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Abstract—It is challenging for multiple smartphones
to complete a given task in large-scale pervasive sens-
ing systems cooperatively. Sensing paradigms such as
opportunistic sensing, participatory sensing, and hy-
brid sensing have been used for smartphones to work
together seamlessly under different contexts. However,
these existing paradigms do not incorporate the energy
problem and sharing sensory resources of applications.
In this paper, we revisit sensing paradigms regarding
the probability of task completion and energy con-
sumption for smartphones to cooperatively complete a
sensing task. In addition, we propose a symbiotic sens-
ing paradigm that can significantly save smartphone
batteries while maintaining equivalent performance to
existing paradigms, provided that the smartphones
allow applications to share sensing resources. We also
quantitatively evaluate our probabilistic models with
a realistic case study. This work is a useful aid to
designing and evaluating large-scale smartphone-based
sensing systems before deployment, which saves money
and effort.

I. Introduction

The proliferation of smartphones has stimulated re-
searchers in pervasive mobile computing community to
develop low-cost, steady, and reliable large-scale sensing
systems [1]. One of the main research challenges is how
to successfully collaborate smartphones to complete a
resource-intensive tasks such as sampling sounds in urban
environments. Smartphones are in situ designed for calling,
messaging, gaming, etc., but not for crowd sensing. Dif-
ferent smartphones also have different sensing capabilities
and contexts. Therefore, the probability of completing a
task is difficult to predict in advance, before deploying a
sensing application on a large scale.

To this end, some naive sensing strategies have been
proposed such as opportunistic sensing [2], participatory
sensing [3], [4], and hybrid sensing. Opportunistic sensing
executes sensing tasks unobtrusively to the users. Con-
versely, participatory sensing requests the users to use
their smartphones to collect the required data. Hybrid
sensing combines both these sensing paradigms. In a nut-
shell, the principle of these paradigms is that it should
sample data if and only if the contexts satisfy the sensing

conditions. For example, a smartphone will detect the light
intensity with the integrated light sensor if and only if the
smartphone is outside of the pocket.
However, with the significant development of smart-

phone technologies, more sophisticated and power-hungry
sensors will be integrated, for instance, dust particle and
gas sensors. Consequently, data harvesting through smart-
phones invokes a variety of challenges to limited resources
to overcome. In addition, new updated mobile operating
systems also allow more and more applications to share the
same resources such as accelerometers, gyroscope, com-
pass, and Global Positioning System (GPS). The surveys
from Statista [5], [6] show that the number of applications
has increased exponentially, from few thousands in 2008
to more than 3.5 million apps in 2015. Note that the year
2008 is when Lane et al. [7] discussed the sensing abstrac-
tions and their evaluation models. Moreover, a report from
Nielsen.com [8] reveals that the monthly time a person
spends on smartphone applications has risen 63% in two
years, from 23 hours and two minutes in fourth-quarter
2012 to 37 hours and 28 minutes in fourth-quarter 2014.
These phenomena indicate that existing sensing paradigms
need to be up-to-date.
In this paper, therefore, we revisit the sensing paradigms

regarding the probability of task completion and the power
consumption of smartphones, provided that applications
can share resources. The probabilities are mathemati-
cally modeled and quantitatively evaluated with statistic
parameters. The goal of this paper is to provide re-
searchers a tool of aids to estimate the performance of their
smartphone-based crowd sensing systems before deploy-
ment. The participating smartphones may have different
sensing capabilities and operate in dynamic environments
and contexts. Nevertheless, our proposed models can be
used to estimate roughly the probability of completing
resource-intensive tasks as well as the consumed power.
The remainder of this work is organized as follows.

Preliminary background is presented in Section II. Sec-
tion III states the problems and our objectives. Section IV
describes a new sensing paradigm as well as the evaluation
models. The sensing paradigms are quantitatively evalu-
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ated in Section V. Finally, we conclude this work with
Section VI.

II. Preliminary Background

A. Sensing Paradigms

Most current sensing systems are developed based on
either participatory sensing [4], opportunistic sensing [2],
or hybrid sensing [9]. Participatory sensing requires users
to participate in sampling data actively. Meanwhile, op-
portunistic sensing systems can run unobtrusively, and the
users may not be aware of that the sensing applications
are performing sensing tasks on their smartphones. In
other words, the burden of sensing places on either users
or smartphones. These extreme sensing paradigms techni-
cally restrain researchers from utilizing sensing opportu-
nities provided by users and smartphones. To this end, a
new trend of developing applications based on a hybrid
paradigm is proposed. For example, Bubble-Sensing [9],
a hybrid paradigm, binds a sensing task to the physical
world using smartphones. Bubble-Sensing considers the
places of interests as the sensing condition. Once a smart-
phone is present in the places of interests, corresponding
sensing tasks will be submitted to the smartphone.

B. Probability of Task Completion

When designing an urban sensing system, its perfor-
mance on a large scale is usually hard to conjecture since
it depends on multiple uncertain parameters (e.g., the
number of smartphones, the number of applications, the
probability of having a specific type of sensors). To deal
with such daunting challenge, Lane et al. [7] propose
evaluation models.

Assume that the sensing system requests N smart-
phones installed the sensing application to collect data in
a region of interest, then to send the data to a central
server. Examples include collecting environmental noise,
temperature, dust particles, and carbon dioxide. The
smartphones can only perform collecting data provided
that the sensing conditions are satisfied (e.g., location,
time, available sensor type, orientation, societal altruism).
Let Pp (Probability of Permission) be the probability
that a user agrees to take part in collecting data when
there is a request. Let Pu (Probability of User) be the
probability that a user participates in collecting data.
For example, the probability of that a user pulls their
smartphone out of the pocket just to measure the street
noise when they are on the street. Let Pc (Probability
of Context) be the probability that a smartphone has
its context matched with the sensing requirements. For
example, when a smartphone is outside of the pocket for
some other purposes but also can thus be used to record
environmental noise. Let Ps (Probability of Sensor) be the
probability that a smartphone is integrated with the sensor
type that is required by the sensing task.

The probability of task completion using the oppor-
tunistic sensing is given by

Popportunistic = 1 − (1 − PsPc)N . (1)

The term (1 − PsPc) indicates that the smartphone
cannot perform the task since it does not possess the
required sensor and/or the appropriate context.
With the participatory sensing, the probability of task

completion is given by

Pparticipatory = 1 − (1 − PpPs(Pc + P̄cPu))N , (2)

where P̄ = 1 − P .
The term PpPs(Pc + P̄cPu) indicates that either the

smartphone has the appropriate conditions to collect data
or that the user is willing to make the sensing conditions
happened.

III. Problem Statements
The recent development and proliferation of smart-

phones have raised new challenges for cooperative sensing
with smartphones. The challenges include power consump-
tion, non-deterministic platforms, and exclusive resources.
The existing sensing paradigms and evaluation models
need to be improved to incorporate such challenges.

A. Power consumption
More and more sophisticated and power-hungry sensors

have been integrated, for instance, dust particle sensors
and gas sensors. Also more applications are installed
and used daily [5], [6]. Users also spend more time on
smartphones [8]. Although the new MEMS sensors and
battery technologies have improved the battery issue, the
power consumption is still one of the most concerns from
users, which may deter them from installing the sensing
applications.

In this paper, we propose new evaluation models to
compute the probability of energy consumption to complete
a sensing task. We consider various parameters including
energy consumption of sensors, localization systems, and
communication.

B. Non-deterministic platform
Unlike dedicated sensing devices in traditional sensing

systems, smartphones are non-deterministic since they are
in situ designed not for sensing [10]. Smartphones also
have more diverse brands, models, operating versions.
In addition, smartphones frequently function in multiple
roles. These factors indeed influence the reliability.

In this paper, we propose that each sensing task has to
be performed by at least M smartphones to enhance the
reliability. For example, sampling the sounds at a location
needs to be done by at least some smartphones. With the
advantage of the crowd, the quality of information would be
improved. We also propose evaluation models with regards
to this reliability enhancement.
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C. Exclusive Resources
Since smartphones are an attractive platform for perva-

sive mobile computing, smartphone-based sensing applica-
tions have become popular. However, exclusive resources
such as cameras and microphones cannot be shared among
the applications in mobile operating systems such as cur-
rent Android. In other words, it is not possible for more
than one application to use an exclusive sensor at the same
time.

In this paper, we propose a new sensing paradigm that
addresses the resource-sharing and cooperative-computing
ability. The new paradigm, called symbiotic sensing, en-
ables the sensing applications to be able to deploy on a
large scale with numerous smartphones. Sensing tasks are
carried out cooperatively to reduce the resource consump-
tion.

IV. New Evaluation Models
In this section, we derive the quantitative models to

evaluate the sensing paradigms, which are commonly used
as strategies for sensing applications. We address the
evaluation models with regards to the new challenges that
are discussed in Section III: power consumption, non-
deterministic platform, and exclusive resources. Specif-
ically, we propose the evaluation models regarding the
probability of success and expectation of energy consump-
tion, when completing a sensing task.

Without loss of generality, we formulate the evaluation
models for the data collection task. A mobile application
has to be installed on a minimum number of smart-
phones, denoted by N , to perform the data collection.
Whenever a smartphone satisfies the predefined sensing
conditions, such as its location, time, physical position,
and orientation, the application automatically executes
the task or requests the smartphone’s user to collect data.
The collected data then will be sent to a central server.
Each kind of data needs to be collected by at least M
smartphones, M 6 N , to obtain the reliability.

A. Probability of Success
Given the probability that the sensing application can

perform a sensing task by a single smartphone is p, the
probability that the sensing task can be performed by at
least M smartphones among N smartphones is given by:

P = 1 −
M−1∑
k=0

Ck
N pk(1 − p)N−k, (3)

where Ck
N = N !

(k!(N−k)!) is the number of k-combinations of
N elements.
Note that the probabilities of success defined in (1) and

(2) are under the assumption of that the required sensors
are always ready to sample data as long as the smartphone
owns them. However, it is likely that the sensor on a
smartphone might not be always available as if it is exclu-
sive and being used by another application. For example,

microphones and cameras cannot be accessed by multiple
applications on the current Android operating systems.
Hence, we propose a complementary sensing paradigm to
reflect this problem, namely symbiotic sensing.

Symbiotic sensing is a sensing paradigm that allows
sensing applications to share either resources or sensing
results with each other to avoid acquiring or processing the
same sensory data multiple times. Applications designed
with symbiotic sensing do not detriment each other, but
they benefit from the association by gaining the shared
resources and results
Let Po (Probability of Occupation) be the probability

that the required sensors are being occupied by another
application given the matched context, for example, the
percentage of time the user using their smartphone to
take a picture. Equation (3) for symbiotic sensing can be
expressed in detail as follows.
In symbiotic sensing, a smartphone completes a sensing

task only if it have the required sensor, it is in relevant
context, and there is another application using the re-
quired sensor. In other words, the probability that the
smartphone completes the sensing task is a joint proba-
bility p = PsPcPo. Therefore, the probability of success
with symbiotic sensing is given by

Psymbiotic = 1−
M−1∑
k=0

Ck
N (PsPcPo)k (1 − PsPcPo)N−k

. (4)

On the other hand, in opportunistic sensing, a smart-
phone completes a sensing task only if the required sensor
is not being used by any other application. Thus, the prob-
ability that the smartphone can complete the sensing task
is p = PsPcP̄o. The probability of success with opportunistic
sensing is given by

Popportunistic = 1 −
M−1∑
k=0

Ck
N

(
PsPcP̄o

)k

×
(
1 − PsPcP̄o

)N−k
. (5)

In participatory sensing, there are two scenarios that
a sensing task is completed. When the sensing context is
matched, the smartphone may execute the sensing task
without the help from the user with probability PpPsPcP̄o.
Otherwise, if the sensing context is not matched, the
application will request the user to help. However, the
user might be reluctant to do so with a probability of
Pu. Therefore, we have the probability of success with
participatory sensing is given by

Pparticipatory = 1 −
M−1∑
k=0

Ck
N

[
PpPs

(
PcP̄o + P̄cPu

)]k
×
[
1 − PpPs

(
PcP̄o + P̄cPu

)]N−k
. (6)

The hybrid sensing paradigm is slightly different to par-
ticipatory sensing. When the sensing context is matched,
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the smartphone will sample data regardless of the avail-
ability of the required sensor with the support of a re-
source sharing application service. Additionally, a hybrid
sensing application does not request the user to support
in collecting data if sensing context is matched. If the
sensing context is unmatched, the application will request
the user to assist in sampling data. Thus we can define the
probability of success with hybrid sensing as

Phybrid = 1 −
M−1∑
k=0

Ck
N

[
Ps

(
Pc + P̄cPpPu

)]k
×
[
1 − Ps

(
Pc + P̄cPpPu

)]N−k
. (7)

B. Estimated energy consumption
The application needs to be installed on N smartphones

so that a sensing task can be accomplished by at least
M smartphones. As the task execution is probabilistic,
we need to estimate the total energy consumption of the
application on such N devices.

Estimated Energy Consumption of a sensing paradigm
is the estimated quantity of energy consumed by the
application installed on N devices of the system during
a unit of time, such that a sensing task is performed by at
least M smartphones to obtain a certain level of accuracy,
M 6 N . Energy consumption of a sensing system consists
of multiple aspects, e.g., the energy to run the phone and
sensors in idle mode, the power to run the sensors for data
collection, data transmission energy. Therefore, we denote
the main components of energy consumption as follows.

Let ei (Idle Energy Consumption) be the energy that
the application consumes during a unit of time when it
is idle, without capturing any data from sensors or doing
localization. Let es (Sensor Energy Consumption) be the
extra energy that the requested sensor consumes while
performing the sensing task during a unit of time. Let el

(Localization Energy Consumption) be the extra energy
that a localization system consumes to update the location
information of sampled data during a unit of time. Let
ec (Communication Energy Consumption) be the extra
energy that a device consumes to transmit sampled data to
another device or a server during a unit of time; Given the
above definitions of energy consumption, the expectation
of total energy E consumed by the system is given by

Ē = N + M

2 p (es + el + ec) + Nei (8)

where M is the required minimum number of smartphones
that perform the sensing task and N is the number of
smartphones installed the sensing application.

For symbiotic sensing, as shown in Eq. (4), the prob-
ability that the sensing application performs the task is
p = PsPcPo. We can replace this probability p in Eq. (8).
However, unlike other sensing paradigms, a symbiotic sens-
ing application does not consume extra energy to activate
the sensor as it reuses the data sampled by another host
application. It can also retrieve the location information

which recently retrieved by another application, such as
Google maps or Facebook. Furthermore, it is possible to
piggyback on another application to transmit sampled
data without consuming extra power by increasing band-
width or data rate as being studied in [11]. Therefore, es,
el and ec in (8) can be omitted for symbiotic sensing in
most cases. In other words, we have the expected energy
consumption of symbiotic sensing given by

Ēsymbiotic = Nei. (9)

The expectation of energy consumption with oppor-
tunistic sensing is give by

Ēopportunistic = N + M

2 PsPcP̄o (es + el + ec)+Nei. (10)

The expectation of energy consumption with participa-
tory sensing is given by

Ēparticipatory = N + M

2 PpPs

(
PcP̄o + P̄cPu

)
×(es + el + ec) + Nei.

(11)

For hybrid sensing as shown in Eq. (7), the probability
that the sensing application performs the sensing task
is p = Ps

(
Pc + P̄cPpPu

)
. However, the probability that

the application executes the sampling task by acquiring
sensors is only Ps

[
Pc (1 − Po) + P̄cPpPu

]
. For the rest of

the probability, PsPcPo, the application piggybacks on
other applications to gain the power consumption benefit.
Therefore, the expected energy consumption of hybrid
sensing is given by

Ēhybrid = N + M

2 Ps

[
Pc (1 − Po) + P̄cPpPu

]
× (es + el + ec) + Nei.

(12)

V. Quantitative Evaluation
In this section, we evaluate the symbiotic, opportunistic,

participatory and hybrid sensing paradigms regarding the
models given in Section IV. We address a noise map
app using onboard microphones of smartphones carried
by citizens since it is an attractive topic [12]–[14]. The
application addresses helping citizens understand the noise
pollution of their city by measuring and mapping noise
data with their smartphones.

A. Evaluation of Probability of Success
It is likely that every single smartphone has at least one

microphone; therefore, we set Ps = 1 for the microphone
sensor type. Since recording sound when the smartphone
is in a pocket has dramatically low quality, we define when
the smartphone is out of pocket as the context matching.
In 2012, Britons spent average 90 minutes per day on
their smartphones [15]. This number can be used as an
approximate probability of the context matching. Thus we
set Pc = 90/(24×60) = 0.0625. The survey [15] also shows
that Britons used their mobile phone 17% of such usage
time for the making phone calls. Because the microphone
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is an exclusive sensor that typically cannot be accessed
by multiple applications at the same time except building
some middleware platform for cross-sensor applications,
we conservatively set Po = 0.17.
To derive Pp and Pu, we map conceptually it to the

probability of the first contact rates surveyed in a report
on the feasibility of cell phone surveys [16]. In particular,
the civilians were first called through their cell phones
if they are willing to participate in a survey, in which
they are supposed to answer a list of interview questions.
The study results show that 1561 over 4448 agreed to
participate in the interview. Therefore, we set Pp = 0.3.
The results also show that only 318 participant completed
all the questions. That completion indeed requires some
modification of planned behaviors conceptually relates to
the probability of that a user participates in sampling
data. Hence, we set Pu = 0.2.
Given these probability values, the relationship be-

tween the derived values of success probabilities versus
the number of smartphones for symbiotic, opportunistic,
participatory, and hybrid sensing paradigms are plotted in
Fig. 1. In particular, Fig. 1(a), (b), and (c) show the graphs
of the success probabilities when the sensing application
requires at least 1, 5, and 10 smartphones to sense the
same event simultaneously, respectively. Apparently, the
hybrid sensing paradigm always has the highest probabil-
ity of success regardless the values of the parameters. In
this scenario, the opportunistic and participatory sensing
paradigms have the similar probability of success when
varying number of smartphones. The symbiotic sensing
paradigm has the lowest probability of success as it only
utilizes sensors occupied by other applications to save
energy consumption, which is 0.17. Nevertheless, when
increasing the number of smartphones, the success prob-
ability values of the symbiotic paradigm also increase.
This phenomenon confirms the hypothesis; the symbiotic
sensing paradigm can perform as well as other sensing
paradigms without consuming many extra resources if
more smartphones can collaborate.

B. Evaluation of Energy Consumption

The power consumption of sensors and wireless in-
terfaces on smartphones have been analyzed in some
works [17]–[20]. Among those works, the Monsoon Power
Monitor [20] gives the possibility to analyze data quite
accurately since it measures the energy consumption of
each component by directly accessing to the battery of
the smartphone by a hardware device, which comes with a
software tool. [21] uses the Monsoon Power Monitor tool to
measure the power consumption of microphones and GPS
in a Samsung Galaxy i9250. From their measured data,
we find that the extra energy consumed when activating
microphones (recording) 0.4154 mAh, and that of GPS
is 1.5959 mAh. Therefore, we set es = 0.4154 mAh and
el = 1.5959 mAh. We also find the application itself

consumes 1.6582 mAh when it does not perform any
sensing tasks. Hence, we set ei = 1.6582 mAh.
For the power consumption to transmit sensory data

to a base station, WiFi is the most sustainable interface
to transfer audio data from smartphones to a server.
Compared to other wireless interfaces that are available
on most smartphones, such as Global System for Mobile
Communications (GSM) 3G, and Long-Term Evolution
(LTE), WiFi consumes at least five times lesser power
consumption [22]. Bluetooth also has low power consump-
tion, but its coverage is limited, shorter than 10 meters. As
measured by [22], the extra power consumption of WiFi
when actively transferring data is 650 mAh. Thus, we set
ec = 650 mAh.
Dividing the total expected energy consumption values

by the corresponding smartphone quantities, symbiotic
sensing consumes much less energy consumption per de-
vice as plotted in Fig. 2(b), which is about 2.5 mAh.
Moreover, data are collected from many more smartphones
with symbiotic sensing. Fig. 2(a) compares the expected
smartphones that sample and send data back to the server,
which provides more reliability and accuracy.

VI. Conclusion

We revisited sensing paradigms for energy-saving sens-
ing systems based on smartphone platforms. Since the
number of smartphone applications has increased signif-
icantly while the sensing resources on smartphones are
limited, we proposed the symbiotic sensing approach that
addresses sharing the resources as well as outcomes among
the applications. We also proposed new evaluation models
for the new and the existing sensing paradigms. Through
quantitative evaluation of the models given surveyed data
from the real world, we showed that symbiotic sensing
is complementary to existing the sensing approaches.
Though the application diversity should be considered,
the symbiotic sensing paradigm has a potential to be a
better choice than opportunistic sensing large scale, where
there are enormous numbers smartphones and applica-
tions. Although the comparison results from quantitative
evaluation show the probabilities of success when using
different approaches, building out these sensing techniques
will provide more conclusive evidence into which one is the
best choice for a large-scale sensing system.
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