AMBITION: What has been done so far?

Mohamed Irfan Mohamed Refai*1, Mique Saes2, Ilona Visser2, Hans B. J. Bussmann⁴, Jaap H. Buurke^{1,3}, Peter H. Veltink¹, Gert Kwakkel², Erwin van Wegen², Carel Meskers², Bert-Jan F. van Beijnum¹

*m.i.mohamedrefai@utwente.nl

NeuroCIMT #7 Project Goals

Develop and evaluate an on-body sensing and real-time biofeedback system for optimal, patient-tailored motor rehabilitation in neurological disorders, aimed at understanding neural repair and compensation in motor performance of upper and lower extremities during daily life.

- Restitution vs. Substitution Understanding differences between true neurological repair and appearance of alternate/ compensatory patterns
- Ambulatory Sensing in ADL Feasibility of wearables in measuring quality of movement in ADL
- Biofeedback Modalities Identifying intelligent feedback and feedback modalities to improve quality of motor function

Fig 1: Compensatory movement strategies exhibited by hemiplegic subjects

Questions asked..

Q1: Feasibility of using pressure insoles over force sensors as a wearable setup for measuring gait & balance.

Fig 2: Experimental Setup of ForceShoe and Pressure sensors

Take Away:

- 1D Pressure as replacement for 3D forces and moments
- Contribution of foot kinematics and kinetics towards CoM/XCoM estimations
- Influence of high/low frequency CoM information on stability margins
- Estimating XCoM without any kinetics Fig 5: Comparisons of XCoM estimated using ForceShoe and

Subject Specific Models for different walking tasks

Questions asked..

Q2: Influence of walking speed and casting on dynamic margins of stability (DMoS).

Take Away:

- Subjects reduced their step lengths when casted, when walking at moderate and fast speeds.
- DMoS in AP direction increases when walking speed increases, as XCoM falls further outside BoS.
- DMoS increases in ML direction when walking speed increases, but only true for slow and fast speeds when casted.
- •DMoS is thus sensitive to walking speed and asymmetrical walking.
- •Study also shows compensation strategies of healthy subjects towards induced asymmetry.

Mean AP MoS at ICR

Fig 6: GRAIL lab and a casted foot

Current and Future Studies

Q3: How are movement related body functions measured by kine(ma)tic metrics in stroke subjects during a reach and grasp task?

- Systematic Literature Review
- Reaching as a functional task
- Assessing reliable, valid, and responsive upper limb kinematics measurable by an ambulant setup
- Registration of review: PROSPERO CRD42018100648
- Completion of full TIAB screening
- Full text screening underway
- Stroke Rehabilitation and Recovery Round Table

Q4: Feasibility of an IMU (pelvis & feet) only approach, for ambulatory estimation of stability.

- IMU based approach
- Kinematics
- Forces
- Relative distance estimations
- Foot IMUs
- Foot kinematics
- Pelvis IMU
- CoM oscillations
- Body kinetics

Future Studies:

- Studies on Stroke subjects
- Ambulatory UE sensing during ADL
- Minimal and contextual sensing
- Biofeedback Modalities
- Quality of motor function
- Feedback Modalities

Affiliations

Preferred

³ Roessingh Research and Development, Enschede ⁴Erasmus Medical Center, Rotterdam

Moderate 0.8 m/s Fast (1.2 m/s)

Walking speed (m/s)

UNIVERSITY

