Presupposition Accommodation in a Constructive
Update Semantics *

Joris Hulstijn
joris@cs.utwente.nl

Abstract

Presupposition concerns information that is assumed to be part of
the discourse-context by the speaker, as apparent from the syntactic
form of the utterance. The hearer, being cooperative, will normally
fill in missing presupposed information, provided it is compatible with
his/her version of the discourse-context. Several different approaches
to this process of presupposition accommodation can be characterized
using update semantics with an additional stack-structure. Semantic
tableaux can be used to represent the information states of update se-
mantics. Branches of tableaux are constructed during interpretation.
Therefore the approach may be labeled a constructive update seman-
tics.

1 Introduction

A sentence is not a random collection of words. Sentences are put together
following syntactic rules. But not only syntax puts constraints on the use of
words. Example (1) is wrong, because the verb ‘to eat’ expects the subject
to be animate.!

(1) *The stone ate the cake.

Presuppositions are just such constraints on the use of a certain linguistic
construction or choice of words. Constructions carrying such a constraint are
called presupposition triggers. The presupposed information is part of the
meaning of an utterance, just like asserted information. I assume a lexicon
that lists both the asserted and presupposed information for all expressions.

There are several types of presupposition triggers. The verb ‘to eat’
is an example of a lexical presupposition trigger: the presupposition arises
from the meaning of the word. Similar to lexical presuppositions are the

*Research for this paper was done with Henk Zeevat at a-informatica, Faculty of Arts,
University of Amsterdam. The paper has improved thanks to two anonymous referees.
"Wrong or infelicitous utterances are indicated by a *.

2 Presupposition Accommodation in a Constructive Update...

so called factive verbs, like ‘know’ and ‘regret’ that presuppose their com-
plements to be true. On the other side of the scale we have the existential
presuppositions, induced by definite descriptions, proper names, quantifiers
and special focusing constructions like clefts. These referring expressions
presuppose the existence of their referents. Words like ‘but’ or ‘even’ pre-
suppose a more subtle sentence-structure. For a good overview of triggers
see (Gazdar, 1979).

(2) a. John regrets that he killed his wife.
pres: John killed his wife.
ass: John feels remorse.

b. Most of Jack’s children are happy.
pres: Jack has children.
ass: Most of the children of Jack are happy.

c. Fven Fred likes bananas.
pres: Fred is the least likely person to like something.
ass: Fred likes bananas.

What is the relevance of presuppositions to computational linguistics? One
of the main problems in computational linguistics is the notion of context.
Presupposition triggers reveal what the speaker takes to be part of the con-
text. Exploiting this information, may help advance natural language under-
standing. The central notion of this paper is presupposition accommodation:
the way in which the (hearer’s version of the) context is changed, when an
utterance with a presupposition is added to the context (Lewis, 1979; Heim,
1983).

When seen as a form of inference, presupposition accommodation ex-
hibits strange logical properties. This paper attempts to characterize these
properties in a logical framework. I use accommodation strategies to model
several well-known approaches to presupposition from the literature. In this
way different proposals can be compared and evaluated in a single frame-
work. (Section 3)

In Section 2 the logical framework is defined: update semantics (Velt-
man, 1996). Like DRT and other theories of dynamic semantics, update
semantics conceives of meaning as the potential change it makes to the
information in the context. But unlike DRT, update semantics views in-
formation as a way of distinguishing between different ways the world can
be: possible worlds, indices, situations or whatever you might want to call
them. Adding information means eliminating such epistemic possibilities. A
set of epistemic possibilities represents information irrespective of the par-
ticular way in which it was formulated. By contrast, the representational
nature of a DRS makes it difficult to deal with information that is implicit
in the context. However, when we implement the framework in a computer

Joris Hulstijn 3

program, this distinction becomes obsolete. Then an explicit representation
needs to be constructed for changing information in a context. In Section 4
the implementation is discussed. Representations are constructed incremen-
tally. When transitions between representations are modeled directly in the
semantics, this might be called a constructive update semantics.

2 Update Semantics

Instead of modeling the context as the common ground between speaker and
hearer, I simply model the hearer’s information state. 1 assume that the
hearer behaves as a rational agent. So information is to remain consistent
at all time and stay closed under logical consequence.

In Update Semantics a formula is interpreted as a transition between
information states. Formally an Update Semantics for a logical language L
is a frame{(%, [¢]}(per)) }, consisting of a set of information states ¥ and a
(partial) update function [.] over ¥. Following Veltman (1996) I use a postfix
notation: o' = o[¢] means that o’ is the result of updating an information
state o with a formula ¢. Updates are originally supposed to model the
effect of assertions. In this paper special updates, indicated by the opera-
tor 0,2 will be defined to model presuppositions. 1 assume a grammar that
translates utterances from (a fragment) of English into the logical language
L. Interaction between presupposition and quantification results in interest-
ing and complicated issues, e.g. (Heim, 1983). This paper leaves these issues
aside. However, the analysis can be extended to deal with them (Hulstijn,
1995). So, the logical language is taken to be the normal language of predi-
cate logic without quantification, extended with presupposition operator 93.
The set of ground formulas is called the vocabulary A .

DEFINITION 1 (logical language L)
Given sets of n-ary predicates Pred" and constants Const, define

A = ConstU{Pc;...cy|P € Pred",c; € Const,(1 <i<n)}
L = pl=glp AlpVP|LITIOG (pe A, b9 € L)

Update semantics defines information states as sets of epistemic possibilities.
Technically an epistemic possibility w is a total valuation with respect to
A. So the set of all possibilities W = {w|w : A + {0,1}} and the set of all
information states 3 = pow(W). The semantics is defined inductively on all
¢ € L.

*Notation @ derived from Beaver (1993).
3Not every possible expression with & makes sense. I assume the grammar will produce
sensible formulas.

4 Presupposition Accommodation in a Constructive Update...

DEFINITION 2 (Update semantics)
US is given by (Xys, [.]), where:

olp] = {weoalwp) =1} (peA)
ol~¢] = o\olg]
olp Nl = oldl[Y]
o[0¢p] = depends on accommodation strategy

In the atomic case, all worlds incompatible with asserted information p are
eliminated. Negation is modeled by set complement. Conjunction is mod-
eled by function composition on updates. This gives a sequential notion of
conjunction. Disjunction and implication can be defined using the standard
equivalences ¢ V¢ = —(=¢p A —p) and ¢ — ¢ = =(p A =1p). L and T can
be defined by L = p A =p and T = =L for arbitrary p. Since Const C A
we can model existence of objects and existential presupposition.* For in-
stance ‘a man’ is modeled by c¢3 Aman(cs). ‘John’ is modeled by the formula
d(cs Anamed(cs, john)) All possibilities w for which w(cs) # 1 will be elim-
inated.

The following additional notions are useful. The state of “no information
yet”, is called the initial state or 1. No information means that all possibil-
ities are still open. So 1 is modeled by W.%> An update with an inconsistent
formula or with information contradicting present information results in the
unique absurd state ©, modeled by (). Trivially @ contains all information
at once. There is a transitive and reflexive order C over information states,
specifying information growth. So o C 7 iff 7 contains at least as much
information as o. Here C is modeled by D. For presuppositionless formulas,
the update function preserves information growth.5

Vo,p: 1 Co,0 CO,0 C o[f)]

An information state o contains ¢ or supports ¢ when updating o with ¢

will not increase the information in o.”

ot¢ iff o[¢p] Co

Update Semantics has a non-classical view on validity and entailment. An
argument is valid if, after having applied all premises in the right order to
some information state, the conclusion is supported. The second notion of
entailment, =1, represents entailment with a closed world assumption: if

“Think of Const as the set of nullary predicates. So w(c) = 1 iff ¢ exists at w.

°In applications 1, like all information states, will be constrained by meaning postulates
representing domain knowledge.

5Proof by induction on ¢.

"By information growth we have o C o[¢]. When L is anti-symmetric, this definition
becomes equivalent to o I ¢ iff o[¢] = o. All information orders based on C are
anti-symmetric.

Joris Hulstijn 5

the premises are all you learned, then the conclusion is supported. A com-
bination of presupposition and =! may produce non-monotonic inference.
(see Section 3.5)

P bn = ¢ i Voo[g].. [¢n] ¢
Groeesdn BV g iff W] [pa] 9

3 Presupposition Accommodation

In this section I will use four well-known empirical observations of the behav-
ior of presupposition to guide the definitions of the accommodation strate-
gies.

3.1 presupposition as precondition

Presuppositions can be seen as a constraint on their immediate context.
A presupposition works very much like a precondition in mathematics or
computer science. If the precondition fails, the meaning of the mathematical
expression or the result of the program becomes undefined.

(3) va

pres: 0<a

(4) a. John’s dog is happy.
pres: John has a dog.

b. John is allergic to dogs.
*John’s dog is happy.

This notion of ‘presupposition as precondition’ is very similar to what I call
the classic strategy: a sentence S presupposes proposition ¢ in a context
o iff S can only be uttered felicitously provided o supports ¢. (Karttunen,
1974; Lewis, 1979; Stalnaker, 1979; Heim, 1983; Beaver, 1993)

The presupposition must be true in the context, otherwise the utter-
ance is infelicitous. See for instance Example (4). In other words, unless
the presupposition is satisfied, the conversational effect of the utterance is
undefined. Strictly speaking the classic strategy is the strategy of no accom-
modation of the context.

STRATEGY 1 (classic)

o ifo ¢
undef otherwise

o - |

6 Presupposition Accommodation in a Constructive Update...

Since the update function models the conversational effect of an utter-
ance, this means the update function has become a partial function: it’s
value is not defined for all ¢. I take it that function composition and infor-
mation state subtraction, and therefore the logical operators A and —, are
strict with respect to undefinedness.® Given update semantics, the classic
projection behavior of (Karttunen, 1973) automatically comes out. In Sec-
tion 3.6 this projection behavior will be changed. The projection behavior
of disjunction is controversial.

olp NPl = wundef if o[¢] = undef or (o[p])[¢p] = undef
o[-¢] = wundef ifo[p]=undef
olp =] = wundef if o[¢] =undef or (o[¢])[yp] = undef

3.2 accommodation proper

Preconditions are only part of the story. Discourse is a communicative ac-
tion. Communication only succeeds on the assumption that all participants
cooperate (Grice, 1975). Uttering a sentence of which the presupposition
is known to be false is uncooperative; therefore the hearer will infer from a
presupposition trigger that the speaker takes the presupposition to be true.
Thus, the hearer will adjust his or her version of the context, by adding
the presupposition. This adjustment is called presupposition accommoda-
tion(Lewis, 1979; Heim, 1983). Note however that accommodation proper
is only allowed when the presupposition is compatible with the context. Oth-
erwise, the utterance remains infelicitous and its effect undefined. Therefore
I call this the cautious accommodation strategy: only add the presupposition
when compatible.

STRATEGY 2 (cautious)

undef otherwise

oo = {0’[4)] ifo¢] # O

3.3 presupposition test

This adjustment of the context can be seen as a form of inference. Infor-
mation is inferred from the trigger. It is, however, is a very strange kind
of inference. The infelicity prediction/presuppositional inference normally
remains when embedded under negation, modal operators or belief contexts.
(Example 5)

(5) a. John’s dog is happy.
pres: John has a dog.

8An operation e on information states o,T is strict if (o 7) = undef iff o =
undef or 7 = undef.

Joris Hulstijn 7

b. It is not the case that John’s dog is happy.
pres: Johnhas a dog.

c. Maybe John’s dog is happy.
pres: John has a dog.

(6) a. Bella is a cow.
implies: Bella mows.

b. It is not the case that Bella is a cow.
implies: ... 7

c. Maybe Bella is a cow.
implies: ... 7 possibly Bella mows.

But when we negate the antecedent of a conditional, as in (6a), the con-
clusion is lost. When the antecedent is weakened by maybe, the conclusion
is weakened too. None of this happens with presupposition. Therefore
this observation can be used as a presupposition test. Note that the classic
strategy already preserves the infelicity prediction under negation. But pre-
suppositional inference is not preserved under both the classic and cautious
strategies. This will be remedied in Section 3.6.

3.4 cancelling

On the other hand presuppositional inference is defeasible. The infelicity
prediction/presuppositional inference will, in some particular embedding
contexts, be cancelled or bound. This may happen for instance in indirect
speech, when the antecedent of a conditional or the first of two conjuncts
implies the presupposition, in belief contexts, or in some special negated
sentences.” Here are some examples:

(7) John is allergic to dogs.
a. *If John buys a bone, John’s dog is happy.
b. If John has a dog, John’s dog is happy.
c. (But) John has a dog and John’s dog is happy.

d. Mary believes that John’s dog is happy.

®Traditionally such cancelling contexts are called plugs, as opposed to the holes that
let presuppositions seep through (Karttunen, 1973). But, unlike Karttunen, I am able to
deal with the context-dependency of most plugs. As shown by Gazdar (1979) there or no
strict plugs.

8 Presupposition Accommodation in a Constructive Update...

In Example (7) the context suggested by John’s allergy is incompatible with
the presupposition. So as expected, (7b) is infelicitous. But in (7¢) it is not.
The infelicity prediction/presuppositional inference is said to be cancelled
or bound. The difference is that in (7c) the antecedent already implies the
presupposition. What seems to be the case here, is that interpretation shifts
to a temporary context, corresponding to the antecedent. The temporary
context supports the presupposition. There is no conflict with the overall
context. Conjunction works in a similar way (Example (7d)). This effect of
binding to the first conjunct or antecedent, is already covered by the classic
or cautious strategy and the update semantics framework.

Belief contexts, as in Example (7e), also seem to create such a temporary
context. Since Mary doesn’t know of John’s allergy, the embedded sentence
remains felicitous within her beliefs. Example (8) is more tricky. Apparently
negation also creates a temporary context for interpretation. The infelicity
prediction/ presuppositional inference at the over-all context is cancelled.
Note the influence of the cue phrases ‘so’; without it the example would
remain infelicitous.

(8) John does not have a dog. So, it is not the case that John’s dog is

happy.
pres: —

I do realize this example sounds odd. Perhaps the oddity can be explained
as follows. Although the presupposition is cancelled, the utterance does not
add any new information. Therefore the utterance does not express a proper

assertion and will be judged infelicitous'®.

3.5 global, local, intermediate

I suggested that sometimes interpretation shifts to a temporarily context.
This approach was suggested by Heim (1983) and developed in (Van der
Sandt, 1989; Zeevat, 1992). How does a temporary context arise? Take
another look at the clause for negation in Definition 2. First we calculate,
temporarily, the result of updating o with ¢. Then we subtract this from
the original 0. Suppose ¢ contains a trigger. Now there are two versions
of the context o that may be adjusted to accommodate the presupposition!
The local context, inside the scope of the negation, or the both the local and
the global context, outside its scope. Here is Example (8) again. Words are
represented by the first character.

(8) Assume o - —d
o[—(9d A h(d))] = o \ o[0d][h(d)] = undef (global)
o\old[h(d)] =0c\0=0 (local)

10Compare the principles of assertion formulated by Stalnaker (1979)

Joris Hulstijn 9

This explains the possibility of cancelling in case of a negation. Appar-
ently, in most cases, accommodation to the global context is preferred. But
when there is a local context and global accommodation is not allowed, it is
possible to accommodate only locally. Note that under this interpretation
local accommodation must not result in undefinedness, but in the inconsis-
tent state. When there is no temporary local context to accommodate, the
utterance remains undefined.

Presuppositional inference, then, is the effect of presupposition accom-
modation at the original global context level. When assuming that all rele-
vant information with respect to the presupposition is given, (i.e. using =)
this form of inference indeed turns out to be non-monotonic.'!

(9) —(9(d) Ah(d)) " d but
=d A=(9(d) A h(d)) " d

So a simple consistency check (cautious accommodation), together with the

update semantics notion of entailment, already produces the non-monotonic

behavior that is characteristic of presupposition. Therefore, I believe, there

is no need for a specific calculus of presuppositions based on default logic,
g. (Mercer, 1992).

Conditionals lead to potentially three versions of the context to accom-
modate: the local, the intermediate and the global levels. Now it may be
that one of the temporary contexts already supports the presupposition. In
that case, there is no need for further accommodation: the presupposition
is said to be bound. So a presupposition, like an anaphoric expression, may
get bound to an antecedent (Van der Sandt, 1989).

(7) a. b— (0d Ah(d)) " d since
olb — (0d A h(d))] =
o\ (ob] \ o[b][0d][h(d)]) & old][b = Rh(d)] (global)
o[(d Ab) = h(d)] (intermediate)
o[b — (d Ah(d))] (local)

b. d— (8d A h(d)) £ d since
old — (0d A h(d))] =
o\ (o[d] \ o[d][0d][n(d)]) & old = h(d)] (bound)

3.6 Stacks

A conditional leads to three temporary versions of the context. One could
imagine that a sentence like (10) leads to a stack of possible contexts for
interpretation, corresponding to beliefs, indirect speech and regrets.!?

" Compare Examples (5a) and (8). Proof by definition of =".
12 Although this is one of the motivations of the stack model, I can’t go into the details
of modeling propositional attitudes. See (Hulstijn, 1995) for some suggestions.

10 Presupposition Accommodation in a Constructive Update...

(10) John believes that Mary said that he regrets being bald.

In fact, I believe, discourse structure looks like a tree. Contexts of inter-
pretation are organized in some partial order that reflects the development
of the conversation. However, looking from the current context towards the
root of the tree, the structure is a stack of subsuming contexts.

DEFINITION 3 (stacks)
For ¥ a set of information states, define

Stacks, = {e}U{(0,5) |0 €X,S € Stacks}

We now need to lift update semantics to the stack level, defining how

the logical operators interact with the stack structure.'3
DEFINITION 4 (update semantics - stacks)
US’ is given by (Stacks,,,[.]') where
(0,9 = (o], S) (peA)
(0,9)[=¢]' = (F'\7,T) where (r,(r',T)) = (0, (0, 5))[¢]
(o, M)p Ay = Slel'ly)
(0,5)[0¢)]' = depends on accommodation strategy

Now that we have stacks, it becomes possible to define accommodation
strategies that behave differently at different levels. Therefore a third local
strategy makes sense. It embodies the idea that presupposition, just like
asserted information, is part of the information content of a trigger.

STRATEGY 3 (content)

olo¢] = ol¢]

Employed within stacks the content strategy makes it possible to model
Russell’s approach to presupposition and negation: a failing presupposition
simply leads to falsity. The presupposition is projected to the global level,
outside the scope of the negation. The resulting ambiguity of negation is
modeled by the stack.

STRATEGY 4 (Russell)

<0v 6>[a¢]l = <U[8content¢]a€>
(0,9)0¢] = (0,5[04])

13The same definition can be formulated using standard stack operations pop, push and
top. All stack operations behave strict with respect to undefinedness.

Joris Hulstijn 11

(11) It is not the case that the king of France is bald.
(0,€)[=(0kof Nb(kof))]" =
((o[kof1\ olb(kof)]), €)) < (o, €)[kof A =b(kof)))

The following strategy comes closest to the ideas of Heim, as reconstructed
by (Zeevat, 1992; Beaver, 1993). There is accommodation proper, but when
the global context is incompatible, the resulting update is undefined. When
an intermediate context already supports the presupposition (bound), it is
not projected any further.

STRATEGY 5 (Heimian)

(Ua 6> [a¢], = (U[acautious ¢]7 6>
1 (0,S) ifo ¢
(o, S)loe]" = { (0[Ocontent®], S[0F]') otherwise

This strategy covers most of the observations. It can’t deal with all of
the cancelling cases. In particular, Example (7e) and (8) would come out
undefined. Example (8) is dodgy anyway. So, if only for the belief cases,
that would seem a good result.

To be able to deal with the cancelling cases I propose the full strategy.
It is based on the principle that presuppositions are accommodated along
the stack, as close to the root as possible (Van der Sandt, 1989).

STRATEGY 6 (full)

(Ua 6>[a¢], = (U[acautious]¢]ae>

I _ <U[8con en ¢], S[8¢],> ifS[agb]'defined
(o, S)O9] = { (U[@wn;nqu],S) otherwise

The principle that presuppositions always project as close to the root as
possible, has been under attack. The following example sounds a bit odd: it
seems to suggest that most German housewifes own a Porsche. That would
suggest a local accommodation reading. However, the full accommodation
strategy predicts intermediate accommodation, since global accommodation
is not possible.

(12) Every German housewife washes her Porshe on Sundays.
olg — (0(p A own(g,p)) N wash_on_sunday(g,p))] <
ol(g Ap Aown(g,p)) = wash_on_sunday(g,p)] (intermediate)
olg — (p A own(g,p) A wash_on_sunday(g,p))] (local)

12 Presupposition Accommodation in a Constructive Update...

Therefore, the full strategy needs to be relaxed. The stack defines the set of
potential accommodation contexts. Other factors, like pragmatic constraints
or background knowledge determine the preferred location for accommoda-
tion among those. Contexts introduced by propositional attitudes may be-
have different from those introduced by negation. I realize that finding such
constraints is by no means trivial. In this paper, I have only attempted to
describe the general structure, needed to express the logical properties that
were observed in the literature. Following Zeevat (1992) I take this structure
to be a stack of information states. My contribution has been a precise for-
mulation of the standard approaches from the literature. From a technical
point of view, the full strategy, is most attractive. From an empirical point
of view, the full strategy and the Heimian strategy can be distinguished only
by their behavior with respect to negation and belief.

4 Implementation

The system has been implemented in Prolog. The system is designed to ex-
periment with different accommodation strategies. Moreover, implementing
the theory has uncovered hidden ambiguities. In this section I will briefly
discuss some of the implementation details. Figure 1 gives the architecture
of the system.

The man walks.

U
| Grammar | «— lexicon
4
d(ca1 A manl(cor)) A walkl(coy)
4
o = ‘ Update ‘ = o
))
repr(c) = ‘ Constructive Update ‘ = repr(o’)

Figure 1: architecture

The grammar module translates sentences of a fragment of English into
L. T use the standard Prolog Definite Clause Grammar formalism (see
Figure 2).

The update module calculates the result of updating the current infor-
mation state or stack. So the most obvious way to implement the update
module, is to find a representation of information states. The transitions
between information states of the update module can then be mapped onto
transitions between representations of information states.

Alternatively, we can put the maintenance of the representations of infor-
mation states into the semantics directly. So utterances are now interpreted

Joris Hulstijn 13

s(S) --> np(VP"S),vp(VP).

np ((C~VP) " (pres(C&N)&VP)) --> [thel,n(C"N), { const(C) }.
np((C~VP) ~ (C&N&VP)) --> [al,n(C"N), { const(C) }.
np((C"VP) " (pres(C&VP)) --> [he]l, { const(C) }.

vp(X"walkl (X)) --> [walks].

n(X"man1 (X)) --> [man].

Figure 2: sample DCG grammar

as transitions between representations. Update semantics models informa-
tion states as subsets of a given set of possibilities W. By contrast, the
representations need to be constructed incrementally. Therefore, this ap-
proach of defining the semantics of L directly on constructed representations
of information states, may be labeled a constructive update semantics.

5 Semantic Tableaux as Information States

Semantic tableauz form a sound and complete deduction method for both
propositional and predicate calculus (Beth, 1959; Smullyan, 1968). I propose
to use semantic tableaux to represent information states. The link between
information states and semantic tableaux has been made before. See for
instance (Landman, 1986) or work on logic-based knowledge representation
(Elfrink and Reichgelt, 1989) .

A semantic tableau is a set of branches. A branch is a consistent set of
literals. A literal is an atomic proposition or a negation of an atomic proposi-
tion. Tableaux are constructed from sequences of formulas using substitution
rules. We start with formulas ¢4, ..., ¢, and the initial tableau, {{}}. Rules
are applied to the sequence of formulas. A double negation is eliminated. A
conjunctive formula is replaced by both its conjuncts. A disjunctive formula
results in a split: each disjunct is added to a separate copy of the current
branch.' Tableau construction stops when all double negations, conjunc-
tive formulas or disjunctive formulas have been dealt with: only branches
of literals remain. Such a tableau is called a complete tableau. A branch is
closed or eliminated from the tableau when it contains contradicting liter-
als. A tableau is closed when all branches are closed. A branch Lits; on a

"In Definition 5 disjunction results in a split of the complete tableau. The original
tableau and LeanTap both work on single branches. For propositional logic the approaches
are logically equivalent.

14 Presupposition Accommodation in a Constructive Update...

complete tableau corresponds to a partial valuation ¢ as follows:

1 iff p € Lits;
i(p) =< 0 ift —p € Lits;
undef otherwise

A tableau is a way to enumerate all possible minimal valuations that satisfy

the original formula. So when the complete semantic tableau for ¢y,..., ¢,
closes, there is no valuation that satisfies ¢q,...,¢,. In other words, the
sequence ¢1, ..., ¢, is inconsistent.

The semantic tableau deduction method itself can be redefined as a con-
structive update semantics. The complete semantic tableau for a sequence
®1,...,¢n represents the US information state U[¢1]... [¢n]. (by complete-
ness) The substitution rules are interpreted as updates. Negation is modeled
by so called constructible falsity: using the tableau rules, negations are pro-
jected down towards the literal level. Disjunction and implication are dealt
with using the standard equivalences. Adding information to a tableau,
means either extending or eliminating branches. Hence the new definition
of Coyg. The initial information state 1l corresponds to the initial tableau
{{}}. The inconsistent information state ® corresponds to the closed tableau
{}. Finally, a tableau is said to support a formula, when adding the negation
of the formula would close it.!?

DEFINITION 5 (CUS)
CUS iS giVeH by <ECUS, [']CUS> Where

U[_'_'gb]CUS = U[¢]CUS
olplecvs = {Lits; U{p}|i € o,—p & Lits;}
o[-plevs = {Lits;U{-p}|i € o,p & Lits;}

U[¢ N ¢]CUS = U[¢]CUS [d)]CUS
o[~ (dAY)evs = o[Plovs Uo[lous

o LCeps 7 if V5 € 7,30 €0 such that Lits; C Lits;
o bovs ¢ iff U[_‘Qb]OUs =0

6 Preprocessing

It is not possible to directly add a clause for d¢ to the definition of CUS.
Because of constructible falsity the characteristic interaction of presupposi-
tions and negation is lost. It would be possible to define an operation for

!5 An alternative definition of support is the following. o k&g ¢ iff o[p)cvs Covs o-
For propositional logic the notions are equivalent (Hulstijn, 1995). More research into the
notions of support and entailment for CUS is needed.

Joris Hulstijn 15

tableaux analogous to \ on information states. Effectively a tableau is a
disjunction of branches, each consisting of a conjunction of literals. The
complement of a tableau would then be, using De Morgan’s rules, a huge
join of all possible complements of each branch. Calculating such a join
would not be very efficient. Besides, we also need stacks to properly model
the Heimian and full accommodation strategies.

Therefore, both the stack structure and negation will be simulated, using
what I call a preprocessing implementation. Instead of pushing temporary
information states onto the stack, I will push formulas that represent the
temporary information states. Note that the representation uses no empty
stacks. A stack consisting of a single information state is represented by
(T,o).

DEFINITION 6 (formula stacks)
For ¥ a set of information states, ¢ € L define

FStacky = {(¢,0)}U{(¢,S) |0 €X,S € FStacks}

This move, of pushing formulas instead of temporary contexts, becomes
possible, because the definition of negation in US can be altered without a
change in the resulting semantics.'6

ol~¢] = o\1g]

An additional advantage of this approach is that it becomes possible to
use a standard theorem prover to implement the ideas behind CUS. I use
LeanTap (1994). LeanTap is a very simple and elegant theorem prover,
based on semantic tableaux. It is implemented in Prolog. I have adapted
LeanTap in such a way that it explicitly stores the complete tableau for a
sequence of formulas. Originally, storage only occurred at runtime, using
the build-in prolog goal stack. It is easy to prove that the Prolog goal
leantap(Phi,S,S1) succeeds if o[¢]cys = o' where Phi,S,S1 represent
¢, 0,0 respectively.

DEFINITION 7 (update semantics — preprocessing)
The preprocessing implementation can be characterized by o[plpre = T if
(T,0)[p]" = (¢',0"y and o'[¢'|cys = T where

(¢, S)pl" = (pAp,S) with (p € A)
(¢,)[4 = (' A" S) i (T, (b, SH]" = (W', (¢, 5))
(S AxX]" = (6] X"
(¢, S)[0oy]" = depends on accommodation strategy

16The reason there was a complete copy of the global context in the first place, was the
possibility of accommodation. Now that is dealt with explicitly.

16 Presupposition Accommodation in a Constructive Update...

In order to complete the implementation, we need to reformulate the
accommodation strategies for formula stacks. The local strategies, classic,
cautious and content work on single information states. We can use F¢p5
and [.]cys instead of the original US notions.

The stack-based strategies, Heimian and full can be reformulated too.
The global context (the end of the recursion) is now available as o in for
instance (¢, (¢',0)). The local context is now modeled partly by a formula,
partly by the formulas down the stack and partly by the global context. So
for consistency checks or entailment the formula stack needs to be flattened:
the global context is updated with all pushed formulas.

flatten((¢,0)) = o[dlcvs
flatten({¢, S)) (flatten(S))[Plcvs

I realize this not an efficient way of encoding the effect of presupposition on
the stack. A lot of equivalent states are recomputed every time. An slight
improvement would be to store states for later usage. Remember that stack
operations behave strict with respect to undefinedness. By way of example,
here is the Heimian strategy for formula stacks.

STRATEGY 7 (Heimian”)

<¢a U> [8¢],I <¢a o [acautious d)] >

"o <¢a S) ifflatten((qb, S>) Fovs ¥
(¢ 5)ou)" = { (¢ N1p, S[09]") otherwise

7 Conclusions

A number of conclusions can be drawn from this study into the logical nature
of presupposition accommodation.

The use of Update Semantics with stacks makes it possible to formalize
existing standard approaches to presupposition accommodation in the same
framework. Using this tool the empirical predictions of different approaches
can be more easily compared.

Presuppositional inference can be explained by the process of presup-
position accommodation to the global context. A simple consistency check
and the Update Semantics notion of entailment already produce the char-
acteristic non-monotonic behavior. No need for a fancy default logic.

The full strategy best models the standard observations discussed un-
der precondition, accommodation proper, presupposition test and cancelling.
Context introduced by beliefs may behave different from those introduced
by negation. Constraints from domain knowledge may overrule the presup-
position strategy.

Joris Hulstijn 17

Semantic tableaux can be used to represent information states. When
negation is implemented by constructible falsity, we need to simulate the
characteristic interaction between presupposition and negation. So called
formula-stacks can be used to that effect. Using a pre-processing implemen-
tation with formula stacks, makes it possible to translate the accommodation
strategies to the implementation directly.

A constructive semantics is one in which the meaning of an utterance is
expressed as the transition between representations of the context, that are
constructed incrementally. A constructive semantics might advance natu-
ral language understanding. For instance, the development of man-machine
dialogue systems can be based on a constructive model of the information
changes during the dialogue (Bunt, 1994). Other applications may be in
information retrieval. The tableaux and stacks in this paper are somewhat
misleading: they only represent the information content. But the way in
which information is presented does matter. Word order, previously asked
questions, intonation and grammatical constructions like topicalization, all
influence the flow of a dialogue and therefore the construction of the con-
text. Also extra-linguistic factors, such as social obligations, specific domain
knowledge or the goal of the speaker are important. Therefore, CUS is not
a very useful constructive semantics.

References

Beaver, David. 1993. The kinematics of presupposition. Technical Report
R2.2.A part 1T, DYANA-2.

Beckert, Bernhard and Joachim Posegga. 1994. Leantap: Lean tableau-
based deduction. Technical report, Universitat Karlsruhe.

Beth, E. 1959. The Foundation of mathematics. North Holland, Amster-
dam.

Bunt, H. C. 1994. Context and dialogue control. Think, 3:119-31.

Elfrink, Bernie and Han Reichgelt. 1989. Assertion-time inference in logic-
based systems. In Peter Jackson, Han Reichgelt, and Frank van Harme-
len, editors, Logic Based Knowledge Representation. MIT Cambridge
Mass.

Gazdar, Gerald. 1979. Pragmatics: Implicature, Presupposition and Logical
Form. Academic Press, New York.

Grice, H. P. 1975. Logic and conversation. In Jerry L. Morgan Peter Cole,
editor, Syntaz and Semantics, volume 3. Academic Press.

18 Presupposition Accommodation in a Constructive Update...

Heim, Irene. 1983. On the projection problem for presuppositions. WCCFL,
2.

Hulstijn, Joris. 1995. Presupposition in update semantics. Master’s thesis,
Faculty of Mathematics and Computer Science, University of Amster-
dam.

Karttunen, Lauri. 1973. Presuppositions of compound sentences. Linguistic
Inquiry, TV(2):169-193.

Karttunen, Lauri. 1974. Presupposition and linguistic context. Theoretical
Linguistics, [:181-194.

Landman, Fred. 1986. Conflicting presuppositions and modal subordi-
nation. In Papers from the 22nd meeting, Chicago Linguistic Society:
195:207.

Lewis, David. 1979. Scorekeeping in a language game. Journal of Philo-
sophical Logic, (9):339-359.

Mercer, R. 1992. Default logic and presuppositition. Journal of Semantics,
9(3).

Smullyan, R. M. 1968. First-Order Logic. Springer-Verlag, Berlin.

Stalnaker, Robert. 1979. Assertion. In Peter Cole, editor, Pragmatics,
number 9 in Syntax and Semantics. Academic Press, New York, pages
315-32.

Van der Sandt, R. 1989. Presupposition and discourse structure. In Se-
mantics and Contextual Expression. Foris, Dordrecht, pages 26-94.

Veltman, Frank. 1996. Defaults in update semantics. Journal of philosoph-
ical logic, 25(3):221-262. previous version in DYANA R2.5A, 1990.

Zeevat, Henk. 1992. Presupposition and accomodation in update semantics.
Journal of Semantics, 9:379-412.

