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A B S T R A C T

Leaf inclination angle and leaf angle distribution (LAD) are important plant structural traits, influencing the flux
of radiation, carbon and water. Although leaf angle distribution may vary spatially and temporally, its variation
is often neglected in ecological models, due to difficulty in quantification.

In this study, terrestrial LiDAR (TLS) was used to quantify the LAD variation in natural European beech (Fagus
Sylvatica) forests. After extracting leaf points and reconstructing leaf surface, leaf inclination angle was calcu-
lated automatically. The mapping accuracy when discriminating between leaves and woody material was very
high across all beech stands (overall accuracy= 87.59%). The calculation accuracy of leaf angles was
evaluated using simulated point cloud and proved accurate generally (R2= 0.88, p < 0.001; RMSE=8.37°;
nRMSE=0.16). Then the mean ( mean), mode ( mode), and skewness of LAD were calculated to quantify LAD
variation.

Moderate variation of LAD was found in different successional status stands ( mean [36.91°, 46.14°], mode

[17°, 43°], skewness [0.07, 0.48]). Rather than the previously assumed spherical distribution or reported
planophile distribution, here we find that LAD tended towards a uniform distribution in young and medium
stands, and a planophile distribution in mature stands. A strong negative correlation was also found between plot
mean and plot median canopy height, making it possible to estimate plot specific LAD from canopy height data.
Larger variation of LAD was found on different canopy layers ( mean [33.64°, 52.97°], mode [14°, 64°],

skewness [−0.30, 0.71]). Beech leaves grow more vertically in the top layer, while more obliquely or hor-
izontally in the middle and bottom layer.

LAD variation quantified by TLS can be used to improve leaf area index mapping and canopy photosynthesis
modelling.

1. Introduction

Leaf angle is an important plant structural trait. It influences light
interception and radiation scattering in the canopy, as well as the flux
of carbon and water (Weiss et al., 2004). Therefore, it has been used as
a parameter in canopy photosynthesis modelling (Tol et al., 2009),
rainfall interception modelling (Xiao et al., 2000), and leaf area index
(LAI) estimation. For individual leaves, leaf angle consists of leaf in-
clination angle and leaf azimuth angle. For the whole canopy, leaf angle
distribution (LAD) is used to describe the probability of all leaves or-
ientating at different directions. It is defned as the probability of leaf-
normal falling within a unit interval of inclination angle. Usually a

uniform azimuth direction can be assumed for most species (Ross, 1981;
Falster and Westoby, 2003).

Due to measurement challenges, LAD is usually simplified using
predefined mathematical functions, without considering its variation
(Welles, 1990; Richardson et al., 2009; Tang et al., 2014). Six com-
monly used functions are depicted in Fig. 1. Planophile canopies are
dominated by horizontal leaves, while erectophile canopies by vertical
leaves (Lemeur and Blad, 1975). The spherical distribution (de Wit,
1965) is the most widely used due to its simplicity in calculating the
leaf projection function value (approximated as 0.5 in any direction).

However, such simplification fails to consider the variation of LAD.
In reality, LAD may vary for different species of plants (Pisek et al.,
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2013). Even for the same species, LAD may also exhibit a spatial and
temporal variability. LAD was found to vary in different canopy layers
in a tropical forest (Wirth et al., 2001), and several temperate decid-
uous trees (Raabe et al., 2015). LAD may also change with light ex-
posure (McMillen and McClendon, 1979; Utsugi et al., 2006), time of
the day (Shell et al., 1974) and season (Hosoi and Omasa, 2009; Raabe
et al., 2015). Due to over-simplification, LAD has become one of the
most poorly constrained radiative transfer model parameters (Ollinger,
2011). There is great potential to improve canopy photosynthesis
modelling and LAI mapping if the LAD variation can be quantified.

One strategy to quantify leaf angle distribution is the direct geo-
metrical approach. The basic principle is to obtain a representative
description of the whole canopy by observations on individual leaf
(Norman and Campbell, 1989), for example using compass and in-
clinometers (Ross, 1981). But direct contact often leads to disturbance
of the leaves (Zheng and Moskal, 2012). The spatial coordinate appa-
ratus (Lang, 1973) method was proposed to avoid direct contact, but
the required number of leaves takes a large logistical effort to measure
in forests. Consequently, the digital canopy photography method has
been introduced (Ryu et al., 2010; Pisek et al., 2011). In this method,
the authors first took several photos around the canopy at different
heights. Then leaves were visually identified from each photo and each
leaf angle was calculated using image processing (Pisek et al., 2011).
Although this digital canopy photography method is robust and low-
cost, it involves substantial user interaction when identifying individual
leaves. In addition, taking photos for trees higher than 2 m would be
very difficult in natural forests.

Another strategy to quantify leaf angle distribution (LAD) is the
indirect radiometric approach. This approach yields a statistical esti-
mate of LAD on plot level, rather than measuring the orientation of an
individual leaf (Biskup et al., 2007). The basic principle is to record
how radiation is attenuated by the canopy in several zenith directions,
then one can invert the Beer’s law for radiation interception to infer
LAD (Norman and Campbell, 1989; Chen et al., 1991; Wagner and
Hagemeier, 2006). However, this method has two main shortcomings.
First, it cannot distinguish leaf and woody material. What was retrieved
is the plant angle distribution rather than LAD (Chen et al., 1991).
Second, the radiometric method makes assumptions (flat topography
and homogenous tree height) which may not hold in heterogeneous
natural forests.

With the development of close range remote sensing, efforts were
made using three dimensional (3D) point cloud data to quantify canopy
structure (Coops et al., 2007; Hancock et al., 2014; Calders et al., 2015).
Magnetic 3D digitizer (Sinoquet et al., 1998; Falster and Westoby,
2003; Sinoquet et al., 2007), film-based stereo photogrammetry (Ivanov
et al., 1995) and digital stereo imaging (Biskup et al., 2007) have been
used to obtain 3D reconstructions of plants. But the drawback of these
methods is their restricted usage to the outer canopy of small stands,

usually an area of a few square meters (Muller-Linow et al., 2015).
When combined with unmanned aerial vehicles (UAV), it can sample
larger areas at stand scale. However, UAV-mounted cameras are vul-
nerable to lens distortion and image noise (McNeil et al., 2016).

From the 1990s, terrestrial LiDAR (TLS) has received increasing
attention in vegetation surveys due to its capability to capture un-
precedented detail of plant 3D structure, from individual tree to plot
scale (Liang et al., 2018). With high pulse frequency and small beam
divergence, tree trunks, branches, and even leaves can be easily re-
corded (Eitel et al., 2010; Zhu et al., 2017). TLS data was used to es-
timate LAD using indirect radiometric inversion (Zhao et al., 2015). TLS
data was also used to visually delineate individual leaf (Béland et al.,
2011), and automatically reconstruct leaf surface and normal vectors at
individual tree scale (Zheng and Moskal, 2012). However, there was no
leaf size constraint in the leaf reconstruction. Instead, a fixed number of
6 neighboring points was used to form each leaf surface (Zheng and
Moskal, 2012). This may be problematic for upper canopy layers when
point density is low, making the distance amongst the 6 points much
larger than the size of an individual leaf. Recently, a rapid LAD esti-
mation method was developed based on triangulation of TLS point
clouds (Bailey and Mahaffee, 2017). This method demonstrated good
accuracy for an isolated tree and a vineyard. However, the calculated
LAD should be more precisely named plant angle distribution, as leaf
and woody material were not differentiated.

To the best of our knowledge, the leaf angle distribution (LAD)
variation has only been quantified at individual canopy level by manual
measurement (Wirth et al., 2001; Holder, 2012), digital canopy pho-
tography methods (Raabe et al., 2015), or digital stereo imaging
(Muller-Linow et al., 2015). All these methods are difficult to imple-
ment in natural forests. The objective of this research is therefore as
follows. First, improving the LAD estimation from TLS by considering
the leaf size constraint, as well as excluding mixed effects from woody
material. Second, exploring whether there is LAD variation at different
canopy layers in European beech (Fagus sylvatica) forests. Third, ex-
ploring whether there is LAD variation across beech stands at different
succession status.

2. Study area and data collection

2.1. Study area, plant description and plot distribution

The study area is the Bavarian Forest National Park, located in
southeastern Germany. It is a low mountain range forest ecosystem in
Central Europe, with elevation ranging from 650m to 1453m. It is
located in the temperate climate zone and is subject to maritime and
continental influences (Bässler et al., 2008). Mean annual precipitation
is between 830 and 2230mm depending on altitude. Dominant tree
species are Norway spruce (Picea abies) (67%) and European beech

Fig. 1. Six predefined mathematical functions used to approximate leaf angle distribution and the corresponding average leaf inclination angle.
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(Fagus sylvatica) (24.5%) (Cailleret et al., 2014).
In this research, European beech is selected due to its broadleaf

feature, as well as its wide distribution in Western and Central Europe.
Beech trees normally grow to 30–35m (up to 50m in optimal condi-
tions) tall. A 15-year-old sapling stands about 4m. The bark of
European beech is smooth as seen in Fig. 2(b). The leaves are elliptical
without any lobes and have a short stalk, as seen in Fig. 2(a). Leaf size
ranges from 25 to 40 cm2, with 5–10 cm long and 3–7 cm broad (Barna,
2004). European beech is a highly shade-tolerant species, which can
regenerate naturally in continuous cover. In Central Europe, it is the
most abundant broadleaf forest tree, because of its physiological tol-
erance and competitiveness (Ellenberg and Leuschner, 2010).

In total, 36 European beech plots were selected as shown in Fig. 3.
They covered a wide range of stand structures and were further cate-
gorized into “young, medium, mature” stands using ancillary land cover
classification data (Silveyra Gonzalez et al., 2018) and canopy height
information. The structural information, including the median and stan-
dard deviation of canopy height, was extracted from airborne laser
scanning data in 2016. More details can be seen in Table 1 in Appendix A.

2.2. Data collection

From 17-July to 9-August in 2017, 36 beech plots were visited
during leaf-on conditions. A Riegl VZ-400 TLS was used to scan each

Fig. 2. European Beech (Fagus sylvatica) in the Bavarian Forest National Park. (a) leaves; (b) trunk and branch; (c) a mature plot.

Fig. 3. The distribution of 36 European beech plots in the Bavarian Forest National Park.
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plot. The scanner employs a laser (wavelength 1550 nm) with beam
divergence of 0.3mrad and range accuracy of 5mm. The footprint
diameter is 0.15 cm at 5m distance, 1.05 cm at 35m distance. The
measurement range is up to 600m. The angular step was set to 0.04° for
the fieldwork. One center and three triangular scan positions were used
in each plot, to reduce occlusion and increase point density. To achieve
co-registration of the four scans, 12–18 retro-reflective targets were
placed as control points. In total, it took 1–2 h to finish all scanning
in a plot.

In addition to TLS data, four transects in the park were also scanned
by airborne laser scanning (ALS) in August 2016, seen in Fig. 3. The
sensor used was Riegl LMS Q680-i, operating at a wavelength of
1550 nm, with beam divergence of 0.5mrad. The flying altitude was
approximately 300m above ground. The average point density for each
flight line was 70 points/m2. The ALS data was used to calculate basic
plot structure metrics including canopy height model (CHM), the
median and standard deviation of canopy height (details in Table A1 in
Appendix A).

3. Method

3.1. Preprocessing

First, the four TLS scans were co-registered and merged into one for
each plot, to maximize point density, using the RiScan Pro software
(http://www.riegl.com). The average registration error was 3–8mm.
Then, a point cloud with a radius of 15m was clipped. Each point
consisted of multiple attributes, including the Cartesian coordinates (x,
y, z), laser shot direction (azimuth and zenith angle), target distance,
amplitude of the echo, GPS timestamp, target surface relative re-
flectance, pulse shape deviation, etc.

Filtering was conducted to remove noisy points, based on the pulse
shape deviation value. Pulse shape deviation may be interpreted as a
measure of the reliability of the range measurement (Pfennigbauer and
Ullrich, 2010). The overall quality of the point cloud can be improved
by setting up a maximum allowed deviation value. In this research, all
points with deviation above 20 were eliminated. This threshold was
based on suggestions from previous research (Pfennigbauer and Ullrich,
2010; Greaves et al., 2015).

After noise filtering, ground returns were identified and the local
height of each point was calculated using LAStools software (Isenburg,
2012). All points below 1.5m such as ground and grass were removed
from subsequent analysis. The overview of 36 plots after preprocessing
can be seen in Fig. A1 in Appendix A.

3.2. Differentiating between leaf and woody material

TLS has shown promising results in differentiating leaf and woody
material (Beland et al., 2014; Ma et al., 2016; Zhu et al., 2018). In this
research, the point cloud was classified into leaf or woody points,
thus eliminating the effect of woody material to retrieve LAD rather
than PAD.

The classification followed the method using both radiometric and
geometric features (Zhu et al., 2018). The significant difference in re-
flectivity between leaf and woody material at the 1550 nm wavelength
forms the basis to use radiometric features. The bark has high re-
flectance, while leaves have low reflectance due to water absorption.
Geometric features of leaf and woody material are also different. Leaves
have planar shape, while woody material is more likely to have linear
shape. A list of selected features (seen in Table 1) was calculated for
each point, for the detailed equation one can refer to (Demantke et al.,
2011; Zhu et al., 2018).

After feature calculation, the Support Vector Machine (SVM) clas-
sifier was used to differentiate leaf and woody points. SVM is a su-
pervised non-parametric statistical learning technique. It shows to
achieve good results even with small training datasets in high

dimensional feature space (Melgani and Bruzzone, 2004), often pro-
ducing higher classification accuracy than other methods (Foody and
Mathur, 2004). In this research, training samples were manually se-
lected from one plot at different layers (top, middle and bottom layer).
Then the points were labeled with a class of either “leaf” or “woody”
based on visual interpretation. These training samples (357 leaf points
and 359 woody points) were used to build the SVM model, and applied
to all 36 plots. After initial classification, a post filtering was conducted
on all detected leaf points. If the majority of the neighboring points of a
leaf point are woody points, then the class label of this point was
changed to ‘woody’. Classification accuracy was evaluated in all 36
plots. For each plot, the point cloud was first partitioned into 12 sector
cylinders (0°, 30°,…, 360°), and sliced into 10 vertical layers (1/10, 2/
10, … 1). Then a random point was selected from each of these 120 sub
point clouds. To define the true class label of each test sample point, all
its neighboring points within a 50 cm radius spheroid were displayed.
With the help of contextual information, (i.e. the point locates in a
branch or a leaf), the class label (wood or leaf) of this point could be
determined through visual interpretation. The classification accuracy
was then calculated.

3.3. Reconstructing surface and calculating normal vector

After classification, individual leaf surfaces were reconstructed on
the leafy point cloud through plane fitting constrained by leaf size.
Let S= pi (x, y, z), i [1, Ntotal] be the point cloud of the plot in the
Cartesian coordinate system, Ntotal is the number of all points. For point
pk, its neighboring points S′ = (p1, p2,…, pn) could be identified by
searching all points in S that are within a distance Lmax of point pk. If the
number of neighboring points, i.e. n, is greater than 5, these points were
considered to form a leaf surface. The normal vector of S’ was calcu-
lated through principal component analysis. The normal vector direc-
tion is the same as the direction of the eigenvector with the minimum
eigenvalue. If n is smaller or equal to 5, point pk was considered as an
isolated point, and eliminated from subsequent analysis. In theory,
within the Lmax radius, 3 points can form a plane. However to avoid
uncertainty caused by noise points, we used 5 neighboring points (in
total 6 points) to do the plane fitting. For more discussion on this, one
can refer to a previous study (Hoppe et al., 1992). It should be noted
that in this method, no differentiation was made between leaves having
an adaxial sky facing surface or abaxial sky facing surface, thus all leaf
inclination angles are positive.

The radius of this neighborhood distance Lmax, should be con-
strained by the leaf size. If the value of Lmax is very low, many points
were processed as isolated points and eliminated, since their neigh-
boring points are beyond the distance of Lmax. However, if the value of
Lmax is very high, points from two adjacent leaves may be merged into
one neighborhood S′. In a previous research, Lmax was set to be 5 cm
(Bailey and Mahaffee, 2017). In this research, after considering the leaf

Table 1
Radiometric and geometric features used to differentiate leaf and woody points.

Type Feature Description

Radiometric features Ref Calibrated relative reflectance
Refmean Mean Ref of the local points
Refstd Standard deviation of Ref of the local points
Dev Pulse shape deviation

Geometric features α1D The likelihood that the shape of the local points
is linear

α2D The likelihood that the shape of the local points
is planar

α3D The likelihood that the shape of the local points
is random

Zdiff Range of maximum and minimum height value
of the local points

Zstd Standard deviation of height in the local points
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size of European beech (as mentioned in Section 2.1, usually 5–10 cm
long and 3–7 cm broad), Lmax was set to be 4 cm.

3.4. Validating accuracy of the leaf angle calculation method

In order to evaluate the accuracy of the leaf angle calculation
method, we generated a simulated dataset, where the location and the
true angle of each leaf was known, similarly to techniques used in
previous research (Zheng and Moskal, 2012; Bailey and Mahaffee,
2017; Li et al., 2018). First, the 3D models of two synthetic beech trees,
one young (3m high, 1122 leaves) and one mature (30m high, 21,534
leaves) were constructed using the open source software Arbaro
(http://arbaro.sourceforge.net/). The LiDAR simulator HELIOS
(Bechtold and Höfle, 2016) was employed to 'scan' the beech tree, using
the same settings as used in the fieldwork (0.3 mrad beam divergence,
0.04° angular step, 7.5 m distance away, 3 scans). For the mature tree,
titled (90°) scans were used to ensure coverage on the canopy top. Leaf
angles were calculated using our proposed method from the simulated
TLS point cloud. The calculation accuracy was evaluated in the ‘leaf-
wise’ way, by comparing all leaf angles estimated from the simulated
TLS point cloud with true leaf angles from the 3D models. The coeffi-
cient of determination (R2), the root mean square error (RMSE), and the
normalized RMSE (nRMSE) were used to evaluate the performance of
the method.

3.5. Statistical analysis

LAD was retrieved through calculating the histogram of the in-
clination angles of all reconstructed leaf surfaces, as the frequency
distribution from 0° to 90° with 1° bin width. Four statistical parameters
of the leaf angle distribution (LAD) were also calculated, including the

median angle ( median), the average angle ( mean), the most frequent
angle ( mode), and skewness of LAD (skewness). In addition, each LAD
was classified into one of the six categorical (planophile, plagiophile,
uniform, spherical, erectophile, extremophile) LAD functions (de Wit
1965) as detailed in Fig. 1. This was done by quantifying the similarity
of plot LAD with the six pre-defined LAD functions (Pisek et al. 2013)
through the following three metrics,
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The pre-defined LAD which had the lowest 1, 2, or highest 3 will be
voted as similar to the plot LAD. The LAD type, which received the
highest count of votes, was chosen as the classification result for the
plot LAD.

In order to explore the variation of LAD on different height levels in
a canopy, each plot was divided into 3 layers according to the local
height of each point. Let Hmax be the maximum canopy height. Points
with greater than 80% Hmax were treated as the top layer. Points at 80%
to 20% Hmax were regarded as the middle layer. Points below 20% Hmax
were used as the bottom layer. The above-mentioned analyses were
conducted on each layer of each plot.

In order to explore the variation of LAD across stands, the above-
mentioned analyses were conducted for each plot. The correlation
coefficient was calculated between mean and the plot median canopy

Fig. 4. Results of the leaf angle calculation accuracy using simulated dataset: (a) and (b) the 3D models of two synthetic beech trees; (c) and (d) the simulated TLS
point clouds of the beech trees; (e) and (f) true leaf angles and leaf angles estimated using the proposed method.
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height, to explore the relationship between plot LAD and plot succes-
sional status. A positive close to 1 correlation coefficient would suggest
a strong positive correlation between the mean and the stand succes-
sional status.

4. Results

4.1. Accuracy of leaf angle calculation

From the simulated dataset, we compared the TLS estimated leaf
angles with true leaf angles directly read from the synthetic beech tree
model. Through this, we can evaluate the accuracy of our proposed
method. From the results in Fig. 4, for the synthetic young beech tree
(3m high, with 1122 leaves), the proposed method works very well
(R2= 0.88, RMSE=8.37°, nRMSE=0.16). For the synthetic mature
beech tree (30m high, with 21,534 leaves), although there are some
leaves with larger estimation errors for leaf angle, the overall accuracy
remains high (R2= 0.83, RMSE=9.29°, nRMSE=0.20).

4.2. Results of differentiating leaf and woody materials

In this study, the overall classification accuracy when differentiating
leaf and woody materials is 87.59% across 36 beech plots, with the
accuracy of each plot ranging from 78.26% to 94.32% (details in Table
A1 in Appendix A). An example of the classification result is displayed

in Fig. 5. Large tree trunks and smaller branches could be accurately
detected. At 8m level, most leaves were covered by dense points and
were accurately detected, shown in Fig. 5(c). However, small twigs
were often misclassified as leaves. Similar results occurred at the 16m
level in Fig. 5(d). Although the point density was not as high as at lower
height levels, tree trunks, branches, and leaves could still be differ-
entiated. But fine twigs were again misclassified as leaves.

4.3. Variation of leaf angle distribution on different canopy layers

An example of the 3D distribution of leaf inclination angle in a
mature plot is shown in Fig. 6. In the top layer, many leaves are dis-
played as red and yellow colors (50–80°), indicating a more vertical
growing direction. But in the middle layer and bottom layer, most
leaves display blue or cyan colors (10–40°), indicating a more hor-
izontal and lateral growing direction.

From statistical parameters and leaf angle distribution (LAD) clas-
sifications in Fig. 6(g), LAD in the top layer is most similar to the
uniform distribution, with largest median, mean, mode, and lowest
skewness. But LAD the middle and bottom layers is most similar to the
planophile distribution. The median, mean and mode decrease, while
skewness rises. In general, from the top to bottom layer, the frequency
of vertical leaves decreases, while the frequency of more horizontal
(oblique) leaves increases.

Fig. 5. Results of differentiating leaf and woody points in part of a mature beech plot B32: (a) before and (b) after classification; detailed results at (c) 8m and (d)
16m above ground.
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4.4. Variation of leaf angle distribution across stands at different succession
status

The 3D distribution of leaf inclination angles in three different
stands can be seen in Fig. 7. In a young plot B27 with beech re-
generation, stem density is low. Beech canopies have a spheroid rather
than cylinder shape, as seen in Fig. 7(d), with leaves orientated in
various directions. In a medium plot B10, stem density becomes much
higher. Leaves grow in various directions in the top layer, but grow
more horizontally in the middle layer. In a mature plot B31, the vertical
difference of LAD becomes more pronounced.

Statistical parameters demonstrate moderate variation of LAD
across these three stands (Fig. 8). From young to mature stands, the
mean decreases about 8°, while mode decreases 22° (see Table 2). The
LAD of the young plot B27 and medium plot B10 is most similar to the
uniform distribution, but LAD of the mature plot B31 is most similar to
the planophile distribution, with a highly positive skewness of 0.42.

The LAD variation across all 36 stands is detailed in Fig. 9. The
relationship between LAD and stand successional status was explored
by inspecting mean and skewness with the median canopy height in the
plot (CHMmedian). Interestingly, plot mean is strongly negatively related
to CHMmedian (r=−0.70, p < 0.001), while skewness of LAD is
moderately positively related to CHMmedian (r=0.64, p < 0.001). In
young and medium plots (CHMmedian [4, 20] m), LAD is most similar

to the uniform distribution with low skewness. However in mature plots
(CHMmedian > 20m), LAD is most similar to the planophile distribu-
tion with high skewness. Among all 36 plots, the difference between
minimum and maximum mean is moderate (10°, from 36.91° to 46.14°).
It is also worth noted that the LAD in all plots are quite different from
the spherical distribution.

The LAD variation at different canopy layers in all 36 plots is shown
in Fig. 10. From paired sample t test, for all plots, the LAD in the top
layer has the highest mean (p < 0.001), the highest mode (p < 0.001)
and the lowest skewness (p < 0.001). There is no statistical significant
difference in mean (p=0.586), mode (p=0.704) and skewness
(p=0.690) of the middle layer and bottom layer. This indicates that
beech leaves in the top layer grow more vertically.

From Fig. 10, in young and medium plots when CHMmedian is below
20m, the top layer has a spherical or plagiophile LAD ( mean [47°,
55°], skewness [−0.4, 0]). In contrast, the middle and bottom layer
have an uniform LAD ( mean [41°, 47°], skewness [0,0.4]). In most
mature plots, when CHMmedian is above 20m, the top layer becomes
uniform or plagiophile LAD ( mean [43°, 51°], skewness [−0.2, 0.1]).
The middle and bottom layer have a planophile LAD ( mean [33°, 45°],
skewness [0.1, 0.8]).

Additional statistics can be seen in Table A1 in Appendix A. Out of
all 108 layers from 36 plots, there is a large variation of mean (from
33.64° to 52.97°), while the variation of mode is even higher (from 14°

Fig. 6. Leaf angle distribution (LAD) at different canopy layers in the mature beech plot B01. (a)–(c) are the 3D distribution of leaf angles; (d)–(f) are the LAD
histograms; (g) summary of statistics.
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to 64°). 20 of the 36 plots have an inner plot vertical mean difference of
more than 15% (maximum difference=28.18%, from 33.64° to
46.84°). 23 plots have an inner plot vertical mode difference of more
than 40% (maximum difference=69.57%, from 14° to 46°). This de-
monstrates inner-plot vertical variation of LAD is even more severe than
inter-plot variation of LAD.

5. Discussion

5.1. Variation of leaf angle distribution in European beech forests

In this research, moderate leaf angle distribution (LAD) variation
was found across European beech plots in different succession status,
and they are all quite different from the spherical distribution. This led
us to question the widespread simplification of LAD as the spherical
distribution (Richardson et al., 2009; Tang et al., 2012) in previous
research. In mature stands, we found planophile LAD, which is con-
sistent with previous research where the average leaf inclination angle
of beech forests is reported to be around 21.7° (Wagner and Hagemeier,
2006), 31° (Chianucci et al., 2015) and 18.08° (Chianucci et al., 2018).
It is also consistent with the planophile LAD suggestion for temperate

broadleaf forests (Pisek et al., 2013). However, in young and medium
stands, LAD is most similar to the uniform rather than planophile dis-
tribution.

An important new discovery from this research is that there is a
strong negative correlation (r=−0.70, p < 0.001) between the
median canopy height of a plot and the average leaf inclination angle
mean of the plot, for natural European beech forests. From young to the
taller mature stands, LAD changed from symmetric uniform or plagio-
phile distribution to a skewed planophile distribution. This implies that
in situations where canopy height or stand age data is available, it is
possible to estimate plot-specific LAD. This offers the potential to up-
scale this study and map LAD at airborne or satellite level using air-
borne or satellite LiDAR data.

There is even larger variation of LAD on different canopy layers
( mean [33.64° to 52.97°], mode [14° to 64°]) quantified by TLS. A
general trend is that leaves grow more vertically in the top canopy
layer, and grow more horizontally in the middle and bottom layers.
This is consistent with previous studies, where leaves were found more
horizontal in understory beech saplings (Planchais and Pontailler,
1999; Balandier et al., 2007; Chianucci et al., 2014) or shaded beech
saplings (Delagrange et al., 2006). Based on the results in Sections 4.3

Fig. 7. Leaf angle distribution (LAD) on plots of different successional status. The 3D distribution of leaf angles in (a) a young plot B27; (b) a medium plot B10; (c) a
mature plot B31; (d) part of B27; (e) part of B10; (f) part of B31.
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and 4.4, we recommend when in-situ LAD data are not available, the
choice of predefined functions for LAD approximation could follow
instructions in Table 3.

There may be many reasons for such variation of LAD in European
beech forests. LAD can be viewed as a morphological or structural trait
of plants. Plant traits can reflect the outcome of evolutionary and
community assembly processes responding to abiotic and biotic en-
vironmental constraints (Valladares et al., 2007; Kattge et al., 2011).
The vertical variation of LAD in European beech plots can be inter-
preted as a result of plant adaptation to different light availability at
different canopy layers. On the one hand, leaves in the top layer have a
higher chance of direct sun, so steeper leaf angles can help reduce ex-
posure to excess radiation and consequent water stress during the
middle of the day (Falster and Westoby, 2003), as well as allowing more
light to reach the lower canopy. On the other hand, leaves in the middle
and bottom layer are more likely to be shaded leaves, with a flatter
inclination enhancing light interception under low light levels

(Niinemets, 2010). These mid to low canopy position leaves are also
less susceptible to high evapotranspiration due to canopy shading (Ryu
et al., 2011). The more horizontal inclination may also be a strategy to
eliminate competition from other species (Niinemets, 2010). A similar
trend of more planophile LAD in lower canopy was also found in an oak
forest in the UK (Kull et al., 1999), a mixed deciduous forest in the US
(Hutchison et al., 1986) and a mature tropical moist forest in Republic
of Panama (Wirth et al., 2001), where researchers used only one stand
and estimated LAD manually. The negative correlation of LAD with the
median canopy height of the plot, may be due to the increasing per-
centage of leaves under low light conditions inside the canopy relative
to the crown periphery. This led to an increasing percentage of leaves
with low leaf inclination angles, thus leading to a decrease in mean.

5.2. Factors affecting LAD retrieval from TLS

Compared to manual measurement and digital canopy photography
method, TLS has the advantage of rapid data acquisition of large area,
dense sampling, efficient automatic processing and less human inter-
vention (e.g., no need to identify each leaf visually), let alone its ad-
vantage to acquire millimeter level precise geometrical information.
Although this study was conducted in European beech forests, the TLS
method can be transferred to many other broadleaf species, most sui-
table for flat leaves. It may also be used to large non-flat leaf like corn,
where individual leaf can be regarded consisting of several flat patches.
In the following, we will discuss some aspects, which should be con-
sidered when using TLS to quantify LAD.

5.2.1. TLS data collection and preprocessing
High quality point cloud data are prerequisite for LAD retrieval from

TLS. A small beam divergence, small angular step, and close range is
necessary for plants with small leaves. Otherwise the TLS footprint may
be larger than individual leaf, making leaf surface reconstruction im-
possible. The optimal settings can be calculated from the parameters of
the TLS sensor and plant leaf size. For more information, one can refer
to a previous research (Wilkes et al., 2017). A multiple scan position
design and a small angular step are suggested to increase point density.
Accurate co-registration among multiple scans ensures utilization of all
scan points. While a bad co-registration and misalignment may lead to
many isolated points in the leaf surface reconstruction step or create
spurious objects. In addition, raw height was used in this research in-
stead of local height, since LAD estimation involves 3D structure and
topology of neighboring points. Topographic normalization will create
distortion of the point cloud (Liu et al., 2017).

5.2.2. Extraction of leaf points
The classification of leaf versus woody points was very accurate in

general. The main errors appear to be caused by fine scale twigs, which
were wrongly classified as leaf points. This may result from high un-
certainty in twig point reflectance due to “partial hits”. Because twigs
are very narrow, there is a higher possibility for a laser beam to par-
tially hit the twig and only a fraction of the laser pulse is returned (Eitel
et al., 2010). In this condition, the ‘calibrated relative reflectance’
measured by Riegl VZ-400 is not valid, since the partial illumination of
a bright target can yield the same measurement as a more complete
illumination of a darker target (Beland et al., 2014). As a result, the
reflectance of twigs was lower than other woody points, causing in-
correct classification as leaves.

5.2.3. Point density effect
A potential source of uncertainty in leaf angle distribution (LAD) is

the point density effect. In TLS, the spherical scanning geometry leads
to a higher point density of near-range objects than far-range objects
(Jupp et al., 2009; Zhao et al., 2015). Point density was shown to in-
fluence the retrieval accuracy of canopy height, canopy cover, and
biomass (Jakubowski et al., 2013; Wilkes et al., 2015; Garcia et al.,

Fig. 8. Leaf Angle Distribution (LAD) on plots of different successional status:
(a) a young plot B27; (b) a medium plot B10; (c) a mature plot B31.

Table 2
Summary of statistics of leaf angle distribution (LAD) across three different
stands.

Plot name Successional status median [°] mean [°] mode [°] skewness

B27 Young 45.43 46.14 42 0.07
B10 Medium 40.24 42.28 25 0.23
B31 Mature 34.38 37.98 20 0.42

median: median leaf angle.
mean: average leaf angle.
mode: most frequent leaf angle.
skewness: skewness of LAD.
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2017). Therefore, the point density effect on leaf angle calculation was
analyzed.

We used the mean nearest neighbor points distance (MNNPD)
(Wilkes et al., 2017) to quantify point density. Sparse point clouds have
high MNNPD while dense point clouds have high MNNPD. In all 36
beech plots, with increasing height above ground, MNNPD increases
from 0.24 cm to 2.86 cm shown in Fig. 11(a). To mimic this point
density change, the simulated TLS point cloud of the synthetic young
beech tree was thinned to different levels. First, we randomly selected
points from the raw TLS data at different percentages, from 5% to 20%
at a step of 1%, from 20% to 100% at a step of 5%. In total 32 point
clouds were generated. Second, the leaf angle calculation and accuracy

evaluation was implemented for each point cloud. From the results
(Fig. 11b), leaf angle estimation became less accurate (R2: 0.88
-> 0.52, RMSE: 8.37° -> 12.39°) with a decreasing point density (or
increasing MNNPD). It can be concluded that at a height of 0–20m
above ground, the leaf angle estimation is very accurate (MNNPD <
1.4 cm, R2 > 0.75, RMSE < 9.5°). From 20 to 30m, leaf angle esti-
mation is moderately accurate (MNNPD < 2.4 cm, R2 > 0.6,
RMSE < 11.5°). Above 30m, leaf angle estimation is roughly accurate
(MNNPD < 3 cm, R2 > 0.5, RMSE < 13°). In future studies, for more
accurate leaf angle measurements of tree tops (above 30m), it is re-
commended to combine with TLS scans below canopy with an UAV
LiDAR scan above canopy.

Fig. 9. The correlation between plot median canopy height and plot (a) average leaf inclination angle and (b) skewness of leaf angle distribution (LAD) across all 36
European beech plots.

Fig. 10. Leaf angle distribution (LAD) variation at different canopy layers and across different stands, (a) average leaf inclination angle; (b) most frequent leaf
inclination angle; (c) skewness of LAD.
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5.2.4. Evaluation of leaf angle distribution
Evaluating the LAD accuracy is extremely difficult due to challenges

in manually measuring true leaf angle. Especially in natural forests, it is
virtually impossible to find nearby tall buildings or observation towers
as used in previous studies (Raabe et al., 2015), to remotely observe and
measure leaf angles. Although it is possible to use ladders or tree
climbing to reach higher levels in a tree, the movement usually disturbs
the canopy and changes leaf angles (Zheng and Moskal, 2012). There-
fore, in this study, the accuracy of the proposed method was evaluated
using a simulated dataset. The results demonstrated that the leaf angle
calculation were very accurate in general. It should be highlighted that
compared to terrestrial LiDAR data scanned from real forests, the si-
mulation data have perfect registration, less noisy points, and no errors
for woody material classification (since the material type is known from
the beech tree model). Future studies may investigate the effect of these
factors on LAD measurement. In addition, future work can improve the
validation set up using realistic synthetic stands instead of individual
synthetic tree. Such stands may be created following two steps. First,
the woody architecture of trees can be extracted from terrestrial LiDAR
point clouds of real forests (Raumonen et al., 2013). Second, the woody
materials are inserted with predefined synthetic leaves (Akerblom et al.,
2018).

5.3. Management implications

The findings in this research may improve the accuracy in LAI
mapping. Airborne and spaceborne LiDAR has been increasingly used to
map LAI (Korhonen et al., 2011; Stark et al., 2015; Tang and Dubayah,
2017). In these studies, gap fraction was first estimated by laser pulse
penetration. Then LAI could be estimated based on the Possion model
using,

=P e( ) G L( ) ( ) /cos( ) (4)

where is the direction of incoming radiation, P( ) is the gap fraction
in direction , L is the leaf area index, ( ) is the clumping index in
direction , G( ) is the leaf projection function determined by LAD.
However in this method, an accurate estimate of G( ) is necessary for
accurate LAI. The spherical distribution was preferred in most cases
because the G( ) can be approximated as 0.5 in any direction (see
Fig. 12). But unfortunately airborne LiDAR usually operates at small
scan angles from 0° to 30° (Liu et al., 2018). At this range, there is large
difference among G( ) of different LAD as shown in Fig. 12. If stand
specific LAD can be quantified, there is potential to increase LAI map-
ping accuracy.

In addition, the vertical LAD variation at different canopy layers,
demonstrates the necessity for multi-layer radiative transfer modelling
(Kuusk, 2001; Yang et al., 2017), even for the same species. The method
used in this research, could also be utilized to study plant function,
forest ecology and evolution. For example, leaf inclination may change
due to water stress (Biskup et al., 2007), leaf expansion and senescence.
TLS could be used to acquire measurements during the live cycle of
leaves under varying microclimatic conditions. The vertical variation of
LAD in European beech stands as found in this research, are consistent
with the discovery that late-successional stands dominated by shade
tolerant species often have a more horizontal leaf inclination angles
(McMillen and McClendon, 1979; Pearcy et al., 2004; Niinemets, 2010).
Further research could use TLS to acquire measurements in different
forest types, to explore the relationship between geography and plant
structural traits.

6. Summary and conclusion

In this study, the variation of leaf angle distribution (LAD) in
European beech (Fagus sylvatica) forests was examined using terrestrial
laser scanning (TLS). A total of 36 plots ranging from young, medium to
mature successional status were studied. Leaf and woody materials
were differentiated based on a combination of radiometric and geo-
metric features. Leaf surface was reconstructed and leaf inclination was
subsequently calculated. From the statistical results, we conclude:

• TLS proves to be an effective tool to quantify LAD variation due to
its capability to acquire massive data rapidly, differentiate leaf and
woody materials, and provide precise 3D information.
• There is moderate variation of LAD across beech plots at different
successional status. Instead of a spherical LAD assumption, it is more
valid to assume a uniform LAD for young and medium stands, a
planophile LAD for mature stands.

Table 3
Suggested choice of predefined functions for leaf angle distribution (LAD) ap-
proximation in European Beech stands.

Previous From this research

Young or medium plots
(< 20m)

Mature plots
(> 20m)

Multi-layer Top \ Spherical Uniform
Middle Uniform Planophile
Bottom Uniform Planophile

Plot averaged Spherical Uniform Planophile
Or estimate from canopy height data

Fig. 11. (a) The decreasing point density with height above ground in all 36 beech plots (point density was quantified by mean nearest neighbor points distance
(MNNPD); (b) leaf angle estimation accuracy decreases with decreasing point density from the simulated point clouds.
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• There is large variation of LAD on different canopy layers. Beech
leaves grow more vertically in the top layer, but more obliquely or
horizontally in the middle and bottom layer.
• A strong negative correlation exists between the plot average leaf
angle and the plot median canopy height. This offers the potential to
estimate plot specific LAD from canopy height data in European
Beech forests.
• Large variation of LAD should be accounted for better LAI mapping
and canopy photosynthesis modelling.
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