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The unprecedented availability of geospatial data and technologies is driving innovation and discovery but not without the
risk of losing focus on the geographic foundations of space and place in this vast “cyber sea” of data and technology.
There is a pressing need to educate a new generation of scientists and citizens who understand how space and place matter
in the real world and who understand and can keep pace with technological advancements in the computational world.
We define cyberliteracy for GIScience (cyberGIScience literacy) and outline eight core areas that serve as a framework for
establishing the essential abilities and foundational knowledge necessary to navigate and thrive in this new technologically
rich world. The core areas are arranged to provide multiple dimensions of learning ranging from a technological focus to
a problem solving focus or a focus on GIScience or computational science. We establish a competency matrix as a means
of assessing and evaluating levels of cyberGIScience literacy across the eight core areas. We outline plans to catalyze the
collaborative development and sharing of instructional materials to embed cyberGIScience literacy in the classroom and
begin to realize a cyberliterate citizenry and academe. Key Words: big data, computational thinking, geographic edu-
cation, GIS, spatial thinking.

前所未见的地理空间数据与技术可及性, 正驱动着创新与发现, 但却无法避免在此般浩瀚的数据与科技之“网路海洋”中失
去聚焦空间和地方的地理基础之危机。教育理解空间与地方在真实世界中的影响、并在计算的世纪中理解并能够跟上科技
进步的新一代科学家与公民之需求相当迫切。我们为GIS科学定义网路素养 (网路GIS科学素养), 并概述建立在此一科技
兴盛的新世界中航行并发展所需的核心能力和基础知识时提供作为架构的八大核心领域。本研究安排核心领域, 以提供聚
焦技术、聚焦问题解决、抑或聚焦GIS科学或计算科学的多重学习面向。我们建立能力矩阵, 作为评价和�e“定横跨八大核
心领域的网路GIS科学素养之方法。我们拟定计画, 以催化合作发展与分享工具物质以在教室中深植网路GIS科学素养, 并
着手实现具备网路素养的公民与学术。 关键词：大数据, 计算式思考, 地理教育, GIS, 空间思考。

La disponibilidad sin precedentes de datos y tecnolog�ıas geoespaciales est�a jalonando la innovaci�on y el descubrimiento,
aunque no sin el riesgo de extraviar el foco en la fundamentaci�on del espacio y lugar en este vasto “mar ciberal” de datos y
tecnolog�ıa. Hay una necesidad apremiante de educar una nueva generaci�on de cient�ıficos y ciudadanos que entiendan
c�omo el espacio y el lugar importan en el mundo real, al tiempo que entiendan y mantengan el paso con los avances
tecnol�ogicos en el mundo computacional. Nosotros definimos la cibercompetencia en SIGciencia (competencia en ciber-
SIGciencia) y esbozamos ocho �areas medulares que sirvan de marco para establecer las habilidades esenciales y conoci-
miento fundamental necesarios para navegar y prosperar en este nuevo mundo tecnol�ogicamente enriquecido. Las �areas
centrales est�an organizadas para proveer m�ultiples dimensiones de aprendizaje que se extienden desde un enfoque tec-
nol�ogico hasta un foco con �enfasis en soluci�on de problemas, o un foco en SIGciencia o en ciencia computacional.
Establecemos una matriz de competencia como medio de calcular y evaluar niveles de competencia en ciber-SIGciencia a
trav�es de las ocho �areas medulares. Esbozamos planes para catalizar el desarrollo en colaboraci�on y compartir materiales
instructivos con los cuales incrustar la competencia en ciber-SIGciencia en el aula y empezar a realizar una ciudadan�ıa y
una academia ciber-competentes. Palabras clave: big data, educaci�on geogr�afica, pensamiento computacional, pensa-
miento espacial, SIG.

Technology is transforming the ways in which
we undertake geographic problem solving. A

myriad of systems and services are making
geospatial tools and data accessible to broader
audiences (Kraak 2004; Kugler et al. 2015; Liu,
Padmanabhan, and Wang 2015; Yang et al.
2017). Nascent geospatial technologies from
satellites and sensors to crowdsourcing platforms
are introducing faster and easier ways to collect
and disseminate geospatial data (Hart and
Martinez 2006; Blaschke 2010; Loveland and
Dwyer 2012; Zhao and Han 2016; Wulder et al.
2016; OpenStreetMap 2017). The unprecedented
availability and openness of geospatial data and
technologies is driving innovation and discovery
(Yang et al. 2010; Kassen 2013; S. Wang et al.
2013), which is motivating an educational shift in
geographic information systems (GIS) curricula
(Bowlick, Goldberg, and Bednarz 2017; Ricker
and Thatcher 2017). In the midst of change,
however, we risk losing focus on the geographic
foundations of space and place in this vast “cyber
sea” of data and rapidly changing technologies.

As a result, there is a pressing need to educate a
new generation of scientists and citizens who
understand how space and place matter in the
real world and who understand and can keep
pace with technological advancements in the
digital era.

Thisarticle defines cyberliteracy for GIScience
and outlines a set of eight core areas that are situ-
ated at the intersection of GIScience and computa-
tional science. By articulating this core literacy,
along with strategies to help embed it within exist-
ing curricula, we provide context and direction for
the acquisition of knowledge and skills needed for
the practice of geospatial computing, which we
define as being situated at the nexus of GIScience
and computational science. This work fills a curricu-
lum gap by integrating knowledge areas and skills
that have historically been developed within depart-
mental silos into a synergistic whole to begin edu-
cating a new generation of cyberliterate scientists
and citizens who can use advanced technologies to
make sense of massive geospatial data to solve prob-
lems facing the world and its inhabitants.
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What Are Literacies and Why Do We

Need Them?

Literacies broadly serve to outline essential abilities
and foundational knowledge that are required to
succeed in a scientific field, an occupation, or society
in general (i.e., classic literacy, which is the ability to
read and write). As technologies advance and scien-
tific understanding evolves, what is considered an
essential ability or foundational knowledge changes.
Just as reading and writing became necessary to suc-
ceed in society in past generations, the ability to use
digital technologies is becoming necessary to suc-
ceed today.

We build our definition of cyberliteracy for
GIScience here on the definition of digital literacy
by Gilster (1998), which is the “ability to understand
and use information in multiple formats from a wide
range of sources when it is presented via computers”
(2). Digital literacy recognizes a shift in communica-
tion patterns and thought processes brought on by
the Internet. Being digitally literate is considered
vital in today’s knowledge economy.

As GIS and geospatial computing expand beyond
traditional desktop computers to Web GIS, cloud
GIS, and cyberGIS, the essential abilities and foun-
dational knowledge expected of GIScientists, GIS
professionals, and those using geospatial technolo-
gies must also expand. What are the essential abil-
ities and foundational knowledge for the next
generation who will be using and advancing these
new technologies to solve tomorrow’s geographic
problems? The remainder of this article defines

cyberliteracy for GIScience, outlines eight topical
areas as a framework for establishing the required
abilities and knowledge areas, and provides a compe-
tency matrix to serve as a means of assessing and
evaluating different literacy levels.

Cyberliteracy for GIScience

We define cyberliteracy for GIScience as the ability to
understand and use established and emerging tech-
nologies to transform all forms and magnitudes of
geospatial data into information for interdisciplinary
problem solving. We posit that achieving cyberliter-
acy for GIScience requires learners to be know-
ledgeable in eight core areas (cyberinfrastructure,
parallel computing, big data, computational think-
ing, interdisciplinary communication, spatial think-
ing, geospatial data, and spatial modeling and
analytics) that bridge (1) GIScience and computa-
tional science and (2) technology and problem solv-
ing (Figure 1).

Cyberliteracy for GIScience (cyberGIScience lit-
eracy hereafter) highlights the importance of under-
standing and using cyberinfrastructure and
geospatial technologies, the vital role of communica-
tion in interdisciplinary science, as well as the ability
to think both spatially and computationally to tackle
complex problems. Figure 1 shows how the core
areas are arranged to provide multiple dimensions of
learning ranging from a technological focus (i.e.,
spatial modeling and analytics, cyberinfrastructure,
and parallel computing) to a problem-solving focus

Figure 1 Eight cyberliteracy for GIScience areas.
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(i.e., spatial thinking, interdisciplinary communica-
tion, and computational thinking). Learners might
also focus on GIScience (i.e., spatial modeling and
analytics, geospatial data, and spatial thinking) or
computational science (i.e., parallel computing, big
data, and computational thinking). These two dis-
ciplinary tracks are connected technologically using
cyberinfrastructure and connected socially using
interdisciplinary communication, thus forming eight
core areas.

The following subsections summarize each area
by providing a brief definition, contextual informa-
tion, and key references. We outline four key
themes in each area to provide a means to create
learning objectives and structure sharable curricu-
lum materials in geospatial computing. The themes
are not meant to be comprehensive; in fact, we see
many new themes, topics, and domains potentially
intersecting cyberGIScience literacy. Rather, these
key themes represent important concepts or skills
within each area, which help to make each abstract
area concrete. We begin with the technological
bridge between GIScience and computational
science—cyberinfrastructure—and progress clock-
wise around Figure 1.

Cyberinfrastructure
Cyberinfrastructure (CI), defined as “the compre-
hensive infrastructure needed to capitalize on
dramatic advances in information technology”
(Atkins et al. 2003, 4), includes such capabilities as
high-performance and high-throughput computing,
data management, visualization, and virtual organ-
ization support. Converging advances in these capa-
bilities are changing the way research is being
conducted, offering new modes of scientific discov-
ery, and empowering a twenty-first-century know-
ledge economy.

Computational Infrastructures Computational in-
frastructures consist of hardware and software to
provide computing capabilities. Massive computa-
tional capabilities can be achieved by connecting
large numbers of compute nodes using low-latency
and high-bandwidth network technologies to create
high-performance computing (HPC) and cloud
computing systems (Clarke 2003; Yang et al. 2011).
These systems are generally designed to fit certain
computational characteristics such as compute-
intensive or data-intensive workloads. HPC and
cloud computing systems often combine different
processor technologies such as multicore processing
units and accelerators such as graphics processing
units (GPUs) with high-bandwidth networks and big
data storage systems, and parallel processing soft-
ware packages (Hennessy and Patterson 2011;
Hwang and Jotwani 2011).

Spatial Data Infrastructures Many countries have
recognized geospatial information as one of the
most critical assets for improving economic, envir-
onmental, and societal outcomes, which has led to
the development of the spatial data infrastructure
(SDI). In a broad sense, SDI is intended to create an
environment in which a wide range of stakeholders
can access geographic information assets (Masser
2007). One common trait of SDI is the integration
and use of spatial data at all scales from disparate
sources, which is critical to the decision process
(Williamson, Rajabifard, and Feeney 2003; Nebert
2004) and facilitates governance, interoperability,
and availability of spatial data (Masser 2007).

Science Gateways Science gateways provide
scholars, students, and citizen scientists easy access
to specialized computational tools and data, thus
reducing the barrier to entry and encouraging
exploration (Wilkins-Diehr et al. 2008). Most sci-
ence gateways provide easy-to-use Web-based inter-
faces, which can be designed for expert-level
researchers or scientifically curious citizens to help
researchers tap into the emerging area of citizen sci-
ence to enable crowdsourcing or the collection of
volunteered geographic information (VGI;
Goodchild 2007; Haklay 2013; Zhao and Han
2016). Generic platforms such as HUBzero and
Jupyter Notebooks make it increasingly easier to
create science gateways that can leverage advanced
cyberinfrastructure (McLennan and Kennell 2010;
Kluyver et al. 2016).

CyberGIS and Other Spatial Cyberinfrastructures
CyberGIS represents new-generation geographic
information systems and science based on advanced
computing and cyberinfrastructure and an emerging
scientific field (S. Wang 2010). CyberGIS provides a
solid foundation for tackling complex geographic
problems and has contributed to the advancement of
cyberinfrastructure. Other spatial cyberinfrastruc-
tures have also been developed to advance a special-
ized type of cyberinfrastructure from geospatial or
spatial perspectives (Yang et al. 2010; Wright and
Wang 2011). Here we focus on cyberGIS
for brevity.

Parallel Computation
Parallel computing uses multiple processing resour-
ces to solve a computational problem by breaking it
down into discrete parts to solve simultaneously,
rather than the sequential execution of serial com-
puting (Barney 2017). The combination of big data
and more sophisticated analyses is driving the need
for access to parallel computing. Nature is itself par-
allel, and parallel computing approaches are increas-
ingly necessary for combining data analyses,
computer simulations, and “what-if” models of
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geospatial phenomenon to identify possible solutions
(S. Li et al. 2016).

Parallel Programming Parallel programming is a
special type of programming that enables multiple
tasks to be performed simultaneously. Parallel pro-
gramming models that are in common use include
shared memory, message passing, data parallelism,
and task channel (Foster 1995; Wilkinson and Allen
1999). Understanding the trade-offs between parallel
models (e.g., development effort, scalability, pro-
gram complexity) is important when developing
geospatial computing methods and models. Popular
parallel programming libraries include Message
Passing Interface (MPI) libraries and OpenMP.

Types of Parallelism Different parallel computing
tasks can be matched to different parallel computing
systems including multicore computing, distributed
computing, and grid computing. Instruction-level
parallelism enables instructions to be executed simul-
taneously, which is common in most modern process-
ors (e.g., Intel and Advanced Micro Devices, Inc.
microprocessors). Data parallelism enables data to be
processed in parallel, whereas task parallelism enables
a task to be decomposed into subtasks and processed
in parallel (Culler, Singh, and Gupta 1999). Modern
geospatial algorithms exploit multiple levels of paral-
lelism to maximize performance gains.

Decomposition Many approaches exist to decom-
pose a problem into subproblems to exploit parallel
computing. Within geospatial computing, task
decomposition and spatial domain decomposition
are common (Guan and Clarke 2010). Task decom-
position divides a process into subtasks that are dis-
tributed to multiple processing cores. Spatial
domain decomposition—a special type of data
decomposition—divides spatial data into subdomains
and distributes the subdomains to be processed in
parallel (Ding and Densham 1996).

Scalability The scalability of a parallel program
generally refers to its ability to efficiently handle
larger amounts of data or run on more processing
cores. Strong scalability measures execution time as
the number of processors increase for a fixed prob-
lem size, and weak scalability measures execution
time as the number of processors increases with a
fixed problem size per core (Kumar and Gupta
1994). Speed-up and efficiency are common meas-
ures to evaluate how well a parallel program is run-
ning on parallel computers. Amdahl’s law models
theoretical maximum speed-up for different task
executions, which is governed by the percentage of a
program not executing in parallel (Amdahl 1967).

Big Data
Big data “consists of extensive datasets—primarily in
the characteristics of volume, variety, velocity, and/
or variability—that require a scalable architecture
for efficient storage, manipulation, and analysis”
(NIST Big Data Public Working Group 2015). The
first three characteristics are widely known as the
“three Vs” owing to the increasing amount of data,
range of representations, and speed at which they
are produced (Laney 2001; Sagiroglu and Sinanc
2013) that can drive change in architectures and
technologies (Yang et al. 2017). Many forms of sen-
sors, networks, instruments, and constructs produce
big data, from user-generated content on Twitter
(Leetaru et al. 2013) to the data-rich and instrumen-
tation-dense “smart city” (Kitchin 2014). Big data
analytics might yield different approaches to scien-
tific investigations (Kitchin 2016) and have growing
literatures of theoretical and methodological
approaches in geography and other fields (S. Li
et al. 2016).

Data Storage Data storage becomes more complex
as data sizes grow. Cost, capacity, and data access
speed are important factors in data storage technolo-
gies (Hashem et al. 2015). Tiered data access that
spans faster, short-term data storage using solid-
state disks to slow, long-term archival storage on
tape storage media are common. Many organiza-
tions facing massive data are trying to consolidate
and centralize data storage, sometimes storing it “in
the cloud,” which can raise questions related to
security and sustainability (Yang et al. 2017).

Data Management Data management has been
defined as the process of “the development, execu-
tion and supervision of plans, policies, programs and
practices that control, protect, deliver and enhance
the value of data and information assets” (Mosley
et al. 2010, §1.4). As with all data stores, privacy and
security are considered important issues to take into
account in geospatial data management (Bertino
et al. 2008; S. Li et al. 2016). Data management
needs innovations to accommodate big data
(Agrawal, Das, and El Abbadi 2011), which might
include NoSQL, parallel relational database man-
agement systems, and complex event process-
ing systems.

Big Data Frameworks Big data frameworks
include a range of technological solutions that help
with management, modeling, analysis, and visualiza-
tion of big data workflows (Assunç~ao et al. 2015).
To build an effective big data framework, it is neces-
sary to understand the categories of analytics, types
of data, data inputs, and processing technologies
(Assunç~ao et al. 2015). Information systems are
often implemented with currently available
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frameworks including Apache Spark, HPCC System,
Hive, and Impala.

Transforming Big Data into Information
Transforming big data into information is the first
major step in the data life cycle that transforms raw
data into actionable knowledge (NIST Big Data
Public Working Group 2015). Sometimes called
data wrangling or data munging (McKinney 2012),
these processes clean, filter, and prepare raw data so
that it can be input into analytical methods or mod-
els. This can be one of the most time-consuming
and labor-intensive tasks of analytics (Assunç~ao et al.
2015), which precede more in-depth analysis and
modeling to create information.

Computational Thinking
Computational thinking is a way of problem solving
that involves conceptualizing, formulating, and
expressing a problem and its components in a way
that makes it evaluable by humans, computers, or
both (Wing 2006). Pertinent not just to computer
systems but in scientific, mathematic, and other
forms of inquiry, thinking computationally is a uni-
versally applicable skill (Grover and Pea 2013;
Weintrop et al. 2016). Beyond a reworking of prob-
lem solving or critical thinking, computational
thinking involves a distinct approach to analysis,
design, and understanding (Wing 2008). This area
and its components are a vital cyberGIScience liter-
acy because the deconstruction of geographic prob-
lems and the identification of means to analyze
components of them form a core competency in the
fusion of geospatial and computational analysis.

Computational Abstraction Abstraction is a means
of extracting value or meaning from a single
example or problem and applying that extraction to
other individual examples or making broader infer-
ences (Gray and Tall 2007; Welling 2007).
Computational abstraction seeks to extract the
essence of a programming action from the syntax of
the language or system of interaction (Touretzky
et al. 2013). Because GIS is by its nature an abstrac-
tion of spatial data, the cyberliterate scientist must
contend with multiple types of abstraction.

Computational Complexity Computational com-
plexity refers to a theoretical approach in computer
science for comparative classification of the difficulty
of solving given problems (Arora and Barak 2009).
Understanding the complexity of computational
problems informs problem approach and the effi-
ciency of analysis. This allows one to understand
how computational requirements and calculation
time of a given algorithm or method grow as the
input data size grows, which is important for

handling, manipulation, collecting, and processing
spatial data.

Algorithms An algorithm is a set or sequence of
actions to be performed in a computational prob-
lem-solving context. As a component of computa-
tional thinking, algorithmic understanding requires
an awareness of how a problem can be decomposed
into multiple steps (Seiter and Foreman 2013) and
whether those steps can be solved simultaneously to
invoke parallel and high-performance computing
(Armstrong 2000; Shook et al. 2016). A literate algo-
rithmic thinker pools and connects abilities to ana-
lyze and specify a solution to a problem, given its
different cases and necessary basic actions (Futschek
2006). Algorithms such as plane-sweep, shortest-
path, and nearest-neighbor continue to advance to
meet the needs of spatial problems (Shekhar, Feiner,
and Aref 2015), sometimes by exploiting the locality
of spatial data to improve processing performance
(Armstrong 2000). Designing algorithms, especially
spatial algorithms, is a creative endeavor in the con-
struction of efficient solutions to spatial and compu-
tational problems, which is a key skill for
cyberliterate GIScientists.

Automation Automating tasks is a hallmark of
computing. Developing automated workflows based
on well-known workflow patterns (van der Aalst
et al. 2003) improves overall work efficiency for fre-
quently occurring tasks. Automation can play a role
in improving replicability of scientific results
(Mesirov 2010) by crystallizing the scientific process
in computer code, and when it is combined with
high-quality documentation, metadata, and proven-
ance information it can communicate the process to
scholars across disciplines.

Interdisciplinary Communication
Science is not a collection of silos. Tackling pressing
problems facing the world and its inhabitants neces-
sitates bridging scientific knowledge domains and
thus requires interdisciplinary communication.
CyberGIS and related technologies can play a role
as a computational tool but also as a collaboration
and communication tool to enhance interdisciplinary
communication. The broad functionality of GIS, the
advantages of cyberinfrastructure, and the applica-
tions of spatial thought and practice demand an
integration of ontologies, epistemologies, and meth-
odologies for actualization in an interdisciplinary
manner (Winowiecki et al. 2011).

Shared Language Interdisciplinary research comes
with certain challenges, including knowledge gaps
and conflicts between disciplines (Rickles and Ellul
2015). A lack of familiarity with discipline-specific
terms (e.g., symbology, extent) or overlapping
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definitions (e.g., scale in geography vs. computa-
tional science) can lead to misunderstandings.
Therefore, it is important for a shared language to
be established. Solutions include collaborative learn-
ing within the research team and building interdis-
ciplinary partnerships (Rickles and Ellul 2015).

Communication Medium Interdisciplinary research
benefits from common technology. GIS is often
incorporated as a fundamental tool for research and
decision making (Chen 1998). Like geography itself,
which is considered to be an integrator of other dis-
ciplines (Baerwald 2010), GIS can be an integrating
technology for interdisciplinary research. Interactive
maps, dashboards, executable notebooks, and other
technologies are also excellent mediums for
communication.

Ethics, Privacy, and Intellectual Property As
more data are collected in fine-grained detail from
individuals (e.g., movement patterns and search his-
tories) to the environment (e.g., locations of endan-
gered species), issues of ethics and privacy are
paramount. Geoprivacy or the locational privacy of
individuals, in particular, must be protected, which
has spurred robust research efforts aiming to balance
privacy and analytical results (Armstrong and
Ruggles 2006; Kwan, Casas, and Schmitz 2006;
Richardson et al. 2015). In the era of hacking and
data breaches, important questions include the fol-
lowing: What can be done with these data, how
should they be protected, and who owns them and
their derivatives? The digital divide can widen with
issues related to inequality and representation
(Elwood and Leszczynski 2011; Shelton, Poorthuis,
and Zook 2015) as well as embedding discriminatory
bias in big data analytics (Crawford and Schultz
2014; Podesta 2014), leading to questions of algo-
rithmic transparency and accountability (Garfinkel
et al. 2017).

Accessibility and Reproducibility Reproducibility
is the hallmark of science. Yet, technical and social
hurdles make reproducing computational research
challenging (Peng 2011). Technologies such as sci-
ence gateways can provide easy access to data and
analytics through Web-based interfaces. Executable
notebooks such as RStudio (Gandrud 2013) and
Jupyter (Kluyver et al. 2016) enable code, results,
and explanations to be combined into a single (exe-
cutable) document. Virtualized containers such as
Docker (Merkel 2014) provide transparent, consist-
ent environments including operating system,
software, and data. Combining these technologies
with best practices (Sandve et al. 2013) will help
make geocomputational results accessible and
reproducible.

Spatial Thinking
Spatial thinking refers to the cognitive combination
of representing and reasoning concerning the spatial
relationship between objects, phenomena, and the
background in which they exist (National Research
Council 2006; Lee and Bednarz 2012). This literacy
contains topics concerning the ability to consider
and manipulate representations of spatial objects and
relationships, skills that are vital in conceptualizing
space, in working with spatial technologies, and in
geographic thought (Lee and Bednarz 2009).

Spatial Cognition Mental spatial configurations
represent objects as observed visually, aurally, and
haptically, resulting in information for motor skills,
language, and other cognitive tasks (Landau and
Jackendoff 1993). These spatial actions and interpre-
tations form the brain’s capabilities for spatial cogni-
tion. This cognition influences many components of
object recognition and operates across brain func-
tions (Halligan et al. 2003; Montello, Grossner, and
Janelle 2014). Examples of applied spatial cognition
include wayfinding decision making and ability.

Spatial Relations Understanding how spatial rela-
tionships are manifested and how to represent them
digitally is a necessity to adequately and accurately
investigate spatial process in digital form.
Topological relations have been formally specified
(Egenhofer, Mark, and Herring 1994) and incorpo-
rated into many geospatial technologies. Other key
spatial relations involve distance and direction.
Further, it is important to recognize the role of time
in determining spatial relationships.

Pattern Recognition Pattern recognition is a funda-
mental spatial cognition skill (Kastens and Ishikawa
2006). It is also a mature geospatial technology tool
with origins in spatial analysis, air photo interpret-
ation, and satellite image processing. Finding spatial
patterns requires discovering spatial relations in data.
Whereas it is a natural human ability, training com-
puters to find patterns in massive quantities of
unstructured data is still a challenge (Jain, Duin, and
Mao 2000). With big data and cyberinfrastructure,
the opportunities for object recognition, object extrac-
tion, and both supervised and unsupervised classifica-
tion using machine and deep learning have expanded
across many different fields and organizations (Bishop
2006; LeCun, Bengio, and Hinton 2015).

Modifiable Units and Uncertain Contexts As
computation and data scale, it is important to acknow-
ledge how spatial and temporal scale might influence
our analytical and simulation results. The modifiable
areal unit problem is a classic problem in geography
and applies to data both big and small (Openshaw
1984). The modifiable temporal unit problem is
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similarly challenging and will grow in importance as
more and more data become spatiotemporal (Cheng
and Adepeju 2014). The uncertain geographic context
problem applies to contextual units or neighborhoods
and could influence results (Kwan 2012). Abstracting
the spatial nature of objects for use in GIS is a diffi-
cult semantic task that can raise difficult problems for
interoperability (Bishr 1998).

Geospatial Data
Geospatial data are raw geospatial facts, whereas
information is the assemblage of data (Longley et al.
2015). An important aspect of cyberGIScience liter-
acy is the ability to understand, work with, and
manipulate geospatial data using a combination of
knowledge and computational tools.

Capturing Geospatial Data and Information All
digital information is captured, either manually or
automatically, for representation as data (Bishr
1998). Manually captured data are recorded “by
hand,” meaning that someone types in, draws, or in
some way expresses the data in a digital format. Vast
quantities of automatically captured data are gener-
ated by imaging satellites, self-driving cars, smart
cities, and sensor networks, among many others.
Capturing, representing, and analyzing these new
and continuously streaming data are becoming a sig-
nificant challenge (Agrawal, Das, and El Abbadi
2011; Yang et al. 2017)

Representing Geospatial Data and Information
Real-world phenomena are abstracted and repre-
sented as data, which are manipulated and trans-
formed into meaningful representations or
understandings and therefore transformed into
information. Different spatial data models are used
in this abstraction process, traditionally categorized
into field and object models (Peuquet 1984;
Worboys and Duckham 2004). The addition of
time, flows, and other geographic characteristics has
led to new spatial data models (Fisher and Unwin
2005; X. Li et al. 2014; J. Wang, Duckham, and
Worboys 2016). For analyzing geospatial big data
and running big, complex computational models,
innovative spatial data models might be needed.

Transforming Geospatial Data to Information
Geospatial data typically comprise individual num-
bers, text, symbols, and their associated spatial refer-
ences. When spatial data are aggregated,
transformed, analyzed, or woven together, they
become information, which can be ascribed mean-
ing. Information is distinguished from data by some
degree of data selection, organization, and prepar-
ation; information is data transformed in some way
to serve a purpose (Burrough, McDonnell, and
Christopher 2015; Longley et al. 2015).

Geographic Information Systems GIS are
designed to capture, store, manipulate, analyze, man-
age, and present all types of geospatial data. They
combine data, technology, and people to describe,
explain, and predict patterns and processes at geo-
graphic scales (P. Longley 2005). A systems viewpoint
of GIS values the tools and technologies associated
with solving spatial problems, especially as they are
applicable to a given domain or problem (Wright,
Goodchild, and Proctor 1997). GIS provide a rich
integrative framework for many other geospatial tech-
nologies as well as the core technology used to trans-
form geospatial data into information.

Spatial Modeling and Analytics
Geographers and GIScientists have long used com-
putational procedures to understand spatial relation-
ships and geographic phenomena. A firm grasp of
classic spatial analytical models and methods will
ensure we do not continuously reinvent the wheel
and rediscover long-known principles. Yet, it is
equally important to engage new technologies and
methods such as parallel processing and machine
learning that can help make sense of big spatial data
and might shape the future of the field.

Spatial Analysis and Statistics Spatial analysis
matured with the quantitative revolution in the
geography of the 1960s (Chorley and Haggett 1967;
Berry and Marble 1968). Early algorithms, however,
were designed to find solutions given no or limited
computing capabilities and therefore heuristics that
could limit the set of potential solutions were neces-
sary. With big data and parallel computing available,
entirely new methods of spatial analysis are possible
(Anselin 2012; Anselin and Rey 2012).

Spatial Analytic Models A spatial analytic model is
a simplified representation of a system of spatial
objects, their attributes (also known as state varia-
bles), processes, and interactions created for pur-
poses of description, explanation, forecasting, or
planning (e.g., Fotheringham and Rogerson 2002).
These might be scale models, conceptual models, or
mathematical models, varying with the level of
abstraction and formalization (O’Sullivan and Perry
2013). The logic and mathematics of these models
might be based on, for example, regression, simula-
tion, or agent-based models, and these could be very
simple, built from desktop software components, or
very complex, involving parallel computation and
big data stores (Parry and Bithell 2012; Westervelt
and Cohen 2012).

Spatial Data Mining Spatial data mining is the pro-
cess of exploring and discovering previously unknown
but useful and interesting patterns from spatial data
(Stolorz et al. 1995). It is more challenging to extract
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the useful patterns from geospatial big data than con-
ventional data sets, due to not only intrinsic relation-
ships and implicit autocorrelation but also
heterogeneous data types including geo-tagged text
and multimedia data (S. Wang and Yuan 2014).
Many spatial data mining techniques have been pro-
posed, including techniques of spatiotemporal data
mining, text mining, geo-social network mining, and
spatially savvy machine learning (Zafarani, Abbasi,
and Liu 2014; Shekhar et al. 2015).

Machine and Deep Learning Machine and deep
learning allow computational models to learn from
data, sometimes using multiple layers of processing to
capture multiple levels of abstraction (LeCun,
Bengio, and Hinton 2015). These technologies are
poised to disrupt geographic research by enabling
computers to “learn” abstract geographic concepts for
narrowly defined problems. Much like the early years
of the quantitative revolution, most machine learning
is not spatially aware, opening up many exciting
research opportunities. These opportunities include
data from the Internet of Things (IoT), which is
beginning to produce so much data that it surpasses
human sense-making abilities (Al-Fuqaha et al. 2015).

Cyberliterate Geospatial Citizens,

Scientists, and Decision Makers

Having identified the eight core areas and associated
themes, it is important to have a strategy for identify-
ing how these can be operationalized in a curriculum
to empower cyberliterate geospatial citizens, scientists,
and decision makers. Modern curriculum design the-
ory suggests that a backward design process (Wiggins
and McTighe 2005) that starts with identification of
tangible learning objectives tied to assessment will
lead to better learning outcomes for students and be
helpful for the instructors compared to a commonly
used syllabus-centric specification (Boozer 2014).

The backward design process goes through three
stages and starts with the identification of desired
results in a way that is centered on articulating stu-
dent learning outcomes. In this stage, it is inform-
ative to think about student learning as a
progression of skills and abilities from basic recall to
more substantive and deep understanding. This pro-
gression is often described by Bloom’s taxonomy,
which was originally published in 1956 and revised
in 2001 (Bloom 1956; Anderson, Krathwohl, and
Bloom 2001). The taxonomy identifies six such lev-
els, and each of them can be characterized by a set
of student-centered characteristic expressions of
knowledge, skills, and abilities. Although Bloom’s
revised taxonomy sees basic recall as the lowest level
of knowledge and creation as the highest, we cannot
anticipate that learners will become experts or crea-
tors in all eight areas; rather, their expertise might

be concentrated in a few areas while they maintain a
more basic understanding in the remaining areas.

In the second stage, the curriculum designer will
identify how students should demonstrate that they
have reached these learning objectives. In other
words, what assessments and activities will provide
evidence of student learning? It is also important to
identify by what criteria successful learning will be
judged; for example, in terms of map qualities or
software performance.

The third stage of the backward design process is
to plan the actual instruction based on our objectives
and assessment strategies. A guiding question at this
stage is this: What do I need to provide students with
for them to be able to complete assessment activities
to my satisfaction? As educators, this is where we
need to look at what facts and skills they need to be
exposed to and how and in what sequence this infor-
mation needs to be presented and taught.

To illustrate the backward design process, Table 1
lists example learning objectives for each literacy area.
Table 1 identifies example learning objectives at three
competency levels that roughly map to the six levels
in Bloom’s revised taxonomy: basic (remember and
understand), intermediate (apply and analyze), and
advanced (evaluate and create). Bloom’s taxonomy
levels are used as an example, but other frameworks,
taxonomies, and levels (e.g., novice, advanced, expert)
could be used depending on the particular curricular
context (Hoffman et al. 2010).

To address diverse learner needs with multiple
learner pathways, we propose that a cyberGIScience
literacy competency matrix, examples of which are
shown in Figure 2, can be used to convey, at a high
level, what cyberGIScience literacy could be com-
posed of for specific groups of learners. Once articu-
lated for a specific group or domain, this matrix
provides a framework for documenting necessary
levels of cyberGIScience literacy and could be used
to help evaluate the content of existing or proposed
courses or curricula. Thus, the learning objectives
along with a thoughtfully considered
cyberGIScience literacy competency matrix will
inform the second and third stages of the backward
design process. This curriculum building and deliv-
ery process will begin cultivating cyberGIScience lit-
eracy for diverse learners by recognizing and
embracing different learner pathways and achieving
varied goals not only for GIS experts but also for
domain scientists, decision makers, planners, engi-
neers, and even citizen scientists (Baker et al. 2015).

The competency matrix can be used by both edu-
cators and learners. For example, an instructor of a
geocomputing course might set competency goals
for each key area when designing the curriculum in
their course (illustrated as hashed bars in Figure
2A). Initial assessment of the students in the class
might indicate several gaps in competency that are
different depending on the students’ background
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and skill set (e.g., Figures 2B–2D). The instructor
now has a high-level understanding of the compe-
tency goals for the course and gaps for the learners
in the course. The matrix could be used across
courses when designing curriculum to ensure that
learners gain the right balance of competencies.

A learner, on the other hand, might use the com-
petency matrix to self-identify knowledge and skills
gaps and plan to take certain courses to address
those gaps. For example, a GIS student might take
the geocomputing course illustrated in Figure 2 to
fill a computational science knowledge gap (Figure
2B), whereas a computer science student might take
the same geocomputing course to improve his or
her spatial modeling and analytics knowledge
(Figure 2C). Although both students are taking the
course to fill a knowledge gap, they each have differ-
ent competencies and different learning goals, but
both can be expressed in the competency matrix. In
this way, the matrix provides a straightforward
means to visualize the current competency levels of
cyberliteracy as well as the goal competency levels
across the eight core areas.

Because different professions across academia,
industry, and government call for different abilities,
we can expect there to be many different configura-
tions of cyberGIScience literacy. For example, a
developer creating a new Web-based spatial analytical
tool will need to have a different composition of
cyberGIScience literacy than a planner looking to use
big spatial data to understand how a new urban high-
rise will affect the surrounding citizens, businesses,
and infrastructure. Yet, the fundamental process in
terms of improving levels of competency in the eight
core areas of cyberGIScience literacy is the same. It is
important that our classes, training, and educational

materials reflect these different needs and learner
pathways by teaching to targeted learning outcomes,
aligned with the assessment strategies used to verify
the achievement of abilities and skills within each
core area through the backward design process.

In summary, we highlight three primary contri-
butions of this article. First, we establish a peda-
gogical framework called cyberliteracy for
GIScience for educators and learners to capture and
convey essential abilities and foundational know-
ledge that are necessary to navigate and thrive in
this new technologically rich geospatial world, which
are represented in eight core areas. Second, we iden-
tify four essential themes in each of the eight areas
to structure curriculum development (Table 2).
Third, we present a backward design process strat-
egy to create sound assessments and curriculum
materials surrounding these themes and areas.
Together, these contributions provide the means to
improve cyberGIScience literacy across a range of
disciplines and fields.

Looking to the Future

To realize a cyberliterate citizenry and academe,
the next step is to embed cyberGIScience literacy
learning objectives, assessments, and instructional
materials into a wide array of learning environ-
ments. Embedding cyberGIScience literacy into a
classroom could take many forms. At the simplest
level is microinsertion, which introduces one area
or theme into a packed curriculum. It might be two
slides on cyberinfrastructure, a five-minute activity
discussing big data, or a homework question asking
how programming and automation might affect a
student’s future (e.g., ESRI GeoInquiries; ESRI

Table 1 Example learning objectives for each area at three competency levels: Basic (remember and understand),
intermediate (apply and analyze), and advanced (evaluate and create)

CyberGIScience
literacy Areas

Competency level

Basic (remember
and understand)

Intermediate (apply
and analyze)

Advanced (evaluate
and create)

Cyberinfrastructure Identify an example of a spatial
data infrastructure

Use cyberGIS to estimate defor-
estation from satellite imagery

Build a Web service to dissemin-
ate the latest Landsat 8 data

Parallel computation Define speed-up and efficiency Plot the speed-up curve for a
parallel method scaling from
1 to 64 processing cores

Develop a parallel spatial method
that uses the message pass-
ing interface

Big data Explain the 3 Vs of big data Compare and contrast big data
with “traditional” data

Investigate a case where big data
could lead to implicit bias

Computational thinking Define algorithm Sketch an algorithm to solve
the TSP

Evaluate the computational com-
plexity of your TSP algorithm

Interdisciplinary
communication

Define boundary object Demonstrate how GIS can be
used to communicate one
idea to a different discipline

Write a technical report for a
domain-scientist detailing a
computational method

Spatial thinking Explain spatial relationships Compare and contrast the use
of fields and objects

Investigate how population dens-
ity could affect global-scale
data analyses

Geospatial data Describe common cartographic
elements on a map

Analyze population distribution
using national census data

Create a viewshed from digital
elevation model data

Spatial modeling and
analytics

List 5 examples of spatial
modeling

Differentiate spatial analysis from
spatial modeling

Develop a kernel density estima-
tion method

Note: TSP = traveling salesman problem; GIS = geographic information system.
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2017); these are all excellent examples of microin-
sertion activities. At the next level, a full lecture or
lab will allow for more depth. For example, a lec-
ture on big data as part of geospatial data unit
allows more time to explore concepts and issues.
Replacing whole units will allow students to be

immersed in an area such as computational think-
ing. They can be exposed to algorithms and try
programming as a homework assignment. Finally,
full courses and course sequences allow students to
become expert creators in one or more
cyberGIScience literacy area.

Figure 2 The cyberGIScience literacy competencies matrix can be used to visualize the target competency for a spe-
cific learner audience and any gaps in competency for an individual. Figure 2A shows how it might be used to design
an Introduction to Geocomputing course where hashed bars show the level of competency that students should
achieve. Figures 2B–2D show how it can be used to highlight gaps (hashed bars) between existing competency (black
bars) and target competency for three example learner categories. GIS ¼ geographic information system;
CI¼ cyberinfrastructure; PC¼parallel computing; BD¼big data; CT¼ computational thinking; IC¼ interdisciplinary com-
munication; ST¼ spatial thinking; GD¼geospatial data; SM¼ spatial modeling and analytics.

Cyber Literacy for GIScience 231



CyberGIScience literacy complements existing
curriculum efforts and competency models. The
University Consortium for GIScience (UCGIS) is
creating a new GIS&T Body of Knowledge
(UCGIS 2017) that includes new knowledge areas
such as Computing Platforms and Programming and
Development in addition to long-standing areas
such as Cartography and Visualization and
Foundational Concepts. A cyberGIScience literacy-
focused curriculum could leverage many topics
across these knowledge areas.

CyberGIScience literacy also complements the
well-established geospatial technology competency
model (GTCM; DiBiase et al. 2010).
CyberGIScience literacy areas such as spatial model-
ing and analytics and some aspects of parallel com-
puting could find analogs in the Analysis and
Modeling and Software and Application
Development industry-sector technical competen-
cies. Big data, computational thinking, and cyberin-
frastructure, however, do not cleanly map to a
competency level. Future revisions of the GTCM
might include new topics such as machine learning,
providing a way to better align them.

To encourage the development of materials, we
advocate for collaborative development and open
sharing, because not all educators will have expertise
in every cyberGIScience literacy area. An early
effort in creating materials specifically for cyberGIS
was initiated by the CyberGIS Center for Advanced
Digital Studies at the University of Illinois in 2014.
Under this project, seventeen CyberGIS Fellows
developed teaching materials for a range of classes,
which are freely available (CyberGIS 2018).
Materials continue to be shared between interested
individuals, but a mechanism to share more broadly
is needed. One promising initiative supported by the
UCGIS is the TeachGIS referatory, which might
help in the development and dissemination of mate-
rials (TeachGIS 2017).

Just as the GIS community did in the 1990s
under the National Center for Geographic
Information and Analysis’s (NCGIA) education initia-
tives (Goodchild and Kemp 1992), we aim to bring
together educators to share experiences and practices,
because we are entering uncharted territory with
rapid changes in technologies and global problems.
In early maps these uncharted territories were titled
Hic Sunt Dracones or “Here Be Dragons” (Ruitenberg
2007), but that never stopped explorers from ventur-
ing into the unknown, nor should it stop us. �
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