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a b s t r a c t

In this paper, a comprehensive model for the prediction of the state of charge of a battery is presented.
This model has been specifically designed to be used in simulation tools for energy management in
(smart) grids. Hence, this model is a compromise between simplicity, accuracy and broad applicability.
The model is verified using measurements on three types of Lead-acid (Pb-acid) batteries, a Lithium-ion
Polymer (Li-Poly) battery and a Lithium Iron-phosphate (LiFePo) battery. For the Pb-acid batteries the
state of charge is predicted for typical scenarios, and these predictions are compared to measurements
on the Pb-acid batteries and to predictions made using the KiBaM model. The results show that it is
possible to accurately model the state of charge of these batteries, where the difference between the
model and the state of charge calculated from measurements is less than 5%. Similarly the model is used
to predict the state of charge of Li-Poly and LiFePo batteries in typical scenarios. These predictions are
compared to the state of charge calculated from measurements, and it is shown that it is also possible to
accurately model the state of charge of both Li-Poly and LiFePo batteries. In the case of the Li-Poly battery
the difference between the measured and predicted state of charge is less than 5% and in the case of the
LiFePo battery this difference is less than 3%.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Batteries have become an important attribute of future energy
systems [1]. Examples include using a battery (1) for emergency
situations, (2) to store electricity generated by photo-voltaic panels
(PV-panels) during the day for usage during the night, and (3) to
store electricity at times it is cheap for usage at times it is expensive.
Furthermore, to get insight in theworking of future energy systems,
more simulations are used for example to predict weak points in
existing grids [2], to investigate the effect of increasing infeed of
renewable energy, or to explore the possibility of new types of grids
[3]. To be able to accurately estimate the energy usage and power
flows in a grid for such simulations, accurate models are needed for
all relevant devices connected to the grid, including batteries.

To describe the behavior of batteries a whole set of models and
methods are available. Many of these models and methods are
suitable for state of charge (SoC) estimation [4], but most of these
are only suitable for one specific type of battery, for example lead-
Ltd. This is an open access article u
acid (Pb-acid) [5,6]. For Pb-acid batteries, some of these models are
even very accurate. The Schiffer-model [7] for instance is very ac-
curate, and takes most physio-chemical processes that occur in the
battery (corrosion, acid stratification, gassing) into account. How-
ever, this model requires solving of a large number of equations and
(estimated) values for 28 different parameters, many of which are
only available to the manufacturers of the battery. The Kinetic
Battery Model (KiBaM) introduced by Manwell et al. [8] takes less
phenomena into account, and can predict the SoC using only 3
parameters, making use of non-linear equations. Other models that
yield high accuracies for the SoC prediction, like the Husnayin
method [9] make use of elaborate algorithms and require extensive
computations and large data sets to be able to learn how to predict
the state of charge of a particular battery. Also for lithium-ion
polymer batteries (Li-Poly) many models are available for predic-
tion of the state of charge [10]. For example the Dualfoil model [11]
is very accurate, but also very complex to use, as the model requires
over 50 input parameters to model the behavior of a Li-Poly battery,
whereby again much of the needed information may only be
available to the developers or manufacturers of the battery. The
Thevenin model, a type of equivalent circuit model, can be used to
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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predict the SoC of LiFePo batteries, see e.g. Refs. [12,13], the model is
considered very reliable, however the model parameters are diffi-
cult to determine and the model itself complex to use [14]. A more
generally applicable method is the Coulomb counting method [15],
which can be used to estimate the state of charge of any battery
based on measurements. This method can produce highly accurate
values for the prediction of the current state of charge, but does not
provide a prediction of a future state of charge based on the plan-
ned actions applied to the battery.

Within the context of smart grids and energy management, the
state of the grid and the relevant assets in the near future (e.g the
SoC of a battery) as e.g. energy plans have to be submitted to
markets a day ahead and deviations are penalized [16]. With the
increasing amount of flexibility in batteries (both domestic batte-
ries and those found in electric vehicles), such market mechanisms
are also becoming increasingly interesting in the residential sector
(see e.g. the design of the universal smart energy framework [17]).
Hence, in order to optimize the operation of a smart grid, a scalable
and model-predictive control approach is required to benefit from
the opportunities provided by these flexible assets in the near
future. One example of such a control approach is given by Gerards
et al. [18], who introduce the Profile Steering algorithm to devise a
power consumption plan in a scalable way for a cluster of devices.
The heart of this approach are computational efficient device level
planning algorithms which already exist for buffers (including
batteries) [19] and electric vehicles [20]. However, the presented
approaches utilize an ideal battery model (similar to coulomb
counting), and thus they do not take battery voltage into account.
Therefore, the predicted energy and power that the battery can
provide may be estimated overly optimistic, resulting in deviations
from the planning in reality. A model is needed that can accurately
predict the future SoC while maintaining a low level of complexity
to make it applicable for simulations of clusters of hundreds/
thousands of distributed battery systems.

An existing simpler model for for battery State of Charge pre-
diction is the Diffusion Buffer model1 (DiBu-model) [21,22]. It has
been developed to facilitate sufficiently accurate State of Charge
(SoC) predictions, while being simple enough to be used within
decentralized energymanagement tools like e.g. the TRIANA [23,24]
and DEMKit [25,26] smart grid modelling environments.

The DiBu-model can be used to predict the effect of a sequence
of actions (charging or discharging the battery) for several intervals
in the future on the state of charge of a battery. Moreover the DiBu-
model is more general, meaning that it has been designed to
simulate the behavior of various battery types. It is based on a
model for the prediction of the SoC in thermal energy storages,
developed by van Leeuwen et al. [27]. The idea of the DiBu-model is
first described in Ref. [21], where the similarities between thermal
energy storage and electrical energy storage are discussed, and the
first version of the model is presented. Also some difficulties and
problems of the model are pointed out. In Ref. [22] these problems
are addressed, and an improved model is presented. Also first re-
sults of the predictive capabilities of the model are presented. This
paper adds a broad analysis of the predictive capabilities of the
DiBu-model and a demonstration of its applicability on various
types of batteries.

In Section 2 the DiBu-model is briefly explained, and it is shown
how the relevant parameters can be determined from battery
measurements. In Section 3 the batteries andmeasurement devices
used in the research are described. The predictive capabilities of the
1 The name Diffusion Buffer model for battery SoC predictionwas chosen because
the idea for this model came from a model designed to estimate the SoC of a heat-
buffer.
DiBu-model are demonstrated by predictions of the state of charge
(Section 4.1) of three different Pb-acid batteries during various
charge, discharge and idle steps. In Section 4.2 improvements to the
SoC predictions are discussed. The wide applicability of the DiBu-
model is shown in Section 4.3, where the model is applied to a
Lithium-ion Polymer (Li-Poly) and a Lithium Iron-phosphate
(LiFePo) battery. Conclusions of all findings are included in all
subsections of Section 4, and a general conclusion on all results is
given in Section 5. Lastly the scope of possible future work is dis-
cussed in Section 6.

2. A comprehensive model for battery SoC prediction

The model proposed in Refs. [21,22] predicts the state of charge
(SoC) in a future point in time (t), as a percentage of the maximum
capacity (Emax) in Wh, based on the SoC at the current time (t-1).
More precisely the state of charge (SoCt), given as a fraction of the
battery capacity, is calculated by adding the change of the SoC
during time interval [t-1,t] to the previous SoC (SoCt�1). The change
of the SoC is based on the current (It) and voltage (Ut) in that time
interval Dt between t-1 and t. In detail we have:

SoCt ¼ SoCt�1 þ
Ut$It$Dt
Emax

(1)

To calculate the SoC at some time T (SoCT) starting from an initial
SoC at time 0 (SoCstart) we need to know Emax and the current (It)
and voltage (Ut) used during the time intervals [t-1,t], t¼ tstart … T.
The current (It) corresponds to what is applied to or demanded
from the battery in the time interval. To calculate the voltages we
consider four states of the battery: discharging (2a), idle time after
discharging (2b), charging (2c) and idle time after charging (2d). For
each of these four states, a different expression is used to determine
the voltage. The basic formulas for these expressions are as follows.
(The used parameters a, b, g, d, Umax t�0 and SoCs0 are explained
later.)

Ut ¼ Ut�1 þ
a$It�1

SoCs0
(2a)

Ut ¼ Ut�0 þ
�
Umax � Ut�0

�
$

0
@1� e

� t�t�
0

b$ðt�t�
0Þþg

1
A (2b)

Ut ¼ Ut�1 þ
It�1

d
(2c)

Ut ¼ Ut�1 (2d)

In Fig. 1, a schematic representation of the battery voltage dur-
ing charge, discharge and idle steps is given.2 When the battery is
discharged Equation (2a) is used, in which the voltage (Ut) is
calculated from the used current (It) in time interval [t-1,t], a con-
stant a and the state of charge at the beginning of the discharge
step (SoCs0). When the battery is idle, after a discharging step,
Equation (2b) applies, in which the voltage (Ut) is calculated from
the voltage at the beginning of the idle step (Ut�0 ), the starting time
of the idle step (t�0), the maximum voltage the battery can reach
(Umax) and constants b and g. When the battery is charged, Equa-
tion (2c) applies, inwhich the voltage (Ut) is calculated based on the
used current (It) and a constant d. When the battery is idle after
2 In order to keep the model as simple as possible, not all physical and chemical
processes that can occur in a battery have been taken into account. Justifications for
(most of) these choices have been discussed in previous publications, [21,22].



Fig. 1. Schematic representation of the battery voltage during charge, discharge and
idle steps.
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charging, Equation (2d) is used. For Equations (2b) and (2d) it is
assumed that the idle time is short enough so that there are no self-
discharge effects.

Estimates for the parameters a, b, g and d can be determined
dependent on battery type, using e.g. the least-squares method on
voltage measurements during the charging and discharging of the
battery with a constant current [21]. The measurements necessary
to determine the parameters a, b, g and d are outlined in
Refs. [21,22]. Typical measurements to determine the parameters,
and some example results are given in Fig. 2. The value of param-
eters a and d are the slopes of the linear part of a constant current
discharge curve (see Fig. 2a) and a constant current charge curve
(see Fig. 2b) respectively. Multiple measurements, using various
charge and discharge currents are used to determine values for a

and d to ensure accuracy. Note that the behaviour of the voltage
Fig. 2. Measurements used in the determination of parameters a, b, g and d for lead-aci
measurements.
during the constant current discharge of a battery is not completely
linear (see Fig. 2a). However, in the model a linear approximation is
made. When the battery is discharged with higher discharge cur-
rents the resulting discharge curve is diverging more form a linear
curve. This behaviour is illustrated in Fig. A.1, in the appendix,
which shows voltages during the constant current discharge of a
typical lead acid battery with various discharge currents. This im-
plies that the prediction of the voltage of the battery during dis-
charging is less accurate when the discharge current is higher.

To determine the values of parameters b and g, voltage mea-
surements with two consecutive discharge steps and an idle period
in between are used, see Fig. 2c. The voltage measured during the
idle period, however, is not the real battery voltage but the open
circuit potential (OCP). In practice the OCP is always higher than the
discharge voltage, but here we can use the progression of the OCP
in time, to determine the voltage at the start of the second
discharge step. Again, multiple measurements are done using
various discharge currents and idle periods to determine accurate
values for the parameters. In a final step the parameters are once
more verified by comparing the state of charge calculated from the
measurements (SoCmeas) and the state of charge calculated using
the DiBu-model (SoCDiBu). In the presented case the difference
between the SoCmeas and the SoCDiBu is hardly visible and the
maximum difference is calculated as 0.48%, (See Fig. 2d).

3. Materials and methods

In the following the measurements on lead-acid batteries are
performed using a Vencon UBA5 battery analyzer [28], under
standard conditions. The Vencon UBA 5 battery analyzer has a
voltage accuracy of ± 0.2% and a current accuracy of ± 0.5%. The
measurements on Li-Poly and LiFePo batteries are done on a Cadex
d battery. Note that the actual SoC in Fig. 2d is calculated from voltage and current
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C8000 battery analyzer [29], under standard conditions. Both the
Vencon UBA5 (see Fig. A.2a) and the Cadex C8000 (see Fig. A.2b)
battery analyzer are multi-purpose devices, used to measure the
voltage, current and temperature, and to provide the load and
charge. Using either device a sequence of charging, discharging and
resting steps can be programmed, the analyzer then executes these
steps and records the applied current and resulting voltage and
temperature. The Cadex C8000 battery analyzer has a voltage ac-
curacy of ± 0.1% and a current accuracy of ±0.25%. The parameters
a, b, g and d, as well as the parameters necessary for the application
of the KiBaMmodel are determined using the results of at least four
separate measurements on the relevant battery. The lead-acid
batteries used for this work are commercially available. The Con-
rad battery, is a Conrad CP672 valve regulated lead acid battery, the
Yuasa battery is a Yuasa NP7-6 valve regulated lead acid battery and
the Multipower battery is a MP7-6S lead-acid battery. The Li-Poly
and LiFePo batteries are Dan-energy batteries, also commercially
available. All measurements are carried out within safe operating
limits (voltage, current and temperature) as supplied by the
battery-manufacturer to ensure that the batteries are not damaged.
4. Results & discussion

In the following we first determine for the three lead-acid (Pb-
acid) batteries the parameters presented in Section 2 using the
model and method outlined also in that section. The three tested
batteries havemore or less the same specifications, but are made by
different manufacturers; Conrad, Yuasa and Multipower, (the bat-
teries are referred to by these names.) The achieved results are
presented in Table 1. For all three tested batteries, the values for the
parameters a, b, g and d respectively are very similar. The one
exception to this is the g value for the Multipower battery, which is
three times smaller than the g value for the other two batteries, the
reason for this deviation is not yet clear. Using the parameters in
Table 1, the DiBu-model given by formulas (1) and (2), is applied to
predict the behaviour of the Conrad, Yuasa andMultipower batteries
in a typical scenario. The voltage and SoC of each battery are pre-
dicted during consecutive charge, discharge and idle steps. The
applied currents for each step in the scenario are given in Table 2.

The prediction of the voltage is not the main goal of the DiBu-
model, but a necessary step in the SoC prediction. Therefore only
one example of this step is presented. In Fig. 3 the measured and
predicted voltage of the Conrad battery, under the applied currents
is shown. The pattern of the predicted voltage, resembles the
pattern of the measured voltage, however, the difference between
the predicted and measured voltage is up to 0.54 V (or 7.7% of the
maximum voltage) which seems to be quite large. Furthermore the
difference between the prediction and the measurement is largest
in discharging steps (Step 5 and 9) where the battery is discharged
with 1 A, and 0.8 A respectively. However, as the goal of this model
is not to give an accurate prediction of the battery voltage, but
rather give an accurate prediction of the SoC this deviation of the
voltage on its own is not directly an issue. Therefore, in the next
section we investigate the SoC predictions in more detail.
Table 1
Characteristics and parameters determined for the three tested lead-acid batteries.

Conrad Yuasa Multipower

Rated capacity (Ah) 7,2 7,0 7,0
Nominal voltage (V) 6,0 6,0 6,0
a (V/A) 3030� 10�5 3756� 10�5 4618� 10�5

b (�) 0,268 0249 0,218
g (min) 2684 2323 0,839
d (A/V) 2438� 104 1727� 104 1055� 104
4.1. SoC predictions

The prediction for the state of charge for each of the three
batteries is displayed in Fig. 4. In this figure, the predicted SoC is
compared to the SoC calculated directly from measurements on
each of the three batteries, by means of the Coulomb counting
method [15]. Furthermore the SoC predicted with the DiBu-model
is also compared to the SoC predicted using the KiBaM model. The
KiBaM model or Kinetic Battery Model is a well known and often
used model for the prediction of the SoC of lead-acid batteries [8].
The parameters used for the predictions in Fig. 4 are included in
Table A.1. The differences between SoCmeas and SoCDiBu and SoCK-
iBaM, respectively, for al steps of the three tested batteries are
included in Table 2. Note that the SoC differences included in the
Tables A.2, A.3, A.4 and A.5 as well as those mentioned in the text
are absolute differences between SoC's, expressed in percentage of
the maximum SoC.

Fig. 4a shows the measured and predicted SoC of the Conrad
battery. At the start, the SoC predicted with the DiBu-model (SoC-
DiBu) deviates only slightly from the measured SoC (SoCmeas): from
the start of the experiment to the end of Step 8 (t ~ 1100min), the
maximum difference between the SoCDiBu and the SoCmeas is 2.6%.
During Step 9, however, the deviation between the SoCDiBu and the
SoCmeas doubles to 5.1%. From step Step 10 onward the deviation
increases slowly, reaching a maximum difference between the
SoCDiBu and the SoCmeas of 12.1% at the end of Step 14. The SoC
predicted using the KiBaMmodel (SoCKiBaM) starts out with a slight,
increasing deviation. From the start of the experiment to Step 12 at t
~ 1400min, the SoCKiBaM is less accurate than the SoCDiBu. From Step
12 onward however, SoCKiBaM is slightly more accurate than the
SoCDiBu.

The measured and predicted SoC of the Yuasa battery are shown
in Fig. 4b. From the start of the experiment to the end of Step 8 (t ~
1250min), there is only a slight difference between the SoCDiBu and
the SoCmeas: the maximum difference in this time interval is 1.5%.
The difference increases to 8.4% over the three discharge steps that
follow. In the last charge step (Step 14), the difference between the
SoCDiBu and the SoCmeas increases slightly, to 8.5% at the end of the
experiment. From the start of the experiment, until the middle of
Step 10 (t ~ 1400min), the SoCKiBaM is less accurate than the SoCDiBu.
During the following discharge steps the SoCKiBaM is more accurate
than the SoCDiBu. During the final charging step (step 14) the
SoCKiBaM again becomes less accurate than the SoCDiBu. Moreover,
over-all the SoCDiBu is more accurate than the SoCKiBaM.

The SoC predicted for the Multipower battery compared to the
measured SoC, both shown in Fig. 4c, behave in much the sameway
as was the case for the Conrad and Yuasa batteries. However, where
the differences between SoCDiBu and SoCmeas for the Conrad and
Yuasa batteries strongly increase during Step 9, for the Multipower
battery it does not. The difference between the SoCDiBu and the
SoCmeas is small (1.9%) at the start of the experiment, during the
experiment it slowly increases to 9.7% at the end of the final step
(Step 14). From the start of the experiment, the SoCKiBaM is slightly
more accurate than the SoCDiBu. During Steps 10e13 the SoCDiBu is
more accurate than the SoCKiBaM, and in the final step Step 14 the
SoCKiBaM is more accurate again. The SoCDiBu and SoCKiBaM are very
similar in this case, the absolute difference between the two is
never more than 0.9%.

A second scenario has been explored where the Conrad battery
is cyclically charged and discharged. The battery is charged with
400mA for 8 h, and discharged with �400mA for 8 h, between the
charge and discharge steps the battery is idle for 30min. The
applied currents for each step in the scenario are given in Table 3.
Fig. 5 shows the measured and the predicted SoC using the DiBu-
model and the KiBaM model during this scenario.



Table 2
The charge, discharge and idle steps used in the experiments described in Figs. 3 and 4. To protect the batteries a maximum cut-off voltage of 6.9 V and minimum cut-off
voltage of 5.5 V was set. In some steps the cut-off voltage was reached before the step was completed; in these instances the real charge or discharge step length, dis-
played in Figs. 3 and 4 is shorter than indicated in this table.

Step # Type Current (A) Length (min) Total (min) Step # Type Current (A) Length (min) Total(min)

1 Charge 0.4 420 420 8 Charge 0.2 240 1455
2 Idle 0 15 435 9 Discharge �0.8 240 1695
3 Discharge - 0.5 60 495 10 Idle 0 30 1725
4 Idle 0 30 525 11 Discharge �0.5 240 1965
5 Discharge - 1.0 60 585 12 Idle 0 15 1980
6 Charge 0.4 600 1185 13 Discharge �0.1 600 2580
7 Idle 0 30 1215 14 Charge 0.4 600 3180

Fig. 3. The applied current and resulting voltage during a the test on the Conrad battery. The black vertical lines represent the moment of step-change.

B. Homan et al. / Energy 171 (2019) 205e217 209
In the first cycle the SoCDiBu matches the SOCmeas closely, the
largest deviation in this cycle is 3.2%, which occurs at the end of
Step 3, the discharge step. During the second cycle the difference
between SOCmeas and SoCDiBu remains mostly constant during Step
4, 5, 6 and then doubles to 6.4% at the end of the discharge step, Step
7. The third cycle shows again an increase (to 9.7%) in the deviation
between SOCmeas and SoCDiBu in the discharge step (Step 11). So the
deviation between SOCmeas and SoCDiBu is progressively worse in
consecutive cycles, and in this scenario the deviation increases
mainly during the discharge steps. The SoCKiBaM already shows a
3.3% deviation from the SoCmeas after the first step. The deviation
between SOCmeas and SoCKiBaM is also progressively worse in
consecutive cycles but the deviation increases during the charge
steps (Step 1, 5, 9, and remains constant during the other steps. In
this scenario the SoC predicted using the DiBu-model is always
more accurate than the SoC predicted using the KiBaM model. The
deviations between the SOCmeas and SoCDiBu or SoCKiBaM for each
step have been included in Table A.3 in the appendix.

In a different publication [30] the DiBu-model has also been
used to predict the SoC of more realistic scenarios, than those
presented in Figs. 4 and 5. Comparisons between the SoCDiBu and
the SoCmeas (in Fig. 6 of that publication) show that the predictions
made using the DiBu model match reality very well. The difference
between the SoCDiBu and the SoCmeas is generally less than 1.5%.

From the experiments on the Conrad, Yuasa and Multipower
batteries, outlined in Tables 2 and 3 and shown in Figs. 3e5 it can be
concluded that:

� The accuracy of the SoCDiBu is very good in the first 1000min of
both experiments, having a maximum difference to SoCmeas of
only 2.5% in the first experiment, and 3.2% in the second.
� The accuracy of the SoCDiBu deteriorates after 1000min, leading
to a maximum difference between the SoCDiBu and the SoCmeas

of 12.1% in both experiments.
� The SoCDiBu prediction for discharge steps is less accurate than
for charge steps.

� The level of accuracy of the SoCDiBu is comparable to the level of
accuracy of the SoCKiBaM. Generally, in charging steps the SoCDiBu

is more accurate than the SoCKiBaM, while the reverse is true in
the discharging steps.
4.2. Improvements of the SoC prediction

The state of charge at time t is predicted using the measured
values for the voltage and current at time t-1. In each consecutive
step of the state of charge prediction, the values predicted for the
previous time step are used as input. Although the SoC prediction of
one single time step (Dt¼ 30 s) produces only a very small error, the
SoC predicted over a longer period of time requires many consec-
utive predictions and in each of the consecutive predictions the
error accumulates, so the total error may increase and become
considerable. In the previous experiments we choose to predict the
state of charge over long periods up to 3400min (i.e. 57 h, or 6800
steps of Dt) in advance. In the experiments the SoCDiBu deviated at
most 2.5% from the SoCmeas in the first 1000min, after which the
accuracy of the SoCDiBu started deteriorating. This implies that, in
this experiment the accuracy of the state of charge prediction using
the DiBu-model is only of a high quality when the prediction ho-
rizon is not too long. Based on these insights, in a practical setting,
the starting values for the battery voltage (Ut) and state of charge
(SoCt) should be calibrated after some period of time based on



Fig. 4. State of Charge of selected batteries (see Table 1), calculated from measurements on the batteries compared to predictions using the DiBu-model and the KiBaM model.

Table 3
The charge, discharge and idle steps used in the cyclic charging/discharging experiment described in Fig. 5.

Step # Type Current (A) Length (min) Total (min) Step # Type Current (A) Length (min) Total(min)

1 Charge 4 480 480 7 Discharge �4 480 2010
2 Idle 0 30 510 8 Idle 0 30 2040
3 Discharge �4 480 990 9 Charge 4 480 2520
4 Idle 0 30 1020 10 Idle 0 30 2550
5 Charge 4 480 1500 11 Discharge �4 480 3030
6 Idle 0 30 1530

B. Homan et al. / Energy 171 (2019) 205e217210
measurements or other indications for the values of (Ut) and (SoCt)
achieved at the time of calibration. These standard techniques
should improve the accuracy of the prediction for the next time
interval. It was also observed that the inaccuracy of the SoCDiBu

increased during the discharging steps, in particular when a high
discharging current was applied. Therefore, it is suggested that for
improving the accuracy in a practical setting, the starting values for
the battery voltage (Ut) and state of charge (SoCt) should be
updated after each discharging step. Using these improvements the
maximum prediction horizon is limited to the time of one full
charge/discharge cycle. Moreover, the inaccuracy caused by a
discharge step is corrected immediately after this step, so the
overall accuracy should improve.

Note that if the DiBu-model is used as part of a (smart) grid
simulation, updating the starting values for (Ut) and (SoCt) effec-
tively shortens the maximum time over which the SoCDiBu can be
predicted. However, if the DiBu-model is used to predict the
behaviour of an actual battery, for example when using model-
predictive control, measurements on that battery can be used to
update the starting values for (Ut) and (SoCt). In practice, battery
management hardware (e.g. the Victron Multiplus [31]) is almost
always involved when a battery is used in a (smart) grid environ-
ment. It is common for such a device tomeasure the battery voltage
and current, and determine the actual SoC from these measure-
ments. It is also common for these devices to recalibrate the SoC
determination when the battery is either completely full or
completely empty. The measured voltage, and/or determined SoC
can be used freely to update the (Ut) and state of charge (SoCt) to
increase the accuracy of the prediction.

Based on the results up to now a scenario for possible im-
provements has been explored: the starting values for (Ut) and
(SoCt) are calibrated at the beginning of a step that starts after a



Fig. 5. State of Charge of the Conrad battery, during cyclic charging/discharging, calculated from measurements compared to predictions using the DiBu-model and the KiBaM
model.

Fig. 6. Comparison of the measured SoC and SoC predicted using the DiBu-model for the three batteries, updating the SoCstart and Vstart at the end of each discharge step, or
updating the SoCstart and Vstart at the ending of a step, after some specific time intervals. Note that in some intervals the green lines (representing the improvements) completely
overlap the black line (representing the measurement) making these lines difficult to distinguish from each other. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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discharge step, i.e. at the beginning of Steps 4, 6, 10, 12 and 14. The
results of these experiments are shown in Fig. 6. The deviations
between the SoCDiBu predicted without improvements, and the
SoCDiBu predicted using the improvements for all steps of the three
tested batteries are included in Table A.4.
Fig. 6a displays the SoCmeas and SoCDiBu for the Conrad battery

with and without the suggested improvements. If the improve-
ments are applied, the difference between SoCmeas and SoCDiBu at



Table 4
Characteristics and parameters determined for the Li-Poly and LiFePo test batteries.

Li-Poly LiFePo

Rated capacity (Ah) 5.2 4.5
Nominal voltage (V) 25.2 26.4
a (V/A) 2.834� 10�4 1.765� 10�4

b (�) 0 0
g (min) 0 0
d (A/V) 2.772� 104 5.169� 104
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the end of the experiment is reduced to 0.5%. This is a significant
improvement to the original experiment, but can be attributed
mainly to the fact that the update occurred just before the start of
the last step (Step 14). However, the maximum difference between
SoCmeas and SoCDiBu during the whole experiment is reduced to
2.8%, which occurs at the end of Step 9. The difference between
SoCmeas and SoCDiBu for the Yuasa battery, (see Fig. 6b) at the end of
the experiment is 0.5%, which is, again a significant improvement to
the original experiment, but again that is caused by the update at
the beginning of Step 14. The difference is small over the entire
course of the experiment, staying below 1.3% except for the last part
of step Step 9where the difference increases to 2.7% within 30min.
When the improvements are applied on the SoC predictions for the
Multipower battery, (see Fig. 6c) similar improvements are
observed. The difference between SoCmeas and SoCDiBu at the end of
the experiment is reduced to 2.1%. The maximum difference be-
tween the SoCmeas and SoCDiBu is reduced from 9.7% to 2.6% over all,
where the maximum difference occurs during the last 30min of
Step 9. Note that improvements also could be applied to the pre-
dictions done with the KiBaM model. It is to be expected that the
accuracy of SoCKiBaM is improved if the starting values of Ut and SoCt

are calibrated after each discharge step. However this has not been
explored further in this work.

From the improved experiments on the Conrad, Yuasa and
Multipower batteries, shown in Fig. 6 it can be concluded that:

� The accuracy of the State of Charge predicted using the DiBu-
model can be improved when the time over which the predic-
tion is made is shortened, i.e. if the starting values of Ut and SoCt

are calibrated after a certain amount of time.
� The accuracy of the State of Charge predicted using the DiBu-
model can be improved when the values for Ut and SoCt are
calibrated after a discharge step.
4.3. Verification with additional battery types

To demonstrate the wider applicability of the DiBu-model, the
model is also applied on Lithium-ion Polymer (Li-Poly) and Lithium
Iron-phosphate (LiFePo)3 batteries. The parameters of these batte-
ries, listed in Table 4, were determined using the method outlined
in Section 2. It was determined from the measurements that even
though the capacity recovery effect is present in both Li-Poly and
LiFePo batteries, its effects for the DiBu-model are minimal (see
Fig. A.3). The voltage where the second discharge starts is almost
identical to the voltagewhere the first discharge ends, even after an
idle step of 1 h. For the model this means that the voltage remains
constant during idle steps after discharging, hence the parameters
b and g are both zero.

4.3.1. Lithium-ion polymer batteries
The behaviour of the Li-Poly battery was investigated for a

typical scenario, during a set of consecutive charge, discharge and
idle steps. The characteristics of the different steps, are outlined in
Table 5. Note that this scenario is not the same as the test scenario
for the Pb-acid batteries, this is the result of limitations of the
battery and testing equipment.

In Fig. 7 the SoC calculated from measurements, and the pre-
dicted SoC for the Li-Poly battery are displayed. The pattern of
SoCDiBu follows closely the pattern of SoCmeas but the difference
increases over time. The largest difference between SoCDiBu and
3 Although LiFePo is used in this work as the abbreviation for Lithium Iron-
phosphate, it's proper chemical formula is LiFePO4.
SoCmeas is 4.3%, reached at the start of Step 16. In Steps 1 through 15
the maximum difference between SoCDiBu and SoCmeas is 2.1%,
which is reached at the end of Step 10. After Step 17 the difference
between SoCDiBu and SoCmeas increases in the discharge steps and
decreases somewhat in the charge steps. The difference between
the SoCDiBu and SoCmeas for all steps has been included in Table A.5.

As mentioned the increase in difference between SoCDiBu and
SoCmeas is largest in the discharge steps. At the end of (discharge)
Steps 12, 16 and 21 the difference is 1.7%, 4.3% and 3.9% respectively.
At the end of charge steps that follow these discharge steps, namely
Steps 15, 19 and 22, the difference is 0.9%, 1.3% and 3.3%, which is a
reduction in all cases. This behaviour matches the behaviour
observed for the lead-acid batteries (Section 4.1). The SoCDiBu can
be improved if the values for Ut and SoCt are calibrated after each
discharge step, as proposed in Section 4.2. The green line in Fig. 7
shows the SoCDiBu if these improvements are applied. In this case
the aforementioned differences in Steps 12, 16 and 21 are greatly
reduced. However, the largest difference (4.8%) is now located in
Step 10 and is larger than the largest difference without the im-
provements applied. This is caused by an overestimation of the SoC
in that step. On thewhole, however, the difference between SoCDiBu

and SoCmeas is smaller when the improvements are applied. The
difference between the SoCDiBu, with and without the improve-
ments, for all steps is presented in Table A.5.
4.3.2. Lithium Ironphosphate batteries
The behaviour of the LiFePo batteries (see Table 4) was also

investigated for a typical scenario, during a set of consecutive
charge, discharge and idle steps. The characteristics of the different
steps, are outlined in Table 6. Note, that again the scenario is not the
same as the test scenario for the Pb-acid and Li-Poly batteries, this is
again the result of limitations to the battery and testing equipment.

In Fig. 8 the SoC derived from measurements on the LiFePo
battery (SoCmeas) and the predicted state of charge (SoCDiBu) are
shown. The difference between the SoCmeas and the SoCDiBu in-
creases progressively during the measurement, except during Step
16, where the difference deceases slightly. The largest difference
between (SoCmeas) and (SoCDiBu) is 11.6% and this indeed occurs at
the end of the last step (Step 23). The difference increases most
during the discharge steps, and remains mostly constant during the
charge and idle steps (for the difference per step see Table A.5). If
the improvements proposed in Section 4.2 are applied (the values
for Ut and SoCt are re-calibrated after Steps 4,5,6,10,11,12,13,19,20 and
22), the predictions improve. The corresponding SoCDiBu is also
shown in Fig. 8. When the improvements are applied, the largest
difference between (SoCmeas) and (SoCDiBu) is then 2.7%, and this
occurs at the end of Step 4.

From the experiments on the Li-Poly and LiFePo batteries, out-
lined in Tables 4 and 5 and shown in Figs. 7 and 8 it can be
concluded that:

� The capacity recovery effect is negligible for Li-Poly and LiFePo
batteries, hence the parameters b and g are both zero.



Table 5
The charge, discharge and idle steps used in the experiment described in Fig. 7.

Step # Type Current (A) Length (min) Total (min) Step # Type Current (A) Length (min) Total(min)

1 Idle 0 5 5 12 Discharge �2.6 15 340
2 Charge 2 45 50 13 Idle 0 30 370
3 Charge 1.5 45 95 14 Charge 1.3 30 400
4 Idle 0 15 110 15 Charge 2.2 / 1.2 15 415
5 Discharge �1.3 30 140 16 Discharge �5.2 15 430
6 Idle 0 30 170 17 Idle 0 30 460
7 Discharge �1.3 30 200 18 Charge 2 18.5 478.5
8 Charge 1.5 60 260 19 Charge 2.0 / 0.65 41.5 520
9 Charge 2 25 285 20 Idle 0 10 530
10 Charge 2.0 / 1.0 20 305 21 Discharge �2.6 25 555
11 Discharge �1.3 20 325 22 Charge 1.3 25 580

Fig. 7. State of Charge of the Li-Poly battery (see Table 4), calculated from measurements on the batteries, compared to predictions using the DiBu-model, and compared to
predictions using the DiBu-model updating the SoCstart and Vstart at the end of each discharge step.

Table 6
The charge, discharge and idle steps used in the experiment described in Fig. 8.

Step # Type Current (A) Length (min) Total (min) Step # Type Current (A) Length (min) Total(min)

1 Charge 2 45 45 13 Discharge �4 15 605
2 Charge 0.5 245 290 14 Idle 0 30 635
3 Idle 0 15 305 15 Charge 0.5 120 755
4 Discharge �1 30 335 16 Charge 1 60 815
5 Discharge �1.5 30 365 17 Charge 2 30 845
6 Discharge �2 30 395 18 Idle 0 30 875
7 Charge 1.5 60 455 19 Discharge �0.5 120 995
8 Charge 2 45 500 20 Discharge �1 60 1055
9 Idle 0 15 515 21 Charge 0 15 1070
10 Discharge �1 30 545 22 Discharge �2 20 1090
11 Discharge �2 25 570 23 Charge 1 120 1210
12 Discharge �3 20 590
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� The DiBu model can be successfully used to predict the SoC of
the tested Li-Poly and LiFePo batteries.

� For the Li-Poly battery the difference between SoCDiBu and
SoCmeas

fluctuates over the various charge, discharge and idle
steps. The difference remains quite small, the largest difference
is 4.3%, at the end of step 16.

� For the LiFePo battery the difference between SoCDiBu and SoC-
meas progressively increases, reaching a difference between be-
tween SoCDiBu and SoCmeas of 11.6% at the end of the experiment.

� For both battery types the difference between SoCDiBu and
SoCmeas increases most during the discharge steps.

� For both battery types the accuracy of the State of Charge pre-
diction using the DiBu-model can be improved if the values for
Ut and SoCt are calibrated after each discharge step.
5. Conclusions

A simple yet accurate model for the prediction of the battery
state of charge, the DiBu-model was proposed in Refs. [21,22]. This
model was developed specifically for usage in tools for simulation,
prediction and control of smart grids. As such the model yields ac-
curate predictions of the state of charge, while being simple enough
to apply in such tools. In this work the DiBu-model is applied to
predict the state of charge of several different batteries. The model
predicts the battery voltage during charging, discharging and idle
periods, and based on these voltages the state of charge is predicted.
To apply the model, first four parameters have to be determined
frommeasurements on the battery in question. In a first step it has
been shown that the DiBu-model can be used to accurately predict
the behaviour of various lead-acid batteries. The difference between



Fig. 8. State of Charge of the LiFePo battery (see Table 4), calculated from measurements on the batteries compared to predictions using the DiBu-model, and compared to pre-
dictions using the DiBu-model updating the SoCstart and Vstart at the end of each discharge step.

Table 7
Average and maximum deviation between SoCmeas and SoCDiBu off all experiments
presented in Section 4.

SoC prediction Corresponding Average Maximum Occurs
in

Figure Table deviation
(%)

deviation
(%)

step #

Conrad 4a 2 5.7 12.1 14
Conrad - improvements 4a 2 0.7 2.8 9
Yuasa 4b 2 5.6 8.5 14
Yuasa - improvements 4b 2 0.5 2.7 9
Multipower 4c 2 4.6 9.7 14
Multipower - improvements 4c 2 0.8 2.6 9
Conrad 2 5 3 4.0 9.7 11
Li-Poly 7 5 1.7 3.9 22
Li-Poly - improvements 7 5 1.5 4.8 10
LiFePo 8 6 7.0 11.8 22
LiFePo - improvements 8 6 1.2 2.7 4
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the state of charge predicted using the DiBu-model (SoCDiBu), and
the state of charge calculated from the measurements (SoCmeas) for
all predictions has been summarised in Table 7.

For Pb-acid batteries, the difference between SoCDiBu and SoC-
meas has been shown to be less than 10% for a state of charge pre-
diction over 3000min (~ 50 h). It has also been shown that the
accuracy of the state of charge predictions using the DiBu-model, is
equal to, or in some cases better than the accuracy of state of charge
predictions using the well established KiBaM model. However, the
KiBaMmodel is more complicated and less suited for usage in tools
for simulation, prediction and control of smart grids. Furthermore it
has been shown that the DiBu-model also can be used to accurately
predict the behaviour of Li-Poly and LiFePo batteries. In the case of
the Li-Poly batteries the difference between SoCDiBu and SoCmeas

has been shown to be 4.3% for a state of charge prediction over
600min (~ 10 h). In case of the LiFePo batteries the difference be-
tween SoCDiBu and SoCmeas has been shown to be 11.6% for a state of
charge prediction over 1200min (~ 20 h). It has also been shown
that the accuracy of the predictions can be improved by periodically
updating the starting values for the battery voltage and state of
charge.
6. Future work

Futurework is dedicated to generalise the DiBu-model. One part
of this is the verification of the DiBu-model for other battery types
such as e.g. Nickel-Cadmium and Nickel-Metalhydrate batteries.
Another part is the verification of the model for different load
profiles, such as profiles where the battery operates near or on its
operating limits, profiles where the battery operates well beyond or
below room temperature, or profiles of real house-loads. The
effectiveness of the improvements for reduction of the deviation
between the predicted SoC and the SoC calculated from measure-
ments should also be evaluated for the aforementioned load-
profiles. Yet another topic for future work is the implementation
of the DiBu-model in smart grid simulation software like e.g. TRI-
ANA [23,24] or DEMKit [26].
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Appendix A

Fig. A.1. Typical behaviour of the battery voltage during discharge, with varying
discharge currents, of a 6V 4 A h lead acid battery.



Fig. A.2. The battery analysis equipment used to do the measurements and analyses in this work. As an example two of the Pb-acid batteries are connected to the Vencon UBA5
(A.2a) and a LiFePo battery is connected to the Cadex C8000 (A.2b).
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Table A.1
Characteristics and parameters of the KiBaM model determined for the three test batteries.

Conrad Yuasa Multipower

Rated capacity (Ah) 7.2 7.0 7.0
Nominal voltage (V) 6.0 6.0 6.0
C (As) 2.592� 10�5 2.520� 10�5 2.520� 10�5

k’ (�) 0.664 1.105 0.211
c (�) 0.013 0.008 0.050
Fig. A.3. Example of the determination of parameters b and g for the Li-Poly testing batter
voltage at the beginning of the second discharge step (t¼ 120min), hence b and g are chosen
voltage behaviour during the idle step is ignored.

Table A.2
Maximum deviation between the predicted SoC and the SoC calculated frommeasuremen
c.

Step # Maximum deviation from measured value (%)

Conrad Yuasa

DiBu-model KiBaM model DiBu-model

1 0.9 4.1 0.4
2 0.9 4.1 0.0
3 1.4 4.1 0.5
4 1.4 3.9 0.5
5 2.3 3.9 1.8
6 2.5 5.5 1.8
7 2.5 5.5 1.5
8 2.6 6.5 1.5
9 5.1 6.5 4.8
10 5.1 5.8 4.8
y. The voltage at the end of the first discharge step (t¼ 60min) is almost equal to the
such that the starting voltage of the second discharge step is predicted correctly, an the

ts (in %) for the Conrad, Yuasa andMultipower batteries. Corresponds to Fig. 4a, b and

Multipower

KiBaM model DiBu-model KiBaM model

2.6 1.9 1.6
2.6 1.9 1.6
2.6 2.1 1.7
2.3 2.1 1.7
2.3 2.5 2.0
4.1 3.6 3.2
4.1 3.6 3.2
5.1 4.3 4.1
5.1 5.,0 4.8
4.3 5.0 4.8

(continued on next page)



Table A.3
Maximum deviation between the predicted SoC and the SoC calculated from measurements (in %) for the charge / discharge cycle
scenario for the Conrad battery. Corresponds to Fig. 5.

Step # Maximum deviation from measured value (%)

DiBu-model KiBaM model

1 0.2 3.3
2 0.1 3.3
3 3.2 3.4
4 3.2 3.4
5 3.2 6.7
6 2.7 6.7
7 6.4 6.7
8 6.4 6.7
9 6.4 10.2
10 5.9 10.2
11 9.7 10.2

Table A.4
Maximum deviation between the predicted SoC and the SoC calculated frommeasurements (in %) for the Conrad, Yuasa andMultipower batteries, applying the improvements.
Corresponds to Fig. 6a, b and c.

Step # Maximum deviation from measured value (%)

Conrad Yuasa Multipower

DiBu-model Improvements DiBu-model Improvements DiBu-model Improvements

1 0.9 0.9 0.4 0.4 1.9 1.9
2 0.9 0.9 0.0 0.0 1.9 1.9
3 1.4 1.4 0.5 0.5 2.1 2.1
4 1.4 0.0 0.5 0.0 2.1 0.0
5 2.3 0.9 1.8 1.3 2.5 0.3
6 2.5 0.8 1.8 0.7 3.6 0.9
7 2.5 0.8 1.5 0.7 3.6 0.8
8 2.6 1.1 1.5 1.0 4.3 1.4
9 5.1 2.8 4.8 2.7 5.0 2.6
10 5.1 0.0 4.8 0.0 5.0 0.0
11 6.7 1.1 6.9 1.1 5.5 0.8
12 6.7 0.0 6.9 0.0 5.5 0.0
13 8.1 1.2 8.4 0.6 6.1 0.8
14 12.1 0.5 8.5 0.5 9.7 2.1

Table A.2 (continued )

Step # Maximum deviation from measured value (%)

Conrad Yuasa Multipower

DiBu-model KiBaM model DiBu-model KiBaM model DiBu-model KiBaM model

11 6.7 6.2 6.9 4.6 5.5 5.8
12 6.7 6.2 6.9 4.6 5.5 5.8
13 8.1 7.7 8.4 5.6 6.1 6.9
14 12.1 11.9 8.5 9.0 9.7 8.8

Table A.5
Maximum deviation between the predicted SoC and the SoC calculated frommeasurements (in %) for the Li-Poly and LiFePo batteries, applying the
improvements. Corresponds to Figs. 7 and 8.

Step # Maximum deviation from measured value (%)

Li-Poly LiFePo

DiBu-model Improvements DiBu-model Improvements

1 0.0 0.0 1.8 1.8
2 0.3 0.3 2.1 2.1
3 1.9 1.9 2.1 2.1
4 1.9 1.9 2.7 2.7
5 0.0 0.0 4.1 0.0
6 0.0 0.0 4.7 0.2
7 1.6 1.0 5.3 0.3
8 0.3 2.4 5.1 0.3
9 0.8 3.3 5.1 0.3
10 2.0 4.8 6.1 0.8
11 0.7 3.2 7.2 0.1
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Table A.5 (continued )

Step # Maximum deviation from measured value (%)

Li-Poly LiFePo

DiBu-model Improvements DiBu-model Improvements

12 1.7 1.1 8.4 0.1
13 1.7 0.0 9.7 0.7
14 0.7 0.6 9.7 0.0
15 0.9 1.9 9.8 1.1
16 4.3 2.5 9.4 1.8
17 4.3 0.0 8.8 2.2
18 3.6 0.1 8.8 2.2
19 1.3 2.0 10.1 2.5
20 1.3 2.0 11.2 0.0
21 3.9 0.1 11.2 0.0
22 3.3 0.6 11.8 0.3
23 11.6 0.4
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List of abbreviations

Pb-acid Lead acid
Li-Poly Lithium-ion polymer
LiFePo Lithium Iron-phosphate
PV-panels Photo-voltaic panels
USEF Universal Smart Energy Framework
OCP Open Circuit Potential
SoC State of Charge
SoCDiBu SoC predicted using the DiBu-model
SoCKiBam SoC predicted using the KiBam model
SoCmeas SoC calculated from measurements
KiBam Kinetic Battery model
DiBu-model Diffusion Buffer model
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