with Computers & Technology, Comics &

Graphic Novels, Science & Math, and Engineering & Transportation also above 80% male.

4.4. Community analysis: preferential gender and genre in book communities

While some of the literary genres are unsurprisingly gender-skewed in authorship, a fact also found earlier in [25],
this only translates into “bubbles” of authorship from a single gender only if readers effectively consume books limited
to one or a few genres. Our analysis of book communities over graph Gk finds that while (a) genres are not isolated
in the readers’ buying preferences (i.e., different genres do get co-bought by readers), (b) the assortativity by gender
found in Section 4.2 is due to the existence of cross-genre book communities, with some of these book communities
even more gender-skewed than individual genres.

For the community analysis, the Louvain community-detection algorithm partitions the graphs Gk, with high
values for the modularity metric: 0.86, 0.83, 0.84 for UK17, US17, and US14, respectively. This process of commu-
nity detection comes with limitations: (a) the problem of extracting communities from such large graphs likely has
multiple similar solutions, all of very similar modularity coefficients, and (b) the algorithm is a greedy heuristic, so
does not necessarily produce an optimal partition of the graph. In this respect, we experimented with running the
community detection repeatedly over the book networks; the resulting solutions occasionally merged a few of the
clusters, but always obtained nearly indistinguishable, high modularity values, with insignificant change in the most
gender-segregated communities.

Figure 6 shows the sizes of all communities found (including those of small size); the number of communities
(data points Figure 6) is low, leading to data sparseness, so the histogram of community sizes (Figure 6, top), is
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Figure 6: Community-size histograms, probability density functions (PDF), and power-law fit

first smoothed into a probability density function (PDF)6, which is then fitted to a power-law density function with
exponents α slightly above 1 (Figure 6, bottom). Thus, asymptotically, communities (like vertex degrees) are also
scale-free and lack a characteristic size.

We study all communities larger than 500 books. This amounts to 45 communities for UK17, 61 for US17, and
57 for US14. Maps from community to literary genre (for UK17 and US17) are in Figure 7; this shows which ratio of
books from each book community comes from which major genre.

Some book communities are dominated by one literary genre; e.g., the British nonfiction book community C8
(2000 books) consists mostly of books from the Sports, Hobbies & Games category (92%). Other book communities
are spread across genres; e.g., in the British book community C25 (4000 books), several nonfiction literary genres are
represented substantially, e.g., Languages (43%), Society, Politics & Philosophy (25%), and Reference books (9%).
These two communities are visualised in terms of gender and genre makeup in Figure 8. Two other examples (the
British fiction-book communities C1 and C3) were given in Figure 1 (of Section 1).

Finally, the gender makeup of all book communities is shown in Figure 9, for the three datasets. In comparison
with the gender makeup of literary genres (Figure 5), notable is the fact that there exist book communities which are
more gender-segregated than all literary genres. The lowest percentage of female authors in a British literary genre
is 9.38% (in Sports, Hobbies & Games), yet the lowest percentage of female authors in a British book community
is 0.50% (in C1, shown in Figure 1, right). Compared to the most female British literary genre (Romance, 93.95%
female), British C3 (Figure 1, left) is 99.85% female. Similarly for male authors: while the most male British genre is
History, at 84.60% male, the most male British book community is C1, at 99.33% male.

The graph data and further visualisations for this study are publicly available [5].

5. Discussion and conclusions

This study measured, using both global and local graph metrics over large graphs of online book co-sales, the
degree to which book readers will read the work of authors from both genders. There are limitations to the methodol-
ogy: the process of resolving the gender of the main author in millions of book records is inherently imperfect (e.g.,
non-English author names and names with initials are particularly likely to remain with unresolved gender, and a
small fraction of wrong calls in gender resolution exist).

We found gender homophily (or assortative mixing) above the expected baseline given by the overall lower ratio
of female authors. In particular, the average reader of female-authored books prefers to buy many other female books

6The smoothed PDF of community sizes is computed as follows. Any data point (x, y) from the histogram of community sizes is normalized
into a PDF data point. Then, if this data point is adjacent on the x axis to intervals without data points, it is weighted down in y value proportionally
to the width of the interval without data.
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Figure 7: Which percentage of a community comes from which literary genre? Maps from communities to literary genres

– over half of the total number of books co-bought, a fraction which is remarkably close to the ratio of females in the
general society, and which essentially corrects the effect of the baseline homophily. On the other hand, the average
reader of male books prefers to buy substantially fewer female books than the baseline, thus reinforcing the gender
homophily.

We measured the gender makeup of all major literary genres, and (expectedly) found the sports, technical, and
comic-book categories to be substantially male, and the relationship-related, children, and cook-book genres sub-
stantially female. Less expectedly, we found structural, sales-driven book communities which are even more binary
than individual genres: some communities are made entirely by one author gender, with examples of extreme local
polarization within the main fiction literary genres.

These numerical results signal the existence of a substantial number of texts which are written for, marketed to,
recommended for, or simply appeal to, a single gender of readers – likely the same gender as that of the authors of
these texts. This supports the idea that the culturally established “binaries” of gender [23] in previous generations
are still present, and reflect into book consumption. We leave for future work the analysis of which type of content,
within a literary genre, correlates with a gender-skewed readership.
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Figure 8: Female-authored books in orange, male books in blue, collectively authored books in white: examples of book communities based on
amazon.co.uk book sales; the largely single-genre community C8 (left) and the multi-genre community C25 (right)
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Figure 9: The size and gender breakdown of book communities in UK17, US17, and US14
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