
Data Pre-processing: Case of Sensor Data

Consistency Based on Bi-temporal Concepts

Faiza Allah Bukhsh1,Patricio de Alencar Silva2,Hans Wienen1

1Department of Computer Science,

University of Twente,

Enschede, the Netherlands

2Department of Computer Science

Federal University of Semi-arid Region(UFERSA),

Mossoro, Brazil

f.a.bukhsh@utwente.nl, patricio.alencar@ufersa.edu.br, h.c.a.wienen@utwente.nl

Abstract—The volume, velocity, variety, veracity and
value of data currently produced and consumed by dif-
ferent types of information systems turned big Data into
a phenomena of study. For data variety, temporal data
commonly represents a source of potential inconsistency.
This paper reports on a research endeavor for treating the
problem of how to minimize inconsistencies in temporal
databases due to unavailability of big data. This problem
often occurs in situations where a same query is executed
on the same data set at different points in time. To
address this issue, we propose query optimization strategies
based on query transformation and rewriting rules, to
amend data consistency in temporal databases. We validate
these strategies proposed via case scenario in sensor data
analysis, and via manual data input, both for local and
distributed query environments.

I. INTRODUCTION

The nature of big Data, characterized by unprece-

dented volume, velocity, variety, veracity and value of

data, poses not only new challenges, but also opportu-

nities to the Database research community [1]. It may

become specifically difficult to reconcile new demands

for velocity in data sensing and storing with capabilities

and strategies for maintaining temporal data consistency

[2]. In the era of smart metering markets, this reconcili-

ation is critical to generate value out of massive sensors

data. For instance, the operations of many industrial

segments rely on sensors data, the prospects of which

are directly related to Enterprise value generation [3].

If time-sensitive data is not pre-processed, or if it is

simply misinterpreted, it may lead to inefficient or even

ineffective decision-making.

Therefore, the research scope considered here encom-

passes the business need for pre-processing an increasing

inflow of sensors data, yet preventing from temporal

data inconsistency. More specifically, the main research

problem reported in this paper comprises what and how

strategies for data pre-processing could be combined to

prevent big data unavailability due to data inconsistency

. The relevance of this problem is critical before basic

requirements of ACID (atomicity, consistency, isolation

and durability) for data management[4]. The problem-

solving approach orienting this research is based on

principles of Design Science, which provides guidelines

for research on problems of practical relevance[5], [6].

The methodology used in this research comprises

a combination of three research methods: (1) a real-

world case scenario in sensors data, for elicitation of

basic requirements for temporal consistency in big data

production; (2) formal mechanism design, for specifying

functional capabilities of query rewriting rules and query

transformation; and (3) data analysis, for validating the

strategies proposed for data pre-processing. Anonymized

data used in this paper is inspired from data produced

by sensors deployed at "Thur Valley" Switzerland. In

this case scenario, chemical analysis of water samples is

stored manually in a database. The structure of sensors

measures the temperature of the water on different inter-

vals of time, which is stored in the database as streaming

data. The time-sensitive data is the point of possible

inconsistency [7]. More specifically, querying over the

sensor sometimes produces different results from a same

query at two different execution times. The database

stores both manual input data and streaming data. These

data input formats also pose different challenges for

preserving temporal data consistency [8].

The following sections of this paper are organized as

follows. In Section 2, we describe the case scenarios

used to explain the need for preventing sensors’ data

management from temporal inconsistency. In Section

3, we elaborate on a formal specification of strategies

of query rewriting rules and query transformation to

deal with the research problem in focus. Moreover in

the same section, we evaluate the proposed strategies

through data analysis in case scenarios for both local and

distributed query environments. The main conclusions

and directions for future work are summarized in Section

4.

II. PROBLEM STATEMENT

A common big data scenario is when data flows

continuously out of a domain application, either as

streaming data or manual input data [9]. Let us suppose

that one submits a query on the database requesting

for data sampled at some point in the past time, but

produces no results for manual input data. Thus, it is

possible that there will be no results for that specific

query. However, after a few days, one submits the same

query again, which now yields a different result. This

common situation raises the question of “why a same

query with same constraints produces different results

on the same database in different points in time".

Streaming and manual input data are annotated with

sampling time and input time respectively. Let us

consider that data sampling at 2015-12-02T10:30:00.

Streaming data is committed in the database at 2015-

12-02T10:30:00.

Here, streaming data input time is the same as data

sampling time. There is no delay for the streaming data

input. We queried the data after an hour and found no

results. After a day the manual data was entered into

the database. After querying the database at 2015-12-

04T12:30:00, we found entirely different results. There-

fore, running the same query at two different times

produces different results. At a first glance, we con-

sidered this difference of time as a possible cause of

different results from the same query. Thus, we described

the local case problem when we have all the data at

a single location. Now, let us consider the case when

we have data distributed at different locations and face

the same problem of different results from a single

query at different execution times. In another scenario, a

query is submitted to Location B, where the results are

stored. From a same query, different results are yielded

at different points in time. The problem situation here

seems to be the same of the one in a local scenario,

i.e. data unavailability. For a certain time interval, there

was no data in the result table, despite the fact that the

database had both manual and streaming data stored.

Considering that communication interruption might be

the most possible cause of this situation, the problem

in focus now seems to be how to retrieve the missing

queried data.

Whenever there is no result after the execution of a

query, we can consider that either the result of the query

is null, or there is a problem with the data in the database.

In a local scenario, data is not entered in the database,

so the resultant tuple is empty. In a distributed scenario,

either the local scenario condition exists, or the commu-

nication between the sites is interrupted. However, the

same query may yield different results at another point

in time. Overall, the problem here is how to prevent big

data inconsistency to occur as a result of multi-temporal

query execution over distributed databases [10], [11].

III. SOLUTION APPROACH

Problem statement shows that we have two sub-

problems one is for local and other is for distributed

environment.These are interconnected so we will explore

them in parallel. In the following, we will propose the

solution to the problem highlighted in preceding section.

A. Approach for Local & Distributed Environment

Conceptually, we are dealing with time-sensitive data,

thus it is critical to store valid sampling time in the

database. A temporal database normally uses the nota-

tion of time for differentiating versions of data. More

specifically, the temporal aspects include valid time and

transaction time, the combination of which comprises

Bi-Temporal data[12], [13]. In the solution approach

proposed in this paper, we add transaction time to the

database and analyze the results. By keeping the valid

time and transaction time, we are actually recording

the relationship between data from the real world and

2

data from the database world[14]. Transaction time val-

idates consistency of data committed to the database.

Therefore, our problem of yielding different results from

executing a same query at two different execution times

can be solved by using consistency control mechanisms

based on transaction time. The scope of valid time is

the real world, whereas the scope of transaction time is

the database world. It can be noticed that valid time and

transaction time for the streaming data is the same, while

in case of manual data there is a time difference between

valid time and transaction time.

Data storage and data processing through querying

may locate at different sites and data might somehow

migrate between sites [15]. In this case, we have to deal

with the problem of yielding different results from a

same query at different execution times. Major cause of

different results is unavailability of data. There are two

possible causes for unavailability of data in distributed

scenario: either data is not entered into the database

or the communication between the sites is interrupted,

thereby stopping data flow. Adding transaction time

and valid time is useful to verify if data is entered

to the database, but it will not be sufficient to obtain

information about the communication channel[14]. In

order to monitor the communication channel between

the sites, we need to maintain the record of all the

events as a history table, whereby we can look at the

time slots of disconnection, which will provide means to

diagnose the actual cause of data unavailability. Besides,

this information will also be used to maintain consistent

results from the same query at two different execution

times [12], [13].

In some cases, if some data is missing, instead of

executing the same query and get the full data set again,

we might select the information from the history table

and set the constraints in the query only for the missing

data only. If we add a history table at both considered

sites. If we have two different results from the same

query, then first it is necessary to check the transaction

time to verify if data was committed on the database. If

the corresponding data exist in the database, then it is

also necessary to check the state of the communication

channel. If a connection problem is identified, then the

history table will be used to produce the same results out

of a same query for two different points in time. If the

query was executed at the time of disconnection, then

there will be incomplete results. Whenever this query is

executed again, we will get the information from the

history table, so as to produce equivalent results[16].

Moreover, it is also possible to retrieve the starting and

ending time of disconnection from the history table, in

order to resubmit the query for that specific time frame.

This strategy aims to save execution time and underlying

resources.

B. Data Storage into Temporal Database
For storing the data into the temporal database we

need to record the valid time. Valid time is usually being
entered by the user but user is unaware of the transaction
time. To store the data in Temporal database we need
to store the transaction time in the database transparent
from the user [17], [18]. For the manual data, database
management system (DBMS) will add the transaction
time to the incoming data transparently from the user
with the help of following query.

Query 1

UPDATE t a b l e n a m e

SET t r a n s a c t i o n t i m e = s y s t e m t i m e

WHERE i n p u t f l a g = ‘ ‘T ’ ’ ;

The challenge is to handle large streams of sensor
data and store it with transaction time. Streaming data
management system (SDMS) is responsible for handling
streaming data [9]. The transparent addition of trans-
action time with every tuple, is done by SDMS by
using the continuous query [19] which is the building
block for Complex Event Processing (CEP) systems and
event correlation engines. Continuous queries let users
get new results from the database without issuing the
same command again and again. Moreover it is ideal
for our situations in which an application repeats a
particular query, and would benefit from always having
instant access to the up-to-date result of that query.
We are following the abstract approach of continuous
query [20] for adding transactions time with a tuple into
the database and trigger it by input into the database.
According to the continuous query concepts format of
the query will be as follows

Query2

SELECT v a l i d . t ime

FROM t a b l e n a m e

WHERE i n p u t f l a g = ‘ ‘T ’ ’

For (No . o f r e c o r d s ==0 ; No . o f r e c o r d s−−)

{ I n s e r t i n t o TableName v a l u e s

(T r a n s a c t i o n t ime = s y s t i m e) }

While entering the data in the database, query III-B

will add the transaction time to the tuples of streaming

data transparent from the user.

C. Query Transformation

For getting results we need to query the states. As

we have added the transaction time transparent from the

3

user so we need to add constraints related to transaction

time with the query. These addition of constraints needs

to be transparent from user also. The results produced

by the query can be needed later [21]. Instead of storing

the results we should store the query because storing

the results is not an efficient way. But before storing

the queries we need to rewrite the queries for future

use with updated constraints. The rewritten query will

be stored in the query storage database for future usage.

Results produced by the stored query should be same

as produced by the rewritten query. As discussed in

the previous section the problem of predicate can also

handled by query rewriting. Storage of query in the

database and replacement of predicate with transaction

time is dependent on the type of predicate [22], [23]. In

our scenario we mostly used the predicate “NOW".

D. Query Rewrite Rules

Transparent addition of transaction time to the in-

putted data has changed the structure of database. Now

it is necessary to change the query because user is

totally unaware of the addition of the transaction time

in the database It is obvious that the user who is asking

queries will ask query without constraints of transaction

time[22], [23]. It is clear that the user who is executing

queries will be ignorant from this change. So we need to

transform the incoming query into database compatible

format.

Selection of predicates "NOW" complicate the situa-

tion. If we store the queries with these predicates and

execute that at later times the results will be different

because value of predicate "NOW" will incorporate the

current time into the query while executing it. So we

have to find out a way to store the value of predicates.

Either we use the continuous query or the SQL query

we will face the same problem of predicate [19]. To

resolve the problem of predicate we will define query

rewrite rules which will help us in query rewriting for

the follows purposes

• Provides us a way to add transaction time with the

query transparent from user.

• Helps us to execute the query by replacing the

predicate "NOW" with current value.

• Provide us a way to store the queries for future use

by substituting the predicate values.

We can transform the query with the help of following

rules, q′ = TNOW (q).
1) Select Query: Select statement is used to select

data from the database on the basis of some constraints.
Attributes A1 and A2 will be selected from table t1
and t2 on the basis of conditions c1, c2 and c3. As
relations are at different locations so we need to manage
the history table for keeping track of the action and
disconnection. While query transformation we will check
if the relation is at location A and transaction time is
equal to current time then we will return the empty set
else we will return the relation as it is as expressed in
the following rule,

q′ = TNOW (R@A)

⎧
⎪⎨

⎪⎩

(
if
∑

Loc = A&TT = TNOW ,

History = EmptySet

)

R
(Rule i.)

2) Insert Query: For query transformation we need
to convert the insertion query by using following rule,

Insert into t1 values(t) = Insert into t1(A1, A2, . . . , An) values(t)

As the transaction time will be added to the database
transparent from the user so we need to transform
the insertion query from user understandable format to
database compatible format. Following rule will add the
transaction time as the column name as well as value,

q′ = TNOW (Insert into t1(A1, A2, . . . , An) values (t))

= Insert into t1(A1, . . . , An, TT) values (TNOW (t)× TNOW)
(Rule ii)

Following rule will add the transaction time with the

tuple,
3) Delete Query: Delete statement delete a row from

the table on the basis of some constraints, following rule
will add the transaction time in the constraints of the
delete query.

q′ =
(

TNOW (Delete from t1 where t)
= Delete from t1 where TNOW (t)

)

(Rule iii)

E. Representative Example
Continuing with the example of temperature and

chemical data, we need to add transaction time with
every inputted tuple. Addition of transaction time sup-
posed to be transparent from the user. Query rewrite
rules help us to translate the incoming query into a query
having transaction time. Consider the data in the Tem-
peratureData(Sr.No, ValidTime, Temp, Loc) and Chem-
icalData(Sr.No, ValidTime, NO, C, K, Loc) tables. We
have to insert that data into the database with transaction
time. Suppose current time is 2013-12-02T11:30:00.000
and we have following insert query,

q =insert into chemical (validtime, Temp, location)

4

TABLE I
TEMPERATURE DATA WITH TRANSACTION TIME

No. ValidTime TransactionTime Temp Loc

1 2013-12-01T11:30:00.000 2013-12-02T11:30:00.000 5 1

2 2013-12-01T17:50:00.000 2013-12-02T17:50:00.000 5.2 5

3 2013-12-02T12:10:30.000 2013-12-03T12:10:30.000 5 3

4 2013-12-04T11:30:00.000 2013-12-05T11:30:00.000 4 3

5 2013-12-05T11:22:00.000 2013-12-06T11:22:00.000 4.5 6

TABLE II
CHEMICAL DATA WITH TRANSACTION TIME

No. ValidTime TransactionTime NO C K Loc

1 2013-12-01T12:00:00.000 2013-12-02T12:00:00.000 3 5 6 3

2 2013-12-02T10:30:00.000 2013-12-03T10:30:00.000 4 3 5 3

3 2013-12-04T11:00:00.000 2013-12-05T11:00:00.000 5 6 6 5

4 2013-12-05T11:30:00.000 2013-12-06T11:30:00.000 3 5 2 6

values ((2013-12-01T11:30:00.000, 5, 1)

q′ =TNOW (Insert into chemical (validtime, Temp, location)

values (2013-12-01T11:30:00.000, 5, 1))

By applying Rule (ii)

q′ =Insert into chemical (validtime, Temp, location, TT)

values (TNOW (2013-12-01T11:30:00.000, 5, 1), TNOW)

By applying rule (iii)

q′ =(Insert into chemical (validtime, Temp, location, TT)

values (2013-12-01T11:30:00.000, 5, 1 , TNOW))

So in this way transaction time will be added with every
tuple. The tuples of Table I and Table II are produced
with the help of rules. Thus a query have to be
transformed before execution, in order to obtain accurate
results. User want to know the values of Temperature,
NO, C and Validtime when validtime of chemical and
temperature values are varying with a difference of 10
minutes as shown in the following query.

Query 1. Query 3.

S e l e c t Temp , NO, C , t . v a l i d t i m e

FROM c h e m i c a l a s c , Temp as t

WHERE c . v a l i d t i m e => t . v a l i d t i m e −10 min

AND c . v a l i d t i m e =< t . v a l i d t i m e + 10 min

AND c . l o c a t i o n = t . l o c a t i o n

q =π Temp,NO,C, t.validtime(σ(c.validtime =>

t.validtime− 10min ∧ c.validtime <= t.validtime+ 10min∧
c.location = t.location)(CHEM × TEMP))

The DBMS and SDMS will append required constraints
in the query with the help of transformation rules.

q =(π(Temp,NO,C, t.validtime(σc.validtime =>

t.validtime− 10min ∧ c.validtime <= t.validtime

+ 10min ∧ c.location = t.location(CHEM × TEMP))))

q′ =TNOW (π Temp,NO,C, t.validtime(σc.validtime =>

t.validtime− 10min ∧ c.validtime <= t.validtime+

TABLE III
HISTORY FOR LOCATION A– DC=DISCONNECT, RC=RECONNECT

A

Validtime Event Comment TransactionTime Loc

1 2015-11-29T12:00:00.000 No data DC 2015-11-30T12:01:00.000 A

2 2015-12-01T12:00:00.000 data RC 2015-12-01T12:15:00.000 A

3 2015-12-01T15:00:00.000 No data DC 2015-12-01T15:10:00.000 A

4 2015-12-03T15:00:00.000 data RC 2015-12-03T15:10:00.000 A

5 2015-12-05T09:00:00.000 No data DC 2015-12-05T10:00:00.000 A

6 2015-12-05T15:00:00.000 data RC 2015-12-05T15:10:00.000 A

TABLE IV
HISTORY FOR LOCATION B

Validtime Event Comment TransactionTime Loc

1 2015-11-27T12:00:00.000 no data DC 2015-11-30T12:01:00.000 B

2 2015-12-30T15:00:00.000 data RC 2015-12-02T15:30:00.000 B

10min ∧ c.location = t.location(CHEM × TEMP)))

When we execute the above query at 2013-12-
02T12:30:00.000 it displayed no results because there
were no data in the database. Same query when executed
at 2013-12-05T12:00:00.000 come up with following
tuples

Temp NO C t.Validtime

5 4 3 2013-12-02T10:30:00.000

4.5 3 5 2013-12-05T11:30:00.000
Instead of storing the results we can apply the query
transformation rules to store the query. These rules will
automatically store the query with the value instead
of predicate. Consider the transformation of following
query in which we are replacing the value of predicate
with time 2013-12-05T12:00:00.000.

q′ =TNOW (πTemp,NO,C, t.validtime(σ

c.validtime => t.validtime− 10min ∧ c.validtime <=

t.validtime+ 10min ∧ c.location = t.loaction ∧ c.transactiontime <=

NOW − 1sec ∧ t.transactiontime <=

NOW − 1sec(CHEM × TEMP))

By applying rule (i) following query has been produced,

q′ =πTemp,NO,C, t.validtime(σ

c.validtime => t.validtime− 10min ∧ c.validtime <=

t.validtime+ 10min ∧ c.location = t.loaction ∧ c.transactiontime <=

NOW − 1sec ∧ t.transactiontime <=

NOW − 1sec(σTT<TNOW
(CHEM)× σTT<TNOW

(TEMP))
(Query 4)

We can conclude that we need to maintain a history

table(III, IV) at each location.
By applying the rule (i) on query 4 we will get

following query,

q′ = σLocatioA(πTemp,NO,C, t.validtime

(σc.validtime => t.validtime− 10min∧

5

c.validtime <= t.validtime+ 10min∧
c.location = t.loaction∧c.transactiontime

<= 2015− 12− 05T12 : 00 : 00.000− 1sec∧
t.transactiontime <= 2015− 12− 05T12 : 00 : 00.000

− 1sec(TNOW (CHEM) X TNOW (TEMP)))x(y@LocA)
(Query 5)

Maintaining the history also helps us to save time and

resources by helping us to maintain the constraints only

for missing data. History table tells us that there was

some disconnection for site A for certain period of time.

IV. CONCLUSION & FUTURE WORK

There is a large volume of work related to the
streaming data, continuous query, temporal states, and
decentralization of data [21][18] [10] . Data streams
are always dealt with continuous queries. Our approach
differs in a way that we use the bi-temporal concepts
in the streaming data and then with an application of
continuous query and its transformation. We have found
that explicitly designed continuous query languages can
be very helpful in sceneries similar to ours. In this
paper we have explored how to maintain consistency
in sensor data. Different results from the same query
at different execution times cause inconsistency. By
applying the bi-temporal concepts, we are able to achieve
the consistency. Query transformation rules are designed
and evaluated to transform the query according to our
database design. We are also able to store the query for
future use. Alteration for storing has been successfully
achieved by applying transformation rules. Properties
affecting the consistency have be considered and main-
tained by introducing a few table design alterations.
We have defined a detailed approach for maintaining
consistency in the distributed data. Implementation and
details protocol suits need to be decided yet. In is paper
we have discussed how to solve expressed problem but
still there is room for improvement. How to handle
error data input from the sensor , We have found that
detail of each step to achieve consistency introduces new
challenges, therefore validation of proposed solutions
through a prototype on the sample data is big task ahead.
Prototype will raise many implementation related issues
and then we can improve proposed approach in multiple
design cycles.

REFERENCES

[1] S. Madden, “From databases to big data,” IEEE Internet Com-
puting, vol. 16, no. 3, pp. 4–6, 2012.

[2] H. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M.
Patel, R. Ramakrishnan, and C. Shahabi, “Big data and its
technical challenges,” Communications of the ACM, vol. 57,
no. 7, pp. 86–94, 2014.

[3] B. Cui, H. Mei, and B. C. Ooi, “Big data: the driver for innovation
in databases,” National Science Review, vol. 1, no. 1, pp. 27–30,
2014.

[4] B. Wu, D. Lin, D. Chaudhary, L. P. Petrov, and S. Volkov,
“Predicting data unavailability and data loss events in large
database systems,” Nov. 8 2016, uS Patent 9,489,379.

[5] A. Dignös, M. H. Böhlen, J. Gamper, and C. S. Jensen, “Extend-
ing the kernel of a relational dbms with comprehensive support
for sequenced temporal queries,” ACM Transactions on Database
Systems (TODS), vol. 41, no. 4, p. 26, 2016.

[6] J. Langseth, F. Aref, J. Alarcon, and W. Lindner III, “Real-time
data visualization of streaming data,” Jun. 21 2016, uS Patent
App. 15/188,975.

[7] H. Qi, X. Chang, X. Liu, and L. Zha, “The consistency analysis
of secondary index on distributed ordered tables,” in Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2017
IEEE International. IEEE, 2017, pp. 1058–1067.

[8] A. Margara, J. Urbani, F. Van Harmelen, and H. Bal, “Streaming
the web: Reasoning over dynamic data,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 25, pp. 24–44,
2014.

[9] M. Garofalakis, J. Gehrke, and R. Rastogi, “Data stream man-
agement: A brave new world,” in Data Stream Management.
Springer, 2016, pp. 1–9.

[10] J. Liu, J. Li, W. Li, and J. Wu, “Rethinking big data: A
review on the data quality and usage issues,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 115, pp. 134–142,
2016.

[11] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody,
“Critical analysis of big data challenges and analytical methods,”
Journal of Business Research, vol. 70, pp. 263–286, 2017.

[12] S. Kumar and R. Rishi, “A relative analysis of modern temporal
data models,” in Computing for Sustainable Global Development
(INDIACom), 2016 3rd International Conference on. IEEE,
2016, pp. 2851–2855.

[13] L. Anselma, P. Terenziani, and R. T. Snodgrass, “Valid-time
indeterminacy in temporal relational databases: Semantics and
representations,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 12, pp. 2880–2894, 2013.

[14] D. Ryu, “Information content of inter-transaction time: A struc-
tural approach,” Journal of Business Economics and Manage-
ment, vol. 16, no. 4, pp. 697–711, 2015.

[15] M. Kvet, K. Matiako, and M. Kvet, “Transaction management in
fully temporal system,” in Computer Modelling and Simulation
(UKSim), 2014 UKSim-AMSS 16th International Conference on.
IEEE, 2014, pp. 148–153.

[16] X. L. Dong and W.-C. Tan, “A time machine for information:
Looking back to look forward,” Proceedings of the VLDB En-
dowment, vol. 8, no. 12, pp. 2044–2045, 2015.

[17] L. Han, L. Huang, X. Yang, W. Pang, and K. Wang, “A novel
spatio-temporal data storage and index method for arm-based
hadoop server,” in International Conference on Cloud Computing
and Security. Springer, 2016, pp. 206–216.

[18] C. Coronel and S. Morris, Database systems: design, implemen-
tation, & management. Cengage Learning, 2016.

[19] S. Krishnamurthy, N. Thombre, N. Conway, W. H. Li, and
M. Hoyer, “Addition and processing of continuous sql queries
in a streaming relational database management system,” Jun. 3
2014, uS Patent 8,745,070.

[20] Q. Chen and M. Hsu, “Cut-and-rewind: Extending query engine
for continuous stream analytics,” in Transactions on Large-Scale
Data-and Knowledge-Centered Systems XXI. Springer, 2015,
pp. 94–114.

[21] Z. Bao, B. Kimelfeld, and Y. Li, “Automatic suggestion for query-
rewrite rules,” May 24 2016, uS Patent 9,348,895.

[22] P. Leyshock, D. Maier, and K. Tufte, “Minimizing data movement
through query transformation,” in Big Data (Big Data), 2014
IEEE International Conference on. IEEE, 2014, pp. 311–316.

[23] J. F. Sequeda, M. Arenas, and D. P. Miranker, “Obda: query
rewriting or materialization? in practice, both!” in International
Semantic Web Conference. Springer, 2014, pp. 535–551.

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

