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Abstract—The increasing penetration of electric vehicles (EVs)
requires the development of smart charging strategies that
accommodate the increasing load of these EVs on the distribution
grid. Many existing charging strategies assume that an EV is
allowed to charge at any rate up to a given maximum rate.
However, in practice, charging at low rates is inefficient and
often even impossible. Therefore, this paper presents an efficient
algorithm for scheduling an EV within a decentralized energy
management system that allows only charging above a given
threshold. We show that the resulting optimal EV schedule is
characterized by an activation level and a fill-level. Moreover,
based on this result, we derive an online approach that does not
require predictions of uncontrollable loads as input, but merely a
prediction of these two characterizing values. Simulation results
show that the online algorithm is robust against prediction errors
in these values and can produce near-optimal online solutions.

I. INTRODUCTION

The number of EVs is rapidly increasing. Smart control
of the charging of these EVs is required in order to reduce
energy losses, preserve grid assets and prevent blackouts
and overloading [1]. One common control paradigm for EV
charging is decentralized energy management (DEM). In
DEM, devices are individually scheduled and subsequently
coordinated by means of a central controller. Often, the devices
are scheduled based on a steering signal issued by the central
controller such as energy prices (also known as demand
response [2]) and target profiles that explicitly specify the
amount of energy that should be consumed (see, e.g., [3]).

Many algorithms for scheduling EV charging in DEM
exist (for an overview, see [4]). Most of these algorithms
assume that the EV can charge at any rate between zero and a
given maximum rate. However, in practice, this is not always
possible due to restrictions on the minimal charging current
implemented by EV battery manufacturers (see, e.g., [5], [6]).
Furthermore, charging an EV at a low rate reduces the efficiency
of the charging process (see, e.g., [7]). Therefore, it makes
sense to allow only charging above a given minimum rate to
prevent inefficient charging. Only a few works consider such
a minimum-threshold constraint (see, e.g., [8]).

In DEM, the device objective is often based on the power
profile of a household, the base load. However, in practice,
the base load is not known beforehand. To solve this problem,
most EV charging algorithms use predictions of the base load
as input for the offline scheduling algorithm. However, it is
very hard to obtain accurate base load predictions (see, e.g.,
[9]). Therefore, other approaches are needed to solve this issue.

This paper presents an efficient algorithm for scheduling an
EV, suitable for DEM, that takes into account the minimum-
threshold constraint as stated above and that flattens the
combined base load and EV profile as much as possible. We
show that the optimal EV schedule can be characterized by
two values that function as an activation level and fill-level
respectively. Based on this characterization, we also derive an
online algorithm for the case where the base load profile is
unknown. This algorithm uses a prediction of only the two
characterizing values, rather than a prediction of the entire base
load profile, to schedule an EV. Simulation results show that
this algorithm is robust against prediction errors in the two
characterizing parameters and yields near-optimal solutions.

The remainder of this paper is structured as follows. In
Section II, we formally introduce the EV charging problem
that we study in this paper and analyze the hardness of this
problem. Section III provides an analysis of the structure of
optimal solutions to the scheduling problem and Section IV
presents a polynomial time algorithm to solve the problem.
In Section V, we derive an algorithm to solve the online
version of the problem based on the algorithm of Section IV.
In Section VI, we conduct a simulation study to validate our
approach and Section VII provides our conclusions.

II. PROBLEM STATEMENT

In this section, the EV charging problem that we study in this
paper is introduced. Section II-A provides the formal problem
statement and Section II-B discusses the complexity of this
problem and several of its special cases.

A. Problem statement
We assume that the charging window of the EV (the time

period wherein it is available for charging) is known. We
discretize the problem, meaning that we divide the charging
window into T time intervals T = {1, . . . , T}. We denote
by ~x = (xt)t∈T the charging profile, where the variable xt
denotes the energy volume that is charged during interval t.
Moreover, we assume that the amount C that needs to be
charged within the charging window is known. For each time
interval t ∈ T , let Xmin

t > 0 and Xmax
t be the given minimum

and maximum allowed charging rates for that interval t. To
model the decision whether or not to charge during an interval t,
we introduce a binary variable yt that is 1 if the EV charges
during t and 0 otherwise. The objective is to charge the EV such
that the combined base load and charging profile is flattened



as much as possible. We denote this base load profile by
~p = (pt)t∈T . The objective of load profile flattening can be
modeled by minimizing the 2-norm of ~p+ ~x. For convenience
and without loss of generality, we choose to minimize the
square of this 2-norm.

This leads to the following optimization problem:

(P ) : min
~x

T∑
t=1

ft(xt) =

T∑
t=1

(pt + xt)
2

s.t.
T∑

t=1

xt = C,

Xmin
t yt ≤ xt ≤ Xmax

t yt ∀t ∈ T , (1)
yt ∈ {0, 1} ∀t ∈ T .

Throughout this paper, we assume that Problem (P ) is feasible
and, without loss of generality, that the values pt are distinct
and that the intervals are sorted according to descending values
of pt, i.e., we assume that p1 > p2 > . . . pT .

Note that the above formulation allows us to model the
objective of following a given target profile ~q as closely as
possible by setting ~p = −~q. Furthermore, we can include
a linear term ctxt into the objective without changing the
problem structure by choosing ft(xt) = (pt +xt + 1

2ct)
2, thus

taking pt + 1
2ct as the new “base load” for interval t. This is

because (pt +xt + 1
2ct)

2 = (pt +xt)
2 + ctxt + ctpt + 1

4c
2
t and

adding a constant to the objective function does not change
the optimal solution and set of feasible solutions.

Problems of type (P ) exist in the literature as knapsack
problems with setups [10] or semi-continuous knapsack prob-
lems [11]. However, to the best of our knowledge, no literature
exists on such problems with quadratic objective functions,
except for a preliminary analysis of Problem (P ) in [12].

B. Complexity analysis
In this section, we analyze the complexity of Problem (P ).

Note that this problem without any restrictions on the bounds
Xmin

t and Xmax
t is NP-hard, which can be shown using a

reduction from the subset-sum problem. In fact, it turns out
that the problem is NP-hard even for a fixed ~Xmax ∈ RT

+.

Lemma 1. Problem (P ) is NP-hard for any ~Xmax ∈ RT
+.

Proof: We prove that (P ) is NP-hard by deriving a
polynomial-time reduction from the subset-sum problem to
(P ). For this, fix ~Xmax and let ISSP be an instance of the
subset-sum problem wherein S := {S1, . . . , ST } is a given set
of integers and D ∈ N. ISSP is a YES-instance for the subset-
sum problem if there exists a subset S ′ of S such that the
elements of S ′ sum to D. Observe that we may assume without
loss of generality that maxt(St) ≤ mint(X

max
t ) since we can

scale down D and all elements of S by a positive constant
without changing the problem structure and hardness. Based
on ISSP, we construct an instance I(P ) of (P ) with ~Xmax as
maximum charging powers as follows. We set C = D and
for t ∈ T , we choose Xmin

t = St and pt = − 1
2St. Note that

I(P ) is a valid instance of (P ) since for all t ∈ T we have
Xmin

t = St ≤ maxt(St) ≤ mint(X
max
t ) ≤ Xmax

t .

We now show that ISSP is a YES-instance for the subset-sum
problem if and only if I(P ) has an optimal objective value of∑T

t=1
1
4S

2
t . First, if ISSP is a YES-instance, then the solution

(x′t, y
′
t) =

{
(St, 1) if St ∈ S ′,
(0, 0) otherwise

is feasible for I(P ). Since for all t ∈ T it holds that
ft(0) = (− 1

2St)
2 = ( 1

2St)
2 = ft(St), the objective value

of this solution is
∑T

t=1
1
4S

2
t . Note that this is a lower bound

on the objective value of I(P ) since for all t ∈ T with Xmin
t <

xt ≤ Xmax it holds that f ′t(xt) = 2(− 1
2St + xt) > St > 0

and thus ft(xt) > f(Xmin
t ) = 1

4S
2
t . Therefore, (~x′, ~y′) is also

optimal for I(P ). On the other hand, if I(P ) has an optimal
solution (~x∗, ~y∗) with objective value

∑T
t=1

1
4S

2
t , then we must

have that x∗t = 0 (when y∗t = 0) or x∗t = Xmin
t = St (when

y∗t = 1) for all t ∈ T . Let S ′′ := {Xmin
t | y∗t = 1} and note

that S ′′ ⊆ S by construction of I(P ). Since (~x∗, ~y∗) is feasible
for I(P ), it follows that

∑
x∈S′′ x =

∑T
i=1 x

∗
t = C = D. Thus,

the sum of all elements in S ′′ is equal to D and ISSP is a
YES-instance of the subset-sum problem. Since the reduction
of ISSP to I(P ) can be done in polynomial time, we may
conclude that (P ) is NP-hard.

The proof of Lemma 1 suggests that the difficulty of Prob-
lem (P ) might be due to the fact that the lower bounds Xmin

t

are not the same. Therefore, in the remainder of this paper, we
consider only problems (P ) where all lower bounds are equal,
i.e., we replace Constraint (1) by Xminyt ≤ xt ≤ Xmax

t yt for
all t ∈ T and some Xmin ∈ R+.

One question that remains is whether this new version of
Problem (P ) is still NP-hard. To this end, we introduce two
subclasses P1 and P2 of problem instances of (P ). Each of
these classes respectively consists of all instances for which:

Class 1. Xmax
i ≤ Xmax

j implies pi > pj (and thus i < j).

Class 2. Xmax
t ≥ 2Xmin for all t ∈ T .

In the remainder of this paper, we only consider instances
of Problem (P ) that belong to the subclasses P1 or P2. In
Section III, we derive an O(T log(T )) time algorithm for (P )
restricted to these instances. We come back to the necessity of
this for our solution approaches in Section III.

III. ANALYSIS AND INITIAL SOLUTION APPROACH

In this section, we analyze the structure of Problem (P ) and
its optimal solutions. Based on this, we derive a first solution
approach for (P ) that runs in O(T 2) time. In Section IV,
we apply the analysis in the current section to derive an
O(T log(T )) time algorithm.

The main result of this section is that there exists an optimal
solution to Problem (P ) wherein the first intervals are exactly
those wherein no charging or charging at Xmin is done:

Lemma 2. There exists an optimal solution ~x to Problem (P )
and integers K,J ∈ {0, . . . , T} with K ≤ J such that
• xt = 0 for t ≤ K,
• xt = Xmin for K + 1 ≤ t ≤ J ,
• Xmin < xt ≤ Xmax

t for J + 1 ≤ t ≤ T .



Proof: Suppose that there exists no optimal solution that
has the structure described in the statement of this lemma and
let ~x∗ be an optimal solution to Problem (P ). We prove the
lemma by contradiction by showing that ~x∗ cannot be optimal.
For this, we first define ~x′(i, j, ε) to be the solution obtained
from ~x∗ by moving a load of ε > 0 from interval i to interval j.
Moreover, for any feasible solution ~x, let V (~x) be the objective
value of (P ) for ~x. If ~x′(i, j, ε) is feasible, then the difference
V (~x∗)− V (~x′(i, j, ε)) is equal to

(pi + x∗i )2 + (pj + x∗j )2 − (pi + x∗i − ε)2 − (pj + x∗j + ε)2

= 2ε(pi + x∗i − pj − x∗j − ε). (2)

We distinguish between two cases. First, suppose that the
problem instance is in P1. Then there exist time intervals s < t
such that x∗s > x∗t . Note that ~x′(s, t, x∗s−x∗t ), i.e., the solution
obtained from ~x∗ by interchanging x∗s and x∗t , is feasible. It
follows from (2) that

V (~x∗)− V (~x′(s, t, x∗s − x∗t )) = 2(x∗s − x∗t )(ps − pt) > 0

since s < t implies ps > pt by the ordering of the intervals
and x∗s > x∗t . It follows that V (~x′(s, t, x∗s−x∗t )) < V (~x∗) and
thus that ~x∗ cannot be optimal.

Now suppose that the problem instance is in P2. First,
suppose that there exist time intervals s < t such that
Xmin ≤ x∗s ≤ Xmax

s and x∗t = 0. If x∗s ≤ Xmax
t , then

~x′(s, t, x∗s − x∗t ) is feasible and we can use the argument used
above to conclude that ~x∗ cannot be optimal. If x∗s > Xmax

t ,
we have x∗s > 2Xmin since the instance is in P2. Then
~x′(s, t,Xmin), i.e., the solution obtained from ~x∗ by moving
a load of Xmin from s to t, is feasible and (2) implies that

V (~x∗)−V (~x′(s, t,Xmin)) = 2Xmin(ps+x∗s−pt−Xmin) > 0

since x∗s ≥ Xmin and ps > pt. It follows that ~x∗ is not optimal.
Second, suppose that there exists intervals s < t such that

Xmin < x∗s ≤ Xmax
s and x∗t = Xmin. Choose ε′ > 0 such that

ε′ < x∗s −Xmin. Then ~x′(s, t, ε′) is feasible and (2) implies
that V (~x∗)− V (~x′(s, t, ε′)) > 0. Thus, ~x∗ is not optimal.

Let (PK) the problem of solving Problem (P ) where the
value K from Lemma 1 is given, i.e., solving Problem (P ) with
the additional constraint

∑T
i=1 yt = K. Lemma 1 implies that

we can find an optimal solution to (PK), assuming that (PK)
is feasible, by setting y∗t = 0 and x∗t = 0 for t ≤ K, setting
y∗t = 1 for t > K, and solving the remaining problem:

(PK) : min
xK+1,...,xT

T∑
t=K+1

ft(xt) =

T∑
t=K+1

(pt + xt)
2

s.t.
T∑

t=K+1

xt = C,

Xmin ≤ xt ≤ Xmax
t , t = K + 1, . . . , T.

Problem (PK) is a standard quadratic resource allocation
problem that can be solved efficiently [13]. In particular, it
can be solved in O(T − K) time (see, e.g., the algorithms
in [14]). Thus, we can solve Problem (P ) in O(T 2) time by
solving (PK) for 0 ≤ K ≤ T − 1 and selecting the solution

with the lowest objective value. However, we can improve
this time complexity by solving each subproblem (PK) using
the solution of the previous subproblem (PK−1) as input. In
Section IV, we propose an O(T log(T )) time algorithm that
solves Problem (P ) in this way.

IV. AN O(T log(T )) ALGORITHM FOR (P )

In this section, we first analyze the properties of the optimal
solution to (PK) in Section IV-A. In particular, we show
that this optimal solution can be characterized by two values.
In Section IV-B, we show how we can use these values to
solve (PK+1) using the optimal solution to (PK) and in
Section IV-C we present an O(T log(T )) time algorithm to
solve Problem (P ).

A. Characterization of optimal solutions to (PK)

Let ((~xK)∗, (~yK)∗) denote the optimal solution to (PK).
We first characterize the optimal activation decision (~yK)∗.
Lemma 1 implies that (yKt )∗ = 0 for t ≤ K and (yKt )∗ = 1
for t > K. Note that this implies that (yKt )∗ = 0 if pt ≥
pK and (yKt )∗ = 1 if pt < pK . We can thus translate the
characterization of (~yK)∗ by K into a characterization by ~p.
More precisely, there exists a value Zact

K , which we call the
activiation level, such that

(yKt )∗ =

{
1 if pt +Xmin ≤ Zact

K ,
0 otherwise. (3)

The interpretation of Zact
K and (3) is that we only charge in a

given interval if the resulting total load in that interval does
not exceed Zact

K . Since the minimum allowed charging rate
is Xmin, Rule (3) exactly represents this policy. It follows that
defining Zact

K as

Zact
K := pK+1 +Xmin (4)

ensures that (yKt )∗ = 0 if and only if t ≤ K.
We now characterize (~xK)∗. Note that Rule (3) already

characterizes (xKt )∗ for t ≤ K since in that case (xKt )∗ = 0.
It is well-known that the optimal solution to (PK) can be
characterized by a single value Zfill

K , known as the fill-level
(see, e.g., [13], [15], [16]), as follows:

(xKt )∗ =

 Xmin if pt +Xmin ≥ Zfill
K ,

Zfill
K − pt if pt +Xmin < Zfill

K < pt +Xmax
t ,

Xmax
t if pt +Xmax

t ≤ Zfill
K .

(5)
The interpretation of Zfill

K and Rule (5) is that, ideally, the
base load pt is filled up with EV charging to Zfill

K . If the
combined base load and charging profile already exceeds Zfill

K

when charging at the smallest allowed rate Xmin, we charge
at this minimum rate. Similarly, if the combined profile does
not exceed Zfill

K even when charging is done at the maximum
rate Xmax

t , we charge at this maximum rate.
We define the lower and upper critical values of an interval t

as λt := pt +Xmin and µt := pt +Xmax
t respectively. Given

Zact
K and Zfill

K , one can now compute the optimal charging
schedule (~xK)∗ directly by combining (3) and (5) as follows:

(xKt )∗=u(Zact
K −λt) ·max(Xmin,min(Zfill

K +pt, X
max
t )), (6)



Zfill
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Fig. 1. Illustrative example of the characterization by Zact and Zfill in (6).

where u(·) is the unit step function that is 1 if its argument
is nonnegative and 0 otherwise. Fig. 1 visualizes the charac-
terization of ~x∗ by Zact

K and Zfill
K for K = 5. One important

consequence of the characterization by (6) is that in order to
solve (PK), we only need to compute Zact

K and Zfill
K and use (6)

to derive from these values the optimal solution. Note that this
implies that we can characterize also the optimal solution to
Problem (P ) by two levels Zact and Zfill.

Given K, we can compute Zact
K directly from the definition

in (4). Thus, the remaining question is how to compute Zfill
K . In

Section IV-B, we show how Zfill
K+1 can be computed from Zfill

K .

B. Computing Zfill
K+1 from Zfill

K

Fig. 2 shows an example instance of Problem (P ). More
precisely, Fig. 2a and 2b show the optimal solution and charac-
terization of (PK) and (PK+1) respectively. The figures imply
the following approach to compute Zfill

K+1 and solve (PK+1)
using Zfill

K . We can construct an optimal solution to (PK+1)
by redistributing the load of interval K over the intervals
K + 1, . . . , T , on top of the optimal solution to (PK). We
do this by setting Zfill := Zfill

K and raising Zfill until it is
high enough to accommodate the extra load (see Fig. 2b). In
other words, we find a new, higher level Zfill

K+1 such that the
corresponding solution (~xK+1)∗ as computed by (5) is feasible,
i.e., sums to C. We can do this using a standard valley-filling
approach, starting from the fill-level Zfill = Zfill

K . Note that we
only have to do this if K 6= J , i.e., when the load of interval K
is Xmin, since otherwise the optimal objective value of the
subsequent subproblems can only increase (see also [13]).

We now briefly describe the valley-filling approach. Note
that (5) implies that when we increase Zfill by a small amount,
only the load of those intervals t with λt < Zfill < µt increases.
We call these intervals free and define the set of free intervals
as F := {t ∈ T |λt < Zfill < µt} and let F := |F|.

Given the current fill-level Zfill, we first check if we can
equally distribute the remaining to-be-redistributed amount ∆
of interval K over the intervals in F such that the resulting
fill-level does not exceed any of the critical values. That is,
given that ν is the smallest critical value that is larger than
Zfill, we check if Zfill + ∆/F ≤ ν. If this is the case, we set
Zfill
K+1 = Zfill +∆/F and we are done. On the other hand, if ν

is exceeded, we distribute an amount of F (ν − Zfill) over the

Zfill
K

Zact
K

Time interval

Po
w

er

Base load
EV charging

To-be-redistributed load

(a) Optimal solution to (PK).

Zfill
K+1

Zact
K+1

Time interval

Base load
EV charging

Redistributed load

(b) Optimal solution to (PK+1).

Fig. 2. Relation between Zfill
K and Zfill

K+1.

free intervals and set Zfill to ν. If ν is a lower critical value,
the corresponding time interval becomes free when Zfill ≥ ν
and thus we add it to F . If ν is an upper critical value, the
load on the corresponding interval reaches its upper bound
and we remove it from F . We have now obtained a similar
problem, namely to redistribute an amount of ∆−F (ν −Zfill)
over the intervals K + 1, . . . , T . Thus, we can update ∆ and
repeat the above procedure until all the to-be-redistributed load
can be equally distributed over the free intervals.

If we store F as a vector sorted according to ascending
values of µt and preserve this property when inserting and
removing time intervals in and from F , we can compute ν as
follows, given K, J and F :

ν := min

(
min

K+1≤t≤J
λt,min

t∈F
µt

)
= min (λJ , µF1

) ,

where F1 is the first element of the sorted vector F . Note
that this can be done in O(1) time. Also, note that when an
interval is added to F , we must reduce J by 1. That is, the
number of time intervals whose load is Xmin under the new
fill-level reduces by 1.

C. An O(T log(T )) time algorithm
Algorithm 1 summarizes the approach presented in this

section. To improve its efficiency, we compute the objective
value of each subproblem (PK) by storing the objective value
generated by all intervals that are not in F in the scalar N .
As a consequence, we can efficiently compute the objective
value V K of each subproblem (PK) after computing Zfill

K .
We conclude this section by establishing the time complexity

of Algorithm 1. Note that the inner while-loop (Lines 8-16)
is executed at most 2T times during the entire course of the
algorithm since the number of critical values is 2T . Since
the insertion of J in the sorted vector F in Line 11 can be
done in O(log(F )) time using binary search, each iteration of
this while-loop takes O(log(T )) time. As a consequence, the
outer while-loop (Lines 7-20) takes O(T log(T )) time. The
remaining part of the algorithm also takes O(T log(T )) time
due to the sorting in Lines 1 and 23. It follows that the time
complexity of Algorithm 1 is O(T log(T )).



V. AN ONLINE ALGORITHM

In this section, we use the analysis of Section IV-A to
derive an online algorithm for Problem (P ) when the base
load profile ~p is unknown beforehand. This algorithm is similar
to existing online algorithms for other types of EV charging
problems (see, e.g., [15]–[18]).

The characterization of optimal solutions by Zact and Zfill

and the rule in (6) gives rise to the following online algorithm.
Suppose that we have predictions Ẑact and Ẑfill of Zact and Zfill

respectively. We can compute an approximate solution ~̂x by
adapting the decision rule in (6):

x̂t = u(Ẑact − λt) ·max(Xmin,min(Ẑfill − pt, Xmax
t )). (7)

Note that the computation of x̂t can be postponed until the

Algorithm 1 Solving (P ) for instances in P1 or P2.
Sort intervals according to descending values in ~p
Compute critical values ~λ and ~µ
Initialize K := max(0, T − b C

Xmin c); J := T − 1
Initialize F = {T}; Zfill := λT ; ν := min(λJ , µT )

5: Initialize N :=
∑K

t=1 p
2
t +

∑J
t=K+1 λ

2
t

A := C − (T −K)Xmin

while K ≤ J do
while Zfill + A

F > ν do
A = A− F (ν − Zfill); Zfill = ν

10: if λJ < F1 then
N = N − (λJ)2; insert J in F ; J = J − 1

else
N = N + (µF1

)2; remove F1 from F
end if

15: Update ν = min(λJ ,F1)
end while
Zfill
K = Zfill + A

F ; V K = N + F (Zfill
K )2

K = K + 1; N = N + p2K − λ2K
A = Xmin; Zfill = Zfill

K−1
20: end while

Select K with lowest V K , compute Zact
K according to (3)

Compute optimal solution ~x∗(Zact
K , Zfill

K ) using (6)
Reverse the original interval order

Algorithm 2 Online algorithm for solving (P ) for instances
in P2 at time interval t.

Compute x̂t according to decision rule (7)
if C ′ − x̂t >

∑T
t′=t+1X

max
t′ then

x̂t = Xmax
t

end if
5: if C ′ − x̂t < Xmin then

if C ′ ≤ Xmax
t then

x̂t = C ′

else
x̂t = C ′ −Xmin

10: end if
end if
C ′ = C ′ − x̂t

start of interval t, i.e., until pt becomes available or can be
predicted more accurately.

After determining the online decision x̂t, we must check
whether there exists a feasible schedule for the future intervals
such that the charging requirement C is met. For this, let C ′

be the amount that still must be charged from interval t on. If
the problem instance is in P2, it follows that a feasible future
schedule exists if Xmin ≤ C ′ − x̂t ≤

∑T
t′=t+1X

max
t′ (see

also [19]). If C ′ − x̂t >
∑T

t′=t+1X
max
t′ , we set x̂t to Xmax

t .
Subsequently, if C ′ − x̂ < Xmin, then we either charge all
remaining load C ′ in the current interval if this is feasible,
i.e., if C ′ ≤ Xmax

t , and otherwise we charge C ′ −Xmin and
leave an amount of Xmin to be charged during one of the
future intervals. Since for instances in P1 we cannot derive a
feasibility condition in the form of an allowed interval like we
did for instances in P2 [19], we only consider instances in P2.

Algorithm 2 captures the approach presented in this section.
The main advantage of this method is that no prediction of ~p
is required beforehand. Moreover, as we show in Section VI,
errors in the prediction of Zact and Zfill do not lead to large
deviations in the objective value of the online solution ~̂x.

VI. EVALUATION

This section evaluates the performance of the offline and
online algorithm derived in the previous sections. For the
offline algorithm, we assess its efficiency and for the online
algorithm, we validate its accuracy and the predictability of the
two characterizing levels. All simulations and computations in
this section are executed on a Dell Inspiron 15 with an Intel
Core i7-6700HQ CPU at 2.60 GHz and 16 GB of RAM.

We apply the offline and online approaches to schedule an
EV belonging to a household in southern Germany. We assume
that the EV is charged between 19:00 PM and 7:00 AM and that
this charging window is divided into 15-minute time intervals.
We assume that the base load profile ~p is not known on forehand.
We choose the Nissan Leaf as reference EV [20], meaning that
we set C = 40 kWh. Furthermore, we assume that a home
charger with a maximum charging rate of Xmax

t = 6.6 kW for
all t ∈ T is used and we set Xmin = 1.1 kW, which is in line
with the recommendations in [7].

We generate predictions of Zact and Zfill by computing
the optimal EV schedule for 70 previous days under the same
circumstances as for the current charging session, i.e., the same
values of C, Xmin and ~Xmax, using the house power profile of
each of the days respectively. In line with the findings in [21],
we expect that the resulting predictions properly represent the
behavior of Zact and Zfill. For each previous day, we compute
an online solution using Algorithm 2 and the predictions
corresponding to that day as input. We compare each resulting
solution to the optimal solution of the current charging session
by computing its relative objective value as the ratio between
the objective value of the solution and the optimal objective
value. Note that the smallest possible relative objective value
is 1, which occurs when the online solution is optimal.

Fig. 3 shows the relative objective value of the online solution
for different choices of predictions Ẑact and Ẑfill. Here, the



0

2,000

4,000

6,0000
1,000 2,000 3,000 4,000 5,000 6,000

1

1.5
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Fig. 3. Relative objective value for different combinations of Zact and Zfill

for one day. The minimum of 1 occurs at (Ẑact, Ẑfill) = (3206, 3705).

TABLE I
SIMULATION RESULTS. A RELATIVE OBJECTIVE VALUE OF 1 IMPLIES THAT

THE ONLINE SOLUTION IS OPTIMAL.

Minimum Maximum Mean Median

Zact 1595 3947 2707 2954
Zfill 3474 3761 3611 3615
Relative objective value 1.0001 1.3770 1.0679 1.0339
Running time (10−4 s) 1.63 3.26 2.01 1.80

minimum is attained at (Zact)∗ = 3206 and (Zfill)∗ = 3705.
The figure implies that slight deviations of Ẑact and Ẑfill

from (Zact)∗ and (Zfill)∗ respectively hardly influence the
relative objective value. This implies that the online approach
is robust against prediction errors in these two levels.

Table I provides the results of the simulation study. Since Zact

varies significantly over the course of consecutive days and Zact

remains within a small interval around (Zfill)∗, these results
imply that Zfill is easier to predict than Zact. The objective
value of the online solution is at most 3.39% higher than the
optimal objective value for 50% of the days, which implies
that the online algorithm often computes online solutions that
are near-optimal. Finally, the last row of Table I implies that
our offline algorithm is very fast.

VII. CONCLUSIONS

In this paper, we presented an efficient algorithm for
scheduling of EV charging in DEM that takes into account a
minimum charging threshold and flattens the combined base
load and EV profile. Moreover, we derived an online algorithm
that does not require a prediction of the base load profile but
only the prediction of two values. This algorithm is robust
against prediction errors in these values and is able to produce
near-optimal solutions.

One direction for future research is to integrate our al-
gorithms into an existing DEM system and evaluate their
performance. Another interesting direction is to extend the
current work to develop a scheduling algorithm for home
batteries and EVs with vehicle-to-grid options that takes into
account the minimum-threshold constraint. Finally, the online
approach can be improved by further analysis on its robustness

and by developing sophisticated prediction approaches for the
two characterizing values.
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