
A Framework to Measure Reliance of Acoustic
Latency on Smartphone Status

Duc V. Le, Jacob Kamminga, Hans Scholten, and Paul J.M. Havinga
Department of Computer Science, University of Twente, Enschede, The Netherlands

Email: {levietduc, j.w.kamminga, hans.scholten, p.j.m.havinga}@utwente.nl

Abstract—Audio latency, defined as the time duration when
an audio signal travels from the microphone to an app or from
an app to the speakers, significantly influences the performance
of many mobile sensing applications including acoustic based
localization and speech recognition. It is well known within the
mobile app development community that audio latencies can
be significant (up to hundreds of milliseconds) and vary from
smartphone to smartphone and from time to time. Therefore, it
is essential to study the causes and effects of the audio latency
in smartphones. To the best of our knowledge, there exist mobile
apps that can measure audio latency but not the corresponding
status of smartphones such as available RAM, CPU loads, battery
level, and number of files and folders. In this paper, we are
the first to propose a framework that can simultaneously log
both the audio latency and the status of smartphones. The
proposed framework does not require time synchronization or
firmware reprogramming and can run on a standalone device.
Since the framework is designed to study the latency causality,
the status of smartphones are deliberately and randomly varied
as maximum as possible. To evaluate the framework, we present
a case study with Android devices. We design and implement
a latency app that simultaneously measures the latency and the
status of smartphones. The preliminary results show that the
latency values have large means (50 − 150 ms) and variances
(4−40 ms). The effect of latency can be considerably reduced by
just simply subtracting the offset. In order to achieve improved
latency prediction that can cope with the variances an advanced
regression model would be preferred.

I. INTRODUCTION

Smartphones are a promising platform for pervasive com-
puting applications due to their proliferation and their nu-
merous on-board sensors. Smartphones can be considered
reliable for every day consumer use. However, in order to turn
smartphones into reliable sensing devices that can be used for
promising next generation applications, they often need better
specifications in terms of software and hardware latency [1].
Some example applications in which smartphones require low
latencies are: i. Time synchronization between smartphones,
ii. Sound event detection, ii. Localization by sound, iii. Indoor
Localization, iv. Reliable sensor readings (guaranteeing sample
rates), and v. Safety critical applications (medical, automotive,
military). Typically, a transducer requires a small amount of
time to convert a signal from one form of energy to another,
usually electrical signal. An additional delay is added when
the signal is converted from an analog to a digital signal,
which can be processed more easily. On top of this, the delay
from interrupts and other concurrent tasks in multiprocessing
platforms also contribute to the latency of a measurement [2].

The latency can have a significant effect on the performance
of time-critical applications such as acoustic-based localiza-
tion [3] and speed recognition [4].

Fig. 1 illustrates the error in a distance measurement based
on acoustic sensors (microphones and speakers). Many mobile
developers have measured a significant delay between the
moment a sound signal reaches the microphone and the
moment the respective digital value is available at the input
buffer. Latency of sound signals can vary from dozens of
milliseconds (iOS) to hundreds of milliseconds (Android). The
speed of sound is 340.29 m/s, thus an error of 10 ms due to
input latency results in an error of 3.4 m in distance ranging.
In the worst case, the estimated distance from the sound source
to the destination can have an error of dozens of meters. Such
a large error is too much for a localization algorithm to deal
with. Similarly, a large output latency is also unacceptable
when emitting sounds from the output buffer to the speaker
as illustrated in Fig. 1.

If a mobile operating system allows third parties to tap
into the lowest hardware level, the audio latency can be
minimized [5]–[11]. However, a mobile operating system often
needs to be universal. For this reason, high level API’s are used
to support hundreds of thousands of different applications,
independent of the hardware platform. As a third-party devel-
oper, it is not possible to satisfy real-time requirements when
implementing arbitrary hardware that is accessed through high
level API’s.

In this paper, we propose a framework as a useful aid to
develop audio-based pervasive systems with high Quality of
Service (QoS), such as accurate localization systems. In theory,
variation of the latency in a system (jitter) is mainly caused by
dynamic parameters of smartphones such as available RAM,
CPU loads, battery level, number of files and folders, and the
number of threads [12]. If there is a correlation between a
phone’s dynamic parameters and audio latency it is possible
to predict the current latency. Accurate prediction requires
a lot of data from a large diversity of devices that can be
collected with the framework presented in this paper. In order
to find a correlation we design our framework such that it can
simultaneously log the audio latency and the dynamic param-
eters of smartphones. In addition, the status of smartphones
are deliberately and randomly varied as much as possible
to maximize the effects on latency, which is useful to study
the latency causality. With these causal measurements, audio
latency can be estimated using mathematical models, ranging

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

978-1-5386-3227-7/18/$31.00 ©2018 IEEE 348

Mic

Sound

waves
Analog/Digital

Converter
Analog Signal Digital Signal

Output

Buffer
Input

Buffer

Sound Travelling Time (t_a) Receiving Time (t_r)

Digital/Analog

Converter

Emitting Time (t_e)

Digital Signal Analog Signal

Fig. 1. Acoustic latency when measuring the travel time of sounds. The converting time is usually unknown and unstable in generic sensors devices and
results in unacceptable error in the measurements.

from simple distribution estimations to advanced regression
models. When the extent of audio latency can be predicted
by the actual status of the phone, the effect of latency can be
significantly reduced so that of the shelf smartphones can be
used for applications with strict latency requirements.

In order to evaluate the framework we present a case
study of Android devices. We design and implement an
audio app that automatically plays and records special sounds
to measure audio latency. The app simultaneously logs the
status of smartphones while measuring the audio latency. The
preliminary results show that the latency values have large
means (50 − 150 ms) and variances (4 − 40 ms). In other
words, a researcher or developer can use this app to easily
measure the audio latency offset. The consequence of latency
can be considerably reduced by just simply subtracting the
offset. In order to achieve improved latency prediction that
can cope with the variances an advanced regression model
would be preferred.

II. FRAMEWORK

The output and input latency are principally very similar.
Therefore, it is better to measure the audio latency based on
the round-trip latency. The round-trip latency is defined as the
amount of time it takes from the moment an user touches the
start button of the app for audio data to be processed and
emitted through the speaker of a mobile device, then enter
through the microphone of the same device, and be available
at the input buffer to be processed. The entire round trip is
illustrated by Fig. 2. By emitting and recording the sound from
the same device, the round-trip latency can be consistently
measured for each device.

For a clear and consistent presentation, we introduce the
framework with regards to Android smartphones. We select the
Android platform since Android phones are very popular (85%
of market share in the first quarter of 2017 [13]). Note that the
considerable latency problem in Android has been existent for
years. The latency in Android has recently been reduced but
remains significant for many time-critical applications such as
localization. Probably latency will be reduced in the future
devices; however, the framework we propose in this paper
can be used with generic platforms and devices. Therefore,
this framework will still be applicable for other pervasive

Fig. 2. Measuring the emitting time (te) and receiving time (tr) with round-
trip latency (T). Since the distance from speakers to microphones of the
same smartphone is small, the travelling time (ta) can be ignored. Thus T =
te + ta + tr ≈ 2te ≈ 2tr

sensing devices even if the latency problem in Android phones
is reduced. The framework comprises of three components:
time stamping, sampling frequency correction, and latency
measurement.

A. Time Stamping

Synchronizing the played soundtrack with the microphone
recording is critical. When an output signal is not synchronized
with its respective input signal, the latency estimation will
be inaccurate. In most arbitrary hardware platforms, e.g.
smartphones, it is physically not possible to merge an output
channel with an input channel without external equipment. In
order to synchronize two signals, time stamps will have to
be recorded at the right moment. Inside an operating systems
many events can occur between sending the audio data to
the output buffer and physically hearing that data through the
speaker. Therefore, the actual moments in time of playing and
recording the sound need to be recorded. A time stamp from
a high resolution counter needs to be recorded at the time
the audio track is played, temporally as near as possible to
the moment the byte is converted into an analog signal in the
Digital to Analog Converter (DAC). Another time stamp from
the same counter is required at the moment in time of receiving

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

349

Time (s)
0 20 40 60 80 100 120

A
c
tu

a
l
A

u
d

io
 S

a
m

p
lin

g
 F

re
q

u
e

n
c
y
 (

H
z
)

7900

7910

7920

7930

7940

7950

7960

7970

7980

7990

8000

8010

Fig. 3. The actual sampling frequency of audio measured with a Samsung
Galaxy Note II smartphone.

the first byte of the recorded track from the Analog to Digital
Converter (ADC). With these timestamps the played audio file
can be synchronized in time with the actual recorded file.

An additional time stamp is recorded when the recording
is terminated, this time stamp is temporally as near to the
latest byte received as possible. This time stamp is used to
measure the total duration of the recording. This duration is
compared with the actual sampling frequency of the recorder.
We measured that the actual sampling rate is not always the
chosen sampling rate. Section II-B discusses this variation in
sampling frequency.

B. Sampling Frequency Correction

Recording accurate time stamps as described in Section II-A
allows us to measure the sample rate during the recording of
a signal. We observed that the true sampling rate of raw audio
input fluctuates around our desired rate of 8000 Hz. The true
mean sample rate of a recorded signal interval can be obtained
by

Fs[i, j] =
δ[i,j]

dt
, (1)

where δ[i,j] denotes the total number of samples and dt the
measured duration of the signal in interval [i, j].

The fluctuation of the measured sample rate seems to be
largest in the beginning of the recording, see Fig. 3. The
fluctuation can be caused by the hardware architecture or OS
overhead. The ADC in the platform could be calibrated in this
period.

Missing samples alter the temporal location of sound events
in the recorded signal. When preforming a cross correlation to
detect the sound event, the induced error can not be detected.
Therefore an incorrect sampling rate can cause considerable er-
ror in the latency measurement. There exists a comprehensive
survey of classical signal processing techniques for sampling-
rate conversion in [14]. However, those techniques require

a digital lowpass filter whose cutoff frequency depends on
the sampling-rate conversion factor. This requirement is less
convenient when resampling the signal at arbitrary sampling
rates. Therefore, we propose to solve this issue by converting
the rate based on band-limited interpolation of discrete-time
signals. Nyquist-Shannon sampling theorem also tells us that
band-limited interpolation can perfectly reconstruct the signal
back to a continuous function from its samples. In other words,
signal values at arbitrary continuous times can be correctly
interpolated from a set of discrete-time samples. Remark that
the original signal must be band-limited to half the sampling
rate to avoid aliasing distortion.

Let x(t) denote an arbitrary continuous-time signal, of
which the continuous Fourier transform is denoted as

X(jω) ,

+∞∫
−∞

x(t)e−jωtdt. (2)

We assume x(t) is band-limited to ±Fs/2, where Fs =
1/Ts is the sampling rate. Then x(t) can be perfectly inter-
polated from its samples xs(nTs), n = . . . ,−1, 0, 1, . . . , if
spectral energy X(jω) = 0 ∀|ω| ≥ π/Ts at uniform intervals
of Ts seconds.

In fact, band-limited interpolation is the ideal interpolation
for digital audio and the ideal band-limited interpolation is
sinc interpolation computed through a convolution operation:

x̃(t) =

+∞∑
n=−∞

xs(n)hs(t− nTs), (3)

where

hs(t) , sinc(t/T) ,
sinπ t

Ts

π t
Ts

.

Suppose that the sampling rate Fs is not as we desired.
To compute the expected sampling rate denoted as F ′s, all we
need is to use Eq.3 at integer multiplies of T ′s

x̃(kT ′s) =

+∞∑
n=−∞

xs(n)hs(t− nTs), k = . . . ,−1, 0, 1,

(4)

C. Latency Measurement

The latency can be determined by measuring the delay
between two signals when they are synchronized in time.
Fig. 4 depicts both the played and the resulting recorded audio
signal. The two signals in Fig. 4 are synchronized in time by
means of the timestamps described in section II-A.

The latency between two signals can be determined with
either threshold detection or the cross-correlation between
each pair of signals at all possible lags. Finding a correlation
between two high frequency sound signals is difficult due to
the various frequency components in the signal that have been
introduced by noise and distortion. The correlation between
two signals is significantly higher when the envelopes of
the signals are utilized. Therefore, the latency between two

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

350

1 1.5 2 2.5 3 3.5 4

x 10
9

−1

−0.5

0

0.5

1

x 10
4 Difference in audio signals

Time (ns)

A
m

p
lit

u
d
e

Recorded sound

Played sound

Fig. 4. Played and recorded audio signals, synchronized in time

signals s1(t) and s2(t) is determined with their respective
envelope. The envelope is an analytic signal which contains
no negative-frequency components. In continuous time every
analytic signal z(t) can be represented as

z(t) =
1

2π

∫ ∞
0

Z(ω)ejωtdω, (5)

where Z(ω) is the complex coefficient (setting the ampli-
tude and phase) of the positive-frequency sinusoid exp(jωt)
at frequency ω [15]. In order to obtain an analytic signal the
Hilbert transform is applied. Let x(t) = A(t) cos(ωt), where
A(t) is a slowly varying amplitude envelope. The Hilbert
transform is very close to y(t) ≈ A(t) sin(ωt) (if A(t) is
constant, this would be exact), and the analytic signal is
z(t) ≈ A(t)ejωt . Please note that obtaining the envelope is
nothing more than the absolute value. I.e., A(t) = |z(t)| [15].
The Hilbert transform can be obtained by a Fast Fourier
Transformation (FFT) of the input signal, zeroing out the
negative frequencies and performing an inverse FFT [16]. The
real part of the transformed signal is the original signal. The
imaginary part is the transformed signal. The absolute value
of the real and imaginary part is the envelope. The envelope
experiences lag relative to the original signal. This lag is the
same for both signals, thus the lag does not influence the
latency measurement.

Fig. 5 depicts a situation where there is noise in the
recorded signal. A simple search for intersections of the sound
signal with a threshold is sensitive to noise that exceeds the
threshold level. Therefore, we utilize cross correlation, a more
robust method for latency measurement. The normalized cross-
correlation between the signals is calculated for each lag of
the played audio signal.

III. FRAMEWORK IMPLEMENTATION: ANDROID CASE
STUDY

The software architecture of the framework implementation
is shown in Fig. 6. The architecture comprises seven software

1 1.5 2 2.5 3 3.5 4

x 10
9

0

2000

4000

6000

8000

10000

Cross−correlation vs Treshold

Time (ns)

A
m

p
lit

u
d

e

Envelope recorded sound

Envelope played sound

Threshold

Error

Fig. 5. Threshold versus Correlation

MICROPHONES SPEAKERS

Audio

Recorder

Time

Logger

Audio

Player

Storage

Audio

Track

Time

Stamps

Recorded

Tracks

Client User Interface

Dumpsys

LoggerSystem Status

Service

Controller

Latency

Calculator

Audio Latency

SERVICESERVICE

CLIENTCLIENT

PHYSICALPHYSICAL

Fig. 6. Architecture of the Audio Latency app.

components: Service Control, Audio Recorder, Audio Player,
Timestamp, Dumpsys Execute, Latency Calculator, Storage,
and Client User Interface (UI).

A. Service Control

This component is the major component of the service,
which manages all components in order to obtain a dataset
that contains observations of audio latency and corresponding
device’s status. Moreover, the Service Control connects the
service with the Client UI so that users can interact with the
service such as starting and stopping services, changing setting
parameters, and explore the sensing data.

B. Audio Recorder

The audio signal is converted into a digital format by
the Audio Recorder through the onboard microphones. In

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

351

particular, this component records audio by calling the Au-
dioRecord and MediaRecorder services, which are available
in the Android platform. The audio data is stored in the local
storage of the smartphones as raw files in the PCM format.
The recording process runs on a separated thread to avoid
overflow when reading audio data from the input buffer.

C. Audio Player

This components is responsible for playing a selected audio
track repeatedly through the onboard speakers. The audio track
is open by users via the Client GUI component. The sounds
emitted from the speakers will be recorded simultaneously
by the Audio Recorder component via the microphones. To
play the audio track smoothly with delay that is as small as
possible, we use the low layer API AudioTrack as Google
recently recommended. In addition, the playing process also
runs on a separated thread.

D. Timestamp

This component is designed to accurately label timestamps
at the moment of interests. In particular, we desire to have
timestamps as close as possible to the moment when the
audio track actually emits from the speakers and the moment
when the audio signal actually arrives at the microphones.
To do this, we overwrite the onPeriodicNotification and the
onMarkerReached functions to acquire the timestamp values
when the first sample sent out to the output buffer and when
the first sample arrived in the input buffer.

E. Dumpsys Execute

The Dumpsys Execute component logs the status of smart-
phones at a low level of information. This module comprises
of several classes to run the Dumpsys commands in code. We
observed that most of the commands take quite a long time to
dump the status into the local storage, up to seconds. Because
of such considerable delay, we implemented the Dumpsys
Execute component using an Async Task, which enables the
classes to perform operations in background. We remark that
the Dumpsys commands require rooting of the smartphones.

F. Latency Calculator

This component computes the sensing latency given the
audio track, recorded tracks and timestamps. It first aligns
the audio track and recorded tracks using the corresponding
timestamp values. Then an envelop filter is applied on such
tracks to filter out noise as well as improve the accuracy
of cross-correlation. Finally, the sensing latency is measured
by performing cross-correlation between the audio track and
recorded tracks. The output is stored locally in the storage.

G. Storage

This component stores the audio track to be played, the
recorded tracks, the timestamps, the status of smartphones,
and the computed latency. As the latency is computed, the
corresponding recorded tracks are deleted. Therefore, no pri-
vacy of users is disclosed.

TABLE I
LIST OF SYSTEM PARAMETERS THAT WERE RECORDED DURING THE

EXECUTION OF THE AUDIO LATENCY APP

Total RAM Free RAM Used RAM
Lost RAM CPU Load 1 CPU Load 2

CPU Load 3 CPU Time From CPU Time To
CPU Horizon Length CPU Total CPU User

CPU Kernel Battery Status Battery Health
Battery Level Battery Scale Battery Voltage

Battery Temperature WiFi Signal Level Disk Latency
Disk Data Free Disk Cache Free Disk System Free
Dropbox Entries audio Policy Output

H. Client UI

The Client UI component allows the user to start and stop
the sensing latency measurement. The user also can change
parameters of other components, such as, audio frequency,
replay times, and enabling Dumpsys. Through this component,
the user also can select an audio track, record audio, as well
as push the dataset to our server. In fact, users are free to
determine what part of their collected data will be shared.

IV. PERFORMANCE EVALUATION

In this section we describe our test-bed setup and evaluate
the results. During the experiments the Audio Latency app
is deployed on four different brands of phones: Samsung,
Motorola, LG, and Asus.

A. Experiment Setup

The audio track that was played and recorded in order
to measure the round-trip latency was a 3-second Dual-Tone
Multi-Frequency signal (DTMF tone). We played the audio
track hundreds of times with our Audio Latency app at
multiple days to assure a variety of the smartphone’s status. In
addition, we used the UI/Application Exerciser Monkey [17]
to randomly interact with a set of apps such as Google Earth,
Google Maps, Chrome, Polaris Office and Real Calculator.
The Monkey generated pseudo-random streams of user events
such as clicks, touches, or gestures on predefined apps. The
purpose of using the Monkey is to stress-change the status of
the smartphones randomly during the measurements of latency
values. We selected a list of system parameters that are likely
to be closely related to the audio sensing latency; these param-
eters are summarized in Table I. Based on the aforementioned
setup we conducted the audio measurements with a set of
six different smartphones. Although these smartphones are
quite old-fashioned they still serve the purpose. Measurements
with more recent smartphones can be done by the research
community with our app, which will be openly published.

B. Experiment Results

The results of our experiment are presented in Fig. 7.
Looking at the boxplots of measured audio latency, graphi-
cally describing the statistical population without making any
assumption of the underlying statistical distribution, we find
that the latency characteristics are similar for the same kinds

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

352

LG G2 Motorola G Nexus 7-1 Nexus 7-2 Note 2-1 Note 2-2

A
u

d
io

 L
a

te
n

c
y
 (

m
s
)

0

50

100

150

200

250

300

Fig. 7. The boxplot of measured audio latency based on various smartphones.

Number of Samples
10 20 30 40 50 60 70 80 90 100

M
e

a
n

 A
u

d
io

 L
a

te
n

c
y
 (

m
s
)

40

60

80

100

120

140

160

LG G2
Motorola G
Nexus 7-1
Nexus 7-2
Note 2-1
Note 2-2

Fig. 8. The means of the sampling distribution of the audio latency means
when varying the number of samples.

of smartphones. For example, the latency means of Note 2-
1 and Note 2-2 are 53.69 ms and 53.97 ms respectively. In
addition, the standard deviations are also similar for the same
kind of smartphones, such as 5.23 ms and 6.73 ms for Note
2-1 and Note 2-2 respectively. Moreover, we observed that
more expensive devices have a smaller audio latency. Note 2
smartphones have a latency of around 54 ms while Nexus 7
smartphones have latency values around 140ms. Furthermore,
there are much more outliers (the ”+” markers) generated
by low-cost smartphones. The cheaper smartphones also have
larger standard deviation or Interquartile range.

We also investigated the possibility of finding the true mean
of latency with limited numbers of measurements. In order to
do that we randomly sampled latency values from our dataset.
The number of samples varies from 10 to 100. For each
sample size, we repeatedly drew samples with replacement
1000 times. We used sampling with replacement since latency

values are independent from each other. By doing that for all
devices, we obtained the mean of the sampling distribution of
the mean as shown in Fig. 8. Remark that, if the population
of audio latency has a mean µ, then the mean of the sampling
distribution of the mean is also µ. The results plotted in
Fig. 8 show that there is a potential to estimate the mean
and standard deviation of a smartphone by performing our
latency measurements for a quite short times. Measurements
acquired with higher quality smartphones, like the Note 2,
can give good estimated values from just 30 measurements,
the mean and standard deviation are approximately 54 ms and
1 ms. Even in the worst case with a lower quality Nexus 7,
it requires only 60 measurements to achieve a good estimate
of the latency. Even though, the required time to execute 100
measurements is approximately 20 minutes. That is not long
since we only need to do the calibration occasionally, at the
first run and when the device updates firmware.

V. RELATED WORK

Many have investigated audio latency in operating systems.
In early work Dannenberg et al. measured latency in various
operating systems and found significant amount of events that
were delayed by tens of milliseconds and an increased latency
for higher CPU loads [12].

A popular method to measure audio latency uses a stereo
audio recorder to simultaneously record the stimulus input and
response output of a device under test. Freed et al. devised a
hardware oriented measuring system which can synchronously
record or analyze two inputs using standard multichannel
audio recording tools [18]. The output is a multichannel audio
stream which preserves the temporal relationship between the
two input signals. Wright et al. [19] introduce the term ”The
Stereo-Digital-Recorder Paradighm”. The authors mention the
following advantages to this method: i. The device is tested
under normal conditions since there is no additional profiling
software. ii. Both stimulus and response signals are mixed on
the same stereo channel. All experienced latencies introduced
by the measurement system will thus not cause any difference
between the two signals. iii. The latency between stimulus and
response is not based on any software’s system clock.

Wright et al. [19] have measured the round-trip (input +
output) system latencies of MacOS, Linux and windows XP
using only external microphones so that the profiling software
would not interfere with the system under test. They recorded
both audio latencies and gesture-to-audio latencies. Gesture
latencies were measured by recording the sound of a key
press with a microphone, and mix this in with the computer
generated response signal. They did not account for the amount
of time it takes to actually press the key and how the sound
of hitting actually correlates to the key press in the keyboard.

Mauerer et al. [5] described an early overview on how to
adapt android 3.1 to a more real-time environment. In their
demonstration Mauerer et al. preformed a latency measure-
ment on a Motorla Xoom tablet by triggering a GPIO pin of
the tablet’s HDMI port with a signal generator. The system
was notified by an interrupt and after a timer duration another

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

353

GPIO pin on the HDMI port is set. Both the pins were
connected to an oscilloscope. The latency of the system can be
determined by looking at the stimulus frequency of the signal
generator. Both the works presented by Wright and Maerer et
al. will yield an accurate latency measurement. However, they
both require external hardware to preform the measurement
and a significant effort to obtain the results. Our framework
uses an accurate latency measurement that is automatized,
requires no external equipment and very little effort by the
user. Moreover, our framework simultaneously records the
status of the smartphone.

There has been recent interest in exploring the addition
of real-time (low latency) features to Android [5]–[10]. In
[20] the authors present RTDroid, a variant of Android that
provides predictability to Android applications. They replace
the standard Dalvik Virtual Machine with a Real Time Virtual
Java Machine and, for hard real-time behaviour, replace the
Linux kernel with a certified Real Time Operating System
(RTOS) such as RTEMS [11]. They show that just replacing
these elements is insufficient to run an Android application
with real-time guarantees. After redesigning Android’s core
constructs and system services, they were able to provide
tight latency bounds to real-time applications. In [1] the same
authors extend on their previous work and measure it against
JPapaBench, a real-time Java benchmark. In this work they
examine the Android’s sensor architecture in detail and show
why it is not suitable for use in a real-time context. They then
introduce a re-design of the sensor architecture and show that
the re-designed sensing architecture can provide predictable
performance. Their work also shows the amount of effort
that is needed to transform Android into a reliable sensing
platform.

The work on the Android structure shows that it is possible
to design a more robust open source OS. It is up to OS
developers to improve on the OS and implement changes that
can lead to a more stable platform with real time guarantees.
Even when improving the hardware latencies and OS structure,
there will always be latency in embedded systems.

VI. CONCLUSION

In this paper we have presented a framework, implemen-
tation, and practical experiments that measured audio latency
in smartphones under stressed-status conditions. Our work is
a useful aid to investigate key parameters that affect audio
latency in smartphones. By doing so, the latency can be
corrected by simply subtracting the offset for each smartphone.
More advanced techniques such as a regression model can be
used to learn and predict the dynamic latency based on the
status of smartphones. While this framework is presented with
regards to Android OS and smartphones, it is straightforward
to generalize it for other mobile operating systems such as iOS
and other devices. Since our app and its source codes will
be openly published to collect more status-latency reliance
measurements from social smartphones, the community will
have sufficient data to investigate the latency dependency with
more advanced prediction techniques, such as deep learning.

ACKNOWLEDGMENT

This research is partly supported by the COPAS project
(Grant No. 629.002.203) in the NWO Indo Dutch Joint Pro-
gramme for ICT.

REFERENCES

[1] Yin Yand, Shaun Cosgroved, Ethan Blanton, Steven Y Kod, and Lukasz
Ziarekd. Real-time sensing on android. 2014.

[2] Steven Rostedt. Finding origins of latencies using ftrace.
[3] Duc V Le, Jacob W Kamminga, Hans Scholten, and Paul JM Havinga.

Nondeterministic sound source localization with smartphones in crowd-
sensing. In Pervasive Computing and Communication Workshops
(PerCom Workshops), 2016 IEEE International Conference on, pages
1–7. IEEE, 2016.

[4] Yashesh Gaur, Walter S Lasecki, Florian Metze, and Jeffrey P Bigham.
The effects of automatic speech recognition quality on human transcrip-
tion latency. In Proceedings of the 13th Web for All Conference, page 23.
ACM, 2016.

[5] Wolfgang Mauerer, Gernot Hillier, Jan Sawallisch, Stefan Hönick, and
Simon Oberthür. Real-time android: Deterministic ease of use.

[6] Igor Kalkov, Dominik Franke, John F Schommer, and Stefan
Kowalewski. A real-time extension to the android platform. In
Proceedings of the 10th International Workshop on Java Technologies
for Real-time and Embedded Systems, pages 105–114. ACM, 2012.

[7] Igor Kalkov, Alexandru Gurghian, and Stefan Kowalewski. Predictable
broadcasting of parallel intents in real-time android. In Proceedings of
the 12th International Workshop on Java Technologies for Real-time and
Embedded Systems, page 57. ACM, 2014.

[8] Mathias Obster, Igor Kalkov, and Stefan Kowalewski. Development and
execution of plc programs on real-time capable mobile devices.

[9] Ashraf Armoush, Dominik Franke, Igor Kalkov, and Stefan Kowalewski.
An approach for using mobile devices in industrial safety-critical em-
bedded systems. Mobile Computing, Applications, and Services, pages
294–297, 2014.

[10] Yuan Cangzhou, Gao Chen, Dong Jibing, and Sun Wei. An optimiz-
ing scheme for wireless video transmission on android platform. In
Transportation, Mechanical, and Electrical Engineering (TMEE), 2011
International Conference on, pages 970–973, Dec 2011.

[11] OAR Corporation. Rtems real time operating system (rtos), October
2014.

[12] Eli Brandt and Roger B Dannenberg. Low-latency music software using
off-the-shelf operating systems. 1998.

[13] IDC: Smartphone OS Market Share, 2015.
[14] Norbert J Fliege. Multirate digital signal processing, volume 994. John

Wiley New York, 1994.
[15] Julius O. Smith. Mathematics of the Discrete Fourier Transform (DFT).

W3K Publishing, 2007.
[16] Mathias Johansson. The hilbert transform. Mathematics Masters Thesis.

Växjö University, Suecia. Disponible en internet: http://w3. msi. vxu.
se/exarb/mj ex. pdf, consultado el, 19, 1999.

[17] UI/Application Exerciser Monkey — Android Studio.
[18] Adrian Freed, Amar Chaudhary, and Brian Davila. Operating systems

latency measurement and analysis for sound synthesis and processing
applications. In Proceedings of the 1997 International Computer Music
Conference, pages 479–81, 1997.

[19] Matthew Wright, Ryan J Cassidy, and Michael F Zbyszynski. Audio
and gesture latency measurements on linux and osx. In Proceedings of
the ICMC, pages 423–429, 2004.

[20] Yin Yan, Shaun Cosgrove, Varun Anand, Amit Kulkarni, Sree Harsha
Konduri, Steven Y Ko, and Lukasz Ziarek. Real-time android with
rtdroid. In Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, pages 273–286. ACM, 2014.

IQ2S'18 - 9th International Workshop on Information Quality and Quality of Service for Pervasive Computing

354

