Choice and Chance

Model-Based Testing of Stochastic Behaviour

Marcus Gerhold

Graduation Committee:

Chairman: prof. dr. J. N. Kok

Promotors: prof. dr. M. I. A. Stoelinga
prof. dr. J. C. van de Pol

Members:

dr. ir. H. G. Kerkhoff University of Twente
prof. dr. N. V. Litvak University of Twente
prof. dr. M. R. Mousavi University of Leicester
prof. dr. J. Peleska University of Bremen
dr. ir. G. J. Tretmans Radboud University Nijmegen

DSI Ph.D. Thesis Series No. 18-022
DIGITAL SOCIETY 1nstitute on Digitial Society, University of Twente
INSTITUTE P.O. Box 217, 7500 AE Enschede, The Netherlands

[IPA Dissertation Series No. 2018-20

1 | l[)-g] The work in this thesis has been carried out under the

Ber 9 auspices of the research school IPA (Institute for Pro-
gramming research and Algorithmics).

Netherlands Organisation for Scientific Research

) The work in this thesis was supported by the BEAT
N W O project (BEtter testing with gAme Theory), funded by
NWO grant 612.001.303.

ISBN: 978-90-365-4695-9

ISSN: 2589-7721 (DSI Ph.D. Thesis Series No. 18-022)

DOI: 10.3990/1.9789036546959

Available online at https://doi.org/10.3990/1.9789036546959

Typeset with BTEX

Printed by Ipskamp Printing, Enschede
Cover design (© 2018 by Shaun Hall
Copyright (© 2018 Marcus Gerhold

CHOICE AND CHANCE
MODEL-BASED TESTING OF STOCHASTIC BEHAVIOUR

DISSERTATION

to obtain
the degree of doctor at the University of Twente,
on the authority of the rector magnificus
prof. dr. T. T. M. Palstra,
on account of the decision of the graduation committee,
to be publicly defended
on Wednesday 12t of December 2018 at 16:45

by

Marcus Gerhold

born on 30" of September 1989
in Hohenmolsen, Germany

This dissertation has been approved by:

Prof. dr. M. I. A. Stoelinga (promotor)
Prof. dr. J. C. van de Pol (promotor)

Acknowledgements

This thesis marks the culmination of a journey that started four years ago with
a leap of faith into another country, and an entirely new subject. A journey
filled with the entire spectrum ranging from pure excitement and happiness, to
uncertainties and doubts of whether my work was relevant at all. During this
time I was never alone - I met fellow-journeyers, friends, and mentors, to some
of whom I would like to reach out and express my gratitude.

Mariélle, as my daily supervisor you were first in line to witness the progress
of my life as a graduate student. I am thankful to you for always sharing your
knowledge, but even more so, your time, no matter how busy you were. From you
I learned the tools of the trade — performing research, bringing it down to paper,
and conveying it to others. Winning the EASST best paper award at ETAPS in
2016 with our first conference paper showed the relevance of our research, and
also the influence of your teaching coming to fruition within me. You taught me
the power that simple yet clear language can have. Whenever I knew I did not
try my very best, I could rely on you pushing me in the right direction — and I
am glad you did. I am sure working with me was not always easy, but I want
to express my sincere gratitude to you, for giving me the opportunity to grow
as a researcher and as a person in the FMT group. The repercussions of your
mentoring can be found in every line of this thesis.

Jaco, someone once told me “Whenever you enter Jaco’s office with a problem,
you will leave without it.” After you were my supervisor for more than 4 years
I can completely confirm this. In some of our meetings you remarked that
you cannot contribute anything of relevance — I wholeheartedly disagree. Your
unbiased view on my research topics alongside your excellent apprehension of
complex yet unfamiliar topics provided me with new approaches more than once.
You always knew the right steps to take for every problem that arose, and the
right words to say to make solving it sound trivial. Without your motivating
words and your guidance, the clear head needed to write a thesis would likely
have been obscured with dark clouds brooding over nonsensical topics.

Arnd, in many ways you are not only the co-author of the papers we wrote
together, but also my third supervisor. I sincerely thank you for proofreading
my work, helping me solve problems encountered along the way, and the time
you took to answer even the most trivial of my questions. Your keen perception
enabled you to challenge concepts I took for granted, while being unfamiliar with
the topics yourself. This gained me new insights and helped me to escape from

vi ACKNOWLEDGEMENTS

dead-ends I got stuck in. My productivity largely increased when we moved into
the same office, and I was able to bounce ideas back and forth with you.

In addition to my supervisors, there are many other people without whom I
surely would not be able to write an acknowledgements section in this thesis.
First and foremost, I want to thank both Joke Lammerink and Ida den Hamer.
I believe there were moments, in which I would have been more than figuratively
lost, were it not for you always letting me know what to do next. I sincerely
hope that my tendency to organise things rather late than soon did not cause
you too many headaches.

I would like to thank my old office roommates Dennis Guck, Waheed Ahmad,
and Enno Ruijters for making me feel welcome from the very beginning. Espe-
cially Enno, whom I must have bothered countlessly many times over the last
years: Thank you for always taking time to patiently give insightful advice, may it
be on mathematics, thesis writing, printers, presentations, or pesky bureaucracy.
Rajesh, thank you for the many academic and non-academic conversations —
Your boundless interest in every topic made you a wonderful well of inspiration
to draw from whenever I wore my academic blinders.

Much appreciation is dedicated towards my new office roommates Tom van
Dijk, Jeroen Meijer, Vincent Bloemen, David Huistra and Freark van der Berg.
Sharing an office with you made working days so much more enjoyable. I cherish
all of you joining in on the occasional non-work related banter and tirades more
than you can imagine. It was not all fun and jokes however: Your collective
brains were a wonderful encyclopedia for nearly every topic, and whenever I
encountered even the tiniest issue, I knew I need but ask either of you. The
productive and supporting, yet comfortable working atmosphere which you
provided is not self-explanatory and I am grateful to every single one of you.

Of course, I do not want to forget all the other FMT members and FMT
alumni with whom I never shared an office. You made the halls of FMT always
very welcoming: Arend Rensink, Rom Langerak, Marieke Huisman, Ansgar
Fehnker, Axel Belinfante, Gijs Kant, Lesley Wevers, Wytse Oortwijn, Sebastiaan
Joosten, Giiner Orhan, Bugra Yildiz, Carlos Budde, Mohsen Safari, and the
many, many people I forgot to mention here. Stefano Schivo, your talents as
screenplay writer and athlete are unparalleled. However, above all, the outcome
of a weekend of your talent as a baker always made Mondays a pleasant surprise.

Thank you also to Angelika Mader, who let me help out in teaching Creative
Technology students. I benefited greatly from occasionally encountering the
academic world from a more playful side. I would also like to thank the many
students of Testing Techniques — Preparing the course material each year coupled
to your thorough questions made me learn a great deal of the topic I otherwise
would have missed. In that way, I hope all of us profited from the course.

I would also like to express my gratitude towards the people that reminded
me of the life outside of academia: My dear friends and housemates. Elena
Lederer, Adrienn Bors, Moritz Arendt — moving in with you made me feel at
home in Enschede for the first time ever since I moved to the Netherlands.
Tamara Baas, Ksenija Kosel, Lennart Uffmann, Felix Moritz, Paul Gantzer, Kai
Leistner, Nils Maurer, Kevin Wolf and Sara Szekely, thank you all for making me

ACKNOWLEDGEMENTS vii

look forward to weekends and after-work hours. A special thank you is dedicated
to my friends and housemates Greta Seuling, Jandia Melenk, Tim Moller and
Karan Raju, who had to endure me during the last months of thesis writing.

My sincere apologies to my non-Enschede based friends. Being tangled up
in work more often than I hoped for prevented me from being the good friend
you all deserve. Thank you for never holding it against me, Benjamin Dexel,
Matthias Griindig, Oliver Moisich, and Robert Wenzl. A particular thank you
to my friend Andrew Cowie, whom I have not seen in seven years, but who kept
me company on the internet during the days I worked overtime in the office.
Shaun Hall, I thank you for lending your creativity to design the one part of
this dissertation that is probably the only part that most people will see.

Letztlich mochte ich meiner Familie dafiir danken mir so viel mit auf meinen
Weg gegeben zu haben. Danke an meine alter Schwester Gina, die schon seit
jeher auf mich Acht gibt. Ein ganz besonderer Dank gilt meinen Eltern Cornelia
Ko6nig und Uwe Gerhold, ohne deren stéandige Unterstiitzung ich sicher nicht in
der Lage wire diese Zeilen zu schreiben.

Der wohl grosste Dank gebiihrt Jill — Dein offenes Ohr und deine endlose
Geduld sind der Grund, warum ich mein Ziel nie aus den Augen verloren habe.

Miinster
November 2018

Abstract

Probability plays an important role in many computer applications. A vast
number of algorithms, protocols and computation methods uses randomisation
to achieve their goals. A crucial question then becomes whether such probabilistic
systems work as intended. To investigate this, such systems are often subjected to
a large number of well-designed test cases, that compare the observed behaviour
to a requirements specification. These tests are often created manually, and
are thus prone to human errors. Another approach is to create these test cases
automatically. Model-based testing is an innovative testing technique rooted in
formal methods, that aims at automating this labour intense task. By providing
faster and more thorough testing methods at lower cost, it has gained rapid
popularity in industry and academia alike. Despite all, classic model-based
testing methods are insufficient when dealing with inherently stochastic systems.
This thesis introduces a rigorous model-based testing framework, that is
capable to automatically test such systems. We provide correctness verdicts
for functional properties, discrete probability choices, and hard and soft real-
time constraints. First, the model-based testing landscape is laid out, and
related work is discussed. From there on out, the framework is constructed in
a clear step-by-step manner. We instantiate a model-based testing framework
from the literature to illustrate the interplay of its theoretical components like,
e.g., a conformance relation, test cases, and test verdicts. This framework is
then conservatively extended by introducing discrete probability choices to the
specification language. A last step further extends this probabilistic framework
by adding hard and soft real time constraints. Classic functional correctness
verdicts are thus extended with goodness of fit methods known from statistics.
Proofs of the framework’s correctness are presented before its capabilities are
exemplified by studying smaller scale case studies known from the literature.
The framework reconciles non-deterministic and probabilistic choices in a
fully-fledged way via the use of schedulers. Schedulers then become a subject
worth studying on their own. This is done in the second part of this thesis: We
introduce an equivalence relation based on schedulers for Markov automata, and
compare its distinguishing power to notions of trace distributions and bisimulation
relations. Lastly, the power of different scheduler classes for stochastic automata
is investigated: We compare reachability probabilities of schedulers belonging to
such different classes by altering the information available to them. This induces
a hierarchy of scheduler classes, which we illustrate alongside simple examples.

ix

Table of Contents

|Acknowledgements|

[Abstractl
[I'able of Contents|

[1__Introductionl
I1.1 The Formal Methods Approach|
.2 Venfication and Validationl
1.3 Testing and Properties of Interest|.
1.4 Modelling Formalisms and Contributions|.
[L.5 Structure and Synopsis of this Thesis|.

2 The Model-Based Testing Landscape]
BT _Overviewl oo ot
2.2 Components of Model-Based Testing]
2.3 A Taxonomy ot Model-Based Testing|.
2.4 Classification of the Probabilistic Frameworkl

I3 Model-Based Testing in the ioco Framework|
8.1 Model and Language-Theoretic Concepts|
3.2 The Conformance Relation T,
3.3 Testing and Test Verdicts|
8.4 Correctness of the Frameworkl
3.5 Algorithms and Algorithmic Correctness|
3.6 Summary and Discussion|

4 Model-Based Testing with Probabilistic Automata
4.1 Model and Language-Theoretic Concepts|
[4.1.1 Probabilistic Input Output Transition Systems|

4.2 Probabilistic Testing Theory|.
4.2.1 The Conformance Relation Cpipeof . - - - - o 0 0 001

4.2.2 Test Cases and Test Annotations

xi

ix

xi

— 00 O UU W =i

—

16
17
20
24

27
28
33
35
39
40
43

xii TABLE OF CONTENTS
[4.2.3 Test Fvaluation and Verdicts| 64
4.2.4 Correctness of the Frameworkl. 69

4.3 Implementing Probabilistic Testing] 71
[4.3.1 Test Generation Algorithms|. 72
432 Goodnessof Fitl. 74
[4.3.3 Probabilistic Test Algorithm Outline 77

4.4 Experiments|. oL 78
[4.4.1 Dice programs by Knuth and Yao 79
[4.4.2 The Binary Exponential Backoff Algorithm| 81
443 The FireWire Root Contention Protocoll 82

4.5 Summary and Discussion| L. 84

H6 Proofs 85

[Model-Based Testing with Markov Automata 97

.1 Input Output Markov Automatal 100
[B.1.1 Definitionl 101
b.1.2 Abstract Paths and Abstract Traces 106
(b.1.3 Schedulers and Trace Distributionsl 108

p.2 Markovian Test Theory| 111
[0-2.1 The Conformance relation L prar—iocof - + - -« + « =« + -+ - 111
(22 Test Cases and Annotationd 113
[b.2.3 Test Fvaluation and Verdictsl 115
[©.2.4 Correctness of the Frameworkl. 119

5.3 Implementing Markovian Testing| 122
0.3.1 Goodnessof Fitl. 123
[5.3.2 Stochastic Delay and Quiescence| 127
[5.3.3 Markovian Test Algorithm Outlinel 129

5.4 Experiments on the Bluetooth Device Discovery Protocoll 129

BS Conclusiond 134

B6 _Prooff 135

6 Stoic Trace Semantics for Markov Automatal 143

6.1 Markov Automatal oo 145
[6.1.1 Definition and Notation] 145
[6.1.2 Language Theoretic Concepts| 146
6.1.3 Stoic Trace Semantics 148
[6.1.4 Compositionality| 151

6.2 A Testing Scenariol Lo Lo 152
[6.2.1 Sampling and Expectations| 152
[6.2.2 Observational Equivalence|. 155

6.3 Relation to other Equivalences| 156
[6.3.1 Trace Distribution Equivalence by Baier et al|. 156
632 Bisimulationl 158
[6.3.3 Hierarchy| 162

6.4 Conclusiond 163

CHOICE AND CHANCE xiii
|7 Model-Based Testing with Stochastic Automatal 169
[C1 Stochastic Automatal oL 171
[c1.1 Definitionl o 171

[7.1.2 Language Theoretic Concepts| 175

[(.1.3 Schedulers and Trace Distributions 177

7.2 Stochastic Testing Theoryl 179
[7.2.1 The Conformance Relation C7% | 179

M22 Test Casesl. « - - o v oo oveee 181

[7.2.3 Test Execution and Sampling| 183

[r.2.4 Correctness of the Frameworkl. 185

7.3 Implementing Stochastic Testing| 188
[(3.1 Goodnessof Fitl. 188

[7.3.2 Algorithmic Outline| 192

7.4 Bluetooth Device Discovery Revisited| 192
[t.b Conclusionsl 196
[[6 Proofd 197

I8 Scheduler Hierarchy for Stochastic Automatal 203
BI Preliminaried 206
B.1.1 Closed dtochastic Automatal. 207

[8.1.2 Timed Probabilistic Transition Systems| 208

8.1.3 Semantics of Closed Stochastic Automatal 209

B2 Classes of Schedulers 211
8.2.1 Classic Schedulersl 211

[8.2.2 Non-Prophetic Schedulers| 212

8.3 The Power of Schedulersf 213
[8.3.1 The Classic Hierarchy| 214

[8.3.2 The Non-Prophetic Hierarchy| 219

8.4 Experiments|. o 220
85 Conclusionsl 222
9__Conclusions| 225
9.1 Summary| e e e e e 225
9.2 Discussion and Future Workl 00, 228
APP d 229
|A Mathematical Background| 231
IA.1 Probability Theory| 231
|IA.2 Statistical Hypothesis Testing 234
[A2.1 Statisticalerrors]. 235

A.2.2 Two Types of Hypotheses Tests|. 236

A.2.3 Pearson’s x* Test|. 238

[A.2.4 Kolmogorov-Smirnov Test| 239

[A.2.5 Accumulation of Type [Exrors| 242

xiv TABLE OF CONTENTS

|IB Publications by the Author| 245

Bibliograp 247

263

CHAPTER 1

Introduction

On May 3rd in 1997 many of the world’s eyes were focussed on an unusual
competition. It was chess world grandmaster Garry Kasparov’s third match
versus IBM’s newest iteration of their dedicated chess computer Deep Blue. After
the grandmaster handily won the first two proposed matches in 1989, and 1996,
IBM improved the hardware of their computer alongside its routines [37], and
challenged the uncontested chess world champion again. At that time, the six
games long match was conceived as more than a mere chess competition — with
the most recent developments in computing and artificial intelligence, it was
considered as the representative match of human versus machine [8T]. Throughout
history, chess was conceived as a measure of intelligence, as it combines complex
mathematical and combinatorial decisions, long term strategic planning, and
human creativity. Defeating the renowned chess champion solely using immense
computing power and refined programming routines thus represented the latest
advancements in information technology, and would let the world have a glimpse
at the true impending potential of computers.

The challenge consisted of six games to be played on consecutive days. Expert
analysts agreed that Kasparov started off the first game strong and decisive
[155]. However, towards the end of the game something unusual occurred in
the behaviour of Deep Blue’s chess moves. While both contestants were roughly
at eye level, Deep Blue decided to move one of its rooks to a position where
it effectively achieved nothing, neither offensively, defensively or in terms of
positional play, cf. Figure Understandably, Kasparov was baffled by the loss
of posture by his machinery opponent [I55]. Even though he was the uncontested
champion of chess, capable of thinking 10, or even 15 turns ahead, he then faced
simulated mental capabilities beyond his understanding.

Kasparov continued the game and drew a concession from Deep Blue in the
very next turn, but the latest move left an impression on the Russian chess
player [115]. The formidable 1:0 was quickly followed by Deep Blue equalising
to 1:1, after a premature concession by Kasparov. Hindsight analysis showed,
had Kasparov played the rest of the game perfectly, he would have been able
to force a draw [I55]. Games three, four and five ended in draws, before the

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Deep Blue’s (black) perplexing rook move from D5 to D1 as a result
of a fail safe to exit an infinite loop, yielding a randomly chosen legal move [37].
The move results in Deep Blue’s concession in the subsequent turn.

surprising result of game six ended in the match win in favour of Deep Blue.
IBM engineers later found that the baffling rook move performed by Deep
Blue in game one, was the outcome of a fail-safe built into its programming
routines. Deep Blue was stuck in an infinite computation loop — the fail-safe was
to perform a random legal move to exit. Evidently, there is no assurance whether
the overall match win resulted from the strength of Deep Blue’s play, the mental
strains on Kasparov’s side as 6 games were played in only few consecutive days,
or the overall confusion and perhaps intimidation of facing a superior opponent.

“I'm a human being. When I see something that is well beyond my
understanding, I'm afraid.”— Garry Kasparov [193]

The 1997 chess match showed the latest advancements in artificial intelligence,
and there is no doubt today, that chess programs rival even the best of their
human opponents. While chess allows for seemingly endless possible placements
of its pieces on the board, in 2016 AlphaGo [78] for the first time beats South
Korean champion Lee Sedol 4:1 in a match of Go [26] — a game of even greater
complexity, where pieces are placed on a 32x32 square grid with almost no
restrictions. As seen by the fail safe performed by Deep Blue, the immense
increase of computing power comes at a price: Who is to ensure the correctness
of a program capable of beating humans in their own game?

Evidently, the problem at hand becomes vastly more grave, if we turn away
from games to more worldly matters: We live in a world that is almost entirely

CHOICE AND CHANCE 3

percolated by computers, and artificial intelligence aids us in our everyday lives.
Consider a simple trip to the airport: Semi-automatic security scanners check the
cabin luggage of every passenger, autonomously controlled monorails transport a
substantial amount of people to their respective gates, before they enter an aircraft
almost exclusively operated by fly-by-wire technology. Autonomous vehicles are
not limited to railway systems anymore — the most recent advances suggest that
self-driven cars are a widespread realistic mode of transportation of the near
future [104]. Even modern healthcare relies on the usage of computer aided
methods like the semi-automatic Da Vinci robotic surgical systems for minimally
invasive surgeries [192], or dedicated sleep tracking smartphone applications that
promise to increase the users well-being [14].

Unfortunately, akin to Deep Blue’s “indifference” for committing a losing
move to the chess board, these dedicated algorithms may cause catastrophic losses
of lives and aircraft [I08], unaccounted for and dangerous behaviour of vehicles
in road traffic [80], as well as over-dosage of patients with mortal results [127].
This is to illustrate, that a world, in which nuclear power plants are operated by
computer networks demand a pendent of the ingenuity in information technology
to study their performance, safety, and reliability.

This thesis develops rigorous techniques rooted in mathematics and formal
methods, that provide confidence of a system’s correctness. A heavy focus lies
on probabilistic systems — systems using algorithms that intrinsically rely on
the outcome of probabilistic choices to achieve their goals. In particular, a
model-based testing framework for such systems is developed and studied.

1.1 The Formal Methods Approach

To counteract uncertainty in the ever-growing advances in information technol-
ogy, the field of formal methods [44] seeks to develop mathematically rigorous
techniques to ensure their safety and reliability. The application of formal
methods relies on studying, designing and analysing complex systems based on
mathematically profound and unambiguous models. This both aids in rationally
quantifying the results and findings one encounters upon studying a system,
and to go about it in a rigorously structured manner. A model gives engineers
the advantage of working in a unifying framework in which inaccuracies can
be quickly pointed out, and in which the engineering team shares a common
language.

The ingredients of formal methods are presented in Figure At their core,
formal methods comprise:

e A design/idea as the origin of a system to be developed, or maintained,

e an unambiguous model describing the behaviour of the system in a math-
ematically rigorous way,

e a set of requirements explicitly describing desired behaviour, and

e a physical implementation in the real world.

4 CHAPTER 1. INTRODUCTION

Design/Idea

Verification

Modelling

Model

(desired) Testing

Formalisation

Requirements
T

Implementation ‘

Figure 1.2: Tllustration of the formal methods approach after [90]. The interplay
of an implementation to its requirements model, i.e. testing, comprises the focus
of this thesis.

While the nodes in Figure [I.2]illustrate the components of the formal methods
approach, the labelled arcs represent various disciplines used therein.

Formalisation entails the design step of transforming informal requirements
given in a natural language, to an unambiguous description. Upon the
development of a system, engineers frequently face ambiguous informal
description of stakeholders, e.g. “fast response time is desired for small
files”. The formalisation of requirements translate these into explicit
statements, such as “A response time of less than 500ms for files smaller
than 1IMB”. Studies suggest that formalisation in itself prevents propagation
of misconceptions early on in the design phase [130] [129], resulting in far
less expensive mistakes to be resolved later on [T12] 20].

Modelling describes the translation of conceptual behaviour phrased in human
language, to a mathematical model, e.g. finite state machines (FSM) [25].
The choice of the modelling formalisms depends on the properties of interest
(e.g. time, workload etc.), as well as the desired level of abstraction.
The process of structurally modelling a system design has been shown
to be of equal advantage as formalisation with respect to early error
prevention [27, [129] [130)]

Verification comprises techniques to study if a model adheres to a given set of
formal requirements. Both the requirements and the model are given on a
mathematical level, making verification a problem of algorithmic nature.
Depending on the modelling formalism, a model checker (e.g. LTSmin [T09],
PRISM [II8], MODEST [22]) receives queries, and continues to explore the
state space of a model, to answer if the query is a true statement. Other
techniques involve static verification [19], or theorem proving [144].

Testing encompasses the validation of an implementation with respect to a
model. It is the interface between real world artefacts and mathematical
models. Testing therefore aids in gaining confidence that an actual imple-
mentation is correctly reflected by a formal model. It is thus utilized to
ensure certain behaviour is realised or avoided in the implementation.

CHOICE AND CHANCE 5

While the formalisation of requirements, and modelling are crucial to the formal
methods approach, they ultimately are a means for verification and validation.
Therefore, the most prevalent advances in research can be observed in verification
and testing, due to their direct impact and relevance for today’s society.

This thesis focusses on testing of probabilistic and stochastic systems.

1.2 Verification and Validation

Verification and wvalidation describe independent techniques in system develop-
ment, but are frequently used in tandem. The purpose of their application is to
gain confidence that a physical system comprises the behaviour encompassed in
its original design concept.

Verification ensures, that a model adheres to given constraints and require-
ments. Although tool support for theorem proving exists, key steps in the
procedure remain a manual task requiring human expertise. Hence, tools are
frequently referred to as proof assistants [12]. In contrast, model checking [9]
follows a more streamlined push-button approach in that tools are often fully
automated. A model checker is provided with a query, i.e. a property of interest,
and proceeds to check whether or not the property holds. Those include, but are
not limited to, 1. liveness properties of concurrent systems, e.g. ensuring that a
deadlock can never be reached, 2. reachability properties, stating that a certain
set of goal states is always reachable, and 3. safety properties, ensuring that a
set of undesirable states can never be reached. All properties may be augmented
with aspects like time or probability, e.g. reaching a set of goal states within
a certain time, with a minimal probability. A large proportion of research in
verification is dedicated towards the avoidance of a state space explosion via
increasingly more sophisticated algorithms and techniques. That is, a desirable
goal is the avoidance to exhaustively search all possible system configurations
to ensure a property of interest does, or does not hold. As an illustration one
may think back to the initial example of a chess board, where the total number
of combinations of chess pieces on a board is larger than the number of atoms
in the universe. Certainly, checking all of them cannot be considered a feasible
goal, and sophisticated state space exploration algorithms are needed.

Validation is the most commonly applied approach in practice to evaluate
and certify systems outside of a limited area of highly safety-critical applica-
tions. In contrast to verification, validation provides a direct link between an
actual implementation and its model. Even medium-sized software development
companies deploy testing in a routinely manner, larger-sized companies have a
dedicated team of test engineers, and companies that focus only on testing offer
their services. However, testing is a time- and money intense task often taking up
to 50% of a project’s budget [I40]. Even though dedicated test companies exist,
testing is frequently done manually hinting at the susceptibility and proneness
for human errors. Both of these facts demand advances of testing techniques

6 CHAPTER 1. INTRODUCTION

making 1. structured testing feasible for further widespread application, and
2. testing more effective, implying that the same budget and time investment,
yields more beneficial results for practitioners.

Model-Based Testing is an innovative validation technique rooted in formal
methods [I49] [157], that is developed to both make testing more structured and
more efficient. It comprises techniques to automatically generate, execute, and
evaluate test cases. This three step approach in combination with the use of
a formal model ensures that a real physical implementation can be tested in
a mathematically rigorous way. The model encompasses the unambiguously
specified behaviour that a system is desired to exhibit. A test generation tool (or
model-based testing tool) then derives concrete test cases from this specification
model, executes them on the real implementation, and evaluates them by com-
paring the outcome to the required behaviour. In this way, the error-proneness
is transferred from the creation of concrete test cases, to the generation of a
formal model. Testing based on a model thus becomes much more streamlined,
and incarnates the same push button approach exhibited by model-checking. By
providing faster and more thorough testing at lower cost, model-based testing
has gained rapid popularity in industry [I88], [86] [102].

To avoid susceptibility to imprecision, and to enable automation, the work
contained in this thesis is concerned with developing novel techniques in the field
of model-based testing. In particular, the focus of the developed methods lies in
probabilistic systems. A formal introduction to the field is given in Chapter

1.3 Testing and Properties of Interest

At their very core, every formal method technique relies on models — abstractions
from superfluous details, that allow practitioners to focus on, understand and
study properties of interest. The wide variety of properties of interest, hence
requires a pendent in the field of formal methods. To illustrate some: An
automated teller system is considered infeasible, if it provides banknotes without
prior credential checks, online trading systems that do not realise transactions
in certain time constraints are impractical, medical equipment that cannot
guarantee a patient’s safety is rightfully regarded as perilous, and a smart phone
that empties its battery within an hour of usage is of no use to clients.

Probability. To that end, probability plays an increasingly important role in
many computer applications, and naturally adds to the properties of interest.
A vast number of randomized algorithms, protocols and computation methods
use randomization to achieve their goals. Routing in sensor networks, for
instance, can be done via random walks [4]; speech recognition is based on
hidden Markov models [I54]; population genetics use Bayesian computation [I3],
security protocols use random bits in their encryption methods [41]; control
policies in robotics, leading to the emerging field of probabilistic robotics [168], are

CHOICE AND CHANCE 7

concerned with perception and control in the face of uncertainty, and networking
algorithms assign bandwidth in a random fashion. More abstractly, service
level agreements are formulated in a stochastic fashion, stating that the average
uptime should be at least 99%, or that the punctuality of train services should be
95%. The key question whether such systems are correct remains; Is bandwidth
distributed fairly among all parties? Is the up-time, packet delay and jitter
according to specification? Do the trains on a certain day run punctual enough?

Related Work. To investigate the vast variety of properties, model-based
testing has matured from its roots in process theory [56] to a wide-ranging
research field: functional behaviour of an implementation can automatically be
tested by modelling interactions with the system via inputs and outputs, for
example with finite state machines [124] [I79]. Labelled transition systems [173]
additionally cater for today’s highly concurrent and cyberphysical systems, by
allowing non-determinism and underspecification. To test timing requirements,
such as deadlines, a number of timed model-based testing frameworks have been
developed [120], 29].

However, a surprisingly small amount of research is dedicated to the testing of
probabilistic systems, i.e. systems relying on algorithms that inherently make use
of probabilities to achieve their goals. While verification of such systems is a well-
studied field, putting forth models like probabilistic automata [I58], interactive
Markov chains [93], or (generalized) stochastic Petri nets [132], and tool support
provided by stochastic model checkers like PRISM [II8] or Storm [58], only a
handful of applicable model-based testing frameworks using probabilities exist.
Probabilistic finite state machines are studied in [96, 133], and come with the
benefits and caveats of the finite state machine formalism. A black-box approach
to analyse systems against specifications based on statistics is given in [I59].
The approach assumes no interaction with the system is possible — A critical
feature, considering that real implementations are frequently exposed to uncertain
environments or human agents. Notable work is given by Hierons et al. [98],
modelling systems that have physically distributed interfaces, thus causing non-
determinism. However, non-determinism is instantiated probabilistically, rather
than probabilistic choices being the quantities of interest in the first place. The
work by [138, [97] is concerned with stochastic finite state machines that specify
soft real-time constraints. Another line of work that uses probabilities is given
in model-based statistical testing [150, 190]. Here, the behaviour of the tester
is modelled, and input sequences are assigned probabilities to maximise the
likelihood to achieve certain goals.

All presented frameworks are highly specialised in their respective applica-
tions. However, where probabilistic decisions of systems are studied, interaction
with their environment is assumed to be minimal, or even non-existent. In
particular, the interplay of non-determinism and probabilistic choices seems to
be a challenging one. The work presented in this thesis seeks to take on this
challenge, and to establish a unifying framework for non-determinism, discrete
probability choices, and stochastic time delays. Specifically:

8 CHAPTER 1. INTRODUCTION

Non-determinism represents the unquantified choice between two or more
alternative behaviours. A non-deterministic choice is absent of any infor-
mation about the frequency associated to certain behaviour, as well as the
precise influences that determine its outcome. It is utilized 1. to model the
unknown influence of a system’s environment, 2. to allow implementation
freedom, 3. to model choices by human agents, or simply 4. as the true
absence of knowledge on behalf of the modeller regarding the outcome
of choices. Non-determinism is the crucial feature of labelled transition
systems (LTS), the fundamental model on which the conceptual framework
of this thesis builds upon.

Functional behaviour describes precisely the actions and allowed sequences
of such actions a system can perform. These may, or may not be visible
to an external observer and are frequently referred to as a system’s lan-
guage. The description of functional behaviour is used to 1. allow/enable,
or disallow/disable certain behaviour of a system, or 2. enable interac-
tion of multiple modelled components via their parallel composition by
characterising certain actions they share.

Probability is used to quantify the frequency of choices made by the system.
Probabilistic choices explicitly describe the outcome of a choice by as-
signing probabilities to the various alternatives. It is utilized 1. to model
the uncontrollable actions of a system, or the quantified influence of its
environment, or 2. to model the deliberate use of probabilities in various
algorithms, e.g. leader election protocols [165]. Probability can be mod-
elled discretely, where the outcome of a probabilistic choice is akin to the
tossing of a coin, or the roll of a die, or continuously where the outcome of
a probabilistic choice may for instance be any real number in the interval
[0,1]. For the remainder of this thesis, we refer to discrete probability
choices as probabilistic, and to continuous probability choices as stochastic.

Time describes time constraints in which certain behaviour is expected or al-
lowed. Time constraints are for instance utilized when 1. time is of critical
nature, and needs to be accounted for, e.g. extending the wheels of an
aircraft and initiate breaking manoeuvres prior to landing, 2. communi-
cation with other components may be delayed, and allowed waiting time
needs to be quantified, or 3. when studying performance and response
rates within a network. Like probability, time can be modelled discretely
via countable clock ticks, each representing the passage of a singular time
unit, or continuously via a mechanism akin to a stopwatch.

1.4 Modelling Formalisms and Contributions

To provide the reader with a rough overview, we shortly introduce the modelling
formalisms used to construct our framework. A formal treatment of the models,
as well as individually related work follows in subsequent chapters. We provide a

CHOICE AND CHANCE 9

SA Key:
‘ SA stochastic automata
MA MA Markov automata
/ \ PA probabilistic automata
PA IMC IMC interactive Markov chains
/ \ / DTMC disc.-time Markov chains
: . . LTS labelled transition systems
DTMC LTS CTMC CTMC cont.-time Markov Chains

disc. prob. non-determ. exp. delay

Figure 1.3: Automata modelling-formalisms used in this thesis.

brief overview over the capabilities of the various models to show their coverage
of the properties of interest.

Labelled transition systems [I74] encompass non-deterministic choices and
communication among multiple (sub-)systems. States model the config-
uration of the entire system, while transitions identified by source and
target states alongside a label represent the transfer of one system state to
another. System events, or actions a user can perform are modelled via a
separation of the action alphabet into inputs and outputs.

Probabilistic Automata [I58] extend labelled transition systems by modi-
fying the target of a transition. Instead of a single target, a transition
may have multiple targets. The probability to reach a certain state is
then quantified by a discrete probability distribution over all its targets.
Unlike discrete-time Markov chains, a probabilistic automaton is addition-
ally capable of performing non-deterministic choices. Hence, instead of
non-deterministic choices between transitions, a probabilistic automaton
has the potential of non-deterministic choices between distributions.

Markov Automata [67] extend probabilistic automata by adding another
type of transition between states. A transition is either probabilistic, or
Markovian. While the first is equivalent to the transitions possible in
probabilistic automata, the latter now models stochastic time delay when
going from one state to another. The delay of a Markovian transition is
associated to a positive real-valued number, representing the parameter of
an exponential distribution.

Stochastic automata [50] extend Markov automata, by allowing general dis-
tributions of time, as opposed to being limited to exponential distributions
only. Additionally, transition may now be guarded by clock constraints,
indicating the passage of time before they become enabled.

These models are by no means novel, but already see wide spread application
in academia and industry. Labelled transition systems [169] [174] present a solid

10 CHAPTER 1. INTRODUCTION

choice of models for concurrent programs, due to their use of non-determinism.
Underspecification and implementation freedom makes them ideal for testing,
and they have successfully been applied in e.g. testing a Dutch storm surge
barrier [I77], or electronic passports [136]. Probabilistic automata [I58] are a
foundational model for stochastic verification, and have seen application in the
verification of networking- [I65], or security protocols [163]. Markov automata
form the semantic foundation of fault- and attack trees [I52] and the standardised
modelling language AADL [28] analysis. Their exponential delays are an accurate
approximation of the true unknown delay, if only the average of an activity is
known. Lastly, stochastic automata allow for verification of real-time systems in
which the time constraints are of purely random nature [90] 5], 50].

The work presented in this thesis follows the hierarchical structure presented
in Figure [I.3] First, we recall testing theory for labelled transition systems —
The work that this thesis is fundamentally rooted in, and motivate our choice.
We then extend the framework by allowing discrete probability choices in the
specification model. Lastly, stochastically delayed time is added, and an inter-
mediate step towards Markov automata is made. The testing framework for
stochastic automata formally supersedes the previous ones, but rather than
presenting the final result up front, the work is presented in a step-by-step
approach. This is done in an attempt to gradually familiarise the reader with
individual components. Hence, a similar structure for these chapters is to be
expected.

Main Results

The main results of this thesis can be summarised as follows

e A mathematically rigorous model-based testing framework based on prob-
abilistic automata is established in Chapter [4 Conformance, test cases,
test executions and test verdicts are formally defined, and the framework
is proven to be correct, i.e. sound and complete. Small case studies known
from the literature are performed.

e The framework is enhanced by allowing exponentially distributed time
delays in specification models in Chapter [5] A case study is performed on
the Bluetooth device discovery protocol [161].

e Trace distribution semantics for Markov automata are developed in Chap-
ter [6] that in particular equip schedulers with the power to wait before
scheduling. The power of the semantics is compared with respect to similar
approaches and bisimulation.

e General stochastic time delays are added to the model-based testing frame-
work in Chapter We present how practical application shifts from
frequency analysis, to additional statistical hypothesis tests to account for
time delays.

e A hierarchy for scheduler classes of stochastic automata is established

with respect to reachability probabilities. This includes the classic full
information view schedulers [30], as well as non-prophetic schedulers [91].

CHOICE AND CHANCE 11

1.5 Structure and Synopsis of this Thesis

The nine chapters of the thesis are meant to be read sequentially with each
chapter building on its predecessor. For the convenience of the reader, each
chapter makes prerequisite knowledge explicit by providing references to earlier
occurrences of the material, thus providing an alternative reading approach.
While the central theme of the thesis is to establish a unifying model-based
testing framework, Chapters [6] and [§ may be read individually. Figure [T4]
provides an overview for a suggested reading flow.

We point out that much of the technical background necessary to understand
the work is provided within each chapter, and the thesis seeks to be self-sufficient.
However, to maintain overall readability, we provide appendices covering general
mathematical preliminaries, probability theory, and statistical hypothesis testing.
These are by no means proper introductions to their respective fields, but rather
a refresher for the dear reader. Further references to external reading material
are given whenever appropriate. In an effort to maintain readability of the
text, the mathematical proofs of our theorems are appended to the end of each
respective chapter. They may be skipped depending on the scrutiny and interest
of the reader.

We briefly summarize the contribution of each chapter:

Chapter serves as a starting point, and provides a brief overview of (model-
based) testing, and the model-based testing (MBT) landscape. Core concepts
of MBT are introduced, and a schematic is presented that each established
framework in later chapters can fall back on. The taxonomy of MBT by [182]
aids us in placing the presented thesis in the context of related work. This
chapter is limited to results known from the literature and secondary sources.

Chapter provides an exemplary MBT framework in the testing theory for
labelled transition systems with ioco [I74], filling in the previously introduced
schematic of Chapter 2 Moreover, the presented framework serves as foundation
of our own work. This chapter is loosely based on secondary sources [169} [174].

Chapter introduces the MBT framework for systems specifying probabilities.
We recall probabilistic automata, which are used as underlying specification
formalism. We present a notion of conformance tailored for probabilistic au-
tomata, and show how it conservatively extends the existing theory of Chapter [3]
A formal definition of test cases is given, alongside two algorithms that derive
them in batch or on-the-fly, before the framework is proven to be correct. The
framework is tested on three small-scale case studies.
This chapters’ contribution is based on the publications

e Marcus Gerhold and Mariélle Stoelinga. ioco theory for probabilistic
automata. In Proceedings of the 10th Workshop on Model Based Testing,
MBT, pages 23—40, 2015,

12 CHAPTER 1. INTRODUCTION

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of proba-
bilistic systems. In Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering, FASE, pages 251268,
2016,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems. Formal Aspects of Computing, 30(1):77-106, 2018.

Chapter extends the MBT framework of Chapter [d] by incorporating stochas-
tic time delays in the form of exponentially delayed transitions. Markov automata
are used as underlying formalism to show how tests are generated and executed.
We discuss the quiescence observation in the presence of stochastic time delays,
and illustrate the framework on a small-scale case study.

This chapters’ contribution is based on the publications

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of stochastic
systems with ioco theory. In Proceedings of the 7th International Workshop
on Automating Test Case Design, Selection, and Evaluation, A-TEST,
pages 45-51, 2016,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems with stochastic time. In Proceedings of the 11th International
Conference on Tests and Proofs, TAP, pages 77-97, 2017.

Chapter [6] establishes trace semantics for Markov automata, incorporating
the new notion of waiting schedulers. The newly introduced trace semantics are
compared to existing ones in the literature, and to several notions of bisimulation
relations. We illustrate our findings in a hierarchical overview summarising all
considered equivalences, and show implications and strictness.

This chapters’ contribution is based on work performed between May 2015
and October 2017 in collaboration with Dennis Guck, Holger Hermanns, Jan
Kréal and Mariélle Stoelinga.

Chapter [7] culminates the MBT frameworks’ capabilities by extending the
previously established methods with general stochastic time delays on transitions.
Stochastic automata are used as underlying formalism, and benefits and caveats
are discussed when our methods are applied in continuous real-time.

This chapters’ contribution is based on the publication

e Marcus Gerhold, Arnd Hartmanns, and Mariélle Stoelinga. Model-based
testing for general stochastic time. In Proceedings of the 10th International
Symposium on NASA Formal Methods, NFM, pages 203-219, 2018.

Chapter studies schedulers of stochastic automata in their own rights. In
particular, a hierarchy of classes of schedulers is established. This is done for
classical notions of schedulers, as well as non-prophetic ones. The metric of

CHOICE AND CHANCE 13

choice are unbounded reachability probabilities. The hierarchy is proven via
intuitive examples and easy-to-follow proofs. The power of scheduler classes is
illustrated via lightweight scheduler sampling.

This chapters’ contribution is based on the publication

e Pedro R. D’Argenio, Marcus Gerhold, Arnd Hartmanns, and Sean Sedwards.
A hierarchy of scheduler classes for stochastic automata. In Proceedings of
the 21st International Conference on Foundations of Software Science and
Computation Structures, FOSSACS, pages 384-402, 2018.

Chapter [9] summarizes the thesis, presents overall conclusions, and provides
a discussion on our work. Additionally, we present some ideas for future work.

Chapter
Introduction
Model-based testing
Chapter 2]
MBT Landscape
Chapter
MBT with LTS
Chapter
MBT with PA
........... Trace semantics .
Chapter . [Chapter [6}
MBT with MA | Trace Semantics for MA
Chapter [7} . | Chapter
MBT with SA Hierarchy of Schedulers
Chapter [0}
Conclusions
o Appendices i

Figure 1.4: Chapter roadmap for suggested reading flow.

CHAPTER 2

The Model-Based Testing Landscape

Testing aims at showing that intended and exhibited behaviour of a system differ,
or at gaining confidence, that they do not [194] [53]. Among its main purposes is
the detection of failures, i.e. noticeable differences between system requirements
and actual observed behaviour. The detection of failures may support future
endeavours of developers and programmers in debugging or fault localisation,
but it is also used as metric for quality.

It is applicable in various phases of the software development life cycle. A
prominent approach is given by the V-model, cf. Figure Each phase of the
software design step has a mirroring component in a parallel testing step. The V-
model adds an additional layer of quality assurance to the software development
life cycle, thus gaining an edge in comparison to the waterfall-model. It prevents
the propagation of errors to the lower design levels, where problem solving is
more costly and more difficult, via the early use of requirements specifications.

Model-based testing (MBT) is one variant of testing, that aims at automating
this otherwise labour intense, and often error prone validation technique. Its
origins can be traced back to the seventies [42], but it has gained rapid popularity

Requirements F----==--==---“----“--------- Acceptance Test

Time

Figure 2.1: The V-model used in the software development life cycle. Contrary
to the waterfall-model comprising a top-to-bottom approach, each phase in the
V-model has a corresponding test phase, resulting in the eponymous shape.

15

16 CHAPTER 2. THE MODEL BASED TESTING LANDSCAPE

in recent years with industry deploying MBT techniques [I88] [86, 102]. The
benefits of automation are evident for both producers and consumers: Higher
quality products are delivered more cost efficiently, and effectively.

Given the increasing use and popularity of MBT, it is a natural consequence
that the topic was picked up by academic research and teaching alike. The goal
is to develop more sophisticated, powerful and efficient algorithms, tools and
theory. Research in MBT techniques has brought forth a plethora of different
frameworks, modelling mechanisms (each supporting various system properties),
underlying theory, or tools to practically generate and execute tests. We refer
to [182] for a formal taxonomy, and [I81] for recent advances in the field.

However numerous the frameworks may be, all of them have the same
conceptual ingredients, which this section aims to introduce. In later chapters
we shall refer back to these ingredients, and compare how they are instantiated.

2.1 Overview

The fundamental approach of MBT is depicted in Figure It bridges the gaps
between the physical world, comprising real artefacts and real systems, and the
formal world, where mathematical reasoning is possible, and vice versa.

The first encompasses an actual black-box implementation, e.g. inaccessible
code of a programme, or an embedded system, together with its requirements.
The intention of formal reasoning is to establish conformance. Certain behaviour
is desired and expected, while it is preferable that the system does not exhibit
other behaviour. This could mean that we eventually expect an ATM to dispense
banknotes after credentials were provided, but not before.

However, to avoid ambiguities of what precisely is desired, the underlying
hypothesis, henceforth referred to as MBT hypothesis, is that the behaviour of the
black-box implementation can be represented by a particular modelling formalism.
To be more specific: We assume that every possible concrete implementation
has a unique corresponding object/model in the formal world. This enables

Physical World Formal World
Models
. Specification
Requirements p
Model
Satisfies -
Desired - - Formal con-
conformance _ -7 Testing formance
Implementation Test Hypothesis Implementation
Blackbox Model

Figure 2.2: The model-based testing (MBT) approach.

CHOICE AND CHANCE 17

us to relate the implementation model to the formal object corresponding to
the requirements specification in a purely mathematical demeanour, e.g. via
graph isomorphisms, (bi-)simulation, testing pre-orders, etc. Conformance of a
black-box is thus unambiguously established its their formal counterpart.

It is here where the purpose of testing comes into play; very much like the
content of the black-box is hidden from an external observer, the implementation
model is not available to the tester. The only means of exploring its behaviour is
by executing experiments, i.e. testing it, and consequently observe its reactions.

The goal of any testing method is to give a verdict about the correctness of
the observed system. Thus, the specification model formally prescribes correct
behaviour, and is used as an oracle to generate executable experiments also
called test cases. The observed behaviour of the system under test (SUT) is then
compared to the expected behaviour of the specification, and evaluated.

2.2 Components of Model-Based Testing

Even though there exist numerous MBT frameworks, each with their inherent
advantages and restrictions, all follow the same basic pattern and have comparable
components. The outlaid scheme depicted in Figure necessitates each of
those cogs in order for the MBT methodology to work as a whole.

In addition to both physical and formal components, all frameworks operate
under the MBT hypothesis: It is assumed that each physical implementation
has a corresponding model/object in the formal world. Naturally, each MBT
methodology strives for correctness of its techniques. Table summarizes the
ingredients, while we scrutinize its contents below. A schematic overview of the
interplay of components can be found in Figure 2.3

Physical Ingredients: Formal Ingredients:
e Informal requirements e Specification model
e Black-box implementation e Conformance relation
e Test observations e Test verdicts
Tooling: Objectives:
e MBT tool e Soundness
e Test adapter e Completeness/Exhaustiveness
e Test generation method
Assumptions:
e Every physical implementation has a corresponding formal model

Table 2.1: Ingredients of a model-based testing framework after [15].

18 CHAPTER 2. THE MODEL BASED TESTING LANDSCAPE

MBT Tool Implementation

””” | conformance | — -~ =~ -

Test derivation

Adapter

Stimulus Observation

— Test Execution Engine

l Evaluation

Verdict:
pass/ fail

Figure 2.3: Schematic overview of model-based testing components.

Physical ingredients. Testing is carried out on real implementations. A
trivial requirement to apply the MBT approach is the access to such systems.
This includes the capability to interact with them in one way or another in order to
perform experiments on them. Occasionally, this requires a test adapter mapping
generic inputs to concrete implementation inputs, and concrete implementation
outputs to more abstract outputs.

Moreover, every testing methodology requires a specification, i.e. a notion of
desired behaviour. Without it, obviously neither MBT, nor any other test process
is capable of establishing a verdict about correctness without the addition of a
human oracle.

Formal ingredients. The MBT approach dictates, that conformance of the
implementation to its requirements is established on a formal level. In order to
talk about formal conformance, it is first necessary to translate the requirements
into a formal model. This translation serves two purposes: 1. common oversights
and ambiguities are detected early on in the model design process. This prevents
errors in design to accumulate towards deeper levels of the V-model, cf. Figure
where they are far more costly to resolve, and 2. it is possible to argue about
equivalence or conformance of models on a purely formal level, e.g. via graph
isomorphisms, (bi-)simulation or testing pre-orders.

The latter, henceforth simply referred to as conformance relation, originates
in the purpose of the framework: Does the focus strictly lie on correct functional
behaviour? Are we solely interested in timed correctness? Or is the intent to
stress test the system, and expose it to a high workload?

Given such a relation and two formal models, it is then a problem of algorith-
mic nature to check conformance. However, we only have a limited view of the

CHOICE AND CHANCE 19

underlying system model, since its complete behaviour is hidden, i.e. MBT is a
black-box method. Thus, it becomes evident that the decision of conformance
is limited to parts of the system, that were revealed by executing experiments
on them. This necessitates test verdicts, i.e. decision functions on conformance
based on the limited view of the system that is accessible, and highlights the
inherent incompleteness of testing methodologies.

Tooling. Testing, as opposed to formal verification, is a discipline that is
carried out on real implementations. Under the assumption that we do not have
access to the inner workings of these implementations, i.e. the systems under
test are black-boxes. The only way of interacting with them is stimulating them
via inputs, and to observe their potential output. The intent to automate this
process therefore requires a tool to connect to physical systems. Its objective in
conjunction with the implementation is to automatically generate, execute and
evaluate experiments. Since the verdict whether an implementation is correct or
not is rooted in the underlying formal methods techniques, it is desirable that
an MBT tool generates test cases that comply with the same theory.

Another inherent concept of modelling is given by abstraction. Different
levels of abstraction require different modelling complexity, e.g. if we intend
to model continuous real-time, a discrete model might not suffice. To realize
abstraction, the connection of an MBT tool and an implementation is often
intercepted by an adapter, cf. Figure [2.3] Its role is twofold: 1. it provides an
interface that connects MBT tool to the implementation, and 2. it abstracts, or
refines inputs to, or outputs from the system under test.

Objectives. The intrinsic goal of the MBT approach is to establish a correct
framework. Formal correctness comprises soundness and completeness, also
sometimes referred to as exhaustiveness. These two properties in tandem ne-
cessitate that physical implementations pass a test suite if and only if their
underlying model is deemed as conforming.

Specifically, soundness requires that a conforming implementation does in-
deed pass a test (suite). This logical condition is desirable in every framework,
since its absence would invalidate the entire MBT approach. On the contrary,
completeness is inherently a theoretical property. Formally, we demand that
every non-conforming implementation is detectable by at least one test of a given
test suite, or test generation method. However, programmes of infinite size, for
instance caused by loops, naturally entail the need for an infinitely sized test
suite. While practical completeness, i.e. the detection of every fault, is virtually
impossible to achieve, it is frequently left as a theoretical result. It is commonly
sufficient to show, that a test generation method is capable of generating a
test that can reveal every possible misbehaviour. Another approach to provide
complete test theories lies in the restriction of assumed implementation behaviour
via e.g. fault models and fault domains [63] 100, 147]. The number of tests in a
complete test suite can then be reduced to acceptable sizes [101]

20 CHAPTER 2. THE MODEL BASED TESTING LANDSCAPE

{ Subject }7 szlironment

Shared test & dev. model
{ Redundancy Separate test model
Model Deterministic / Non-det.
{Characteristics }—g Timed / Untimed

Discrete / Hybdrid / Continuous

Pre-Post
Transition-based
{ Paradigm }—é History-based
] Functional
Operational

Structural Model Coverage
- Data Coverage

Test Selection Requirements Coverage
Criteria, Test Case Specifications
Random & Stochastic

{ Test Generation Fault-Based
Manual

Random generation
Graph search algorithms
TeChnOIOgy Model-checking
Symbolic execution
Theorem proving

{Test Execution }—{ On/Offline }7 On/Offline

Figure 2.4: Taxonomy of model-based testing frameworks as presented in [182].

2.3 A Taxonomy of Model-Based Testing

The idea to perform testing based on a model can be dated back to the late
seventies [42]. The flexibility that model-based engineering grants, allows for an
equally flexible application domain. It is then no surprise that the usage of model-
based testing comes in various shapes and sizes, and entails a vastly heterogeneous
landscape. We present a formal classification given in the literature:

In their work, Pretschner et al. [I82] establish a modern taxonomy of these
different approaches. To capture a broad majority of the multitude of frameworks,
the authors define the used terminology in a highly abstract manner. This allows,
for instance, to classify typical graphically based approaches, like finite state
machines or control flow charts, as well as pre- and postcondition centred
approaches, that model a system as a snapshot of its internal variables.

The classification is achieved via seven orthogonal dimensions of model-based
testing, as presented in Figure Although being orthogonal, Pretschner et al.
point out their existing influence among each other. A continuous model, for
example, dictates the choice of test selection and test generation criteria.

We paraphrase the seven dimensions, and shortly discuss their implication
with respect to a general MBT framework. However, for a complete discussion
on the topic, we refer the avid reader to the original [182].

CHOICE AND CHANCE 21

Subject. The first dimension is displayed as a continuous choice denoted by
the arrows in Figure rather than singular items. The general opposing
axis are the modelled system behaviour, and the modelled environment
behaviour. It is generally more beneficial to provide a mixture of both.

To illustrate, assume a model has full knowledge about the environment
of the SUT, but has no indication about expected outputs or desired
behaviour. Then, evidently usage behaviour is incorporated perfectly,
while no verdict about the behaviour of the SUT is possible without the
addition of a human oracle.

Redundancy. This dimension comprises the intended use of the model, i.e. the
purpose of a model is its use for testing versus its simultaneous use for code
generation. A prominent example for the latter is given by MATLAB’s
Simulink [T47], allowing for automated code generation. However, models
need to be very detailed to enable code generation. This might not be
ideal for testing, as this is best done with some layers of abstraction.

Characteristics. This criterion encompasses the presence of non-determinism,
timing constraints, and the continuous or discrete nature of the model.
The particular choice of each of these three properties is naturally mutually
exclusive, e.g. a model is either timed or untimed.

Note that this dimension is highly influential with respect to the others.
For instance, the choice of a non-deterministic model with continuous
real-time necessitates tests to be tree-shaped, rather than single traces, to
account for various outcomes of non-deterministic choices of the system
caused by jitter, or concurrency.

Paradigm. This dimension comprises the paradigm and notation used to model
the system. Evidently, the used paradigm directly influences the power of
the test generation methods.

The authors adapt the classification of van Lamsweerde [I86], which in-
cludes 1. state-based notations (e.g. JML), 2. transition-based notations
(e.g. FSMs, or I/O automata), 3. history-based notations (e.g. sequence
diagrams), 4. functional notations (e.g. first, or higher order logic), 5. op-
erational notations (e.g. Petri-nets or process algebras), 6. stochastic
notations (e.g. Markov chains), and lastly 7. data-flow notations (e.g.
MATLAB’s Simulink [141]).

Test Selection Criteria. This dimension contains commonly used test selec-
tion criteria. It should be pointed out here, that no “best” criterion exists.
It is widely acknowledged that an optimal test suite, and methods to
generate one, are considered the “holy grail” in the MBT community [146].

The authors mention: 1. structural model coverage, which highly depends on
the chosen paradigm. For instance, state, or transition coverage in graphical
approaches like FSMs are commonly used. 2. data coverage criteria,
describing how test values are selected from a large data space. Equivalence

22 CHAPTER 2. THE MODEL BASED TESTING LANDSCAPE

partitioning and boundary analysis are two instances. 3. requirements-
based coverage, in which requirements and tests are directly linked, which
thus enable custom coverage criteria. This is frequently referred to as test
purposes. 4. Ad-hoc test case specifications, which directly describe the
pattern in which tests are to be selected, 5. random and stochastic criteria
are applicable if the environment is modelled, and describe usage patterns
of the system. Usage probabilities are modelled, and tests are generated
accordingly. And lastly 6. fault-based criteria, which directly link system
models and system faults. The assumption is the existence of a correlation
between faults in the model and the SUT, and between mutations and real
world faults. A prominent example is given by mutation testing [107].

Technology. The most appealing aspect of MBT is its potential for automation.
This dimension encompasses the plethora of dedicated computer aided
methods to automatically generate tests. Note that this dimension is
heavily influenced by the chosen paradigm and its characteristics.

While manual generation is an option, MBT enables the generation of
random tests, or utilize sophisticated graph search algorithms. In turn,
these may strive to generate tests covering each edge or node. Comple-
mentary, model-checking can be adapted to generate test cases based on a
reachability property, e.g. “eventually, a certain state is reached”. On the
same note, the authors mention symbolic executions and theorem proving,
checking the satisfiability of guards of transitions.

On/Offline. The criterion describes the relative timing of test generation and
test execution. Generally, there are two approaches to generate, or execute
test cases: on-the-fly (online), or in batch (offline).

On-the-fly testing allows the test generation algorithm to react to system
outputs in real-time. This is of immense value in the face of a non-
deterministic specification; the test generator sees, which path the system
chose, and can thus react appropriately.

Offline testing refers to tests being generated strictly before their execution.
Once generated, tests are stored and consequently executed. This allows
for high reproducibility, and is of advantage in regression testing.

Tool support. The existence and development of tools is a necessity for every
MBT framework. Its purpose is the automation of testing, and tools are natural
means to achieve this goal. Nonetheless, tools are not listed in Figure |2.4
because they arise as a result of the interplay of the 7 orthogonal items. That is,
their capabilities result from a priori design choices of the development team,
and they are a means to achieve these goals rather than a goal in themselves.
The short summary of the taxonomy by Pretschner et al. [I82] hints at the
variety of existing frameworks, and there is no “best” MBT tool, as its purpose
vastly differs with its application domain. We provide a brief collection of
existing MBT tools in Table alongside their underlying modelling formalisms

CHOICE AND CHANCE 23

and a note on their availability as academic-, commercial-, or open source tool.
This list is far from complete, but provides a broad overview of the variety and
heterogeneity of the field. For a recent survey of MBT tools and their application
in various case studies, we refer to [87].

Tool Modelling Formalism Availability ~ Reference
Conformiq UML, QML Commercial [102]
GraphWalker FSM Open Source [110]
JTorX* LTS Academic [15]
MaTeLo Markov Chains Commercial [65]
Mathworks MBT Simulink Model Commercial [141]
ModelJUnit EFSM Open Source [180]
SpecExplorerf Model programs in C# Commercial [188]
TestCast Custom Commercial [68]
TGVT LOTOS/IOLTS Academic [105]
UPPAAL TRONT Timed Automata Academic [121]

Table 2.2: Small selection of existing MBT tools. Centralised development of
tools with the “t” mark has stopped.

Benefits and drawbacks. Among others, the model-based approach has
three striking benefits: 1. Creating a model necessitates a firm definition of
requirement descriptions. This supports the discovery of design flaws early in
the development cycle, and serves as a unifying point of reference for a team of
engineers, and potentially non-technical staff. 2. An existing model is reusable
as part of the requirements specification. Evidently, this is largely beneficial
upon the conduction of regression testing. 3. the direct application of the model
to generate test cases.

Naturally, there are drawbacks to MBT, and practitioners should be aware
of the caveats attached to it: 1. MBT is not an ad-hoc activity, and substantial
training of staff is required to make use of its upsides. Obviously, this marks an
initial one-time investment that is possibly extended with successional trainings.
2. Modelling costs time and effort. This is not limited to MBT only, but inherited
from formal methods. Again, this is a one-time investment with the requirement
of occasional model-maintenance. 3. It is not clear when to stop testing. This
property is inherited from the natural incompleteness of testing in general.
Test selection- and coverage criteria aid in quantifying the confidence of tested
behaviour, but complete confidence in the correctness of an implementation is
impossible to achieve outside of trivial examples. Apart from incompleteness,
the drawbacks are characterised by being temporary — Medium sized to larger
long-time projects thus generally warrant the initial time investment of training
and modelling, as the relative cost decreases over the long haul.

24 CHAPTER 2. THE MODEL BASED TESTING LANDSCAPE

The core idea of model-based testing is to use some form of abstractions
of both the environment and system under test. Different layers and ways
of abstracting, make the employment of MBT possible in various application
domains. The increasing maturity of MBT frameworks in both the industrial
and academic sector led to a plethora of publications. Due to the considerate
amount of existing literature and the lack of an overarching unifying framework,
it becomes a challenging endeavour to classify the vast majority of frameworks
via one taxonomy. However, Pretschner et al. [I82] provide an excellent and
recent overview over the topic. Therefore, we deem their classification highly
appropriate to provide the reader an outlook to techniques that go beyond the
scope of this thesis. Other surveys may be found in [62] 87 [160]

2.4 Classification of the Probabilistic Framework

The recent years saw a proliferation of probabilistic programming languages [82]
like Figaro [148] or probabilistic C [I42]. Network algorithms make use of coin
flips to establish a connection [I06] [I65], and routing algorithms based on random
exploration see application in everyday household items like robotic lawn mowers
or vacuum cleaners [I68]. Online banking and security protocols use encryption
methods that utilize random bits [4I]. While the taxonomy provided in the
previous section covers the vast majority of testing frameworks, these items
indicate the lack of procedures to test specified use of probabilities, i.e. the
dedicated use of probabilities in algorithms to achieve certain goals.

The purpose of this thesis is to cover this gap, by providing an MBT frame-
work, capable of testing inherently probabilistic systems. We establish a sound
overarching framework in a step-by-step manner, covering non-determinism,
discrete probabilities, and stochastic time delay. Starting point of our journey is
to recall the ioco framework [I74], which lays the foundations we build upon.
We are naturally drawn to it, because it supports non-determinism, thus en-
abling underspecification, and the composition of various subcomponents. The
methodology of ioco ensures that functional behaviour is implemented correctly.

In a first step we conservatively extend this framework, by equipping speci-
fications with discrete probability choices. Requirements may then dictate the
quantified choice an implementation has, e.g. a coin shows heads 50% of the
time. In addition to classic test generation and execution, the test evaluation
then necessitates a large sample of test observations. This is to establish that
probabilistic behaviour was implemented correctly, e.g. the fairness of the coin.
Here, we make use of statistical hypothesis tests performed on the sample.

The next step enriches the framework with stochastic time delays on the
specification side. That is, a specification may then additionally require delays
between visible actions. This is evidently important in the realm of network
connection algorithms, where waiting times dictate the behaviour of various
components [106] [165]. We point out the difference to real-time testing [29],
where time intervals are specified, in which events occur. Our framework dictates
time distributions, e.g. the probability to establish connection after 5 seconds is

CHOICE AND CHANCE 25

90%. Rather then checking the occurrence of a single event in a time interval,
we thus need to check if all time values gathered in a sample follow a concrete
probability distribution. This requires additional statistical hypothesis tests.

The previous section formally established a taxonomy of the model-based
testing frameworks. To provide the reader with a detailed overview of the content
of this thesis, we locate its position in the MBT landscape,

Subject. The behaviour of the system under test is modelled foremost. Envi-
ronmental influences can be taken into account on the modelling level, e.g.
parallel composition, or on the level of test selection and generation.

Redundancy. Models are primarily used for test generation. This is underlined
by case studies [57, [I77] for classic ioco theory. As of the time of writing,
we are not aware of instances, that use the models in the ioco framework
or its extensions for pure development purposes.

Characteristics. The classic framework entails non-deterministic, untimed and
discrete models. We add discrete probabilities and stochastic time delay
on the specification level. This item is not yet captured in Figure [2.4]

Paradigm. The methodology utilizes extensions of labelled transition systems,
adds distinct input/output label sets, and accounts for quiescence. We
refer to Figure for an overview of modelling formalisms used.

Test Selection Criteria. Test selection criteria are based on state space ex-
ploration of the specification model. This is achievable via random test
selection, or guided tests a.k.a. test purposes. Test selection criteria are
mentioned, but not discussed in detail in this thesis.

Technology. Test generation in the framework is automatable. The technology
is based on state exploration techniques and statistical hypothesis tests.

On/Offline. On- and an offline test generation/execution algorithms are pro-
vided.

The methodologies described within this thesis add another item to the char-
acteristics established by Pretschner et al.[I82], i.e. Probabilistic versus Non-
probabilistic. Note, that this characteristic concerns inherent probabilistic choices
of the system, e.g. coin flips, random number generators, or stochastic delay. It
is not to be confused with random test generation/selection, or random envi-
ronment models like Markov chains modelling usage behaviour. The latter is
an entire research field of its own called model-based statistical testing (MBST).
In contrast to our work, MBST studies test selection with respect to achieve
certain goals, e.g. see [24] [16] [190].

CHAPTER 3

Model-Based Testing in the ioco Framework

We instantiate the model-based testing framework by the input/output con-
formance (ioco) framework and locate it in the MBT landscape established
in the previous chapter. Alongside establishing the various components of an
MBT framework summarized in Table this framework forms the baseline
for the remainder of this thesis. The ioco framework [I74] lends itself as the
de rigueur methodology for composable, and concurrent systems, dealing with
interleaving, non-determinism and quiescent systems. It originated to test
functional correctness of embedded systems, but rapidly caught the interest of
other testing disciplines, e.g. timed properties [29], or hybrid frameworks [I87].

We first define the very fundamental model, that is used for this MBT
approach and add fine nuances to capture additional behaviour like quiescence.
The underlying models for ioco are slight extensions of labelled transition systems
(LTSs). LTSs are utilized to formally model the requirements specification, as
well as test cases. Moreover, the MBT hypothesis assumes that the behaviour
of the black-box implementation is representable by an LTS. In this way, it is
possible to compare the black-box LTS to its specification LTS.

To that end, we define the required conformance relation ioco (input/output
conformance), capturing precisely what conformance of models means. Further,
we provide algorithms to derive test cases on-the-fly, or in batch, and show that
their verdict corresponds to the conformance relations. Lastly, we show how
tests are executed on an implementation and reference their proven correctness.

The framework established in this chapter lays the foundation for later
chapters in the thesis. In particular, we extend LTSs with discrete probability
distributions to get a probabilistic automaton (PA). They serve as underlying
model for Chapter [l As a next step, PA are extended with stochastic time
delay in the form of exponential distributions in Chapter [} This yields Markov
automata (MA), which are an intermediate step towards the usage of general
time distributions. A last step encompasses said general distributions and brings
us to stochastic automata (SA) in Chapter

27

28 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

The final modelling formalism thus SA
incorporates non-determinism, dis- ' ‘
crete probabilities and stochastic time

delay in the sense of general (contin- MA

uous) probability distributions. Each / \
chapter on MBT roughly exhibits the PA IMC
same structure that we will see in

the current one, in that 1. the mod- / \ / \

DTMC LTS CTMC

elling formalism and its language are
disc. prob. non-determ. exp. delay

introduced, 2. the test theory of MBT
with the formalism is established, and)
3. applicable methods to use the MBT Figure 3.1: Traversing the automata
framework in practice are presented. formalism hierarchy shown in F1gure
At the end of each chapter, we will

find a table that shows how the MBT ingredients were instantiated with respect
to Table 211

3.1 Model and Language-Theoretic Concepts

The starting point to establish the framework is the underlying model. The
baseline of our modelling language are labelled transition systems (LTSs). They
graphically represent the behaviour of a system by defining the various states it
can be in, and the eponymous labelled transitions it takes to go from one state
to another. Note that the initial state of a system is uniquely determined.

Definition 3.1 (Labelled transition system). A labelled transition system (LTS)
is a 4-tuple comprising (S, Act,—, so), where S is a countable, non-empty set
of states, Act is a countable set of labelled actions, — C S x Act x S is the
transition relation, and sg € S is the unique initial state.

The set S models the various states that a system can be in. The unique
starting state is marked by sg, and represents the initial configuration of a system.
The set Act is used to model possible actions it can perform via action labels.
Throughout the thesis, we use actions and labels interchangeably Every triple
(s,a,s’) €— is interpreted as moving the state of the system from s to s’ via the
action a. We refer to Figure for an example.

In order to make the model comply with our intentions to model observable
input/output behaviour, the action alphabet of LTSs is split into three disjoint
sets. We write Act = Acty U Acto U Act g, to denote the disjoint union of input
actions, oulput actions and internal/hidden actions of a system, respectively. An
LTS exhibiting this split is commonly referred to as an input/output transition
system (IOTS).

Note that the ioco framework does account for the absence of outputs,
commonly referred to as quiescence. If an implementation provides no response
at all, it is a non-negligible task of the tester to judge the behaviour correct, or
incorrect. To illustrate, an ATM should provide no output, if it is not interacted

CHOICE AND CHANCE 29

(a) Coffee machine LTS. (b) Coffee machine IOTS.

Figure 3.2: Distinguishing example for LTS and IOTS. While both have the
same structure, the label set of IOTSs is split into inputs (suffixed by “?”),
outputs (suffixed by “!”) and internal actions (ranged over by 7). IOTS B has a
d-labelled self-loop in state sy that denotes the absence of outputs.

with, while no disbursement of banknotes is considered incorrect, after credit card
credentials are provided. Quiescence is commonly denoted with the d-label [166],
and is considered part of the output label set. Therefore, we always assume
Acto to contain this unique d-label, unless explicitly stated otherwise.

Definition 3.2 (Input/Output transition system). An input/output transition
system (I0TS) (S, Actr, Acto, Actp, —, so) is an LTS, whose set of action labels
is the disjoint union of input actions Acty, output actions Acto (incl. §), and
internal/hidden actions Acty.

The set of inputs and outputs, i.e. Act; and Actp, are referred to as the
visible actions. They represent the behaviour, that is visible to an external
observer and comprise stimuli applied to the system (Acty), or responses of
it (Actp). The tuple (Acty, Actp) is called the action signature. Intuitively,
it provides the interface, that enables communication with the system. On
the contrary, the set of internal/hidden actions marks the internal, and thus
invisible, progress that a system can make. Throughout this thesis, we let 7 be
a representative of the set Actpy.

In a testing scenario, a tester should be able to provide any input at any
time to the implementation. Formally, this is captured by input-enabledness,
i.e. every state of an input-enabled system has an outgoing transition for every
input action in Act;. This notion of input-enabledness is known as strong
input-enabledness [I31], and used here over its weak counterpart [I73].

Example 3.3. Figure|3.2 shows a toy illustration of a coffee machine represented
in both LTS and IOTS formalism. Both systems encompass four different states,
i.e. Sg, S1, 82,83, with their respective unique initial state sq.

While their action label set Act = {but, cof, tea, T} looks almost identical
(barring 0), there is a distinction of inputs, outputs and internal labels in the
IOTS Figure[3.28 As commonly done in the literature, input actions are suffized
with a “?”7 | and output actions are suffixed with a “!”. These distinct sets

30 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

provide the interface that enables communication among different components,
or with their environment. The label T is a representative of the internal actions
throughout this thesis.

Note that the IOTS in Figure[3.28, has a newly added self-loop in sy marked
with the § label. This label represents quiescence, or absence of outputs, i.e. “no
output” in the initial state is considered correct in a testing scenario.

While Figure[3.9 shows the models visually, the formal notation is given by:

A = ({so,s1,52,83},{but, cof , tea, T},
{(s0, but, s1), (1, tea, s2)(s1, cof , 83), (82,7, 80) (83,7, 50) } , S0)
({s0, 51,82, 83}, {but},{cof , tea,0},{7},

{(s0,0, s0), (s0, but, s1), (s1, tea, s2)(s1, cof , s3), (S2, T, 50) (53, T, S0) } » S0)

B

We point out that both “?” and “!” are not part of the label, but aid the reader in
understanding the visual representation, which is arquably easier to comprehend
compared to the set notation.

Remark 3.4 (A note on quiescence.). Since its first occurrence in [173] the ioco
framework underwent various overhauls and restructurings, e.g. [174] and [169].
While the treatment of quiescent behaviour has traditionally been a focal point,
it is Stokkink et al. [166] that first treat the §-label as a “first class citizen”, by
imposing four rules of well-formedness to models.

These four rules account for correct treatment of quiescent, as well as divergent
behaviour. Both formally treat the absence of system responses, though originate
from different causes. While the first treats the sheer absence of output or internal
actions in the states of a model (quiescent states, c¢f. state s in Figure ,
the latter encompasses infinite internal progress (divergent states). Recall that
internal actions are deemed invisible for an external observer: FEven though a
system may (infinitely) progress, an external observer can mistake the absence
of visible system responses as quiescent.

The formal treatment of divergence is beyond the scope of this chapter, and
we focus on mon-divergent systems here. Regardless, we deem it important to
mention the rules imposed by Stokkink et al. [166]. We paraphrase their rules:

R1 Quiescence should be observable,

R2 the state after a quiescence observation is quiescent,

R3 there is no new behaviour after the observation of quiescence, and lastly
R4 continued quiescence preserves behaviour.

A model obeying these rules is called a well-formed divergent quiescent transition
system (DQTS). For the sake of simplicity, we adopt their rules, but simply call
the resulting model a well-formed IOTS.

Parallel composition. The popularization of component based design neces-
sitates an equivalent in the modelling world. Individual components are designed
separately and integrated later on. This greatly simplifies the modelling step

CHOICE AND CHANCE 31

S ct«;j ********************************* pdf ****** 1
| ' L‘Acté Act? _‘ ' |
| A j I B |
i L\Act}“ Act? \7 i
| ActA ActB |
T o AlB T ° i

Figure 3.3: Schematic overview of parallel composition. Outputs of unit A are
regarded as inputs of unit B and vice versa. Note that this approach enables
further composition with more systems.

of larger scale systems, and adds an additional layer of quality control upon
traversing the V-model as can be seen in Figure

To that end, IOTSs are naturally equipped to mirror this design step in
the formal world: Models of individual components are designed and factored
together via parallel composition. The readiness and ease of this operator are
two of the big advantages of IOTSs over other modelling formalisms like finite
state machines or Petri-nets. The key idea comprises the individual development
of system behaviour, and enforcement of synchronizing actions where it is desired.
We formally define the parallel composition operator of IOTSs based on the
common approach given in the literature, e.g. [9l [169].

However, before any synchronization can take place, we ensure that the
systems to be composed, are indeed compatible. That is, we ensure that there is
no undesired overlap in action label sets of participating components.

Definition 3.5 (Compatibility). Two IOTSs

A = (S84 Actf, Acté,Actﬁ, —>A,364>, and
B = (SB Act?, ActB, Acth, B s5)
are compatible, if Act N ActS = Acty N Act® = @ and Acty N ActB = {5}.

As usual in the literature, we require internal and output actions of two
components not to overlap. Output actions of one model are present as inputs
in the respective other and vice versa. It is this overlap, that is synchronised
upon. For an illustration, we refer to Figure [3.3]

Definition 3.6 (Parallel composition). Given two compatible IOTSs

A = (SA Actf, Acthy, Actgy, =, s, and
B = (SB,Act?,Actg,Actﬁ,%g,s(?), their

parallel composition is the IOTS A||B = (S, Acty, Acto, Acty,—, so), where

32 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

S = S84 x S8,

so = (55,56,

Acty = (Act? U ActB)\(Acth U ActB),
o Acto = Acth U ActB,

o Acty = Actir U Act?, and lastly

e — given by the set

{((s,t),a,(s,¢) | (s,a,8") €A A(t,a, 1) e3P Na e ActA N ActB}
u {((s,1),a,(s',t)) | (s,a,5") EsA Na € ActA\ActB}
u {((s,t),a,(s, ")) | (t,a, 1) e=B Aa € ActB\ActA}.

The use of parallel composition within the ioco framework is twofold: While
it still supports the component based design approach, it also facilitates the
theoretic foundation for the execution of test cases on an implementation. Tests
are designed to be IOTSs, too. In this way, an implementation is composed with
a test case, yielding the model of a system under test (SUT).

Language-theoretic concepts. We shortly introduce the notations induced
by IOTSs. The semantics of an IOTS A are given by its set of traces, i.e. the
behaviour visible to an external observer. Conversely, behaviour not associated
with A cannot be found in its set of traces. This lays the foundations of the
conformance relation ioco.

Let A = (S, Acty, Acto, Actm,—, so) be an IOTS. A path 7 in A is a (possi-
bly) infinite sequence of alternating elements of S and Act, e.g.

m™=S800151a282...,

such that for all ¢ = 1,2,..., we have (s;_1,a;,s;) €—. That is, we allow only
paths traversing the IOTS via its set of transitions. If 7 is finite, we require it
to end in a state. In that case, we associate the number of visible actions in 7
with its length and denote it as |7| (oo if 7 is infinite). Further, let first(7) and
last(m) denote the first and the last states of , respectively. We summarize all
finite paths of A in the set paths™ (A), and all paths in the set paths(A).

The trace of the path 7 represents the behaviour, that is visible to an external
observer. It is a (possibly) infinite sequence of input and output actions, e.g.

tr(m) = a;, aiy Gig Qiy - - -,

where a;; € Act; U Acto for j =1,2,.... The trace arises, if we omit all states
and internal actions from the underlying path. The length of a trace is the
number of its actions. Note that its length thus coincides with the length of
its paths. We summarize all finite traces of A in traces(A), and all traces in
traces(A), respectively. Moreover, we summarize all complete traces, i.e. traces
that either have an infinite underlying path, or a path ending in a deadlock
state, by the set traces®™(A). For two IOTSs A and B, we write A Ty, B, if
traces(A) C traces(B). We then say there is a trace inclusion of A in B.

CHOICE AND CHANCE 33

Let 0,0’ € (Act; U Actp)* be a sequence of actions and s,s’ € S be states
in A. We denote the concatenation of two traces via o - o’. Trace prefixes are
denoted with C, e.g. ¢ C o -0¢’. In case (s,a,s’) €= we call action a enabled in
state s. The set enabled(s) comprises all enabled actions of s. We write s == s/,
if there is a path 7 with first(n) = s, last(7) = s’ and tr(7) = 0. That is, s’ is
reachable from s via the sequence 0. We write s =, if s == s’ for some s’ € S.
Further, we denote with after 4(s) the set of visible actions, that is enabled from
state s of the IOTS A, i.e.

after 4(s) & {a € (Acty U Acto) | s :a>} .

Note that this incorporates actions, which may only be reachable via intermediate
internal actions. Formally, we overload after 4 for traces, i.e. for a trace o the
set after 4 (o) contains all input and output actions, that are enabled in states
reachable from the initial state s via o. Finally, we define the set of output
actions enabled after a trace o as

out A(0) ¥ after 4(o) N Acto

This set is the focal point of the conformance relation ioco.

3.2 The Conformance Relation C,,,

A binary conformance relation pins down mathematically, which implementation
model is deemed correct with respect to a given specification model. The
input/output conformance (ioco) relation has established itself as one of the core
testing relations in the literature. It is rooted in the theory of testing equivalences
and pre-orders [55] [56], and is highly flexible as it allows implementation freedom,
as well as underspecification. Additionally, it is tailored to deal with quiescent,
or divergent system behaviour, cf. Remark

It originates in [I73]. Since then, the ioco relation was the starting point of
various MBT frameworks capable of testing more than just functional behaviour,
e.g. timed behaviour [29], or hybrid systems [I87]. It has received various
overhauls, e.g. [169, [I74], and is still the focus of ongoing research [183] [143].

Definition 3.7 (ioco relation). Let S and I be two IOTSs with the same action
signature, and let T be input enabled. We say T conforms to S with respect to
2oco, denoted I T, S, if and only if

Vo € traces™(S) : outz(o) C outs(o).

The intuition behind the relation is straightforward: If system Z produces
an output after executing an experiment derived from S, then S should account
for this output. Conversely, unwarranted output is regarded as non-conforming.
Note that ioco is not a pre-order, as it is neither reflexive nor transitive per se —
the symbol C;,., indicates the embedding of the sets outz (o) and outs (o).

34 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

B o)
—tr a! b!
al al
@ Eioco @ @
b! c! b! b! a?,b?, ¢! a?,b?,c! a?,b7,d! c!

Figure 3.4: Illustrating example of the implementation freedom gained via the
ioco relation, in comparison to trace inclusion.

At first glance ioco seems indistinguishable from trace inclusion C;,.. However,
upon closer inspection, ioco grants more freedom to the implementation. It
allows behaviour, which is not formally prescribed by the specification. This is
the formal mirror of the property, that correctness verdicts can only be given,
if the behaviour is accounted for by a requirements specification. Figure [3-4]
alongside Example [3.8| show why this is less restrictive than trace inclusion.

Example 3.8. Figure[3.]] shows two pairs of an implementation and a specifica-
tion, respectively. These pairs exemplify the freedom given by the toco relation,
as opposed to mere trace inclusion.

The specification on the left hand side prescribes a non-deterministic choice
between two outgoing a! output actions followed by repeated c! or bl actions, and
an outgoing bl output followed by repeated b! actions. An implementation is now
free to realize any, or all of the prescribed transitions. The shown implementation
on the left has an outgoing a! followed by the repeated b! actions.

Obviously, all traces contained in the implementation model can be found in
the corresponding specification model. This establishes trace inclusion. According
to Definition no matter which trace of the requirements we apply on the
implementation, the set of outputs is subsumed by the set of outputs of the
specification, i.e. disregarding the infinite bl loops, it is easily verified that:

out pmpr.(€) = {a'} C{al,b!} = outspec.(€)
oul pmpr.(al) = {01} C{bl,cl} = outgpec.(al), and
Ul fmp1. (b)) = o C{b'} out spec. (b!).

The pair on the right hand side distinguishes trace inclusion and the toco relation.
Note, that the implementation is input-enabled, i.e. all inputs are accounted
for in the implementation in every state. The requirements specification only
prescribes the output ¢! after the input a? was receied. If no input is supplied,
the system should do mothing, denoted by the self-loop with label §.

Clearly, the mentioned behaviour is present in the implementation. The trace
b?d!, however, is not present in the specification model. Hence, there is no trace
inclusion of the implementation model in the specification. However, since b?
is an unspecified input in the initial state of the specification, the trace o = b?
18 mot a valid competitor for traces to check, cf. Definition|3.7. Therefore, the
implementation is formally conforming with respect to toco.

CHOICE AND CHANCE 35

Remark 3.9. We point out that Definition [3.7 requires both models to be defined
over the same action signature. Throughout the thesis, we usually represent
models visually, like in Figure |3.4. If an action is not visually represented
via a transition, we implicitly assume it to be in the action set regardless. To
illustrate: even though the specification model on the right hand side does not
have a transition with the b? label, we implicitly assume b? to be in Act;.

3.3 Testing and Test Verdicts

We phrase the notion of offline test cases over an action signature (Acty, Acto).
Since the test continuation may depend on the history or outcome of earlier
exhibited non-determinism, test cases are formalized as IOTSs in tree shapes.
The action signature describes potential interaction of a test case, or tester, with
the implementation. During each step of the test process, the test case/tester
may decide to supply a stimulus, wait to observe the behaviour of the system,
or stop the testing altogether.

In order for an observer to know in which state precisely a test case is, we
define them as internally deterministic, i.e. there is a bijection between paths
and traces of the test IOTS. In that way, no two paths yield the same trace.

Definition 3.10 (Test case). A test case over an action signature (Actr, Acto)
is an IOTS t, such that t is a finite internally deterministic, and connected tree.
In addition we require for every state s € S either:

e enabled(s) = @, or (stop)
e cnabled(s) = Acto, or (observe)
o cnabled(s) = {a},a € Acty. (stimulate)

A test suite over an action signature (Acty, Acto) is a set of test cases over
(Acty, Acto). A test case (suite resp.) for an IOTS S is a test case (suite resp.)
over the action signature of S.

Test cases model the behaviour of a tester. At each moment during the test
process, a tester may stop testing, observe system output, or provide stimuli. This
is represented by the three items in the list of Definition [3.10] The fundamental
interactions are thus categorized by input and output labels, respectively. Hence,
test cases are formalized as IOTS models. Moreover, the three mutually exclusive
items make it impossible to combine a test suite to a single test case — every
state either stops, provides input, or waits for output.

Since test cases are the formal representation of potential testing behaviour,
they describe conscious choices made by a tester. Therefore it is essential that
every observable action trace, can be uniquely identified within the test model.
We guarantee this by requiring test cases to be internally deterministic; Given
an action trace, we can follow precisely how the tree IOTS was traversed.

We require each test procedure to stop eventually. Hence, we have some
constraints concerning the finiteness of the test model, i.e. acyclicity and no

36 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

infinite path. However, recall that the action alphabet consists of countably
many actions. There is no restriction on the branching of a test case, and thus
Definition [3.10] allows infinite branching in item 2.

Remark 3.11 (A note on test cases.). The test cases defined in Deﬁnition
originate in [1753]. Note that a newer notion of test cases exist in the toco frame-
work based on more recent work [17]]. The new test cases account for priority in
practical testing. More specifically, if, upon test execution, a test case attempts
to supply input to the implementation, there is a chance that the implementation
overwrites this by providing an output beforehand. Tretmans’ new test cases,
therefore change the third item of tests to enabled(s) = {a?} U (Acto\{0}). This
ensures that all outputs are accounted for at any stage in a test case. Howewver,
it does not incorporate the quiescence label 6. Intuitively, quiescence denotes
the absence of responses for an indefinite time; This contradicts the attempt of
supplying input eventually, and is therefore not included.

We chose the *0ld’ test cases, because traces can be uniquely identified in
the test tree IOTS. The introduction of internal non-determinism has delicate
implications in a test environment for probabilistic systems, which we will study
in Chapter[f} In particular, internally deterministic test cases play a crucial role
to prove the MBT framework correct.

Annotations. Before a test is executed on an implementation, it is crucial
to formally define which outcome is deemed correct. Hence, we introduce test
annotations; Test annotations are labels attached to each complete trace of the
test tree IOTS. These traces are represented as the leaves of the tree. The two
labels are pass and fail respectively. The intuition is straightforward: Desired
behaviour is labelled pass, while undesired behaviour is labelled fail.

Definition 3.12 (Test annotation). Let t be a test case. A test annotation is a
Junction ann : traces®™(t) — {pass, fail}. The pair t * (t, ann) is called an
annotated test case, and a set of such pairs T is called an annotated test suite.

Note that Definition formally defines annotations as a function onto the
binary set pass and fail. It does, however, not yet describe how these labels are
chosen. The precise choice of verdict labels per trace depends on the conformance
relation. An annotation function assigning pass and fail verdicts according to
the ioco relation with respect to a specification § is given, if for all complete
traces o € traces®™(t), we have

NG, (0) =

fail, if Jp € traces™(S),a € Acto : pa T o Aga ¢ traces(S)
pass, otherwise.

We see that ann$, only assigns the fail label for unforeseen output actions,
which precisely mirrors the ioco relation. The encounter of a trace with fail
label upon test execution gives enough evidence that an implementation is

non-conforming with respect to ioco, and should consequently not pass the test.

CHOICE AND CHANCE 37

but? J but! I
[] o] o]

fail pass fail pass fail pass pass fail pass

(a) Annotated test #;. (b) Annotated test t2. (c) Mirrored test m(f2).

Figure 3.5: Annotated test cases derived from the IOTS in Figure

Example 3.13. Figure shows two annotated test cases t; and ta, together
with the mirroring of ta. Note that a mirrored IOTS has swapped input and output
labels in order to allow for synchronisation with respect to parallel composition,
cf. Definition [3.6. Mirroring is formally defined in Definition [3.1])

Test cases t, and to are test cases for the specification of the toy coffee
machine of Figure . While t, validates the initial state to be quiescent, by
only giving the state after d-transition the pass label, test to checks the behaviour
after the button input but? is received. If an implementation provides either of
the two hot beverages, the annotation yields the pass label. However, observing
no outputs, i.e. observing quiescence §, yields the fail label.

Test execution. Executing a test case on an implementation is formally
represented by the parallel composition operator. The outputs that a test
case provides are regarded as input to the system and vice versa. We refer
to Figure for an illustration. However, test cases are defined on the same
action signature as the specification. To achieve synchronization between models,
we introduce mirroring.

Definition 3.14 (Mirroring of IOTSs). Given an input/output transition system
A= (S, Acty, Acto, Actg,—, so), we define its mirroring as

m(A) < (S, Acto\{d}, Act; U {5}, Actm, —, s0)-

The mirror operator for IOTSs is straightforward: It switches the input and
output label sets, and thus enables synchronisation. For the remainder of this
section, parallel composition only takes place between an implementation and a
test model. Therefore, whenever we write ¢, we refer to the mirrored test case
m(t) implicitly, unless stated otherwise.

Parallel composition enables the interaction of an implementation Z and an
annotated test case t. The resulting system is referred to as implementation
under test (IUT). We summarize the set of traces of an IUT in the set exect(Z).

Definition 3.15 (Test executions). Let Z = (S, Acty, Acto, Acty,—, so) be an
input enabled I0TS, and t be a test over the action signature (Acty, Acto). Then
the set of observable traces of Z under ¢ is defined as

exect(T) % traces™ (T || t).

38 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

Implementation 7 Annotated test IUT T | ¢

Figure 3.6: Schematic representation of implementation, annotated test and
implementation under test. The shaded set on the left entails the complete, but
unknown behaviour of the implementation. Hollow leaves of £ represent states
labelled with fail, while filled ones represent pass states. Upon test execution,
the marked behaviour in Z || ¢ is revealed and summarized in ezecy(Z).

The set of observable traces of an implementation under test summarizes the
behaviour, that an executed test potentially reveals. Figure |3.6|illustrates this.
In practice, this may require repeated executions of the same test case due to
non-deterministic behaviour and branching. In case no fairness restrictions are
made for the implementation, i.e. all executable behaviour is eventually realized,
it is possible that some traces are never observed in a practical setting. This
shows the inherent incompleteness of testing in practice.

Note that Definition |3.15| crucially depends on the use of complete traces.
By construction of annotated test cases, those are the only traces that reach
states labelled with pass or fail, respectively.

Test verdicts. We assign a verdict to an implementation under test based
on the test annotations. Intuitively, the implementation passes the test, if all
encountered traces have the pass label according to their annotation. This
means, we did not find evidence that the implementation is non-conforming to
the specification with respect to ioco.

Definition 3.16 (Test verdict). Let S = (S, Acty, Acto, Acty,—,s0) be an
IOTS, and t = (t, anns) be an annotated test case for S. The verdict function

is then given as v : IOTS x IOTS — {pass, fail}, such that

oL, 7) 4 pass if Yo € execy(T) : anns, . (o) = pass,
fail otherwise.

For a given test suite T' for S, we set v(Z, T) & pass, iff for all t € T it holds
that v(Z,t) = pass.

In practice, we only have a partial view of the set exec;(Z). This reflects
that testing is inherently incomplete; Even though no failure was discovered, the
system might be faulty regardless. However, the verdict in Definition [3.16] gives

CHOICE AND CHANCE 39

the benefit of the doubt: The implementation is assumed to be conforming, until
we gathered sufficient evidence, that it is not.

Example 3.17. We refer to Figure[3.6| for an illustration. The hollow leaves of
the annotated test tree t visually represent the label fail, while filled leaves have
the pass label. An implementation passes the test if no trace in exec;(I) ends
in a state that is labelled with fail. However, we can see that I || t contains two
traces ending in a failing state. Hence, the implementation fails the test case.
Note, that in a practical test scenario, these two traces need to be encountered,
in order to give the fail verdict according to Definition[3.16,

3.4 Correctness of the Framework

Correctness comprises soundness and completeness (a.k.a. exhaustiveness), and
constitutes the solid core of any MBT framework. These two properties in
tandem necessitate that an implementation passes a test suite if and only if its
underlying model is deemed conforming with respect to the conformance relation.
It is evident that missing either one is indispensable, and every MBT approach
needs to ensure its intrinsic correctness.

Soundness guarantees that conforming implementations indeed pass test
cases and test suites. Conversely, completeness assures that the faults of every
non-conforming system are detectable by at least one test of a test suite.

Definition 3.18 (Soundness and completeness). Let S be an IOTS over the
action signature (Acty, Acto), T be an annotated test suite for S, and R be a
conformance relation. Then we say

o T is sound Jor S with respect to R, iff for all input enabled IOTS T over
(Acty, Acto), it holds that (Z,8) € R= v(Z,T) = pass.

o T is complete for & with respect to R, iff for all input enabled I0TS 1
over (Acty, Acto), it holds that (Z,S) ¢ R = v(Z,T) = fail.

The use of a general conformance relation R in Definition [3.18]is replaced
by the ioco relation of Definition for the purpose of our framework. The
framework is correct for these choices. We refer the reader to [169] for the proofs.

Proposition 3.19 (Soundness). Let S be an IOTS and t = (t, ann$) be an

oco)
N 10C0O
annotated test case for S. Then t is sound for S with respect to Cioco-

Completeness, on the other hand, is an inherently theoretical result. Loops
in programs, for instance, may result in infinite implementation behaviour,
consequently necessitating a test suite of infinite size.

Proposition 3.20 (Completeness). Let S be an IOTS and T be the set of all
annotated test cases for S. Then T is complete for S with respect to = ;oo -

40 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

We reiterate that Proposition [3.20]is a theoretical result. Due to inherent
non-deterministic behaviour and no fairness assumptions, it is not guaranteed to
eventually see the entire implementation behaviour, regardless of the test suite.
Even though this result sounds trivial at first glance, it shows the interplay of
the conformance relation, test cases and their annotations and test verdicts,
which is by no means self-evident.

Remark 3.21. We point out that [169] provide an additional criterion, that
reduces the size of complete test suites. They show that it is sufficient to include
test cases for all canonical traces of the specification, i.e. traces comprising
multiple consecutive §-actions are reduced to traces only containing one such
d-action. For instance, the canonical form of a?§§db! is given by a? d bl.
While the size of test suites might still be infinite, this reduces the number of
test cases to be executed significantly. Note that this results from the carefully
designed well-formedness rules of our systems mentioned in Remark [5].

3.5 Algorithms and Algorithmic Correctness

With the theoretical foundation of the test framework in place, we provide two
test generation/execution algorithms: the offline batch generation algorithm and
the online on-the-fly execution algorithm. While the first one generates test
cases according to Definition [3.10] the latter generates and executes test cases
on-the-fly. We present both algorithms taken from [I69], discuss their advantages
and drawbacks, and provide results guaranteeing their correctness.

Batch generation. Algorithm presents the recursive procedure batchGen,
that continuously assembles a test case. It requires a specification IOTS S, a
history o, which is initially the empty history ¢, and a maximal length of traces
in the test n € N. The procedure then adds one or multiple branches to the
current history. Every execution of the procedure makes a non-deterministic
choice to return an empty trace and thus terminating a branch (line , to
observe output of the system (line[5)), or to provide a stimulus (line [14). Note
that the decision is often implemented via a probabilistic choice in practice,
e.g.[15]. The three choices reflect the behaviour a manual tester may exhibit
upon interacting with the SUT.

While termination is straightforward (line |2)) once a maximal test length
is reached, lines [B}fI3] describe the step of observing the system: A branch is
instantiated for every output action in Acto (line . If an output is foreseen by
the specification, it is added to the current branch, and the procedure batchGen is
called again (lines 8 and E[) In case the output is not present in the specification,
it is simply added to the branch (line and is to be labelled fail in a consequent
annotation sequence not present in the algorithm. Note, that batchGen is not
called again in this circumstance, as erroneous behaviour is already accounted
for. Upon reaching the maximal test length, each branch eventually terminates,
and a (sub-)tree is added to the current state.

CHOICE AND CHANCE 41

Algorithm 3.1: Batch test generation for ioco.
Input: IOTS S, history o € traces(S), and maximal length n € N.
Output: A test case t for S.

1 Procedure batchGen(S, o, n)

2 if o] <n:

3 [true]—

4 L return {e}

5 [true]—

6 =1

7 forall b! € Acto do:

8 if ob! € traces(S) :

9 | result[i] := {blo’ | o’ € batchGen (S,ob!,n)}
10 else:

11 L result[é] := {b!}

12 1:=1+1
13 | return result[l],..., result[|Acto]]
14 [Choose a? € Act; such that ca? € traces(S)]—
15 result := {a?0’ | o’ € batchGen (S,0a?,n)}
16 | return result

Conversely, lines [[4] and [I6] corresponds to system stimulation. An input a?
is chosen at random if it is present in the specification, and its branch is added
to the tree, before calling batchGen again (line .

The procedure batchGen starts with the empty history € and branches out in
lines [9] and thus ensuring the overall tree structure of test cases according to
Definition It should be pointed out, that no annotation takes place during
the assembly of the test. This requires an additional, consequent step once
batchGen terminates. Since no implementation is expected to run the procedure,
its outcomes can be stored for later use. This guarantees the re-usability of the
generated test cases.

Remark 3.22. [t is infeasible to store any non-trivial test case for a specification
over an infinite number of outputs. A single observation for such systems already
leads to an infinitely large test case. In this case, Algorithm [3.1] should be
considered a pseudo-algorithm, and the next algorithm should be considered.

On-the-fly execution. Algorithm presents a sound procedure to execute,
and evaluate tests on-the-fly. It requires a specification S, an implementation
7 and an upper limit on test length n € N. Initially, the execution history is
empty. The history gets appended in every step of the iteration, until it stops
when a total length of n is reached (line . Intuitively, the algorithm explores
the behaviour of the implementation, while consulting the specification model
for permission of the observed behaviour at every step. The algorithm makes a

42 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

Algorithm 3.2: On-the-fly test derivation for ioco.

Input: IOTS S, implementation Z and maximal test length n € N.
Output: Verdict: pass if Z was conforming in the first n steps wrt. ioco and

fail if not.
10:=¢
2 while |o| < n do:
3 [true]—
4 observe next output b! (possibly ¢) of
5 o :=obl
6 if o ¢ traces (S) : return fail

[Choose a? € Act; such that ca? € traces™ (S)]—
L stimulate T with a?

© o

o:=oa?

10 return pass

non-deterministic choice whether to observe the system (line , or to provide a
stimulus (line @ at every iteration.

Observing the system for outputs, or potential quiescence, is reflected in
lines It adds the observation to the history, in case it is allowed and proceeds
to the next step (line . In case the output is not foreseen by the specification,
the algorithm found sufficient evidence to conclude the implementation to be
non-conforming with respect to ioco (line @

System stimulation is given in lines An input available in the requirements
model is chosen and applied to the system. The precise method on how an input
is chosen is left vague, but a uniform distribution over all available inputs is
common practice [I5].

The algorithm returns a verdict of whether or not the implementation was
found to be conforming with respect to ioco in the first n steps. In case erroneous
output is detected, the verdict is fail, and pass otherwise. Note that the outcome
reflects the inherent incompleteness of testing: the sole reason the pass verdict
is given, is based on the lack of encountered faults.

Proposition 3.23 (Algorithmic correctness). Algom'thm generates test cases
according to Definition[3.10, All test cases generated by Algorithm[3.3 are sound.

Remark 3.24. Quiescence denotes the indefinite absence of outputs. Clearly,
this is infeasible in a practical testing scenario, and an alternate solution needs
to take care of judging an implementation quiescent. Frequently, a global time
out value is chosen in line for the on-the-fly algorithm [15]. The authors of
[29] provide the necessary theory by establishing timed-ioco. We encounter the
dilemma of judging quiescence in Chapter[5, where a specification may require
stochastic time delay between two actions. The challenge then becomes when to
declare an implementation quiescent without confusing it with the desired delay
exhibited by the implementation.

Algorithm and [3.3 incorporate a non-deterministic choice between stop-

CHOICE AND CHANCE 43

Physical Ingredients: Formal Ingredients:
e Informal requirements e Model: Def. [3.2] IOTS
e Black-box implementation e Conformance: Def. [3.7] Cioco
e Observations: Def. [B.15 e Test verdicts: Def. 3.16]
exec(T)
Tooling: Objectives:
o MBT tool: JTorX [15], e Soundness: Prop.[3.19
TorX [I76], TorXakis [I75] e Compl)
)) pleteness: Prop.
TGV [105], STG [43] B0
e Test adapter: Implementable
e Test generation method: Algo-
rithms [3.3] and [3.2] Random
testing
Assumptions:

e Every physical implementation has an underlying IOTS model

Table 3.1: The MBT ingredients instantiated by the ioco framework.

ping, stimulating and observing. In practice this choice is frequently implemented
probabilistically [15)]. Thus, the algorithms are categorized as random testing
according to the taxonomy by Pretschner et al. [I82] presented in Figure .
In addition, experimental research presented in [69] suggests better results, if
stimuli are provided in a ratio of 67% versus observing the system in 33% of the
time. While, there is no underlying theory supporting these findings, this might
provide a reasonable starting point for future research.

3.6 Summary and Discussion

Recall that Table roughly scaffolds both the formal and physical ingredients
needed for an MBT framework. In this chapter, we instantiated the ingredients
for the ioco framework. We refer to Table 3.1l for an overview of the individual
components. While some of the instances in the physical realm, such as informal
requirements and an artefact implementation, are always assumed to be given,
we formally defined test observations as the test executions. These represent
the (partially) observed behaviour of the implementation upon test execution,
and serve as a baseline to form a conformance verdict. The underlying models
are labelled transition system with input- and output labels, i.e. IOTSs. These
models render it possible to define the conformance relation ioco, which is

44 CHAPTER 3. MBT IN THE 10CO FRAMEWORK

slightly coarser than trace inclusion. Test verdicts are defined in conjunction
with test observations given by the set execy(Z).

Being one of the de rigueur methodologies for functional testing, it is natural
that several MBT tools are based on ioco theory. While TorX [I76] was
developed closely in parallel to the underlying theory, JTorX [I5] is its successor
with heavy focus on academic teaching. Similar tools include STG [43] and
TGV [105]. While the test adapter is individual per application, we provide
two test generation algorithms in Section |3.5] These encompass offline batch
generation, and on-the-fly test methods. Lastly, we provided evidence for the
formal correctness of the framework, comprising soundness and completeness.

CHAPTER 4

Model-Based Testing with Probabilistic
Automata

Many systems are inherently probabilistic: they interact with unpredictable
environments, or use randomised algorithms. A rather naive example is given by
randomised games like roulette, or one-armed bandit slot machines: the outcome
of these games is consciously chosen to be of probabilistic nature. Naturally, the
use of probabilistic algorithms is not solely limited to game environments. With
the growing popularity of probabilistic programming languages like probabilistic
C [142] or Figaro [148] comes their application in various fields. Voice recognition
is based on hidden Markov models [I54], security protocols rely on random bits
in their encryption methods [41], networking algorithms assign bandwidth or
priority in a random fashion [106], [165], and the emerging field of probabilistic
robotics is concerned with probabilistic routing methods [168].

Evidently, the classical model-based testing techniques described in Chap-
ter [3] are insufficiently equipped to deal with probabilistic aspects. While the
theory established therein, is capable of judging functional correctness of an
implementation, it is not able to judge probabilistic correctness.

Recall the underlying hypothesis for model-based testing: every physical
implementation has an underlying model. In a formal setting, this model can
be compared to a specification model on a purely mathematical level. However,
since we assume an implementation to be a black-box, an external observer does
not have access to this underlying model. The only way for them to infer about
the inner workings of the black-box, is to execute experiments, i.e. test cases.

Figure [£.] illustrates this alongside the example of a fair coin. The imple-
mentation is given as a simple trace machine, together with a reset button, an
action button a, and an observation window. The latter lets an external observer
witness the currently executed action of the implementation. Upon pressing the
button a, the system makes a probabilistic choice over b or c.

Evidently, the theory we established up to now judges whether the output
b or c is correctly observed, but does not account for the observed frequency.
Suppose a requirements specification demands the implementation of a fair coin,
i.e. 50% observed b actions and 50% observed c actions. When repeating this

45

46 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

reset a

(a) Implementation with reset button.

(b) Model of fair coin. (c) Model of unfair coin.

Figure 4.1: Black-box implementation and two possible underlying automaton
models. Dashed arcs represent discrete probability choices.

push button experiment 100 times, what precisely is deemed acceptable, and
how can we effectively tell the difference between both presented models?

The situation becomes even more interesting in the presence of both non-
deterministic and probabilistic choices. We refer to Figure for an illus-
tration. First an a transition (or distribution, to be more precise) is chosen
non-deterministically, and then the outcome is chosen probabilistically. We point
out, that the given probabilities of both distributions differ.

Figure 4.2: Model of non-deterministic coin.

Upon running the implementation of Figure [I.2] multiple times, we can neither
guarantee that the observed trace frequencies are fair, nor can we guarantee that
they are unfair. Thus, undoubtedly, judging the equivalence of two probabilistic
automata becomes significantly more challenging.

In this chapter, we seek to establish a model-based testing (MBT) framework
capable of handling both nondeterminism, and probabilistic choices. This entails
all necessary ingredients of Table 1. An automaton model capturing both
of those properties, 2. a mathematical conformance relation, 3. the notion of
test cases and algorithms to automatically generate them, 4. mathematical, and
practical methods to give verdicts about correctness, and lastly 5. the proofs of

CHOICE AND CHANCE 47

soundness and completeness of the framework.

Our underlying model of choice are probabilistic input/output transition
systems (pIOTSs) - a conservative extension of both labelled transition systems
and discrete time Markov chains, alongside a separation of the action alphabet
into inputs and outputs. We refer to Figure for an overview of the model
hierarchy traversed in this thesis. Very much like pIOTSs arise naturally from
LTSs, we extend ioco theory with probabilistic aspects to establish conformance
of probabilistic models. Test cases and their annotations are defined similarly
as for LTSs. Moreover, we define mathematical verdict functions, thus relating
test observations to the requirements specification, and show how these verdicts
are given in a practical scenario. The latter requires statistical analysis in the
form of hypothesis testing. The application of the framework is illustrated on
classical examples known from the literature.

We summarize the main contributions of this chapter:

e probabilistic input output transition systems, comprising discrete proba-
bility distributions and non-determinism,

e their behavioural description in form of trace distribution semantics,

e the probabilistic conformance relation pioco,

e definitions of test cases, test annotations, test executions and test verdicts,
e proofs for the correctness of the framework,

e test generation algorithms and applicable methods for probabilistic cor-
rectness in the Pearson’s y2-test, and

e three smaller size case studies known from the literature.

Related Work. Probabilistic testing pre-orders and equivalences are well-
studied [45, 60, 158]. Distinguished work by [122] introduces the concept of
probabilistic bisimulation via hypothesis testing. Largely influential work is
given by [40], presenting how to observe trace frequencies during a sampling
process. Executable probabilistic test frameworks are suggested for probabilistic
finite state machines in [96] [I03] and Petri nets [23].

Origins of the chapter. The work underlying this chapter was performed in
collaboration with Mariélle Stoelinga, and appeared in

e Marcus Gerhold and Mariélle Stoelinga. ioco theory for probabilistic
automata. In Proceedings of the 10th Workshop on Model Based Testing,
MBT, pages 23-40, 2015,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of proba-
bilistic systems. In Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering, FASE, pages 251-268,
2016,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems. Formal Aspects of Computing, 30(1):77-106, 2018.

48 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Organisation of the chapter. The remainder of this chapter is structured
as follows: Section [4.1] introduces the underlying automaton model in pIOTS
and their language theoretic concepts. Section establishes test cases, the
conformance relation and test verdicts, and proves the framework to be correct.
We provide applicable methods to apply model based testing according to the
framework in practice in Section [£.3] In Section [£.4] we illustrate the frameworks’
applicability on small case studies known from the literature. Lastly, Section [4.5
concludes the chapter with final remarks.

4.1 Model and Language-Theoretic Concepts

We introduce the underlying automaton model for the remainder of this chapter
in probabilistic input/output transition systems. We illustrate the formalism
with easy examples and introduce language theoretic concepts, i.e. paths, traces,
and parallel composition. Lastly, we introduce trace distribution semantics by
means of schedulers.

4.1.1 Probabilistic Input Output Transition Systems

We introduce probabilistic input/output transition systems (pIOTSs) as an
extension to labelled transition systems (LTSs). LTSs where studied in Chapter 3]
and are mathematical structures that model the behaviour of a system, consisting
of states and labelled edges between them. The first represent the status that a
system can be in, while the latter models the actions it can perform.
We extend this formalism by al-

lowing edges to be discrete probability SA

distributionsEl; Instead of having one '
single target, edges may now have mul-

tiple target states alongside a discrete MA
distribution describing the probability / \

to reach them. This gives rise to proba- PA IMC
bilistic automata [I58]. As such, prob-

abilistic automata may also be seen as / \ / \

DTMC LTS CTMC

disc. prob. non-determ. exp. delay

an extension to discrete-time Markov
chains (not discussed in this thesis),
with the addition of non-deterministic
choices.

Similar to the step from LTSs
to input/output transition systems
(IOTSs), we separate the label alphabet in distinct input and output sets.
This captures possible communication of a system with its environment, e.g. a
tester or other components. Note that the set of outputs contains the distinct
label §, explicitly requiring the absence of outputs. Like before, we allow internal

Figure 4.3: Traversing the automata
formalism hierarchy shown in Figure

IWe refer the reader to Appendix for a formal introduction to the basics of probability
theory used in this chapter.

CHOICE AND CHANCE 49

(¢) Not a valid pIOTS

Figure 4.4: Example models to illustrate input-reactive and output-generative
distributions in pIOTSs. We use “?” to denote labels of the set of inputs, and
“I” to denote labels of the set of outputs. The symbol 7 denotes an action from
the set of internal labels.

(invisible) actions, to be part of the label set. Those labels describe internal
progress of a system, that is not visible to an external observer.

In order for our class of models to be larger than regular PA, we follow [185]
in defining pIOTSs to be input-reactive and output-generative. These are two
properties associated with the nature of the discrete distributions. Upon receiving
an input action, the pIOTS decides probabilistically which next state to move
to. However, upon producing an output, the pIOTS decides both the output
and the state probabilistically. Formally, this means that each transition either
involves one input action, or possibly several outputs, quiescence or internal
actions. A state may enable input and output transitions, albeit not in the same
distribution. A simple example for illustration purposes of input-reactive and
output generative distributions is presented in Figure |4.4

Definition 4.1. A probabilistic input/output transition system (pIOTS) is a
siztuple S = (S, so, Acty, Acto, Actm, A), where

e S is a finite set of states, with sy as the unique starting state,

o Acty, Actp, and Acty are disjoint finite sets of input, output and in-
ternal/hidden labels respectively, containing the distinct quiescence label
0 € Acto. We write Act = Acty U Acto U Acty for the set of all labels.

e A C S x Distr (Act x S) is a finite transition relation such that for all
input actions a € Act; and distributions p € Distr(Act x S): u(a,s’) >0
implies p (b, s") =0 for all b # a and states s',s" € S.

Example 4.2. Figure[].]] presents two valid example pIOTSs and an invalid
one. As by common convention we use “?” to suffix input and “!” to suffix
output actions. By default, we let T be an internal action. The target distribution
of a transition is represented by a densely dotted arc between the edges belonging
to it. Throughout this chapter, we commonly use p or v to denote distributions.

50 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

In Figure [[.4d there is a non-deterministic choice between the two inputs a?
and b? modelling the choice that a user has in this state. If a? is chosen, the
automaton moves to state s1. In case the user chooses input b?, there is a 50%
chance that the automaton moves to state sy and a 50% chance it moves to s3.
Note that the latter distribution is an example of an input-reactive distribution
according to the last item in Definition [{.1]

On the contrary, state to of Figure [{.4Y illustrates output-generative distri-
butions. Output actions are not under the control of a user or the environment.
Hence, in tg the system itself makes two choices: 1. it chooses one of the two
outgoing distributions non-deterministically and 2. it chooses an output or inter-
nal action and the target state according to the chosen distribution. Note that
both distributions are examples of output-generative distributions according to
the last item in Definition[{.1]

Lastly, the model in Figure[{.Zd is not a valid pIOTS according to Definition
[£]] for two reasons: 1. There are two distinct input actions in one distribution
and 2. input and output actions may not share one distribution, as this would
violate the last item in Definition [{.1}

Notation. By convention, we use the following notations and concepts:

e Elements of the set of input actions are suffixed by “?”, and elements of the
set of output actions are suffixed by “!”. By convention, we let 7 represent
an element of the set of internal actions, and 0 is the distinct output label
to denote quiescence. Throughout this chapter we let © and v be discrete
probability distributions.

o We write s 2% o', if (s,) € A and u(a,s') > 0,
o We write s — a if there are p € Distr(Act x S) and s’ € S such that
H,a / .
s — s', and s 4 a if not.

e An action a is called enabled in a state s € S, if s — a. The set of all
enabled actions in a state s € S is denoted enabled(s).

o We write s 2% ¢, ete. to clarify that a transition belongs to a pIOTS S
if ambiguities arise.

e We call a pIOTS A input enabled, if all input actions are enabled in all
states, i.e. for all a € Act; we have s — a for all s € S.

Example 4.3. Figure[{.5 shows four models of a simple shuffle music player
with two songs. The pIlOTS in models the requirements: pressing the
shuffle button enables the two songs with probability 0.5 each. The self-loop in s1
indicates that after a song is chosen, both are enabled with probability 0.5 each
again. Pressing the stop button returns the automaton to the initial state. Note
that the system is required to be quiescent in the initial state until the shuffle
button is pressed. This is denoted by the & self-loop in state sq.

e The pIOTS of Figure[{.50 is subject to a small probabilistic deviation in the
distribution over songs. Contrary to the requirements, this implementation

CHOICE AND CHANCE 51

stop? stop?
(a) Specification (b) Unfair Implementation
shuf?

shuf?

(c) Alternating Implementation (d) Stopping Implementation

Figure 4.5: Specification and three possible implementation pIOTSs of a shuffle
music player. Some actions are separated by commas for readability, indicating
that two transitions with different labels are enabled from the same source to
the same target states.

chooses songl with a probability of 40% and gives a higher probability to
song?2.

e In the pIOTS of Figure[f.5d the same song cannot be played twice in a row
without interference of the user. After the shuffle button is pressed, the
implementation plays one song and moves to state ss, or ss respectively.
In these states only the respective other song is available. Contrary to
the requirements, this pIOTS models the simplified creation of an entire
play list upon pressing the shuffle button, that remains unchanged without
intervention.

o The last pIOTS in Figure correctly chooses either song with 50%
probability, but stops after one song was played. This is illustrated by the
d-labelled self-loop in vy, denoting quiescence, or silence of the system.

Assuming that all incorrect models are hidden in a black box, the MBT framework
presented in this chapter is capable of detecting all flaws.

Parallel Composition. Parallel composition is defined in the standard fashion
[9] by synchronizing on shared actions, and evolving independently on others.
Since transitions in the component pIOTSs are assumed to be stochastically

52 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

independent, we multiply the probabilities when taking shared actions, denoted
by p ® v. To avoid name clashes, we only compose compatible plOTSs.

Definition 4.4. Two pIOTSs
S = (S,s0,Act, Acto, Acty,A), and
S = (Y sy, Act], Acty, Actly, A'),
are compatible if Acto N Acty, = {8}, Acty N Act’ =0 and Act N Act’y = 0.

Definition 4.5. Let S = (S, s, Actr, Acto, Acty, A) and 8" = (S, sf,, Act’,
Actpy, Actly, A') be two compatible pIOTSs. Their parallel composition is the
tuple

SIS = (5", (s0,8p) , Act’f, Actdy, Actyy, A, where

o S"=8x5,

Act] = (Actr U Acth)\(Acto U Acty),

Actdy = Acto U Acty,

Actfy = Acty U Act’y, and finally the transition relation
o A ={((s,t),n) € 8" x Distr (Act” x S") |

V1 @ v, if Ja € Act N Act’ such that s = a At — a
=1 ®1, ifVae Act with s — a we have t 5 a 1,
1 ®va, ifVa € Act’ witht — a we have s /£ a

where (s,v1) € A, and (t
v @L((s,t'),a) =v1(s

va) € A'. Here vy @ va((s',t'),a) = v1(s',a) - 1a(t'; a),
,a) 1 and 1@y ((8',t),a) =115 (t',a).

~ o

The reader is referred to [I58] for an interesting discussion on the intricacies
for parallel composition of general probabilistic automata. The main problems
are: when should two distributions synchronise, and how should synchronisation
occur. We avoid the pitfalls discussed there by the structure of pIOTSs, and
which pIOTSs is synchronised upon. In particular, we compose test cases and
implementations to get the set of observable traces akin to the set execi(Z) as
seen in Chapter [3] Like before it is sensible to assume implementations to always
be input-enabled. Moreover, input-reactive and output-generative distributions
ensure that the handling of discrete probabilities is carried out correctly.

4.1.2 Paths and Traces

We recall the usual language concepts for LTSs and adapt them to our needs for
pIOTSs. Let S = (S, so, Acty, Acto, Actg, A) be a pIOTS.
A path 7 of S is a (possibly) infinite sequence of the form

™ =S80 {1 @1 S1 M2 G2 S U3 A3 S3 ...,

CHOICE AND CHANCE 53

where s; € S, a; € Act and p; € Distr(Act x S), such that each finite path ends
in a state, and s; Lorndit, $;+1 for each non-final i. We use last (7) to denote
the last state of a finite path. We write 7' C 7 to denote 7’ as a prefiz of ,
i.e. 7 is finite, ends in a state, and coincides with 7 on the first finitely many
symbols of the sequence. The set of all finite paths of S is denoted as paths'™(S)
and all paths by paths(S). The set of complete paths, paths®™(S), contains
every infinite path, or paths that end in a state that does not enable further
actions.

The associated trace of a path 7 is the (possibly infinite) sequence obtained
by omitting states, distributions and internal actions from . Formally, it is a
mapping tr : paths(S) — (Act; U Acto)®. We overload the mapping, such that
it accounts for finite paths, too, i.e. tr: paths™ (S) = (Act; U Acto)”™, with

tr (m) = ai, ai, ag, ..., where a;, € Acty U Acto for j =1,2,....

tr=! (o) gives the set of all paths, which have trace o. The length of a path
is the number of actions on its trace. All finite traces of S are summarized in
traces’™(S), and all traces in traces(S). The set of complete traces, traces®™(S),
contains every trace based on complete paths.

Note that an IOTS is a pIOTS, in which every element of A is the Dirac
distribution, i.e. the distribution with a single target. It is straightforward
to extend the definitions of the operators after, and out used for IOTSs in
Section Recall that the first describes the available actions in a set of states,
whereas the latter characterises the available output actions after a trace.

4.1.3 Schedulers and Trace Distributions

Probabilistic input/output transition systems comprise non-deterministic, as
well as probabilistic choices. As such, it is not possible to assign probabilities to
finite paths, or traces directly. Paths embody the resolution of non-deterministic
choices of the states it contains. Since a state may be visited multiple times,
and choices may vary, the resolution becomes history dependent. That is, the
resolution of non-determinism depends both on the current state and its prefix.

Lifting the resolution of non-deterministic choices of paths to an entire pIOTSs
introduces the concept of schedulers [9]. The resolution of the non-determinism
via a scheduler leads to a purely probabilistic system, in which probability is
assigned to each finite path.

Following the standard theory for probabilistic automata [I58], we define
the behaviour of a pIOTS via schedulers (a.k.a. policies, adversaries, or strate-
gies) to resolve the non-deterministic choices; in each state of the pIOTS, the
scheduler may choose which transition to take, or it may also halt the execution
entirely. Given any finite history leading to a state, a scheduler returns a discrete
probability distribution over the set of next transitions (or distributions to be
precise). In order to model termination, we define schedulers such that they
can continue paths with a halting extension L, after which only quiescence is
observed.

54 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Definition 4.6. A scheduler A of a pIOTS S = (S, sg, Acty, Acto, Acty, A) is
a function

A : paths™(S) — Distr(Distr(Act x S) U {L}),

such that for each finite path w, if A(m) (1) > 0, then (last (7),p) € A or p=1.
The value A (m) (L) is considered as interruption/halting. A scheduler A halts
on a path w, if A(mw) (L) = 1. We say that a scheduler halts after k € N steps,
if it halts for every path of length greater or equal to k and for every complete
path smaller than k. We denote all such finite schedulers by Sched(S,k). The
set of all finite schedulers of S is denoted Sched(S).

Note that, to account for input-reactive and output-generative distributions
instead of scheduling actions a scheduler chooses distributions. The first clause
of Definition [4.6] points out, that only distributions may be scheduled, which are
available in the current state.

Moreover, the class of schedulers we consider are history dependent and
randomized. We study the hierarchy of scheduler classes of stochastic automata
(SA) in Chapter |8} and point out that PA are a subclass of SA.

Probability Spaces associated to Schedulers. A scheduler enables the
quantification of probability of single paths, since all non-deterministic choices
are resolved. To that end, we require the notion of paths of a scheduler, i.e.
paths with a non-zero probability.

Definition 4.7. A path 7 of a scheduler A is a finite or infinite path

T = So K1 Q1 S1 M2 A2 S2 43 A3 S3 . . .

such that A(sop1ar $1...8;)(ui,a;) > 0 for each i = 1,2.... The maximal
paths of a scheduler A are the infinite paths of A and the finite paths 7, such
that A(m)(L) > 0. We set paths™*(A) as the set of mazimal paths of A.

Intuitively, a scheduler rolls a multi-faced and biased die at every step of the
computation, telling the system how to proceed. Consecutive scheduler decisions
thus induce a path probability distribution on a pIOTS. Hence, the resulting
system is a purely probabilistic computation tree.

To construct a proper probability distribution over all finite paths, the
probability assigned to a single path 7 is obtained by the probability of its cone
Cr = {7’ € paths™**(A) | * C 7'}, cf. Figure This construction is standard
and thus left undiscussed here. Instead we refer to [I58] [164] for more details.

Definition 4.8. A scheduler A of a pIOTS S induces a path probability function
inductively defined by Q4 (so) = 1 and

QA(mpas) = QA(x) - A(m) (1) - p(a,).

The probability of A generating exactly 7 equals Q* () - A(m)(L).

CHOICE AND CHANCE 55

Figure 4.6: Abstract illustration of the cone of a path. The outermost curve
describes all possible behaviour of a pIOTS, and lines in it point out possible
developments of the system over time. The red curve highlights a specific path
7, which is appended by its cone Cf, i.e. all possible paths that have 7 as prefix.

A scheduler A thus defines a unique probability distribution P4 on the set
of (finite) paths. Therefore, the probability of 7 is P4 [Cy] & Q4 (). Hence,
the path probability function enables us to define a unique probability spaC(ﬂ
(24, Fa, Pa) associated to a scheduler A.

Definition 4.9. The probability space associated to a scheduler A of a pIOTS
S, is the probability space given by (Qa, Fa, Pa), where

1. Q4 = paths™*(A),

2. F.u is the smallest o-field generated by the set {Cy | © € paths™(S)},
where Cpr = {1’ € Q4 |7 E 7'}, and

8. Py is the unique measure on Fa such that P4[Cr] = QA(m) for all
T € paths™(S).

Note that 24 and F 4 do only indirectly depend on S, and are fully determined
by Q4. The fact that the triple (Qa, Fa, Pa) constitutes a probability space
follows from standard measure theory arguments, see e.g. [46] [164].

Example 4.10. Recall the requirements specification of a shuffle music player
in Figure [{.5d. Assume there is a scheduler A that chooses the distribution
containing shuf? in state sg with probability 1, and from there on schedules the
distribution containing songl and song2 with probability 1 finitely many times.

Asking for the probability of hearing songl after the shuffle button is pressed
is then answered by considering the cone of the path

T = 80, M1, Shuf?sla H2, 80”91!7 51-

The cone Cy consists of all paths starting with 7, that are appended in all possible

2We refer to Appendix for a summary of the parts of probability theory needed here.

56 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

ways. Thus, the probability to observe exactly m becomes

Pa[Cr] = Q*(m) = Q" (s0) - A(s0) (1) - i (shuffle?, s1) -
A (80, p1, shuffle?, s1) (u2) - po (songl, s1)
= 1-1-1-1-05
0.5.

We point out that the usage of cones is essential here as A does not stop after
scheduling the first song.

Trace Distributions. Very much like traces are obtained by first selecting
a path and by then removing all information that is invisible to an external
observer, we do the same in the probabilistic case. First, we resolve all non-
deterministic choices in the pIOTS via a scheduler, and then remove all state
information to get its trace distribution. This allows us to quantify the probability
associated to traces in a pIOTS.

A trace distribution is obtained from (the probability space of) a scheduler
by removing all states. Thus, the probability assigned to a set of traces X is the
probability of all paths whose trace is an element of X.

Definition 4.11. The trace distribution D of a scheduler A € Sched(S), denoted
D = trd (A) is the probability space (Qp, Fp, Pp), where

L] QD = Act* U Act‘”,

o Fp is the smallest o-field generated by the set {C, | o € Act™}, where the
cone is Co={0' € Qp |0 C ¢},

e Pp is the unique probability measure on Fp such that

Pp (X) = Pa (tr (X)) for X € Fp.

The fact that (Qp, Fp, Pp) defines probability spaces is completely standard,
and not discussed further here. Additional material and discussions on the topic
can be found in [I58] [40].

Trace Distribution Equivalence. Trace distributions quantify the proba-
bility to observe traces in the presence of non-determinism. They are thus a
fundamental perspective to relate two automata , i.e. we equate two pIOTSs
iff they comprise the same trace distributions. To be more specific: A trace
distribution of a pIOTS Z is said to be contained in the set of trace distributions
of a pIOTS &, if there exists a scheduler of S such that all traces of S get
assigned the same probability as in Z.

We formally overload trd(Z, k) to denote the set of trace distributions that are
based on a scheduler of length &k € N. We write trd(Z) for the set of all finite trace
distributions of the pIOTS Z. Lastly, we write Z C%.,, S, if trd(Z, k) C trd(S, k)
forkeNandIEﬁ}%SifIE’“TDSforsomekeN.

CHOICE AND CHANCE 57

toss?

. tails!
0.9

. 0.1
: heads!
toss?

(a) Irregular coin. (b) Irregular coin alongside a scheduler.

Figure 4.7: The model of an irregular coin toss. The left-hand side shows the
model without any augmentation. Note, that there is a non-deterministic choice
between the two outgoing toss? actions in sg. The outcome of this choice results
in either tossing a fair coin, or a non-deterministic one. The right-hand side
augments the model with an adversary that resolves non-determinism, thus
resulting in a purely probabilistic structure.

Example 4.12. Consider the example shown in Figure[[.7. The left side shows
the model S of a coin toss. There is a non-deterministic choice between the
outgoing toss? actions in sg, resulting in either tossing a fair coin, or a non-
deterministic coin. Due to the presence of non-determinism in the model, it is
not possible to directly assign probabilities to traces.

The right side augments the model with a scheduler A € Sched(S,2). The
probabilistic choices of the scheduler are illustrated in red. In particular we have

A (s, p1, toss?,s1) = 0.9 A(so, p1, toss?, s1, s, heads!, s5) = 0.6

A (80, p2, toss?, s2) = 0.1 A(so, 11, toss?, s1, 4, tails!, sg) = 0.4,

where p; with © =1,2,3,4 are the unique distributions of S. Thus, the scheduler
chooses to toss the fair coin in 90% of the cases, and the non-deterministic coin
is chosen in 10% of the cases. If the non-deterministic coin is chosen, it resolves
the toss with an outcome of 60% heads and 40% tails.

This construction enables us to assign probabilities to traces. Let

m™ = Sg, M1, toss?, s1,v, heads!, s3, and

T = Sg, o, t0ss?, sa, 3, heads!ss.

Then, obviously P4 [Cr,] = 0.5-0.9 = 0.45 and P4 [Cr,] = 0.1-0.6 = 0.06.

Moreover, o = tr(m) = tr(ms), and consequently, for the trace distribution of

the scheduler A, i.e. D = trd(A), we see Pp (0) = P4 [Cr,] + P4 [Cr,] = 0.51.
Thus, the pIOTS S alongside scheduler A defines a slightly biased coin.

Remark 4.13 (Compositionality). Working in a model-based testing environ-
ment naturally requires our models to be open. That is, we distinguish actions

58 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

based on their corresponding label set of inputs, and outputs. This, as opposed to
closed systems, enables various modelled components to interact with each other
or their environment. Defining schedulers for open systems is inherently more
complex over their closed counterparts. The schedulers of Definition[{.¢ choose
to schedule inputs, as well as outputs. The authors of [39] regard this notion as
too powerful and choose to define schedulers for open systems as the combination
of an input scheduler, an output scheduler and an arbiter scheduler assigning
precedence to one or the other.

The reasoning is as follows; Our trace distribution semantics are not com-
positional [164)], i.e. it generally does not hold that trd(A) C trd(B) implies
trd(A || C) C trd(B || C). Thus, instead of the compose-and-schedule approach
used in this thesis, the authors of [39] present a schedule-and-compose formalism.
This circumuvents the arising hurdles of non-compositionality.

While their framework offers a cleaner, and perhaps more intuitive solution,
it comes at the price of increased complexity. In the remainder of this chapter,
we shall see that non-compositionality of trace distribution semantics does not
impose additional difficulties to deploy our techniques. In particular, we compare
the model of a system under test I ||t to a specification model S, as opposed to
the model of S||t. Moreover, we shall see that the structure of test cases, and the
input enabledness of implementations prevents non-compositionality to become a
problem. We thus opt for the simpler definition of schedulers in Definition [].6
to establish an MBT framework for probabilistic systems.

4.2 Probabilistic Testing Theory

Model-based testing entails the automatic test case generation, execution and
evaluation based on a requirements model. Its ulterior goal is to judge the
correctness, or conformance, of an implementation to its requirements auto-
matically. Recall that the MBT approach operates under the assumption that
every physical implementation has an underlying formal model. Conformance
is then established on a purely mathematical level via testing relations of the
implementation model with respect to the specification model. Hence, one of
the fundamental concepts to develop an MBT framework is the formal notion of
conformance. We do so by conservatively extending ioco theory from Chapter
to account for probabilistic systems.

With the conformance relation in place, we proceed to develop methods
to infer the inner workings of black-box implementations via experiments, or
test cases. We define test cases to be pIOTSs, that only make use of Dirac
distributions, i.e. test cases are IOTSs. Further, we proceed by showing how
test cases are formally executed on an implementation.

Working in a probabilistic setting requires the test evaluation to be twofold:
Functional aspects are evaluated as in the IOTS setting: Observed output is
compared to expected output. Probabilistic aspects require a sampling process to
take place on which further statistical analysis of trace frequencies is performed.
Here, hypothesis testing in the form of Pearson’s x2 test is utilized. Lastly, we

CHOICE AND CHANCE 59

present the verdicts used to judge correctness of a system, before we prove the
framework to be correct.

4.2.1 The Conformance Relation T,

The pioco conformance relation is built on the theoretical foundations of ioco
theory, cf. Section which has established itself as one of the core pillars of
testing relations. By conservatively extending upon this established relation,
we are guaranteed to keep desirable features like implementation freedom and
underspecification. The classical ioco relation (Definition states that an
implementation conforms to the requirements, if it never provides any unspecified
output or quiescence. Thus, the set of output actions after a trace of an
implementation should be contained in the set of output actions after the same
trace of the specification. However, instead of checking for all possible traces,
the ioco-relation only checks traces that were specified in the requirements.

Formally, let outz (o) be the set of output actions of an IOTS Z enabled in
the states after trace 0. Then, for two IOTSs Z and S, with Z input-enabled,
we write Z C;00 S, if and only if

Yo € traces™(S) : outz(o) C outs(o). (4.1)

Our intention is to generalize this relation to probabilistic systems. Intuitively,
we replace the set of finite traces in with the set of finite trace distributions
of §, and the operator out by a trace distribution equivalent. Precisely, we
require two auxiliary concepts:

1. The prefix relation for trace distributions D Cj D’ is the analogue of trace
prefixes, i.e. D Ty D' iff Vo € Act=F : Pp (o) = Pp: (o).

2. The output continuation trace distributions; these are the probabilistic
counterpart of the set outs(c). For a pIOTS S and a trace distribution D of
length k, the output continuation of D in S contains all trace distributions
D’ of length k + 1, such that D Ty, D/, that assign every trace of length
k + 1 ending in input probability 0. We set

outconts(D) & {D’ € trd(S,k+1) | DTy D' AVo € Act* Acty : Pp (o) = O} .

Intuitively, an implementation should conform to a specification, if the probability
of every trace in Z specified in S, can be matched. Just like in ioco, we neglect
unspecified traces ending in input actions. However, if there is unspecified
output in the implementation, there is at least one scheduler that assigns positive
probability to this continuation, thus violating the subset relation.

Definition 4.14. Let 7T and S be two pIOTSs over the same action signature.
Furthermore let T be input-enabled, then we say L Tpioco S, if for all k € N

VD € trd(S, k) : outcontz(D) C outconts(D).

60 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Example 4.15. In Figure[].8 we present siz toy examples to illustrate the pioco
relation. Note that the three upper examples do not utilize a probabilistic transition
other than the Dirac distribution over the target state. They can therefore
be considered as reqular IOTSs. The three lower models utilize probabilistic
transitions, e.g., there is a probabilistic choice between songl! and song2! with
probability 0.5 each in Sy. For the sake of readability in the figure, if an input
is not enabled in a state of the implementation, assume that we make it input-
enabled by adding a self-loop.

The original toco relation checks whether the output of an implementation,
after a specified trace, was expected. To illustrate, Sy is 1oco to both Sy and Ss.
The input shuf? yields the output songl!, which is a subset of what was specified
by the latter two, i.e. {songl!, song2!}. In particular, note that it is irrelevant
if the non-deterministic choice is over the shuf? actions, or the output actions,

cf. Figures and [{.84

Ishuf? shuf? shuf?
songll] songl1! song?2!
. .

shuf? shuf?

songl1! song2!

(d) Sa

Figure 4.8: Yardstick examples of a simplified shuffle player illustrating pioco.
The three upper models represent regular IOTSs, while the three lower examples
are plOTSs. See Example for more details.

The pioco relation combines probabilistic and non-deterministic choices. Sy
and S5 are not pioco for using different probabilities attached to the output
actions. However, it is Sy Tpioco S3. The requirements specification indicates
a choice over songl! and song2!. If a system implements this choice with a
0.5 choice over the action, there is a scheduler in the specification that assigns
exactly those probabilities to the actions songl! and song2!. Note that the
opposite direction does not hold, because any implementation would need to
asstgn probabilities 0.5 to each action, while the non-determinism indicates a
free choice of probabilities according to our assumptions.

An intricate example is given in the relation of Sy and Sg. In particular,
it 15 Su Cpioco Se, but S¢ Lpioco Sa. Fven though, on a surface level, it looks
like all traces can get assigned the same probability under a scheduler, it is the
probability of halting that the mismatch stems from. Before scheduling either

CHOICE AND CHANCE 61

pIOTS 51 82 83 84 55 86
Sl Epioco Epioco Epioco - - -
82 - Epioco Epioco - - -
53 - Epioco Epioco - - -
84 - Epioco Epioco Epioco - Epioco
85 - Epioco Epioco - Epioco -
86 - Epioco Epioco - - Epioco

Table 4.1: Complete table of the pioco relation with respect to Figure Note
that pIOTSs on the left-hand side of the relation are assumed to be input enabled
by adding self-loops in their corresponding models.

song in Sg, a scheduler may assign different probabilities to halt in both states. A
scheduler in Sy must now mimic this behaviour in a single state, while scheduling
the same probabilities as the other scheduler to both songl and song2. Obuviously,
there are combinations of probabilities for which this is impossible.

For a complete list of the conformances in Figure [].8 we refer to Table[{.1}

The pioco relation conservatively extends the ioco relation, i.e. both relations
coincide for IOTSs. Recall that a pIOTS essentially is an input output transition
system with transitions having distributions over states as target. Conversely, an
IOTS can be treated as pIOTS where every distribution is the Dirac distribution,
i.e. a distribution with a unique target.

Theorem 4.16. Let A and B be two IOTSs and A be input-enabled, then
-A Eioco B << A Epioco B.

Proof sketch. Conformance of pIOTSs is defined via probabilities of traces, where
the probabilities are a result of schedulers and the inherent discrete probability
distributions of pIOTSs. The proof follows from the fact that an IOTS does not
have inherent probabilities — A scheduler can thus assign the same probabilities
to all traces of both A and B provided they are present in both systems. The
conformance relation C;,., ensures that relevant traces are indeed present in
both A and B. O

A tester must be able to apply every input at any given state of the SUT.
This is reflected in classic ioco-theory by always assuming the implementation to
be input enabled (Definition . If the specification is input-enabled too, then
ioco coincides with finite trace inclusion. We show that pioco coincides with
finite trace distribution inclusion in the pIOTS case. Note that input-enabledness
of the specification is crucial here. Moreover, our results show that pioco is
transitive, just like ioco.

Theorem 4.17. Let A, B and C be pIOTSs and let A and B be input-enabled,
then

(Z) A Epioco B /Lf and OTLly lfA E];"TLD B

62 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

(“) A Epioco B and B Epioco C, then A Epioco C.

Proof sketch. (i) The fact that finite trace distribution inclusion implies Cpioco
is straightforward, since Ty, is defined via finite trace distributions. The other
direction follows immediately, if we consider that =,;,c, ensures all traces ending
in output can get assigned the same probability in both A and B, as well as
both systems being input enabled. Since distributions containing inputs are
input-reactive, there cannot be mismatches in probabilities here.

(i) arises as a consequence of (7). O

4.2.2 Test Cases and Test Annotations

We formalize the notion of test cases over an interface (a.k.a. action signature,
or alphabet) (Actr, Actp). Formally, a test case is a collection of traces that
represent possible behaviour of a tester. These are summarized as a pIOTS in
tree structure. The action signature describes the potential interaction of the
test case with the implementation. In each state of a test, the tester can either
provide some stimulus, wait for a response of the system, or stop the overall
testing process. When a test is waiting for a system response, it has to take into
account all potential outputs including the situation that the system provides
no response at all, modelled by § El

Definition 4.18. A test or test case over an alphabet (Acty, Acto) is a plOTS
t = (S, s0, Act’, Actl), @, A)

that has the alphabet’s outputs as inputs and vice-versa, i.e. Actt = Acto U {6}
and Actly = Act;\{0}, and that is a finite, internally deterministic and connected
tree. In addition, for all p € A we have p = Dirac, and for every state s € S we
require:

e cnabled(s) =0,
e enabled(s) = Act, or
e enabled(s) € Actl,.
A test suite T is a set of test cases. A test case (suite resp.) for a pIOTS

S = (S, s0, Acty, Acto, Actm, A), is a test case (suite resp.) over its alphabet
(Acty, Acto), and if item 2 additionally requires, that

e p(a,s') >0 with a € Actl, implies the existence of o € traces™(S), such
that o a € traces™(S).

For technical reasons, we swap the input and output label sets of a test case.
This is to allow for synchronization in the context of parallel composition. In
the IOTS case of Chapter [3] this was resolved with the mirroring operator , i.e.

3Note that in more recent version of ioco theory [I74], test cases are input-enabled. This
enables them to catch possible outputs of the implementation before the test supplied the
input. We consciously chose not to incorporate this into our framework for technical reasons.

CHOICE AND CHANCE 63

for an IOTS Z the IOTS mirror (Z) switches all its inputs to outputs, and vice
versa. However, mirroring an output-generative distribution does not yield an
input-reactive distribution, and thus produces an invalid pIOTS. We refer to
Figure [£4] to illustrate this. Since we are only interested in the mirroring of test
cases, which only allow the Dirac distribution (i.e. single target), we chose to
incorporate mirroring in their definition directly here.

Lastly, we give an intuitive understanding of test cases for specifications. In
addition to being defined over the same action signature, we require that only
inputs are given, which are presents in the specification model. This is referred
to as input-minimal in the literature [169]. Giving unavailable inputs would
leave us in a position, in which we are unable to give a verdict according to ioco.
That is, we may only judge the correctness of specified behaviour, as is inherent
in testing.

Remark 4.19. Informally, we define test cases as IOTSs, as opposed to pIOTSs.
Our earlier work used discrete probability choices in test cases [73, [76], thus
paving the way for probabilistic test cases. This fills a gap in that MBT tools
frequently use random mumber generators to resolve the choice of observing
or stimulating the system, and the concrete input is often chosen according
to a uniform distribution [15]. Using discrete probability distributions in test
cases quantifies these choices. We opted to not incorporate these properties in
Definition [{.1§ to make a distinction between test cases and test selection. The
latter is mentioned in the test generation algorithms discussed in the next section.

Test Annotation. In order to pin down the behaviour, which we deem as
acceptable/correct, each trace of the test is annotated with pass or fail verdict,
determined by the requirements specification. This allows for automated evalua-
tion of the functional behaviour later on. The probabilistic verdict is given via a
second step, that requires gathering a large sample of test executions.

We have shown that the pioco relation conservatively extends the ioco one
in Theorem Since the purpose of annotations is to check for functional
correctness only, we directly transfer the annotation of Definition[3.12] Informally,
a trace of a test case is labelled as pass, if it is present in the system specification
and fail otherwise.

Definition 4.20. For a given test t a test annotation is a function
ann : traces®°™(t) — {pass, fail} .

A pair t = (t,ann) consisting of a test and a test annotation is called an
annotated test. The set of all such £, denoted by T = {(ti, ann;),c1 } for some
index set I, is called an annotated test suite. If t is a test for a specification
S with signature (Actr, Acto), we define anns,, ., : traces®™ (t) — {pass, fail}

pioco
by
fail if 3o € traces™(S),a € Acto :
a””fiow(ff) = 0aC oAopa ¢ traces™(S)
pass otherwise.

64 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

t2:

shuf!

tll
shuf!
songl? song2?
songl? 5 song2?
pass fail pass pass fail pass pass fail pass

Figure 4.9: Two annotated test cases for the specification of the shuffle music
player of Figure {, tests that a song is played after the shuffle button was
pressed. t5 ensures that the player keeps on playing music, and does not stop
after one song.

Example 4.21. Figure[{.9 shows two simple derived tests for the specification
of a shuffle music player in Figure[{.5. Note that the interface is mirrored. This
is to allow for synchronisation on shared actions according to the definition of
parallel composition (Definition . Outputs of the test case are considered
inputs for the implementation and vice versa.

The left model in Figure @ presents an annotated test case t,. After the
shuffie button is pressed, the test waits for a system response. Catching either
song assigns the pass verdict, while the absence of outputs, denoted by &, yields
the fail verdict. The test to on the right-hand side ensures that the player does
not stop after one song, but continues to play songs. This is indicated by the
pass labels on either song transition, and a fail verdict on the § transitions.

We point out that test annotations do not infer the probabilistic correctness
of the implementation. This requires multiple executions of the same test case to
gather a sample. Probabilistic correctness is inferred via a statistical hypothesis
test and is studied in the next subsection.

4.2.3 Test Evaluation and Verdicts

In our framework, we assess functional correctness via the test annotation ann
precisely how described in Chapter[3] Therefore, this step is not further described
here. However, the addition of discrete probability choices on specification level
requires further statistical analysis. We present how an implementation can
effectively be checked for the correct application of probabilities.

We perform a statistical experiment with various parameters, including

CHOICE AND CHANCE 65

ID Recorded Trace o #o

reset button
o1 shuf? songl! songl! 15

@ @ @ — | o2 shuf? songl! song?2! 24

action display

“ o4 shuf? song2! song2! 35

o3 shuf? song2! songl! 26

Figure 4.10: Black-box trace machine with input alphabet a17,...,a,7, reset
button and action window. Running the machine m times and observing traces
of length k yields a sample. The ID together with the trace and the respective
number of occurrences are noted down in a sample like on the right-hand side.

predefined sample size and level of significance. The requirements specification
in tandem with a scheduler defines expected values for the frequency of each
trace. We proceed by defining sets of possible observations on implementation
side. The level of significance then sets a maximum of allowed deviation from
the expectation. Any observation within this threshold is deemed acceptable,
while observations outside this boundary are rejected.

Statistical Testing. In order to reason about probabilistic correctness, a
single test execution is insufficient. To illustrate, assume we want to establish
the fairness of a coin; A single coin flip is inadequate to draw a conclusion. To
overcome this hurdle, we collect a sample via multiple test runs, and perform
statistical analysis on it. We refer the reader to Appendix for the details of
statistical testing required in this thesis.

The sampling process consists of a push-button experiment in the sense
of [I34]. Assume a black-box trace machine is given with input buttons, an
observation window, and a reset button as illustrated in Figure [£.10} An external
observer records each individual execution before the reset button is pressed and
the machine starts again. Note that the observations of an external observer
match the notion of traces. After a sample of sufficient size was collected, we
compare the collected frequencies of traces to their expected frequencies according
to the requirements specification. If the empiric observations are close to the
expectations, we accept the probabilistic behaviour of the implementation.

Sampling. Before the start of the sampling process, or any statistical experi-
ments, we need to set the parameters. We require sample length k € N, sample
size m € N, and a level of significance @ € (0,1). In the experimental setting
utilized here, this translates to choosing the length of individual traces, how
many traces should be observed, and a limit for the statistical error of first kind,
i.e. the probability of rejecting a correct implementation.

To establish probabilistic correctness, we check if the frequencies of the traces
contained in the sample match the probabilities in the specification via statistical
hypothesis testing. However, statistical methods can only be directly applied
for purely probabilistic systems without non-determinism. To illustrate, recall

66 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Figure [f.7a} The inherent non-deterministic choice between the two toss? actions
in sg, and the non-deterministic coin flip in state sy prevents us from directly
assigning a probability to trace, say, toss? head!.

To overcome this, we check if the observed trace frequencies can be explained,
if we resolve non-determinism in the specification according to some scheduler.
In other words, our hypothesis is the existence of a scheduler that makes the
occurrence of the sample likely.

Thus, we assume that each execution of the black-box implementation Z is
governed by an unknown scheduler, resulting in a trace distribution D € ¢rd(Z).
In order for any statistical reasoning to work, we assume that D is the same in
every run. Consequently, the implementation chooses a trace distribution D and
D chooses a trace o to execute.

Frequencies and Expectations. To quantify how close a sample is to its ex-
pectation, we require a notion of distance. Our goal is to evaluate the deviation of
a collected sample to the expected distribution. Therefore, let M = (Distr, dist)
be the metric space, where

dist (u,v) & sup | u(o) —v (o) |
o€ Act=k

is the maximal variation distance of two distributions. It is easy to check that
dist is indeed a metric, and consequently M defines a metric space.

We proceed by defining the two distributions that need to be compared; The
empiric distribution of a sample, and the expected distribution based on the
specification. The function assessing the frequencies of traces within a sample
O ={01,...,0,} is given as a mapping freq : Act=F*™ 5 Distr(Act=F), such
that

freq (O) (O’) _ Hi=l,...mAo=0i}|)

m

Hence, the discrete distribution freq gives the relative frequency of a trace within
a sample of size m.

To calculate the expected distribution according to a specification, we need
to resolve all non-deterministic choices to get a purely probabilistic execution
tree. Therefore, assume that a trace distribution D is given, and k and m are
fixed. We treat each run of the implementation as a Bernoulli trial. Recall that
a Bernoulli trial has two outcomes: success with probability p and failure with
probability 1 — p. For any trace o, we say that success occurred at position ¢ of
the sample, if o = ;. Therefore, let X; ~ Ber (Pp (c)) be Bernoulli distributed
random variables for i = 1,...,m. Let Z = % >, X; be the empiric mean
with which we observe ¢ in a sample. Note that the expected probability under
D is then calculated as

EP (2) =EP (izglxi) = %E?;ED (Xi) = Pp (o).

Hence, the expected probability for each trace o, is the probability of ¢ under
trace distribution D.

CHOICE AND CHANCE 67

Example 4.22. The right hand side of Figure [[.10 shows a potential sample
O that was collected from the shuffle music player of Figure when to of
Figure[{.9 is executed. The sample consists of m = 100 traces of length k = 3.
In total there are four different traces with varying frequencies. We calculate the
relative frequencies of the four different traces as

freg(0) (o) = o Frea(0)(02) = o
freg (0) (o) = 2= frea (0) (1) = o

Together, these frequencies form the empiric sample distribution.

Conversely, assume there is a scheduler, that schedules shuf? with probability
1 and the distribution consisting of songl! and song2! with probability 1 in
Figure[f.5d This scheduler then induces a trace distribution D on the pIOTS of
the shuffie-player. The expected probability of the observed traces under this trace
distribution then calculates as EP (0;) =1-1-0.5-0.5=10.25 fori=1,...,4.

The question we want to answer in practice is, whether there exists a scheduler,
such that the empiric sample distribution is sufficiently close to the expected
distribution.

Acceptable Outcomes. The intuitive idea is to compare the sample frequency
function to the expected distribution. If the observed frequencies do not deviate
significantly from our expectations, we accept the sample. How much deviation
is allowed depends on the a priori chosen « € (0, 1).

We accept a sample O if freq (O) lies within some distance r, of the ex-
pected distribution EP of the metric space M. Recall the definition of a
closed ball in a metric space centred at © € M with radius r as B, (v) =
{y € M| dist (z,y) <r}. All distributions deviating at most 7, from the ex-
pected distribution are contained within the ball B,_(EP). To limit the error
of accepting an erroneous sample, we choose the smallest radius, such that the
error of rejecting a correct sample is not greater than a by

ro inf{r e Ry | Pp (freq_1 (B,(EP))) >1—a}.

Definition 4.23. For k,m € N and a pIOTS S the acceptable outcomes of
D € trd(S, k) of significance level a € (0,1) are given by the set

Obs(D,a, k,m) = {O € (Act=F>m™y | dist (freq(0),EP) < Ta} .
We obtain the set of acceptable outcomes of S by

Obs (S, a,k,m) = U Obs(D, a, k,m).
Detrd(S,k)

The set of acceptable outcomes consists of all possible samples we are willing
to accept as close enough to our expectations, i.e. all samples that are likely

68 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

under consideration of all trace distributions. Note that, due to non-determinism,
the latter is required to define expected values in the first place.

The set of acceptable outcomes of a pIOTS A therefore has two properties,
reflecting the error of false rejection and false acceptance respectively.

1. If a sample was generated by a truthful trace distribution of the specifica-
tion, we correctly accept it with probability higher than 1 — «, i.e.

Pp(0bs(D,a, k,m)) > 1 —a.

2. If a sample was generated by a trace distribution not admitted by the
specification, the chance of falsely accepting it is smaller than some 3,,.

Here « is the predefined level of significance, and (3, is unknown, but minimal by
construction. Note that 3, — 0 as m — oo, thus the error of falsely accepting
an observation decreases with increasing sample size, as is to be expected.

Remark 4.24. The set of acceptable outcomes comprises samples of the form
O € Act=F*™ In order to align observations with the pioco relation, we define
the set of acceptable output outcomes like follows

OutObs(D, o, k,m) = {O € (Act=F"1Acto)™ | dist (freq(O),ED) < ra} .

Verdict Functions. With this framework, the following decision process
summarizes if an implementation fails a test, or test suite respectively, based
on a functional and/or statistical verdict. An overall pass verdict is given to an
implementation if and only if it passes both verdicts.

Definition 4.25. Given a pIOTS S, an annotated test t for S, k,m € N where
k is given by length of the longest trace of t, and a € (0,1), we define the
functional verdict as vpyne : pIOTS x pIOTS — {pass, fail}, with

~ if Yo € t com (T || ¢) - S _
Vane(Z, 1) = {pass if Vo € traces®™(Z||t) anny;ioco (o) = pass

fail otherwise,

the statistical verdict as the function vge @ pIOTS x pIOTS — {pass, fail},
with

pass if VD € trd(Z||t, k) ID’ € trd(S, k) :
Uprob (Z, 1) = Pps (OutObs (D, a, k,m)) > 1 —

fail otherwise,

and the overall verdict as the function V' : pIOTS x pIOTS — {pass, fail}, with

V(T = pass if Vpune(Z, f) = Uprop(Z, f) = pass
" fail otherwise.

An implementation passes a test suite T, if it passes all tests t € T.

CHOICE AND CHANCE 69

The functional verdict is based on the test annotations (Deﬁnition. The
execution of a test on the implementation is denoted by their parallel composition.
Note that this verdict is similar to the one of Chapter [3|for LTSs.

The statistical verdict is based on a sample. Therefore a test case has to be
executed several times to gather a sufficiently large sample. A pass verdict is
given, if the observation is likely enough under a fitting trace distribution. If no
suitable trace distribution exists, the observed behaviour cannot be explained
by the requirements specification and the fail verdict is given.

Lastly, only if an implementation passes both the functional and statistical
test verdicts, it is given the overall verdict pass.

4.2.4 Correctness of the Framework

Talking about soundness and completeness when referring to probabilistic systems
is not a trivial topic, since one of the main difficulties of statistical analysis is the
possibility of false rejection, or false acceptance, respectively. This means that
the application of null hypothesis testing inherently includes the possibilities
to erroneously reject a true hypothesis, or to falsely accept an invalid one by
chance. We refer to Appendix [AZ2] for more details.

The former is of interest when we refer to soundness, i.e. what is the
probability that we erroneously assign fail to a conforming implementation. The
latter is important when we talk about completeness, i.e. what is the probability
that we assign pass to a non-conforming implementation. Thus, a test suite can
only fulfil these properties with a guaranteed (high) probability, as reflected in
the verdicts we assign, cf. Definition .25

Definition 4.26. Let S be a pIOTS over an action signature (Acty, Acto),
a € (0,1) be the level of significance and T' an annotated test suite for S. Then

e T is sound for S with respect to Tpioco, if for all input-enabled implemen-
tations T € pIOTS and sufficiently large m € N it holds for allt € T

Z Chioco S = V(Z, t) = pass.

o T is complete for & with respect to Cpioco, if for all input-enabled imple-
mentations T € plOTS and sufficiently large m € N, there is at least one
t €T, such that

T ;zpioco S = V(I, tA) = fazl

Even though the parameters k,m and « are not explicitly present in the
overall verdict function V', they are implicitly used by the statistical verdict
Vstat, cf. Definition They were left out here for readability.

Soundness for a given o € (0,1) expresses that we have a 1 — « chance that
a correct system will pass the annotated suite. This relates to false rejection of
a correct hypothesis or correct implementation respectively.

70 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Theorem 4.27. Each annotated test for a pIOTS S is sound for every level of
significance o € (0,1) with respect to Tpioco-

Proof sketch. We assume Z to be an input enabled pIOTS and 7 to be an
annotated test for S. The statement is proven by showing that Z Cpipco S
implies V(Z,t) = pass, which entails to show that both the functional and the
probabilistic verdict yield pass.

e Functional correctness requires that all o € traces®™ (Z||f) have the pass
annotation. This is shown by considering a prefix ¢’ of ¢ in the finite
traces of S. The intuition is showing that ¢’a is a trace in S for all
outputs a enabled after ¢’ in Z. There is a trace distribution D of S that
assigns o’ positive probability. Without loss of generality, we choose a trace
distribution in outcontz (D) that assigns o’ a positive probability. Together
with the Z Cpjoco S assumption, this shows that o’ a gets assigned positive
probability in S under this trace distribution. Hence ¢’a is in the finite
traces of S and consequently gets assigned the pass annotation. Since this
holds for all such prefixes o’ this yields vfun.(Z,%) = pass.

e Probabilistic correctness requires that all observations of Z || get assigned
a measure greater or equal to 1 — « for a trace distribution of S, i.e.
they are acceptable outcomes of S. The proof encompasses to choose
D € trd(T||t, k), and showing that then also D € trd(S). This is sufficient
by merit of the definition of observations (Definition , i.e. we always
have Pp(0Obs(D,a, k,m)) > 1 — « for any D.

This is done in three steps 1. D might still schedule positive probability to
input actions in the k-th step; we choose a new scheduler that assigns all
this probability mass to halting instead. Note that the measure of OutObs
is unaffected by this change, since it comprises traces ending in outputs
only. 2. We show that D is a trace distribution of trd(Z). Intuitively,
T ||t is internally deterministic by the construction of test cases. Hence,
there is an injective mapping from paths of Z || to paths of Z. We thus
construct a scheduler in Z that copies the behaviour of the scheduler of
T||t step-by-step. Lastly, 3. we apply the assumption Z Cpioc0 S to show
D € trd(S). Finally, this yields vy.0p(Z,t) = pass.

Since both sub-verdicts were shown to yield pass we conclude that the overall
verdict is pass i.e. all tests for S are sound with respect to Tpjoco- O]

Completeness of a test suite is inherently a theoretical result. Since we allow
loops, we require a test suite of infinite size. Moreover, there is the chance of
falsely accepting an erroneous implementation. However, this is bound from
above by construction, and decreases for bigger sample sizes, cf. Definition [£.23]

Theorem 4.28. The set of all annotated test cases for a specification S is
complete for every level of significance a € (0,1) with respect to Cpioco for
sufficiently large sample size.

CHOICE AND CHANCE 71

Proof sketch. We assume Z to be an input enabled pIOTS and T to be the test
suite containing all annotated test cases for S. The statement is proven by
showing that Z Z ;. S implies V(Z, T) = fail, i.e. there is a test case t such
that either the functional, or the probabilistic verdict fails. Assuming Z Zpioco S
implies the existence of a trace ending in output in Z, such that its probability
cannot be matched under any trace distribution in S. Generally, this can have
two causes: 1. the mismatch arises due to the fact that the trace is simply not
present in S, or 2. all such traces are present in S, and the mismatch arises due
to different inherent probability distributions in Z and S. We show that the first
implies vpync(Z, T) = fail, and the second implies vprop(Z, T) = fail.

e Showing that the functional verdict yields fail is straightforward, and
requires us to show that there is a test case for which the trace not present
in S has the fail annotation. The proof follows directly from the definition
of test cases and test annotations (Definition and Definition [4.20)),
and the fact that T" contains all test cases for S.

e In order to show that the probabilistic verdict yields fail, we need to show
that there is a test case £ and a trace distribution of Z || #, under which
all observations get assigned a measure smaller than 1 — « for all trace
distributions of S for sufficiently large m. It is clear by the definition of
acceptable outcomes (Definition [£.23)) that Pp(OutObs(D’, o, k,m)) < B,
for some B, — 0 as m — oo whenever D # D’. By the initial assumption
Z Zpioco S, we know this holds for all D’ € outconts(D*) with D* €
trd(S, k). This estimation does not change, if we increase the search space
to all D’ € trd(S,k + 1) instead, as the measure of the OutObs set is
maximised for trace distributions of outcont.

It remains to be shown that for a trace distribution D € outcontz(D*),
there is a test case € T, such that D € trd(Z ||). By assumption, all
traces getting assigned positive probability under D are traces in S. We
thus select a test case ¢ containing all such traces. The IOTS structure and
absence of internal actions in ¢ imply Z || to be internally deterministic. In
particular, there is no interleaving. This means, there is a scheduler in Z ||
that copies the behaviour of the underlying scheduler of D step-by-step. A
careful construction thus results in D € trd(Z||f), for which all D’ € trd(S)
assign all of D’s observations a measure smaller than 1 — « for sufficiently
large m. This yields exactly vy, (Z, 1) = fail.

Since the mismatch of probability of a trace has to belong to one of the two
cases, we have thus shown that V(Z,T) = fail. O

4.3 Implementing Probabilistic Testing

The previous section laid the theoretical foundations of our pIOTS-based testing
framework. Several aspects were defined rather abstractly, for which we now

72 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

provide practical procedures. That is, we link the theory of Section [.2] to
applicable methods and algorithms.

First, we recall the two algorithms of Chapter [3] There, we defined the batch
generation algorithm, and the on-the-fly algorithm. We present basic alterations
that instantiate the non-deterministic choices of stimulation, observation or
stopping via a uniform probabilistic choice. Albeit their striking similarity, the
new algorithms are subsequently proven to be correct.

While the functional evaluation solely depends on test cases and their an-
notations, the statistical analysis of gathered sample data in MBT is largely
unexplored. Since the underlying implementation model is unknown to an
external observer, we require concrete procedures to perform the statistical
tests of Section In particular, we need practical methods to conclude the
probabilistic verdict of Definition [4.25] This comprises practical measures to
judge deviation of a sample to its expectations. To this end, we utilize hypothe-
sis testing, particularly Pearson’s y2-testing as a measure of distance. Recall
that expected probabilities of a pIOTS are only meaningful in tandem with a
scheduler. Hence, our interest lies in finding a well-fitting scheduler to minimise
the x? score, that expresses the distance of sample and expectations.

4.3.1 Test Generation Algorithms

We present algorithms to generate tests according to Definition A batch
generation algorithm and an on-the-fly test algorithm. The first is used to
generate and store test cases before their execution. This is advantageous
when gathering a sample, where a single test case is required to be executed
several times. The latter algorithm provides inputs and catches potential system
responses during run-time of the implementation. Generally, model-based testing
tools possessing an on-the-fly algorithm give the option of manually setting a
seed for the random number generator [15], thus reproducibility is covered in
this case, too.

Batch generation. The recursive procedure batchGen in Algorithm [£.1] gen-
erates test cases according to Definition [£.18] It requires a specification pIOTS
S, a history o, which is initially the empty history ¢, and a maximal length of
test cases n € N. The procedure initially starts with the empty history and recur-
sively calls itself to add additional branches to the current history. A branch is
terminated, if the procedure returns the empty history €. The procedure draws a
random number p from the uniform distribution over [0, 1], presenting the choice
of stimulation, observation or stopping (line . If p € [0,0.33] the procedure
stops (line [3)), if p(0.33,0.66] the implementation is observed (line [4]), and if
p € (0.66,1] a stimulus is sent (line [13). This represents a simple probabilistic
implementation of the non-deterministic batch generation algorithm studied in
Chapter [3] The additional condition in line [3| ensures eventual termination upon
reaching a maximal test length.

Lines describe the step of observing the system; A branch is instantiated
for every output action in Acto (line @ If a particular output is foreseen in the

CHOICE AND CHANCE 73

Algorithm 4.1: Batch test generation for pIOTSs.

Input: Specification pIOTS 8, history o € traces™ (S) and maximal test length n € N.
Output: A test case t for S.
1 Procedure batchGen(S, o, n)

2 Draw random number p € Uni[0, 1]

3 if o] <nAp¢0,0.33] :

4 if p € (0.33,0.66] :

5 i:=1

6 forall b! € Acto do:

7 if ob! € traces™(S) :

8 | result[i] := {blo’ | o’ € batchGen (S,ob!,n)}
9 else:

10 | resultfi] := {b!}

11 ii=i+1
12 | return result[l],...result[|Actol]
13 if p € (0.66,1] :
14 Choose a? € Acty uniformly, such that o - a? € tmcesﬁ”(S)
15 result := {a?0’ | o’ € batchGen (S,ca?,n)}
16 | return result
17 else:
18 | return {e}

specification, it is added to the current branch, and the procedure batchGen is
called again (line . If not, it is simply added to the branch (line . In the
latter case, the branch of the tree stops and is to be labelled fail in a subsequent
annotation step not present in the current procedure. Note, that batchGen is
not called again in this instance, as erroneous output was already observed, and
further testing is not needed. Lines [I3}I6] refer to stimulation of the system, by
providing a random input. An input action a? present in the specification S is
chosen, added to the branch, and batchGen is called again.

A history is concatenated with the result of the procedure batchGen, thus
a pIOTS in tree shape is continuously constructed. Eventually, the algorithm
recursively returns the empty string in line [I§] thus ensuring termination. Note
that no implementation is needed for the generation of a batch test. We point out,
that the procedure is a very basic form of random testing. More sophisticated
algorithms are possible by finding different ways to assign concrete values for the
stopping, observation and stimulation probability intervals. For instance, [69]
claims that assigning a relation of 33% observation and 67% stimulation yielded
better test results in practice, i.e. never terminate a branch before maximal test
length is reached, stimulate in 67% of the cases, and observe with 33%. While
there is no formal reasoning as to why this particular approach is of advantage
over other choices, it provides a good starting point for further research.

On-The-Fly Algorithm Algorithm presents how to evaluate a trace
on-the-fly according to Definition [£:20] It requires a specification S, an imple-
mentation Z and a maximal length n as inputs. The algorithm is a basic form
of random testing, as opposed to its non-deterministic counterpart of Chapter

Initially, the algorithm starts with the empty history and concatenates an

74 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Algorithm 4.2: On-the-fly test derivation for pIOTSs.

Input: Specification pIOTS S, implementation Z and upper bound for test length n € N.
Output: Verdict pass if Impl. was ioco in the first n steps and fail if not.

1 0:=¢

2 while |o]| < n do:

3 Draw random number p € Uni [0, 1]

a if p € [0,0.5] :

5 observe next output b! (possibly §) of T

6 o :=ob!

7 if o ¢ traces"™(S): return fail

8 else:

9 L Choose a? € Act; with o a? € traces'™(S) uniformly and stimulate T with a?
10 o:=oca?

11 return pass

action label after each step. It terminates after n steps were executed, or observed
(line , where |o| denotes the length of the currently observed trace. Observing
the system for outputs is reflected in lines In case output (incl. quiescence)
is observed, the algorithm checks whether this is allowed by specification. If so,
it proceeds with the next iteration, or returns the fail verdict otherwise. Lines
describe the stimulation process. The algorithm applies an input specified
in the requirements model.

The algorithm returns whether a fail label was encountered in the first n
steps. If erroneous output was detected, the resulting verdict is fail, and a pass
verdict is given otherwise. Note that the probability of observing, or stimulating
are arbitrarily chosen with equal probability, i.e. 50%.

Theorem 4.29 (Algorithmic correctness). (i) All test cases generated by Al-
gorithm [{.1] are test cases according to Definition[{.18

(i1) Every functionally correct implementation gets assigned the pass verdict by

Algorithm [[.2

Proof sketch. The algorithms are one instantiation of non-deterministic choices
as encountered in Algorithms [3.1] and via uniform probability choices. Since
test cases are essentially defined as IOTSs (Definition |4.18]), and test annotations
are defined equivalently as for Chapter [3| (Definition the proofs are similar
to the ones for Proposition originally presented in [169], and are not further
discussed here. For a more formal proof, we refer to the proof section, i.e.
Section .6l O

4.3.2 Goodness of Fit

The previously presented algorithms provide a practical method to not only
automatically generate test cases and annotate them, but to also infer about the
functional verdict that an implementation under test should receive. However,
we still lack a method to infer about the probabilistic correctness, i.e. a method
to check whether discrete probability choices were implemented correctly. We
aim to cover the lack thereof in this section.

CHOICE AND CHANCE 75

This is especially relevant, since we do not have access to the underlying
implementation model. Thus, having defined formal conformance with the pioco
relation does not suffice. Instead, a practically applicable method similar to
test annotations is needed. In order to overcome this, we consult a fundamental
theorem from the literature [40], which we slightly adjusted to fit the canon of
this chapter.

Proposition 4.30 (Cheung, Stoelinga & Vaandrager). Let A and B be two
pIOTSs, o € (0,1) and k € N. Then

trd(A, k) C trd(B, k) <= Vm € N: Obs(A, o, k,m) C Obs(B, a, k,m).

The result says, that we have an embedding of finite trace distributions iff we
have an embedding of the observation sets. Hence, showing that all observations
of the implementation under test are also possible in the specification model
implies an embedding on the trace distribution level. As a result, the statistical
verdict of Definition yields a pass.

However, much like we cannot possibly infer all traces and investigate their
respective annotations for a functional verdict, it is impossible to gather all
possible observations. This is due to the fact, that there is no guarantee of even-
tually observing every possible sample, since there are potentially uncountably
many trace distributions to account for. In a practical scenario, it is much more
likely to have one sample O originating from the implementation under test.
To cope with the lack of information of the entire observation set, we resort to
statistical hypothesis testingﬂ

A sensible null-hypothesis is given by O € OutObs(S, a, k,m). The level of
significance « gives us the parameter for the hypothesis test.

We point out two important facts:

e Accepting the null-hypothesis does not imply its correctness; It just means
we have not (yet) found enough evidence to prove it wrong. Even though
we might commit an error of second kind, we assume that the embedding
of observations holds, and alongside Proposition also the embedding
of trace distributions, resulting in the statistical pass verdict.

e Rejecting the null-hypothesis, even though it is true, has a probability of
a. Thus, rejecting it, alongside the implementation under test wields a
certain probability to commit an error of first kind. However, the chance
of this happening is limited by «, and is thus in line with the observations
of the frameworks’ correctness, cf. Definition

Remark 4.31. The possibility to commit an error of first or second kind implies
that the given verdict is not absolute in its correctness. While both quantities are
natural in statistical hypothesis testing, an error of second kind is omnipresent
in the model-based testing approach.

Since testing is inherently incomplete, flaws might still be present, even though
the implementation underwent a thorough test process. Thus, what may appear

4We refer the reader to Appendix for a short introduction to the topic.

76 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

as a weakness of the proposed framework, is naturally inherited from the overall
MBT approach. Errors of first kind are simply a bi-product of working in a
probabilistic environment, and are controllable via the parameter «.

We remain to investigate the null-hypothesis, i.e. attempting to find a trace
distribution D € trd(S, k), such that O € OutObs(S, a, k, m). Finding said trace
distribution implies the acceptance of the null-hypothesis, while failing to find
one means its rejection.

To find a fitting trace distribution we resort to Pearson’s y2-hypothesis
testing. The empirical x2 score of a sample O is calculated as

w3 el o), 12

7=

where n (o) is the number with which o occurred in the sample. The score can
be understood as the normalised cumulative sum of deviations from an expected
value. Note that this entails a more general analysis of a sample than individual
confidence intervals for each trace. The empirical x? value is compared to critical
values of given degrees of freedom and levels of significance. These values can be
calculated, or universally looked up in a x? table (Appendix . If the empiric
x? is below the given threshold, the hypothesis is accepted, and consequently
rejected if not.

Since the expected value EP depends on a trace distribution, it is of interest
to find a fitting one, i.e. find D such that x? < 2 This turns into an
optimisation or constraint solving problem, i.e.

it

i (n (0;) —m -EP (00)2.

pelibn s mEP(a)

(4.3)

The probability of a trace is given by a scheduler and the corresponding path
probability function (Deﬁnition. Hence, by construction, we want to optimize
the probabilities p used by a scheduler to resolve non-determinism. This turns
into a minimisation, or constraint solving, of a rational function f (p) /g (p)
with inequality constraints on the vector p. As shown in [137], minimizing
rational functions of this general form is NP-hard.

Optimization naturally finds the best fitting trace distribution. Hence, it
gives an indication on the goodness of fit, i.e. how close to a critical value the
empirical x? value is. Alternatively, instead of finding the best fitting trace
distribution one could turn into a satisfaction or constraint solving problem
in values of p. This answers if values of p exist such that the empirical x2? value
lies below the critical threshold.

Example 4.32. Recall Ezample [[.23 and assume we want to find out, if the
sample presented on the right in Figure[{.10is an observation of the specification
of the shuffle music player, cf. Figure[{.5d We already established

CHOICE AND CHANCE 77

o ifi=1 15 ifi=1
24 a9 24 ifi=2
freq (0) (o) = ¢ 1% zfz and n(o;) = zfz
00 Yi=3 26 ifi=3
B ifi=4 35 ifi=4.

If we fiz a level of significance at o = 0.1, the critical x? value is given as
X2, = 6.25 for three degrees of freedom (Appendiz . We have three degrees
of freedom, since the frequency of the fourth trace is implicitly given, if we know
the rest.

Let A be a scheduler, that schedules shuf? with probability p and the distri-
bution consisting of songl! and song2! with probability q in Figure [[.5d. We
ignore the other choices the scheduler has to make for the sake of this example.
We are trying to find values for p and q such that the empiric x? value is smaller
than X2, i-e. find p,q € [0,1] such that

oihrsodt | Gioaegm’ | (ibases? | ottt g,
Using MATLABs [86] function fsolve() for parameters p and q we quickly find
the best empiric value as x* = 8.08 > 6.25. Hence, the minimal values for p and
q provide a x% minimum, which is still greater than the critical value. Therefore,
there is mo scheduler of the specification pIOTS that makes O a likely sample.
Consequently, we reject the null-hypothesis alongside the implementation

Contrary, assume Figure were the requirements specification, i.e. we
require songl! to be chosen with only 40% and song2! with 60%. The satisfaction
problem for the same scheduler then becomes: find p,q € [0, 1]
R
because of different specified probabilities. In this case MATLABs [86] fsolve()
gives the best empiric x* value as x* = 0.257 < 6.25 = x2,, forp=1 and ¢ = 1.
Hence, we found a scheduler that makes the sample O most likely and accept the
hypothesis, alongside the implementation.

4.3.3 Probabilistic Test Algorithm Outline

We summarize all necessary steps to perform model-based testing for probabilistic
systems using our framework:

1. Generate a test case (suite resp.) for the specification pIOTS.

2. Execute a test case (all test cases of the test suite resp.) m times. If the
functional fail verdict is encountered in any of the m executions, then fail
the implementation for functional reasons.

3. Perform statistical analysis on the sample of size m for the test case (all
test cases of the test suite resp.) by using optimisation or constraint solving.
If a scheduler is found, such that x? < x2,,, accept the implementation. If
not, reject the implementation for probabilistic reasons.

78 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

4. If no fail was encountered during the process, accept the implementation.

Note that item 1 only applies in case the batch-generation algorithm in Algo-
rithm is used. Upon using the on-the-fly test algorithm, it is preferable to
use the same seed for the random number generator. In this way, we guarantee
to create the same test in every execution, even though different outcomes for
probabilistic choices may occur.

4.4 Experiments

We present experimental results of our framework applied to three classical case
studies known from the literature:

1. the Knuth and Yao Dice program [114],
2. the binary exponential backoff protocol [106], and
3. the FireWire root contention protocol [165].

outputs .
- JTorX sampling
SUT — | Log files
-
Spec.

inputs

J analysis

functional verdict

Verdict: MATLAB

-
pass or fail / stat. verdict

Figure 4.11: Experimental set up entailing the system under test, the MBT tool
JTorX [I5] and MATLAB [86]. Logs are gathered during the conformance test,
and analysed later for a verdict on the implemented probabilities.

Our experimental set up can be seen in Figure We implemented the three
case studies in Java 7, and connected them to the MBT tool JTorX [15]. JTorX
was provided with a specification for each of the three case studies. Note that
JTorX is not capable of handling probabilistic specifications, and we had to
resort to IOTSs. However, it implements ioco theory, which corresponds to the
functional verdict. It generated test cases on the fly for each of the applications
and the results were saved in log files. For each application we ran JTorX from
the command line to initialize the random test generation algorithm. In total
we saved 10° log files for every application.

The statistical analysis used MATLAB [86]. The function fsolve() was
used for optimisation purposes in the parameters p, which represent the choices
that the scheduler made. The statistical verdicts were calculated based on a

CHOICE AND CHANCE 79

level of significance ov = 0.1. Note that MATLAB gave the best fitting scheduler
for each application, instead of just any scheduler that keeps the x? score below
the threshold. We manually created mutants that implemented probabilistic
deviations from the original protocols to analyse if they could be identified.
All mutants were correctly given the statistical fail verdict, and all supposedly
correct implementations yielded in the statistical pass verdict.

4.4.1 Dice programs by Knuth and Yao

The dice programs by Knuth and Yao [I14] aim at simulating a 6-sided die
with multiple fair coin tosses. Formally, the discrete uniform distribution on
the numbers 1 to 6 is simulated by repeatedly evaluating the discrete uniform
distribution of the numbers 1 and 2. It is a classical example, and simple
benchmark in probabilistic model checking [118]. An example specification
model for a die using a fair coin, thus resulting in a fair 6 sided die roll, is given
in Figure Note that there is no non-determinism in this model.

N[=

Figure 4.12: Dice program KY1 based on Knuth and Yao [I14]. Rolling a 6-sided
die is simulated by repeated tosses of a fair coin.

Set Up. To incorporate a non-deterministic choice, we implemented a program
that chooses between a fair die, and an unfair (weighted) one. The unfair die uses
an unfair coin to evaluate the outcome of the die roll. The probability to observe
head with the unfair coin was set to 0.9. A model of the choice dice program
can be seen in Figure 4.13] The action roll? represents the non-deterministic
choice of which die to roll.

We executed two experiments with this implementation: The first utilizes
Figure as specification, while the second uses Figure [£.13] as specification.
However, both use the same implementation described above. We expect that
using a fair die as specification rejects the implementation, while the non-
deterministic one does not.

80 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Figure 4.13: Dice program KY2 based on Knuth and Yao [114] version 2. The
starting state enables a non-deterministic choice between a fair and an unfair
die. The unfair die uses an unfair coin to determine its outcomes. The coin has
a probability of 0.9 to yield head.

-] .| B oww

Observed value 29473 29928 10692 12352 8702 8853 100000
Relative frequency 0.294 0.299 0.106 0.123 0.087 0.088 1
. 1 1 1 1 1 1
Exp. probability KY1 8 H H H H 8 1
Exp. probability KY2 | §+ (555 | g+ Uit | b+ U0 | gy O | £ G52 | 0 U580 | 1

Table 4.2: Observation of Knuth’s and Yao’s non-deterministic die implementa-
tion, and their respective expected probabilities according to specification KY1
(Figure or KY2 (Figure . The parameter p depends on the scheduler
that resolves the non-deterministic choice on which die to roll in KY2.

Results. We chose a level of significance @ = 0.1 and gathered a sample of
10° traces of length 2, i.e. roll? followed by the outcome of the die role. We
stored the logs for further statistical evaluation. The test process never ended
due to erroneous functional behaviour. Consequently we conclude that the
implementation is functionally correct.

Table presents the statistical results of our simulation and the expected
probabilities if

1. Model KY1 of Figure [I.12]is used as specification, and
2. Model KY2 of Figure £.13]is used as specification.

Note that we left out the roll? action in the presented table for readability.
Since there is no non-determinism in KY1, we expect each value to have a
probability of %. In contrast, there is a non-deterministic choice to be resolved
in KY2. Hence, the expected value is given depending on the parameter p, i.e.
the probability with which the fair, or unfair die are chosen.

In order to assess if the implementation is correct with respect to a level

CHOICE AND CHANCE 81

of significance o = 0.1, we compare the x? value for the given sample to the
critical one given by Xg-lb = 9.24. The empirical x? value is calculated as the
normalised cumulative sum of the squared errors for each trace (Equation)
The critical value can universally be calculated or looked up in a x? distribution
table (Appendix. We use the critical value for 5 degrees of freedom, because
the outcome of the sixth trace is determined by the respective other five.

KY1 as specification. The calculated score approximately yields y%y,; =
31120 > 9.24 = X(2).1,5' The implementation is therefore rightfully rejected,
because the observation did not match our expectations.

KY?2 as specification. The best fitting parameter p with MATLABs fsolve()
yields p = 0.4981, i.e. the implementation chose the fair die with a
probability of 49.81%. Consequently, a quick calculation showed X%y, =
5.1443 < 9.24 = X3 ; 5. Therefore, the implementation is assumed to be
correct, because we found a scheduler, that chooses the fair and unfair die
such that the observation is likely with respect to a = 0.1.

Our results confirm our expectations: The implementation is rejected, if we
require a fair die only (Figure [4.12)). However, it is accepted if we require a
choice between the fair and the unfair die (Figure 4.13)).

4.4.2 The Binary Exponential Backoff Algorithm

The Binary Exponential Backoff algorithm is a standardized data transmission
protocol in the IEEE 802.3. between N hosts, trying to send information via
one bus [106]. If two hosts try to send at the same time, their messages collide
and they pick a waiting time before trying to send their information again.
After i collisions, the hosts randomly choose a new discrete waiting time of the
set {0,...2° — 1} until no further collisions take place. Note that information
thus gets delivered with probability one since the probability of infinitely many
collisions is zero.

Set Up. We implemented the protocol in Java 7 and gathered a sample of
105 traces of length 5 for two communicating hosts. Note that the protocol is
only executed if a collision between the two hosts arises. Therefore, each trace
we collect starts with the collide! action. This is due to the fact that the two
hosts initially try to send at the same time, i.e. discrete time unit 0. If a host
successfully delivers its message it acknowledges this with the send! output and
resets its clock to 0 before trying to send again.

Our specification of this protocol does not contain non-determinism. Thus,
calculations in this example were not subject to optimization, or constraint
solving to find the best fitting scheduler/trace distribution.

Results. The gathered sample is displayed in Table [£.3] The values of n show
how many times each trace occurred. For comparison, the value m - E (o) gives
the expected number according to the specification of the protocol. Here, m is

82 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

ID Trace o n ~ mkE (o) [lo.1,u0.1] ~ %
1 | collide! send! collide! send! send! 18656 18750 | [18592,18907] 0.47
2 | collide! send! collide! send! collide! 18608 18750 | [18592,18907] 1.08
3 | collide! collide! send! collide! send! 16473 16408 | [16258,16557] 0.26
4 | collide! collide! send! send! collide! 12665 12500 | [12366, 12633] 2.18
5 | collide! send! collide! collide! send! 11096 10938 | [10811,11064] 2.28
6 | collide! collide! collide! send! send! 8231 8203 [8091, 8314] 0.10
7 | collide! collide! send! send! send! 6108 6250 (6152, 6347] 3.23
8 | collide! collide! collide! send! collide! 2813 2734 [2667, 2800] 2.28
9 | collide! collide! send! collide! collide! 2291 2344 [2282, 2405] 1.20

10 | collide! send! collide! collide! collide! 1538 1563 [1512,1613] 0.40

11 | collide! collide! collide! collide! send! 1421 1465 [1416,1513] 1.32

12 | collide! collide! collide! collide! collide! 100 98 [85,110] 0.04

\2 = 14.84
Verdict: Accept

Table 4.3: A sample of the binary exponential backoff protocol for two communi-
cating hosts. We collected a total of m = 10° traces of length k& = 5. Calculations
yield 2 = 14.84 < 17.28 = x2,,, = X(2).1,11v hence we accept the implementation.

the total sample size and E (o) the expected probability. The interval [lg.1,70.1]
was included only for illustration purposes and represents the 90% confidence
interval under the assumption that the traces are normally distributed. It gives
a rough estimate on how much values are allowed to deviate for the given level
of confidence o = 0.1, but has no meaning otherwise.

However, we are interested in the multinomial deviation, i.e. less deviation
of one trace allows higher deviation for another trace, and vice versa. In order
to assess the statistical correctness, we compare the critical value x?,,, to the
empirical x? score. The first is given as %, = x3., = 17.28 for a = 0.1 and 11
degrees of freedom. This value can universally be calculated or looked up in a
x? distribution table (Appendix. The empirical value is given by the sum
of the entries of the last column of Table i.e. the cumulative squared error.

A quick calculation shows x? = 14.84 < 17.28 = x3 1, Consequently, we
have no statistical evidence that hints at wrongly implemented probabilities in
the backoff protocol. In addition, the test process never ended due to a functional
fail verdict. Therefore, we conclude that the implementation is correct.

4.4.3 The FireWire Root Contention Protocol

The IEEE 1394 FireWire Root Contention Protocol [I65] elects a leader between
two contesting nodes via coin flips: If head comes up, node i picks a waiting
time fast; € [0.24us,0.26ps], if tail comes up, it waits slow; € [0.57us, 0.60us].
After the waiting time has elapsed, the node checks whether a message has

CHOICE AND CHANCE 83

Correct | M M, Ms3 M,

ID Trace o ~ mEP (o) (p) N, n, Ny, | Mg na,
1| ¢1? slowica? slowsretry! 6250 - p 3148 1113 3091 3055 3161
2 | e1? slowica? slowsdone! 18750 - p 9393 3361 9047 9242 9329
3 | c1? slowyca? fast,done! 25000 - p 12531 40507 | 18163 | 15129 | 12982
4| ¢1? fastico? fastyretry! 8333 -p 4254 1467 4037 4066 4179
5 | e1? fastica? fastydone! 16667 - p 8227 3048 7858 8474 8444
6 | c1? fast ca? slowadone! 25000 - p 12438 504 7918 | 10128 | 11867
7| ea? slowaer? slowqretry! 6250 - (1 —p) 3073 1137 2961 3256 3135
8 | ¢a? slowacy? slowydone! 18750 - (1 — p) 9231 3427 9069 9456 9368
9 | 2?7 slowsc1? fast;done! 25000 - (1 — p) 12657 447 8055 9685 | 11975
10 | 27 fastyei? fastretry! 8333-(1—p) 4211 1466 4008 4131 4199
11 | 27 fastyer? fast;done! 16667 - (1 —p) 8335 2977 7969 8295 8312
12 | 27 fastyci? slowydone! 25000 - (1 —p) 12502 | 40546 | 17824 | 15083 | 13049
Dopt = 0.499 0.498 | 0.502 | 0.500 | 0.499
X2~ 9.34 | 169300 8175 2185 | 99.22
Verdict | Accept | Reject | Reject | Reject | Reject

Table 4.4: A sample of length k = 5 and depth m = 10° of the FireWire root
contention protocol [165]. Calculations of x? are done after optimization in the
parameter p. It represents which node got to flip its coin first.

arrived: if so, the node declares itself leader. If not, the node sends out a
message itself, asking the other node to be the leader. Thus, the four possible
outcomes of the coin flips are: {fast,, fasty},{slowy, slows}, {fast;, slows} and
{slowy, fasty}. Since pIOTSs cannot handle time, the check for exact waiting
times was excluded.

The protocol contains non-determinism [I65] as it is not clear, which node
flips its coin first. Further, if different times were picked, e.g. fast; and slows,
the protocol always terminates. However, if equal times were picked, it either
elects a leader, or retries depending on the resolution of the non-determinism.

Set Up. We implemented the root contention protocol in Java 7 and created
four probabilistic mutants of it. The correct implementation C' utilizes fair coins
to determine the waiting time before it sends a message. The mutants M7, Mo,
M3 and M, were subject to probabilistic deviations giving advantage to the
second node via:

Mutant 1. P (fast;) = P (slowz) = 0.1,
Mutant 2. P (fast;) = P (slows) = 0.4,
Mutant 3. P (fast;) = P (slows) = 0.45 and
Mutant 4. P (fast,) = P (slows2) = 0.49.

84 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

Statistically, the mutants should declare node 1 the leader more frequently. This
is due to the fact that node 2 sends a leadership request faster on average.

Results. Tableshows the 10° recorded traces of length 5, where ¢;? and cy?
denote the coins of node 1 and node 2 respectively. The expected value EP (o)
depends on resolving one non-deterministic choice by varying p (which coin was
flipped first). Note that the second non-deterministic choice was not subject
to optimization, but immediately clear by the collected trace frequencies. The
second column shows how many observations of the respective trace we expect
for given sample size m. The remaining columns show actual trace frequency
observations of the various mutant implementations

The empirical x? score was calculated depending on parameter p and com-
pared to the critical value x2 ;. The latter is given as x2,,, = x5, = 17.28 for
a = 0.1 and 11 degrees of freedom. We used MATLABs fsolve() to find the
optimal value for p, such that the empirical value x? is minimal. The resulting
verdicts can be found in the last row of Table £:4] The only accepted implemen-
tation was C, because xZ < 17.28, whereas X?wi > 1728 fori =1,...,4.

4.5 Summary and Discussion

We defined a sound and complete framework to test probabilistic systems. At
the core of our work is the conformance relation in the ioco tradition aptly
called pioco. We presented how to automatically derive, execute and evaluate
probabilistic test cases from a requirements model. The evaluation process
handles functional and probabilistic behaviour. While the first can be assessed
by means of ioco theory, we utilize frequency statistics in the latter. Our
soundness and completeness results show that the correct verdict can be assigned
up to arbitrary precision by means of a level of significance for a sufficiently
large sample. We illustrated the application of our framework by means of
three case studies from the literature: Knuth’s and Yao’s dice application, the
binary exponential backoff protocol and the FireWire leadership protocol. The
test evaluation process found no functional misbehaviour, indicating that the
implemented functions were correct. Additionally, all correct implementations
were given the statistical pass verdict, while all mutants were discovered.

Recall that Table [2.1]laid out a scaffold for an arbitrary MBT framework. All
ingredients were instantiated throughout this chapter. We point out, that the
MBT tool JTorX is not capable of handling probabilities [I5] on its own We used
a shell script to execute it from the command line, and utilized MATLAB for
statistical evaluation of the collected log files. Both steps seem easily automatable.
However, some steps were performed manually, e.g. the calculation of the
parametrised expected probabilities under a given trace distribution. If one
dismisses the set up difficulties encountered upon using the MBT in practice, the
bottleneck of the approach lies, in fact, in the optimization or SAT solving part.
A solution could be the assumption of smaller scheduler classes than history
dependent ones.

CHOICE AND CHANCE 85

Physical Ingredients: Formal Ingredients:
e Informal requirements e Model: Definition [£.1} pIOTS
e Black-box implementation e Conformance: Definition [£:.14]
e Observations: Definition [£.23] Epioco
Obs(Z||t, o, k,m) e Test verdicts: Definition .25
Tooling: Objectives:
e MBT tool: JTorX [15] e Soundness: Theorem [4.27]
e Test adapter: Implementable e Completeness: Theorem [1.2§]
e Test generation method: Algo-
rithms and Random
testing
Assumptions:

e Every physical implementation has an underlying pIOTS model

Table 4.5: The MBT ingredients instantiated by the pioco framework.

4.6 Proofs

We present the proofs of the theorems within this chapter, alongside an additional
lemma. Reoccurring theorems are numbered according to their occurrence in
the chapter, while additional content is numbered alphanumerically.

Lemma A. Let T be a IOTS, and o1, . ..,0, € traces™(I) be pairwise distinct
traces of length k. Further, let py,...,p, € [0,1] with >, p; = 1. Then there
is D € trd(Z, k), such that Pp (0;) = p; for alli=1,...,n.

Proof. Let T = (S, so, Acty, Acto, Actg, A) be an IOTS. Then (s,) € A implies
p = Dirac, because Z is an IOTS. Since o; € traces™(I) for i = 1,...,n, there
must be at least one 7; € tr~!(o;) for each i. Without loss of generality, choose
one T; for each o;. Note that m; # m; for ¢ # j, since o; # o, for i # j.

We proceed with the construction of a scheduler A. Let

As)w) = Y pe
{i€N|sg pasCm;}

Further we set

A(’ﬂ' M/ a S/)(u) _ Z{iEN\ﬂu’ a’ s’,uasgm}pi
Z{iENhr u'a's'Cmy} Di

Observe that A is a scheduler according to Definition since p; € [0, 1] for

86 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

i=1,...,n, and
Z Also) (1) = Z Z pi = Zpi =1
(so,n)EA (s0,u) €A {i€N|so pa sCm;} i=1

by assumption, as well as

Z i€N|m ' a’ s’ pasCm; Di
Z A(’/T‘[L/CL/S/)(,M) _ Z {ieN|m p pasCm}

(+"men (s AtieNinp o s T} Pi

Z(s/ﬂu)EA Z{ieNh\' p'a's pastm;} bi

Z{iEN\Tr p'a s'Cmy} Di

Z{iGN\wp/ a’ s/gm}pi -1

Z{ieN\ﬂu’ a’ s'Cmy} Di
The path probability function induced by A, yields for the cone of all paths

T = So U1 @1 S1 - - - tgy, Qg Sy, that

{j€N|so p1 a1 s1Cmy}

Z{jEI\Hso p1 a1 siCmj} bj

2 {jeN|n,Cri} Pi

E{jeN\so H1G1 ST iy —1 @iy —1 Sik—lgﬂ'j}p‘j
= Db

as a telescope product. Since all 7; are distinct, it is consequently easy to check
that Pyqa)(0i) = PalCr,] = pi- O

Theorem Let T and S be two I0TSs and L be input enabled, then
7z Eioco S =1 Epioco S.

Proof. Let Z Cpioeo S and o € traces™(S). Our goal is to show that
outz (o) C outs (o). Assume that there is bl € outz (0). Then, we need to show
that bl € outs (o). For this, assume |o| = k € N, and let D* € trd(S, k) such
that Pp+(c) = 1, which is possible by Lemma

Observe that outcontz(D*) # @, because o b! € traces™(I). Consequently
there is at least one trace distribution D € outcontz(D*) such that Pp(obl) > 0.
By assumption Z C,;00 S, and therefore D € outconts(D*). We found a trace
distribution of S, with Pp(ob!) > 0. This implies that o b! € traces/"(S) by
Definition Lastly b! € outs(o) and therefore Z C;,cp S.

Let 7T Cioeo S, kK € N and D* € trd (S,k). Further, assume D €
outcontz(D*). We want to show D € outconts(D*). Since the transition rela-
tions of Z and S are finite, let o4, ..., 0, € traces™™(I) be all traces of 7 with
|oi| =k for i =1,...,n. Note that o; # o; for i # j. Consider the three cases:

CHOICE AND CHANCE 87

1. If o; ¢ traces™(S), then Pp(o;a) = 0 for a € Acto and i = 1,...,n. This
follows from the definition of path probability (Definition — schedulers
may only assign probability greater than 0 to available paths. Since o; is not
in traces’™(S), so are none of its underlying paths, nor their continuations
with a € Acto. As a consequence, output continuations of such trace
distributions yield probability 0, too.

2. If 0; € traces™(S), then Pp(o;a) = 0 for a € Acty fori = 1,...,n, by
definition of output continuations.

3. If o; € traces/™(S) and Pp(c;a) > 0 for a € Acto, then we know by the
assumption Z Cypeo S that of a € traces ™ (S).

Let Pp(o;a;) = pi; for a; € Actp,i=1,...,nand j =1,...,m. By construc-
tion of trace distributions it is ‘I+Zi, jpij =1, where ¢ is the probability to halt in
the (k+1)-th step. Treating “1” as output action allows us to apply Lemmato
construct a scheduler A € Sched(S,k + 1), such that Py4.4)(0; aj) = Pp(o; aj).
Thus D € trd(S, k+1), and by construction also D € outconts(D*). This overall
yields Z Cpioeo S. O

Theorem Let A, B and C be plOTSs, and let A and B be input enabled,
then

(i) A Cpioco B if and only if ACTE" B.
(11) ACpioco B and B Cpioco C then AT 000 C.

Proof. Assume A C oo B. We need to show A EJ;"D B, i.e. that
D € trd(A,n) implies D € trd(B,n) for all n € N.

Let n € N and D* € trd(A,n). We prove the statement for every trace
distribution prefix smaller or equal to n via induction: Assume D € trd(A,0).
Obviously D Ty D*, and consequently D € trd(B,0).

Now assume that the above statement has been shown for m withm = k-1 <
n. We proceed by showing it holds for m = k. Let D € trd(A, k) with D Ty D*.
Then take D’ € trd(A, k — 1) with D’ Cy_y D. By induction assumption we
know D’ € trd(B, k — 1). With the initial assumption, i.e. A Cpioco B, we know
in particular that

outcont o(D') C outcontg(D’).

Therefore, we choose D" € outcont 4(D'), such that
Yo € ActkilACto : PD(J) = PD//(O'), (44)

i.e. D and D" assign the same probability of traces of length k ending in output.
Note that D" € outcontp(D’) and thus D" € trd(B, k).
We are left to show that there is a trace distribution, say D, that assigns

VO' S Actk_lACt[: P’D(U) = _PfD//((j')7

88 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

in addition to , i.e. D" assigns the same probability to all traces of
length k. However, the existence of D' is straightforward, since A and B are
input-enabled. That is, all inputs are enabled in every state of both A and
B. We conclude trd(A, m) C trd(B,m) for all m < n, and with it consequently
trd(A,n) C trd(B,n). Hence A CI" B.

Let A Ef;% B. We need to show A C,;0c, B, ie. for all n € N and for
all D* € trd(B,n), we have outcont 4(D*) C outcont(D*). Let n € N and D* €
trd(B,n). Choose D € outcont 4(D*), then we need to show D € outcontg(D*).

By definition of the set outcont, we know that D € trd(A,n + 1). Together
with the initial assumption, i.e. A E'C}% B, we conclude D € trd(B,n +1). We
are left to show that D € outcontg(D*). However, this is straightforward, as
for all traces o € Act™ Acty it holds that Pp(c) = 0 by construction of outcont.
Consequently D € outcontg(D*), and therefore A C,joco B.

We need to show that A Cpioco B and B Cpioeo C imply A Cpioeo C.
By initial assumptions we know

1. Vn € NVD* € trd(B,n) : outcont 4(D*) C outcontg(D*), and
2. ¥n € NVD* € trd(C,n) : outcontg(D*) C outcontc(D*).

We need to show
3. Vn € NVD* € trd(C,n) : outcont 4(D*) C outcontc(D*).

Let n € N, choose D* € trd(C,n), and assume D € outcont o(D*). Obviously,
D € trd(A,n + 1). Together with (), and since A and B are input enabled by
assumption, we know D € trd(B,n + 1). Note that for all traces o € Act™ Acty
we have Pp(o) = 0. With item 2., we know D € outcontp(D*). Together with
the assumption B C,j00 C, we conclude D € outcontc(D*). O

Theorem Each annotated test for a pIOTS S is sound for every level of
significance o € (0,1) with respect to E pioco-

Proof. Let Z be an input enabled pIOTS and ¢ be a test for S. Further assume
that Z Cpioco S. Then we want to show V(Z, t) = pass, i.e. we want to show

that a pioco correct implementation passes an annotated test case. By the
definition of verdicts (Definition 4.25) we have V(Z,t) = pass if and only if

Vfune(Z, f) = Uprop(Z, f) = pass.

We proceed by showing that v (Z, f) = pass, and Vy.p(Z, f) = pass in two
separate steps:

1. In order for vpym.(Z, t) = pass, we need to show that

S
annpioco

(o) = pass for all o € traces™ (I ||1),

according to the definition of verdicts (Definition [4.25)). Therefore, let

o € traces™(Z||t). We need to show anngww(o) = pass by the definition

CHOICE AND CHANCE 89

of annotations (Definition |4.20)). Assume o’ € traces™(S) and a! € Acto
such that o’ a! C o.

We observe two things:

e Since € € traces(S), i.e. the empty trace is a trace and is in
traces™(S), o’ always exists.

e If no such a! € Actp exists, then o is a trace solely consisting of
inputs. By definition of annotations (Definition [4.20)) consequently
ann;,.,(0) = pass.

By construction of o we have o’ a! € traces”(Z || t) and therefore also
o'al € traces™(I). We conclude, o’ € traces™(I) N traces™(S). Our
goal is to show o’a! € traces/(S).

Let | = |0'| be the length of ¢/. Without loss of generality, we can now
choose D € trd(S,1), such that Pp(c’) > 0. Note that this, together with
the previous observation, yields that outcontz(D) # &. Again, without
loss of generality, we choose D’ € outcontz(D), such that Pp (o’ al) > 0.
Lastly, we assumed Z C,000 S, hence outcontz(D) C outconts(D). We
conclude D’ € trd(S,l + 1), and Pp/(c’a!) > 0. By definition of trace
distributions (Deﬁnition, this implies that o’ a! € traces™(S). If addi-

tionally o’ a! € traces®™(Z||), then o = o’a. Consequently ann3,,., (o) =

pass by definition of annotations (Definition [4.20). This ultimately yields
Vfunc(Z,t) = pass.

2. In order for vpp(Z, t) = pass we need to show that
VD € trd(T||t, k) ID' € trd(S,k) : Pp: (OutObs (D, k,m)) > 1 — a,

according to the definition of verdicts (Definition 4.25)). Therefore, let
D € trd(Z ||, k). By definition of output-observations (Remark [4.24)), we
have

OutObs(D, o, k,m) = {O € (Act=F"1Acto)™ | dist (freq(O),ED) < ra} .
There exists D' € trd(Z ||t, k) with

0 if o € Act* 1 Act;

4.5
Pp(o) if o € Act=F"1 Acto. (4:5)

PD/(O') = {

To see why, consider the scheduler that assigns all probability to halting
instead of inputs for traces of length k, while assigning the same probability
to outputs as the scheduler inducing D. By construction of the set OutObs
(Remark [4.24), observe that

Pp: (OutObs(D',a, k,m)) = Pp/(OutObs(D, a, k,m))
= Pp(OutObs(D, a, k,m))

11—«

vV

90

CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

since only traces ending in output are measured.

It is now sufficient to show that D’ € trd(S, k). However, as an intermediate
step, we first show that D’ € trd(Z, k), as this will let us make use of the
assumption Z Cpi0c0 S.

Consider the mapping f from the finite paths of Z || to the finite paths of
T, ie. f:paths™(Z||{) — paths™™(I), where for every fragment of the
path we have

fl..(s,Qua(s',¢)...)=...svas"....

Since tests are internally deterministic IOTSs, it holds that u((s,t),a) =
v(s,a), i.e. tests do not change discrete probability distributions according
to the definition of parallel composition (Definition . It is easy to see
that f is an injective mapping, i.e. f(m1) = f(m2) = m = m2.

By definition of trace distributions (Definition there is a scheduler,
say A’ € Sched(T ||t,k), such that trd(A’) = D’. With the help of f we
construct a scheduler A” € Sched(Z), such that for all traces o we have
Piraan(0) = Pyacarny(0), Le. trd(A”) =D’

For every path 7 € paths™ () with f~1(x) € paths™ (Z| 1), we define A”

as

A () (v) = A (fH () (),
where p and v are like above. Note that Pa»(r) = 0 if 7 ¢ paths™ (Z||1).
The construction of A” is straightforward: Due to the construction of
test cases, Z || is internally deterministic. Recall that both Z and ¢ are
defined over the same action alphabet, and ¢ does not contain internal
actions. This implies in particular, that there is no interleaving in Z || t.
Thus A” can copy the behaviour of A’ step-by-step. We set D" = trd(A”)
and conclude D" € #rd(Z,k). By construction it is easy to check that
Ppi (o) = Pp/(o) for all traces o. Further, observe

Ppi(OutObs(D", a, k,m)) = Ppi(OutObs(D', a, k,m))
= Ppr(OutObs(D, o, k,m))
= Pp/(OutObs(D, a, k,m))
= Pp(OutObs(D, a, k,m))
> l1-a

We proceed to show that D” € trd(S,k). The proof is by induction
over trace distribution length of prefixes of D" up to k. Trivially, if
D" € trd(Z,0), then also D" € trd(S,0). Assume this has been shown
for length n € N. We proceed by showing that the statement holds for
n+1<k.

Let D" € trd(Z,n + 1) and take D' C,, D”. By induction assumption
D" € trd(S,n). Together with the assumption Z C,;pc0 S, we have

outcontz(D"") C outconts(D").

CHOICE AND CHANCE 91

Since D" € outcontz(D"') (Equation ([L.5)) we have D" € outconts(D"),
and consequently D" € trd(S,n + 1). We have shown D" € ird(S, k)
and conclude Ppr(OutObs(D, o, k,m)) > 1 — «. Ultimately, this yields
Vprob (I, t) = pass by the definition of verdicts (Definition .

Both parts together give V(Z,) = pass. This means that an annotated test for
S is sound with respect to Cpi0co for every a € (0,1). O

Theorem The set of all annotated test cases for a pIOTS S is complete
for every level of significance o € (0,1) with respect to Cpinco for sufficiently
large sample size.

Proof. In order to show the completeness of test suite T consisting of all anno-
tated tests for S, assume that 7 [Zp;0c0 S for an input enabled pIOTS Z. Our
goal is to show V(Z, T) = fail. By the definition of verdicts (Definition
this is holds iff vfunc(Z, t) = fail or Vprob (L, Lt) = fail for some t € T.

Since Z U pioco S, there is k € N, such that there is D* € trd(S, k), for which

outcontz(D*)Zoutconts (D).
More specifically
3D € outcontz(D*)VD' € outconts(D*)Io € € : Pp(o) # Pp/(o), (4.6)

where € % traces™ () N Act® Acto. Without loss of generality, we can assume
k to be minimal. There are two cases to consider:

1. 3o € €: 0 ¢ traces(S), or
2. Vo € €: 0 € traces™(S),

We will relate the two cases to the functional and the statistical verdict (Defini-
tion , respectively. We prove that item 1. implies vy (Z, T) = fail, and
item 2. implies vppop(Z, T) = fail. Therefore, let D € outcontz(D*) such that
Equation holds for all D" € outconts(D*).

1. In order for vpumc(Z, t) = fail, we need to show
3o € traces™ (T ||1) : annfioco(a) = fail

for some ¢ € T, according to the definition of verdicts (Definition [4.25)).
Assume there is o € €, such that o ¢ traces(S). Our goal is to show
that there is £ € T for which o € traces®™(Z||t), and annS,,., (o) = fail.

proco
Without loss of generality we can assume Pp(c) > 0. To see why, assume
Pp(c) = 0. Then we can find a trace distribution in outconts(D*) with
an underlying scheduler Sched(S) that does not assign probability to the
last action in o to obtain probability 0. This violates the assumption that
Pp (o) # Pp/(0). We conclude o = ¢’ a, for some ¢’ € Act* and a € Acto.

92

CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

The prefix o’ is in traces™(S), because it is of length k, and since D* €
trd(S, k). Since D and all D’ € outconts(D*) are continuations of D*, we
conclude Pp«(c’) = Pp(c’) = Pp/(0’), i.e. all trace distributions of the
respective sets assign every prefix of o the same probability by merit of
outcont. We conclude o’ € traces(S), but o’a ¢ traces™ (S).

By initial assumption T contains all annotated test cases for S. Hence,
let t € T such that o € traces®™(t). By the definition of annotations
(Definition [4.20) we have ann$;,., (o) = fail. Since o € traces™(I) and

prLoco
o € traces®™(t), we obviously also have o € traces®™(Z||t). Ultimately,
this yields vpunc(Z,t) = fail.

. In order for vprop(Z, f) = fail, we need to show

3D € trd(Z||£,1) VD' € trd(S,1) : Pp/(OutObs(D,a,l,m)) < 1— a,

for some £ € T and [€ N, according to the definition of verdicts (Defini-
tion [4.25)).

Together with Equation (4.6) and the definition of acceptable outcomes
(Definition |4.23)), we conclude

VD' € outconts(D*) : Pp/(OutObs(D,a, k +1,m)) < B, (4.7
for some (,, — 0 as m — co. Observe that

SUPp e tra(s k1) Lo (OutObs(D, o, k + 1,m))
= SUPprcoutconts () P (OutObs(D, a, k + 1,m)), (4.8)

by definition of OutObs (Remark . OutObs only comprises traces
ending in output, thus its measure under any trace distribution of ¢rd (S, k+
1) cannot be larger than the ones already contained in outconts(D*).
Together with Equation this yields

VD' € trd(S,k + 1) : Pp/(OutObs(D,a, k + 1,m)) < B, (4.9)

for some 3,, — 0 as m — oco.

We are left to show that D € trd(Z || i,k + 1) for some £ € T. Let
8 = {0 € traces"™(I) | Pp(c) > 0}, i.e. all traces getting assigned positive
probability under D. Obviously € C K. By initial assumption we know
that all 0 € € are contained in traces®™(S). Hence implicitly all o € £
are necessarily in traces™(S). That means, there is a test case for S,
such that all o € & are in traces®™ (). In particular, observe that all &
end in output by assumption. Hence, the last stage of every test case is
the second bullet in the definition of test cases (Definition [f.18). We now
construct a scheduler A’ € Sched(Z||t,k + 1) such that trd(A’) = D.

Consider the mapping f : tr—*(8) — paths’™ (Z||£), where for every path
fragment

fl..spas' ..)=...(s,q)va(s,q¢)....

CHOICE AND CHANCE 93

The state g is uniquely determined, because tests are internally determinis-
tic. In particular ¢ = ¢’ iff @ = 7. Since every discrete distribution in test
cases is the Dirac distribution it is u(s,a) = v((s,q),a). It is then easy to
see that f is an injection, i.e. f(m) = f(m2) = 71 = ma.

We now construct a scheduler A’ € Sched(Z || t), such that D = trd(A’).
Let A € trd(Z) be the underlying scheduler that induces D by definition
of trace distributions (Definition [4.11)). For every w € tr~1(&) we define

A'(m)(v) = Af () (),

where p and v are as above. Observe Pyq4(0) = 0 for o ¢ & The
construction of A’ is straightforward: Since f is internally deterministic,
and does not contain internal actions, there is no interleaving in Z || .
Hence, a scheduler of T ||# may copy the decisions of A step-by-step. Note
in particular that every of #’s discrete distributions is the Dirac distribution,
and hence Py 4(4)(0) = Pp(o) for all o € 8. We conclude trd(A’) = D
and therefore D € trd(Z||t,k + 1).

Together with Equation (4.8), we have found a scheduler A" such that
trd(A’) € trd(Z||t, k + 1), and for all D’ € trd(S,k + 1) we have

Pp: (OutObs(trd(A),a,k +1,m)) < Bp,. (4.10)
Now iff « <1 — 3,,,, we estimate (4.10]) further to
Pp/ (OutObs(trd(A'), a,k +1,m)) < By, <1 — a.

However, the inequality o < 1 — §,, always holds for sufficiently large
m, since ,, — 0 as m — oo by the definition of acceptable outcomes
(Definition [4.23). Ultimately, this yields v,0p(Z,t) = fail.

Together, the two cases yield Z 000 S implies V(Z, 1) = fail. O

Theorem [4.29]

(i) All test cases generated by Algom'thm are test cases according to
Definition[{.18

(i1) Every functionally correct implementation gets assigned the pass verdict by

Algorithm [[.2

Proof. Let S = (S, sg, Acty, Acto, Actg, A) be a pIOTS. Furthermore, let
t = batchGen(S,e,n) for some n € N. In order to show that ¢ is a test case
according to Definition [{.18] we need to show that ¢ is 1. a pIOTS, 2. internally
deterministic, and 3. a finite and connected tree. We prove each property
separately in the following. Let the states of ¢ be given by the history o.

94 CHAPTER 4. MBT wITH PROBABILISTIC AUTOMATA

1. The interface (Acty, Acto) of t is finite and directly transferred from the
specification & by the algorithm, i.e. line The procedure initially
starts with the empty history €, thus the starting state sqg = s is uniquely
determined. Line [3| ensures termination: every call of the procedure adds
at least one action to history o (line and [15]), thus |o| is increasing.
When |o| = n, i.e. the maximally specified test length is reached, the
procedure returns € (line |3 and Since this holds for every branch, the
recursive calls of the procedure inevitably stop in the states s,.., and the
algorithm terminates. Additionally, infinite cycles are never introduced,
since line [3| contains the only loop. As a consequence, we conclude that the
number of states of ¢ is finite. Additionally, a state s, traverses to state
So.a, With a € Act; U Acto U {e}, with probability 1. Even though the
choice parameter p is determined probabilistically (line , no such choice
is given for the added action a and all distributions are Dirac. Since Act;
and Actp are finite, the transition relation of each state is finite. This
means that t is a pIOTS according to Definition

2. The procedure recursively assembles a pIOTS. Note that it is only called
again, once an externally visible action from the sets Act; and Acto is
chosen (lines[8and [L5). The procedure stops if p € [0,0.33] or the maximal
test length n is reached (line . This means, the only way non-determinism
is possibly introduced, is if the same action is added twice to a branch in
one execution of the procedure. However, the algorithm cycles through the
entire output alphabet exactly once, while line[13|chooses one input. Hence,
a state sy.q with a € Acto U Acty U {e} is uniquely determined, and there
is no possibility of introducing internal non-determinism. Consequently, ¢
is internally deterministic.

3. Each state s,., with a € Act; U Acto U {e} has a uniquely determined

parent node s,. Recursively calling batchGen connects source s, with

. ol Dirac,a .
target Sg.q, 1.€. transitions are of the form s, ——— $,.,. Line |3|ensures

termination if |o| = n. Hence, ¢ is finite, connected, and every state s, is
reachable.

We showed that ¢ is a finite, internally deterministic and connected tree pIOTS.
Consequently, ¢ is a test case according to Definition

In order to show that every functionally correct implementation gets

assigned the pass verdict by the on-the-fly test derivation algorithm, let o be
a generated trace by the on-the-fly algorithm. We need to show:

L Cioco S = T passes o.

We prove the statement by contraposition.
Assume 7 fails o, i.e. ann3,,.,(c) = fail. Note that o keeps track of the trace
exhibited by the implementation thus far in every iteration of the while loop.

The only way for the algorithm to return fail, is when o ¢ traces”(S) in line

CHOICE AND CHANCE 95

In this case, we can always write 0 = ¢’ bl with b! € Acto (line @ It is easy
to check, that up to the point of returning fail, only inputs were provided, or
correct outputs were observed, i.e. output present in S. Since only input present
in S is provided (line E[), and the algorithm terminates as soon as unexpected
output is observed (line , it follows that o’ € traces™(S).

If the fail verdict is returned, we evidently encountered b! € outz(c’), but b! ¢
outs(o’) because o'bl ¢ traces(S) (line[7). Consequently, if an implementation
fails a test case generated by the on-the-fly test generation algorithm, it is
functionally incorrect, i.e. Z[Z;oc0S. O

CHAPTER D

Model-Based Testing with Markov Automata

The role of computer-based systems is ever increasing: robots, drones and au-
tonomous cars will soon pervade our lives. Attuning to this progress, verification
and validation techniques of these systems have grown to a field of crucial im-
portance. They provide methods that show whether the actual and the intended
behaviour of a system differ, or give confidence that they do not. As a con-
sequence, the progressively intricate design of embedded systems continuously
brings new challenges to the field of verification engineers. The key question
of whether a system works as intended therefore has a variety of angles: Was
the functional behaviour correctly implemented? Does the system continue to
operate under a work overload? Is the average lifetime within safety regulations?
Can requirements be met on time?

As seen in Chapter [4] probabilistic aspects in many computer applications
naturally add one of those angles. This chapter builds on the established test
methodology for probabilistic automata, and ensures that soft real-time con-
straints are added to the capabilities of our test framework. The requirements
specification now additionally prescribes stochastic time delay between actions.
There is a large body of different MBT frameworks in the literature that ac-
commodate a variety of requirements aspects, like functional properties [I73], or
real-time constraints [21], 29, [120]. Surprisingly, only few papers are concerned
with the testing of probabilistic systems. As a result, an even smaller fraction of
the literature deals with the addition of stochastically delayed real-time.

Albeit strikingly similar in the use of continuous time, we point out that
real-time testing and stochastically timed testing are fundamentally different.
The first specifies an exact time interval in which actions are required to take
place. The latter prescribes time distributions, e.g. deviations are allowed, as
long as overall usage follows a certain distribution shape. To illustrate, assume
a file is requested from a server. Workload of the server and multiple requests,
as well as the file size may cause a significant delay until the file is actually
delivered. Naturally, the circumstances of each file request may differ, and with
it will the time until it arrives. Rather than prescribing a fixed time in which its
arrival is expected, we ask for an appropriate delay on average. Thus, we are

97

98 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

1 CDFs of exponential distribution

o
™

req?, z:=0 =
an Zos
& N
T | |
04 I
err!;10 < x ack!,z < 10 a ! | 1-exp(-0.2t)
0.2 | | 1-exp(-0.1t}
| || — — —mean 5
| || — — — mean 10
o L i
@ @ 0 5 10 15 20
Time t
(a) Timed automaton (b) Markov automaton (c) CDFs

Figure 5.1: Example models illustrating the intent of MBT based on timed
automata [6] versus Markov automata [67]. Timed automata specify hard time
constraints, while Markov automata require stochastic delay. The delay is
distributed according to the CDF's of an exponential distribution with parameter
% and é, respectively. Note that the models specify entirely different behaviour.

willing to accept a server that supplies some files after the specified average, as
long as it also supplies some amount before the average.

While the goal of this thesis is to establish a framework which handles
non-determinism, discrete probability choices, and general stochastic time distri-
butions, this chapter is an intermediate step in that we first consider a specific
kind of distribution; the exponential distribution. It is of particular interest
because of its memorylessness, i.e. the waiting time until a certain event happens,
does not depend on the already elapsed time. Due to this property, and due to
its simplicity, it is used to model real life phenomena whose true distribution of
time is not known, but the average is, e.g.

e the time between receiving two phone calls,
e the degradation rate of construction components and machines,
e radioactive decay, or

e the arrival of a new item in a queue.

This makes the exponential distribution an interesting intermezzo on the voy-
age to general continuous distributions. Hence, in this chapter we present an
applicable framework in an MBT setting, that allows to specify three key prop-
erties in tandem: 1. non-deterministic choices, 2. discrete probability choices,
and 3. exponentially distributed time delay. The foundation of our methodol-
ogy are Markov automata (MAs), since they incorporate all three properties.
Non-determinism is utilized to model choices, that are not under the systems
direct control. Conversely, discrete probability choices represent choices made
by the system (e.g. coin tosses or random seeds) or the environment (e.g. fail-
ure probabilities). Lastly, the exponential distributions model stochastic delay
between two actions. These give an appropriate approximation, if only the
mean duration of an activity is known, as is often the case in a practical setting.

CHOICE AND CHANCE 99

Mathematically, MAs arise as the SA
conservative extension of both proba-
bilistic automata (PAs) [I58] and in-
teractive Markov chains (IMCs) [93].

We refer to Figure[5.2] for an hierarchi- / \

cal overview. As such, it is a natural IMC
consequence that the major part of

our testing techniques of Chapter / \ / \

DTMC LTS CTMC

disc. prob. non-determ. exp. delay

carries over to the Markov automata
framework. In this chapter, we recall
the formal definition of Markov au-
tomata, and their corresponding lan-
guage theoretic concepts. We define
trace distribution semantics that re-
solve all non-deterministic choices. This allows us to talk about the probability of
a trace. Furthermore, test cases and their annotations are defined according to
a conformance relation akin to ioco. Naturally, the framework is subsequently
proven as correct.

The modelling capabilities of Markov automata compared to probabilistic
automata come at a price. We require novel techniques to cope with real-time
both in theory, and in practical application of the framework. While counting
trace frequencies sufficed in the PA setting, it generally does not work when
considering time. To illustrate, is receiving a file after five seconds the same
behaviour as receiving the file after ten seconds? And what about 5.1 seconds?

We summarize the key contributions of this chapter:

Figure 5.2: Traversing the automata
formalism hierarchy shown in Figure

1. The input output Markov automata model, comprising non-deterministic
choices, discrete probability distributions, and exponentially delayed tran-
sitions,

2. a behavioural description for Markov automata based on trace distribution
semantics,

3. definitions of test cases, test execution and verdicts,
4. the soundness and completeness results of our framework,

5. the treatment of quiescence in a setting containing stochastically delayed
time, and

6. a small case study in the Bluetooth device discovery protocol.

Related Work. There is a large body of work on testing real-time systems
[21, 0116], 120]. Brandén-Briones et al. [29] extend existing frameworks to
incorporate the imperative notion of quiescence, i.e. the absence of outputs.
Conversely, probabilistic testing pre-orders and equivalences are well-studied
[45] 60, 158]. Distinguished work by [122] introduces the concept of probabilistic
bisimulation via hypothesis testing. Largely influential work is given by [40], pre-
senting how to observe trace frequencies during a sampling process. Executable

100 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

probabilistic test frameworks are suggested for probabilistic finite state machines
in [96] [103] and Petri nets [23].

Closely related to our work is the study of Markovian bisimulation. The
foundation of an observational equivalence is presented in [67] in the form of
weak bisimulation for Markov automata, and was refined by introducing late-
weak bisimulation [59] [162] and branching bisimulation [I7I]. The relating
bisimulation relations for Markov automata are studied in Chapter [6]in more
detail.

Origins of the chapter. The work underlying this chapter was performed in
collaboration with Mariélle Stoelinga, and appeared in

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of stochastic
systems with ioco theory. In Proceedings of the 7th International Workshop
on Automating Test Case Design, Selection, and Evaluation, A-TEST,
pages 45-51, 2016,

e Marcus Gerhold and Mari€lle Stoelinga. Model-based testing of probabilis-
tic systems with stochastic time. In Proceedings of the 11th International
Conference on Tests and Proofs, TAP, pages 77-97, 2017.

Organisation of the chapter. Section [5.1] introduces the underlying au-
tomaton model in Markov automata, and recalls language theoretic concepts.
Section [5.2] describes the theory of using Markov automata in the test process,
and shows that it is correct. Conversely, a practical approach utilizing Markovian
test theory, and an algorithmic outline are shown in Section [5.3] We bring the
framework to application by investigating the Bluetooth device discovery pro-
tocol in Section Lastly, Section [5.5| concludes the chapter with a summary
and discussion.

5.1 Input Output Markov Automata

We introduce the underlying model for the remainder of the next two chapters
in (input/output) Markov automata. We reiterate the step from a closed system
like LTSs or PAs, to an open input output system, like IOTSs or pIOTSs. We do
so by first recalling closed Markov automata from the literature, before taking
the step to input/output Markov automata. Working in the latter formalism is
of priority when considering a testing scenario where interaction is desired.

Following the basic structure of Chapters [3| and [4] we illustrate the modelling
formalism alongside easy examples, and introduce relevant language theoretic
concepts in paths and traces, and their time abstract counterparts abstract
paths and abstract traces. Further, we define parallel composition to allow
communication of a system’s subcomponents, as well as its interaction with test
cases. Lastly, we extend the trace distribution semantics, previously seen in
Chapter [4] to Markov automata.

CHOICE AND CHANCE 101

5.1.1 Definition

The foundation of the methodology in this chapter are Markov automata (MAs).
As a conservative extension of both probabilistic automata (PAs) and interactive
Markov chains (IMCs), cf. Figure they are equipped with both probabilistic
and non-deterministic choices. The first represent choices made by the system
or the environment. The latter model choices that are not under its control.
Complementary, Markov automata are of particular interest because of their
memoryless exponential distributions modelling time delay. These give a highly
appropriate approximation, if only the mean duration of an activity is known,
as is often the case in practice.

In the context of this thesis, MAs arise by equipping the PAs of Chapter
with the Markovian transition relation. Markovian transitions are defined via
one positive real valued parameter, representing the mean duration of a delay to
take place.

Definition 5.1. A Markov automaton (MA) is a tuple M = (S, so, Act;,—>,~),
where

e S is a set of states, with sg € S as the initial state.
o Act; is a set of actions, containing the distinguished element T.
e — C S x Act, x Distr(S) is the countable probabilistic transition relation.

o ~ C S xRT xS is the countable Markovian transition relation.

Definition [5.1] only differs in the fourth bullet point from probabilistic au-
tomata. That is, the distinctive feature of Markov automata are their exponen-
tially distributed timed transition comprised in the set ~». Given a transition
(s, A\, 8") €~ means there is an exponentially distributed delay of going from s
to s’. The probability to go from s to s’ within T time units is thus given as
1 — e *T. The sum of all outgoing Markovian transitions of a state s is called
its exit rate. In order for the model to be meaningful, we require the exit rate of
all states to be finite.

We point out two interesting observations applying for Markov automata:

1. Multiple outgoing Markovian transitions give rise to the so called race
condition. There is a race between multiple exponential distributions
inducing a discrete probability distribution over time, e.g. given Markovian
transitions (s, A, s’) and (s, 2\, s”), the latter is twice as likely to be taken
in the same time interval based on its parameter.

2. Markov automata contain the internal action label 7, marking internal
progress. We apply the mazimal progress assumption [93], meaning that
time is not allowed to progress in states with an outgoing transition labelled
7. To indicate the absence of 7, states are called stable if they do not have
an outgoing 7-transition. With no passage of time in unstable states, the
probability to take a Markovian transition is effectively 0. This renders
Markovian transition in unstable states unnecessary [128].

102 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

Figure 5.3: Example Markov automaton model used in [84]. The wavy arrows
represent Markovian transitions alongside their positive real-valued parameters
Ai, with ¢ = 1,2,3. The steady arrows together with dashed lines between them
illustrate discrete probability distributions with corresponding values and action
labels along the edges. We refer to Example for more details.

Example 5.2. Figure depicts the state space of a job queueing system
comprising two stations and one server used in [84)]. System states are represented
by a triple (s1, $2,7), where s; are the number of jobs in station i, and j is the
number of jobs in the server. The initial state is given by (0,0,0), i.e. all
components are empty. For simplicity and illustration purposes, we assume that
each component can hold at most one job.

The incoming rate of jobs to the stations are parametrised with Markovian
parameters A\ and Ao, respectively. These describe the average time duration
used to model the delays between two states. The requests are stored by the server
until they are fetched. Jobs are then processed with rate A3. On the modelling
level, they are represented by wavy edges between two states, aiding the reader in
the distinction of Markovian and probabilistic transitions.

Upon polling a station, there is a 1—10 probability of erroneously keeping a job
in the station after being fetched. Like before, discrete probability distributions
are represented by the straight edges between two states, alongside dashed lines
between all edges belonging to the same distribution.

If both stations contain a job, the server chooses non-deterministically. While
certain discrete probability distributions can possibly be represented by so called
race conditions between to outgoing Markovian actions, this is not possible in
state (1,1,0). The state has two outgoing, non-deterministic T distributions. As
such, the given system can neither be modelled by an interactive Markov chain
[93], nor by a probabilistic automaton [158] simply based on Markovian delays.

Similar to the steps from LTSs to IOTSs, or from PAs to pIOTS seen before
in Chapters [3| and [we separate the label alphabet of Markov automata in
distinct input and output sets. This captures possible communication of a system
with its environment, e.g. a tester, or other components, and gives rise to input

CHOICE AND CHANCE 103

4§, abort?

(a) Specification (b) Unfair Implementation (¢) Slow Implementation

Figure 5.4: Protocol specification IOMA and two erroneous implementations.
After the input send? there is an exponentially delayed transition, followed by
an acknowledgement or error output.

output Markov automata (IOMAs). The existence of a distinct quiescence label &
is required again in the set of output labels, explicitly characterising the absence
of all other outputs. Like before, the set of internal/hidden actions describe
internal progress of a system, that is not visible to an external observer.

We define IOMAs according to [I85] to be input-reactive and output-generative
to capture a wider range of models. To recall: upon receiving an input action,
the automaton decides probabilistically which next state to move to. However,
upon producing an output, the automaton decides both the output and the state
probabilistically. Formally, this means that each transition either involves one
input action, or possibly several outputs, quiescence or internal actions.

Definition 5.3. An input output Markov automaton (TOMA) is a seven tuple
M = (S, s, Acty, Acto, Actg,—,~>), where

e S is a set of states with the unique starting state sq.

o Acty, Acto and Acty are disjoint sets of input, output and internal/hidden
labels respectively, containing the distinct quiescence label § € Actpo. We
write Act = Acty U Acto U Acty for the set of all labels.

e — C S x Distr(Act x S) is the finite probabilistic transition relation, such
that for all input actions a € Acty and distributions p € Distr(Act x S):
wu(a,s’) > 0 implies u(b,s") =0 for all b # a and states s',s" € S.

e ~C S xR xS is the Markovian transition relation.

Example 5.4. Figure shows three input-reactive output-generative IOMA.
The model describes a protocol that associates a delay with every send action,
followed by an acknowledgement or error. Input is suffived with “?” and
output with “!”. Discrete probability distributions are denoted with a dotted arc,
together with the action label and corresponding probabilities. Markovian actions
are presented as wavy arrows.

104 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

After the send? input is received, there is an expected delay indicated by the
Markovian action A1. The delay is exponentially distributed, thus, the probability
to go from sy to so in T time units is 1 —e~*1T. In state sy there is one outgoing
discrete probability distribution. The specification in Figure implies that
only 10% of all messages should end in an error report and the remaining 90%
get delivered correctly. After a message is delivered, the automaton goes back to
its initial state where it stays quiescent until input is provided. This is denoted
with the & self-loop, marking the desired absence of outputs.

The unfair implementation model given in Figure essentially has the
same structure, except for altered discrete probabilities in the distribution sending
an acknowledgement or error, respectively. While the delay conforms to the
one prescribed in the specification model, sufficiently many executions of the
implementation should reveal the erroneously assigned discrete probabilities, i.e.
an error is sent more frequently than is prescribed.

While the slow implementation presented in Figure assigns the same
probabilities to the output actions, it assigns the parameter Ao to the exponential
delay between input and output. This is regarded as conforming iff Ay = Aa.

The test theory presented in this chapter aims at establishing a framework ca-
pable of differentiating the two erroneous implementations from the requirements
specification model.

We point out that our model comprises exponentially delayed transitions,
as well as the quiescence action §. The latter formally describes the absence of
outputs for an indefinite period of time. However, this imposes an interesting
challenge to a testing framework based on MA, as quiescence in practice is
frequently judged by waiting a finite amount of time [29]. The interplay of
quiescence and exponential delays is therefore further investigated in Section

Notation. By convention, we use the following notations and concepts:

e Elements of the set of input actions are suffixed by “7?”, and elements of the
set of output actions are suffixed by “!”. By convention, we let 7 represent
an element of the set of internal actions, and § be the distinct output label
to denote quiescence. Throughout this chapter we let © and v be discrete
probability distributions, and A; be positive real-valued numbers denoting
parameters of Markovian transitions.

{l ... [} denotes a multi-set.

We write s =% o, if (s, 1) €= and p(a,s’) > 0 for some s’ € S. Further,
we write s — a, if there are p € Distr(Act x S) and s’ € S such that

a .
s — s', and s /4 a, if not.

o We write s <> s, if (s, A\, 8") €~. Then A is called Markovian action,

o We write s =% 4 ¢/, ete. to clarify that a transition belongs to an IOMA
M if ambiguities arise.

CHOICE AND CHANCE 105

e A state s € S is called probabilistic, if there is at least one a € Act such
that s — a. In that case we also say action a is enabled in s. The set
enabled(s) comprises all enabled actions in s.

e A state is called stable, if it enables no internal action.

o A state s € S is called Markovian, if there is at least one A € RT such that
PN

e We call an IOMA M input enabled, if all input actions are enabled in all
states, i.e. for all a € Act; we have s — a for all s € S.

e The rate to go from a state s to s’ is the sum of all A € R, such that
(s, A, s") €~ and is denoted R (s, s').

e The exit rate of a state s is the sum of all rates and is denoted E (s). We
require E (s) < oo for all s € S.

e The discrete branching probability distribution of a state s quantifying race
conditions is given by Py(s') = R (s,s’) /E (s).

Parallel Composition. In order to allow for synchronisation and communica-
tion between multiple system components, we define parallel composition. Two
systems synchronize on shared actions, and evolve independently on others. Like
for pIOTS, the transitions of multiple components are stochastically independent,
thus we need to multiply the probabilities of discrete distributions when taking
shared actions. For two distributions p and v this is indicated by the operator
1 ® v. To avoid name clashes, we only compose compatible IOMAs.

Definition 5.5. Two IOMAs

M = (S,s0,Acty, Acto, Acty,—,~), and
M = (', s, Act), Actly, Actly, =,),

are compatible if Acto N Acty = {8}, and Acty N Act’ = Act N Acty = 0.

Definition 5.6. Let M = (S, sg, Acty, Acto, Actg,—,~) and M’ = (5, s,
Acty, Actyy, Acty, —',~") be two compatible IOMAs. Their parallel composition
is the tuple

MM = (8", (s0,58h), Act], Actyy, Act'ty, =", ~"), where

e S =8x S/,
Act] = (Acty U Act))\(Acto U Acty),
Actdy = Acto U Acty,
Act?; = Acty U Acty, and finally the transition relation
—"={((s,t),p) € S” x Distr (L' x 8") |
V1 @y, if Ja € Act N Act’ such that s o8 At 25
p=_1 ®1, ifVaec Act with s 2% we have t /4 a 1
1Quvs, ifVae Act’ with t 2% we have s 4 a

106 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

where (s,v1) € A, and (t,v2) € A’. Further we let vy @ 1((s',1'),a) =
v (s',a) va (' a), n@L((s,¢'),a) =11 (s',a)- 1 and L@vs ((s',1'),a) =

1.y (t,a).
o ~"={((s,t),\, (s,t) € S” x RT x 8" | ((s,¢), A, (s,)
(5,1), A, (s,t) ifE(s)=0A(t,\t) e At £
=< (s5,1),\ (s,1) if (s,\,8') e~ As#sANE()=0}.
(s,t),R(s,s) +R(¢t,t),(s,t) fR(s,s)>0AR(,1t) >0

The synchronisation on non-Markovian actions coincides with the one for
pIOTS in Definition f.5] Markovian transitions evolve independently, with the
exception of Markovian self-loops in both states. Formally, having two self-loops
with the same parameter A in both s and ¢, requires the use of R (s, s) + R (¢,1)
in the new Markovian transition relation, as ~»" is a relation. That is, there
cannot be two elements of the form ((s,t), A, (s,t)), as ~" is not a multi-set.

5.1.2 Abstract Paths and Abstract Traces

Let M = (S, sg, Acty, Acto, Acty,—,~) be an IOMA. We define the usual
language theoretic concepts. A path 7 of M is a (possibly) infinite sequence of
the form

7T=Sot1[t10[181t2u2a2...,

where s; € S, t; € R{, and either (s;_1,u;) €= and o; € Act, or p = Py, |
and «; € RS‘ for ¢ = 1,2,.... We require that each finite path ends in a
state, and either s;_1 LRI Si, OF $;_1 ~4 s; for each non-final i. The sequence
Si—1 t; p; oy 8; means that M resided ¢; time units in state s;_; before moving to
s; via «; using the distribution u;. We use last(m) to denote the last state of a
finite path. We write 7’ E 7 to denote 7’ as a prefiz of 7, i.e. 7’ is finite, ends in
a state, and coincides with 7 on the first finitely many symbols of the sequence.
The set of all finite paths of M is set as paths-’(i"(/\/l)7 and all paths by paths(M).
The set of complete paths, denoted paths®™ (M), contains every path ending in
a deadlock state, i.e. it neither allows probabilistic nor Markovian progress.

Note that a single time point has probability zero to occur in any given
continuous time span. Hence, it is necessary to talk about time intervals instead
of individual time values. This gives rise to abstract paths. An abstract path is
a path, where each occurrence of single time values ¢; is replaced by intervals
I; C R§. However, we limit our interested to intervals of the form [0,¢] with
t € Ry. Consequently, any path can be replaced with its abstract path by
changing t; to [0,¢;], or vice versa. This convention aids in defining a bijection
between paths and their abstract counterparts. Throughout this chapter, we use
7 to denote a path and II to denote the corresponding abstract path, and vice
versa. We summarise all abstract finite paths in the set AbsPaths” "(M), and
all abstract paths in AbsPaths(M). For two abstract paths IT and IT" with

M=soglipp1a181...8, and ' = s I{pjaysy...,

CHOICE AND CHANCE 107

we say II is a prefix of I, denoted II C IT', if a; = a}, s; = s}, u; = p} and
I; =1I/fori=1,2,...,n. That is, II and I’ coincide on the first n steps.

The trace of a path tr(m) records its visible behaviour, i.e. time and in-
put/output actions. It is a mapping tr : paths(M) — (R§ x Act; U Acto)”. We
formally overload tr for finite paths, i.e. tr : paths™ (M) — (R$ x Act;UActo)*.
Hence, a trace is the (possibly) infinite sequence of the form

o =tr(m) =ty @iy tiy Qiy iy Qig - -+

where t;; € Ry and a;; € ActfUActo for j = 1,2,.... Note that a path fragment
s111 1 A s2 ta ps a s3 collapses to (t1 + t2) a if A is a Markovian action. This rule
is applied recursively for multiple Markovian actions. Markovian actions are
parameters for an exponential distribution and deemed invisible.

The set tr~1(o) is the set of all paths, which have trace o. The length of
a path 7, denoted |7| is the number of actions on its trace. All traces of M
are summarized traces(M), and all finite traces in traces™(M). The set of
complete traces, denoted traces®™ (M), contains every trace based on at least
one complete path.

Similar to abstract paths, an abstract trace is given, if all ¢; € Rar of a trace
are replaced by intervals I; C]RS' . Again, we limit our intent to abstract traces
only using intervals of the form [0, ¢] with ¢ €]Rg . This enables us to use traces
and abstract traces interchangeably. Hence, for a given trace o we denote X
as its corresponding abstract trace, and vice versa. We summarise all abstract
traces in the set AbsTraces(M), and all finite ones in AbsTraces™(M). The
prefix relation of abstract traces is defined similarly to prefixes of abstract paths.

Lastly, let act (o) return visible actions of trace o only.

Example 5.7. Consider the IOMA M given in Figure and assume the
distributions of the three Dirac distributions are denoted piq, pp and .. For the

Figure 5.5: Yardstick example for paths and abstract paths.

path 7= 502.9Ps, 3510 pqalso0pupb?se we have

IT = 50 [0,2.9] Ps, 351 [0, 0] g a! s0[0,0] pp b? s2.
tr(m) =2.9al 007,

tr(IT) = [0,2.9] a! [0, 0] b7,

act (tr(m)) = al b?,

|7| =2, and lastly ™ € paths“™(M).

108 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

5.1.3 Schedulers and Trace Distributions

With the modelling formalism and language theoretic concepts in place, we turn
to schedulers and their trace distribution semantics of Markov automata. Like
before, our goal is to quantify the probability of (abstract) traces. Since MA
are a conservative extension of PA, it is natural that the need for schedulers to
resolve non-determinism is directly carried over. By establishing schedulers and
their resulting trace distributions, we eliminate all non-determinism, and receive
a purely probabilistic system. However, the introduction of continuous time
into the model prevents us from directly applying defined concepts of Chapter [4]
to MA. Instead, we define schedulers and study the resulting path probability
measure and probability space, before we tend to trace distributions.

Even though the mathematical framework for abstract paths and traces is
technically more involved, it is completely standard [196].

Definition 5.8. A scheduler A of an IOMA M = (S, sg, Acty, Acto, Acty, —
,~) is a function

A : paths™ (M) —s SubDistr(Distr(Act x S) U {L}),

such that 1. for each finite path m only available distributions or halting are
scheduled, 2. A(m) is a full distribution if last(m) is not a Markovian state, and
3. internal actions cannot be postponed, i.e.

o V7 € paths™ (M) : A(r) (1) > 0, then (last(n), u) €—,
o |A(m)| =1 if last(r) is not a Markovian state, and
o if Acty N enabled(last(m)) # @, then |A(r)| = 1.

The value A (m) (L) is the probability to interrupt/halt the process. A scheduler
A halts on path m, if A(m) (L) =1. We say a scheduler is of length k € N, if
it halts for all paths w with length greater or equal to k, and for every complete
path smaller than k. We denote this set by Sched(M, k) and the set of all finite
schedulers by Sched(M) respectively.

Definition is highly reminiscent to the one for pIOTS (Definition . We
require the scheduler to be randomised and history dependent. Further, we defined
IOMASs as input-reactive and output-generative. This necessitates to schedule
sub-distributions as opposed to mere actions. Obviously, the definition makes
sure that only available distributions are chosen. We require sub-distributions, as
opposed to full distributions, such that the remaining probability mass a scheduler
did not assign to actions in Act or halting L is left for Markovian actions. That
is, a scheduler chooses an action or halts immediately, or leaves a chance for
Markovian actions to take place. Again, we refer the reader to Chapter [§ for a
study on the hierarchy of scheduler classes for stochastic automata, and point
out that Markov automata form a subclass of them.

Remark 5.9. We use schedulers in the context of MBT in an open environment.
By design the scheduler of one IOMA schedules both inputs and outputs, as

CHOICE AND CHANCE 109

opposed to similar approaches in the literature. For instance, [39] use two
schedulers for communicating systems, and an arbiter scheduler that tells precisely
how progress of the composed system is determined. We point out, that our
approach has the caveat of being non-compositional, see e.g. [16]]]. We utilize
schedulers only to resolve non-deterministic choices to determine probabilities of
paths and traces, and are not particularly concerned with their compositionality.

Remark 5.10. With the presence of exponentially delayed Markovian transi-
tions, there is a compelling argument to define schedulers with the capability to
wait before making a decision. While this design choice potentially opens up
interesting possibilities in a testing scenario, there are drawbacks that lead us to
not incorporate this property into the framework:

The increasing complexity we experience upon incorporating continuous time
is held at a minimum, when only exponential distributions are considered. A
key property of exponential distributions is their memorylessness. It would
seem natural, to give schedulers the same power: wait before scheduling with
an exponentially distributed delay. We found that the benefits this yields do not
outweigh the increased complexity that comes with it with respect to MBT: like in
the pIOTS case, we are required to find the best fitting scheduler after sampling.
Recall that this was NP-hard for pIOTS, cf. Section[[.3 Adding continuous
time to the search space in the optimisation/constraint solving step would require
us to find the best fitting scheduler to maximise the likelihood of delays.

Nonetheless, the implications of waiting schedulers in an MA setting are
studied in Chapter[6 There, we rid ourselves of the overarching goal to use the
framework in an MBT scenario. Rather we study it as a subject of its own by
comparing its distinguishing power to other frameworks known in the literature
like strong- or weak bisimulation.

Probability Spaces associated to Schedulers. A scheduler naturally in-
duces a probability space over a Markov automaton M. In order to define it, we
need the notion of maximal paths, i.e. infinite paths, or paths that halt with a
non-zero probability.

Definition 5.11. A path 7 of a scheduler A is a finite or infinite path

m = Sotl1 p1 a1 S1t2 po ag Sots puzagss. ..,

where A(sot1 p1 a1 81 ... 8;)(fit1,@i+1) >0, or a;41 € R(J{ for each 0 < i < |m|.
The maximal paths of a scheduler A are the infinite paths of A and the finite
paths m such that A(mw)(L) > 0. The maximal abstract paths of a scheduler A
are the abstract counterparts to the mazimal paths of A. We denote paths™**(A)
as the set of mazimal paths, and AbsPaths™* (A) as the set of mazimal abstract
paths of A.

A scheduler resolves all non-deterministic choices of an IOMA, thus making
it possible to calculate the probability for each (abstract) path via the path
probability. It assigns the unique starting state probability 1, and each following

110 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

transition either multiplies the probability that the scheduler assigned to an
action, or, if no action was scheduled, the probability of a Markovian action
taking place in a certain time interval.

We point out, that upon making a decision, a scheduler has to do so without
delay. Hence, there are no additional races between Markovian actions and
scheduler decisions. Like before, a scheduler induces a probability to all finite
(abstract) paths 7, i.e. we can compute the probability, that a path generated
by A starts with 7.

Definition 5.12. Let A be a scheduler of an IOMA M. Then we define the path
probability function QA : AbsPaths™ (M) — [0,1] inductively by Q*(s¢) = 1,
and

A(m)(w) - (e,) if a € Act
A A

Im-I = 1I) -

QM- Taps) = Q7 (I) {(1—|A7r)|) [T o e BUestgt if o € RY,
where I = [0,T] C]Ra', and 7 is the corresponding path to the abstract path II.
The probability of exactly IT is Q(IT) - A(m)(L).

A scheduler then defines a unique probability measure P4 on the set of
abstract maximal paths. Therefore, the probability of IT is P4[Cr] % QA(IT).

Definition 5.13. The probability space associated to a scheduler A of an IOMA
M, is the probability space given by (Qa, Fa, Pa), where

o 04 = AbsPaths™*(A),

o F. is the smallest o-field generated by the set {Cyy | I € AbsPaths™ (M)},
where Cp = {II' € Q4 |IICII'}, and

e P4 is the unique probability measure on F4 such that PA[Cp] = QA(TI)
for all T € AbsPaths'™(M).

Trace Distributions. The construction of the probability associated to a
trace follows the same pattern as we have seen in Chapter[4} A scheduler removes
all non-determinism, and we remove all information not visible to an external
observer, i.e. internal- and Markovian actions, discrete distributions, and state
information. Given a scheduler, we can quantify the probability to observe a
certain (abstract) trace. Thus, the probability assigned to a set of abstract traces
X is the probability of all abstract paths whose trace is an element of X.

Definition 5.14. The trace distribution D of a scheduler A € Sched(M),
denoted D = trd(A) is the probability space (p, Fp, Pp), where

e Qp = AbsTraces(M),

e Fp is the smallest o-field generated by the sets {Cs, | © € AbsTraces™™ (M)},
where Cy, = {¥' € Qp | C X'}, and

e Pp is the unique probability measure on Fp, such that

Pp(X) = Pa(tr (X)) for X € Fp.

CHOICE AND CHANCE 111

The fact that (Q4, F4, Pa), and (Qp, Fp, Pp) define a probability spaces is
again left undiscussed here. We refer to [46] for the discussion of the standard
measure theoretical arguments.

Trace Distribution Equivalence. Trace distributions are the probabilistic
counterpart to traces. As such, they quantify the probability to observe abstract
traces. It is therefore self-evident to regard trace distributions as constructions
with the capability to relate two Markov automata. That is, two automata M
and My are related, if they induce the same trace distributions. In particular,
this means that a trace distribution D of M is contained in the set of trace
distributions of Ma, if there is a scheduler A in My, such that D = trd(A).

Again, we write trd(M, k) for the set of trace distributions based on a
scheduler of length k. We write trd(M) for the set of all finite trace distributions.
Lastly, we write My CE, Moy, if trd(My,k) C trd(Ma, k) for k € N, and
My EJ;% My if My E5 5 My for some k € N.

5.2 Markovian Test Theory

Recall that model-based testing entails automatic test generation, execution
and evaluation. To judge correctness of an implementation with respect to its
requirements, we utilize a conformance relation. This section aims at establishing
all theoretical ingredients necessary for the test framework.

A conformance relation for IOMA is again defined as a relation akin to ioco.
The next step defines what a test case for Markov automata is, and when an
observed trace should be judged as correct via test annotations. Working in
a stochastic environment additionally necessitates a statistical verdict. Hence,
the sampling process of implementations under test is described, before verdict
functions are defined. Lastly, the correctness of the framework is proven.

Markov automata can be seen as conservative extension of probabilistic
automata visited in Chapter [d] Hence, many of the definitions in this section
are very similar in their purpose and shape. In fact, the conformance relation,
as well as test cases and annotations are identical, but need to be redefined
for Markov automata. The main difference of the Markovian test theory in
comparison to the probabilistic test theory comes in the sampling process and
its resulting observations. Incorporating continuous real time demands a more
involved treatment of the trace frequency counting function. After all, it is
virtually impossible to record the ezact same time stamps of non-trivial abstract
traces more than once.

5.2.1 The Conformance relation T, ;oc0

The purpose of the conformance relation is, once again, to judge whether an
implementation model conforms to the requirements specification model. We
recalled ioco theory in Chapter [3] and extended it to probabilistic automata in
Chapter [4] It seems natural to continue this design choice for Markov automata.

112 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

In fact, the pioco test relation of Chapter [4] was defined in such a way, that
it only relies on trace distributions. The careful definition of trace distributions
enables us to essentially re-use the pioco framework for Markov automata. Like
before, we introduce trace distribution prefixes and output continuations.

1. The prefix relation for trace distributions D Cj D’ is the analogue of trace
prefixes, i.e. D Ty D' iff Vo € [R§ Act]<F : Pp(X) = Pp/().

2. The output continuation trace distributions are the probabilistic counter-
part of the set out (o) used in the ioco relation. For an IOMA M and
a trace distribution D of length k, the output continuation of D in M
contains all trace distribution D’ of length k + 1, such that D E; D’, that
assigns every abstract trace of length k + 1 ending in input probability 0.
We set

outcont (D) % {D' € trd(S,k+ 1) |
Dy, D' AVo € [RY Act]*RF Act; : Ppr (S) =0} .

We are now able to define the conformance relation aptly called Mar-ioco.
Intuitively, an implementation is conforming, if the probability of every output
trace can be matched by the specification. This includes the three factors:
1. functional behaviour, 2. probabilistic behaviour and 3. stochastic timing. Note
that all three are accounted for by the set of output continuations.

Definition 5.15. Let T and S be IOMA over the same action signature with T
input-enabled. We write T Cpfor—ioco S, if for all k € N

VD € trd(S, k) : outcontz(D) C outconts(D).

§, abort?

(a) Specification & (b) Slow Implementation 7

Figure 5.6: Specification IOMA and an erroneous implementation iff A\; # Ao

Example 5.16. Recall the file transfer protocol from Figure studied earlier,
which is newly presented in Figure[5.0 After the send input, there is a delay before
the file transmission is either acknowledged, or an error is reported. Consider
now the scheduler of S that schedules send? with probability 1. Its set of output
continuations in S contains all trace distributions that schedule the outgoing

CHOICE AND CHANCE 113

distribution containing ack! and err! with probability p and halts with 1 — p, for
p € [0,1]. This holds for the set of output continuations in I, but the probability
to reach sg in a certain amount of time differs from S whenever \y # Ao. Hence,
there are trace distributions in I, such that the probability of e.g. [0,0] send?
[0,t] ack! cannot be matched. The implementation is therefore not conforming
with respect to Mar-ioco in this case.

Note that an input output Markov automaton without Markovian transitions
is a regular pIOTS. It is thus natural by our design that Mar-ioco and pioco
coincide on pIOTSs.

Theorem 5.17. For two pIOTSs I,S with I input enabled, we have
7 EMarfioco S=1 Epioco S.

Proof sketch. The proof is immediate, if we consider that the conformance
relation is defined via trace distributions. Since an IOMA with ~~= @ is a
pIOTS, the notions of schedulers for IOMA and pIOTS coincide. O

As a result of the preceding theorem and Theorem we conclude that
Mar-ioco conservatively extends ioco. That is, both relations coincide on
IOTSs.

Corollary 5.18. For two I0TSs T,S with I input enabled, we have
1z EMar—ioco S—=1 Eioco S.

Not surprisingly, the remaining theorem proven in Chapter 4| carry over to
IOMA as well.

Theorem 5.19. Let A, B and C be IOMAs and let A and B be input-enabled,
then

(i) A Crar—ioco B if and only if A g% B.
(”) A EMar—ioco B and B EMar—ioco c Zmply -A EM(zr—ioco C.

Proof sketch. (i) The fact that finite trace distribution inclusion implies confor-
mance with respect to Cyjar—ioco 18 immediate, if we consider that the confor-
mance relation is defined via trace distributions. The opposite direction follows
from the fact that all abstract traces ending in output of A assuredly can get
assigned the same probabilities in B by T pjar—ioco- All abstract traces ending
in input are taken care of, because A and B are input enabled, and all such
distributions are input-reactive. (ii) is a direct consequence of (i). O

5.2.2 Test Cases and Annotations

We define test cases over an action signature (Acty, Acto) for input output
Markov automata. In fact, the definition coincides with test cases for pIOTSs,
but is reiterated here for the sake of completeness. However, this time, test cases

114 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

are formally defined as IOMA, as opposed to pIOTS. In a purely theoretical
setting, we are interested in the result of a parallel composition of a test case and
an implementation model. Recall that we strictly only allow parallel composition
of two IOMA, as opposed to an IOMA and a pIOTS (Definition [5.6). Thus, the
repeated definition is necessary in that regard.

Like before, a test is a collection of traces that represent behaviour of a tester,
and that is summarized as an IOMA in tree structure. The action signature
describes the potential interaction of the test case with the implementation. In
each state, the test may either stop, wait for a response of the system, or provide
some stimulus. When a test is waiting for a system response, it has to take into
account all potential outputs including the situation that the system provides
no response at all, modelled by §.

Definition 5.20. A test or test case over an alphabet (Acty, Acto) is an IOMA
t = (S, s, Actl, Actt,, @, A, @),

that has the alphabet’s outputs as inputs and vice-versa, i.e. Actt = Acto U
{8} and Actly = Act;\{6}, and that is a finite, internally deterministic, and
connected tree. In addition, for all its discrete distributions p we have p = Dirac,
and for every state s € S we require:

e cnabled(s) =0, or
e cnabled(s) = Act}, or

o enabled(s) € Acty,.

A test suite T is a set of test cases. A test case (suite resp.) for an IOMA S, is
a test case (suite resp.) over its action signature (Actr, Acto), if we additionally
require in item 3, that

e p(a,s') >0 with a € Actl, implies the existence of o € traces™(S), such
that o - ta € traces™(S) for some t € R .

The last item in the definition of test cases ensures that only specified inputs
are provided. After all, a test may only judge about the correctness of specified
behaviour. This is referred as input-minimal in the literature [169].

Remark 5.21. Although test cases are defined as IOMAs, they do not make
use of Markovian transitions. While it might seem appealing to equip test cases
with the potential to wait before proceeding with the next action, the capabilities
of Markov automata are too limited to be of practical relevance. That is, if a test
case were supposed to wait, it may only do so with an exponentially distributed
delay. The potential of waiting time is thus limited by only allowing to wait T
time units on average, as opposed to exactly T time units, or other. Moreover,
allowing Markovian actions in test cases results in I ||t not being internally
deterministic for any implementation IOMA T. This causes technical difficulties
in the proofs of correctness for our framework with respect to compositionality of
trace distributions. Therefore, we opt for the IOTS design of test cases instead.

CHOICE AND CHANCE 115

Test Annotation. In order to pin down the behaviour, which we deem as
acceptable/correct, each trace of the test is annotated with pass or fail verdicts,
determined by the requirements specification.

We have shown that the Mar-ioco relation conservatively extends the ioco
relation. Since annotations are solely responsible for functional correctness, it
suffices to directly transfer ioco test annotations to Markovian test theory. Note
that time stamps in traces do not play a role for the annotation label.

Definition 5.22. For a given test t a test annotation is a function
ann : traces®°™(t) — {pass, fail} .

A pair t = (t,ann) consisting of a test and a test annotation is called an
annotated test. The set of all such t, denoted by T = {(t;, ann;),c7} for
some index set I, is called an annotated test suite. Ift is a test case for an
IOMA S with signature (Acty, Acto), we define annSry,—oeo © traces®™(t) —

{pass, fail} by

fail if 3o € traces™(S),a € Acto :
AN o ioeo(0) = otaC o Aopta ¢ traces™(S)
pass otherwise.

Example 5.23. Since test cases for IOMA and their annotations coincide with
those for pIOTS, we refer to Example [[.21] for an illustration.

5.2.3 Test Evaluation and Verdicts

Since discrete probabilistic choices and stochastic time delay are integral parts
of Markov automata, there is a twofold evaluation process of functional and
probabilistic behaviour, respectively. While functional behaviour is assessed via
test annotation as in classical ioco theory (Chapter 7 the probabilistic and
stochastically timed behaviour is assessed by gathering a sample of traces.

Although we covered the latter for pIOTSs in Chapter [we did not account
for stochastic time delay. Hence, we shall revisit the counting of (abstract) trace
frequencies in the presence of continuous real time in this subsection. Recall
that we assessed trace frequencies in a sample via the function freq for pIOTSs.
In the presence of continuous real time, this process is slightly more involved,
but similar in shape and purpose.

In the following we focus on the novelties that continuous real time brings
with it, and reiterate fundamental definitions. For a more involved explanation
on the test process for discrete probabilities only, we refer to Chapter

Statistical Testing. The experiment consists of a push-button experiment in
the sense of [I34]. We assume a black-box timed trace machine is given, together
with inputs, a time and an action window, and a reset button, as illustrated
in Figure An external observer records each individual execution before
the reset button is pressed, and a new execution starts. A clock that increases

116 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

reset button

time display action display

B

Figure 5.7: Black-box timed trace machine assumed to operate based on an
underlying IOMA. The black-box possesses a reset button, and various input
buttons, alongside an action window showing the most recently executed action,
and a time window showing the relative time since the last observable action.

is started, and is stopped once the next visible action is recorded. We assume
that recording an action resets the clock. Thus, the recordings of the external
observer matches the notion of (abstract) traces.

After a sample of sufficient size was collected, we compare the collected
frequencies of abstract traces to their expected frequencies according to the
specification. If the empiric observations are close to the expectations, we accept
the probabilistic behaviour of the implementation. We point out, that the latter
includes stochastically delayed time.

Sampling. At the beginning of the experiment, we set the parameters for
sample length k& € N, sample size m € N, and level of significance a € (0, 1).
That is, we choose the maximal length of an individual experiment, the sample
size and the probability of erroneously rejecting a correct implementation.

We establish probabilistic correctness by checking the abstract trace fre-
quencies contained in a sample versus their expectancy with respect to the
specification. Like before, the latter is not immediately given in the face of
non-determinism in the specification, and requires a scheduler.

Thus, we assume each iteration of the sampling process is governed by
a scheduler, resulting in a trace distribution D € trd(Z). In order for any
statistical reasoning to work, we assume that D is the same in every iteration.
Consequently, the implementation chooses a trace distribution, and the trace
distribution chooses a trace to execute.

Frequencies and Expectations. To quantify how close a sample is to its
expectations, we require a notion of distance. Our goal is to evaluate the
deviation of a collected sample to the expected distribution. Thus, we require:
1. a metric space, enabling the quantification of distances between measures,
2. the frequency measure of abstract traces in a sample, and 3. the expected
measure of abstract traces of the specification under trace distribution D.

For an IOMA M, we define the metric space as (Meas (M), dist), where

dist (u,v) & sup |u(X) —v(D)]
cE[RY Act]<k

CHOICE AND CHANCE 117

is the maximal variation distance of two measures v and v. It is easy to check
that dist is a metric, and consequently (Meas (M), dist) is a metric space.

We proceed by defining the two measures that need to be compared. The
function assessing the frequencies of traces within a sample O = (01,...,0m)
cannot be directly transferred from the pIOTS scenario. Depending on the
accuracy of time measurement, it is unlikely to record the exact same timed
trace more than once. To illustrate, consider the two abstract traces

o1 = 05a?0.6b!, and
0.6a?0.5b!

02

Evidently, 01 and o2 wield the same actions in a? followed by b!. However,
their timed behaviour does not match precisely. Therefore, we group traces
in classes based on the same visible action behaviour. For a given trace o, its
class 3, is the set of all traces ¢ € O, such that act (9) = act (o). A sample
of length k& and width m then induces a frequency measure as the function
freq : (R x Ry Act]<F*™ — Meas ([R§ Act]<F), such that

o |17 <t7}]
%o ’

k
freq (0) (2) = E;f\ I {oex
i=1

where t7 denotes the i-th time stamp of trace o. Note that this function assumes
the independence of all time intervals from each other. In particular, working
with Markov automata warrants this approach, as there are no clocks attached
to delay transitions, and the delay is memoryless. Thus, the i-th time intervals
of all p are ordered increasingly and compared to 0. We point out, that the
distributions for each time stamp in a trace thus converge to the true underlying
distribution by the Glivenko-Cantelli Theorem [77].

The last missing ingredient is the expected measure according to a specifica-
tion. In order to resolve all non-deterministic choices, assume a trace distribution
D is given. We treat each iteration of the sampling process of the implementa-
tion as Bernoulli trial. Recall that a Bernoulli trial has two outcomes: success
with probability p and failure with probability 1 — p. For any trace o, we say
that success occurred at position i of the sample, if o = ;. Therefore, let
X; ~ Ber(Pp(X)) be Bernoulli distributed random variables for i = 1,...,m.
Let Z = 37 X; be the empiric mean with which we observe ¢ in a sample.
Note that the expected probability under D is then calculated as

1 1
EP(Z) = EP(=2", X;) = —X" EP(X;) = Pp(%).
(2) =EP(-SI,X,) = S EP(X,) = Pp(%)
Hence, the expected probability for each abstract trace ¥ is the probability of

> under trace distribution D, as should be expected. Since this holds for all
abstract traces, the expected measure is given by EP.

Example 5.24. Returning to the example of 01 = 0.5a70.6b! and oy =

118 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

0.6a?0.5b!. Assume O = {o1,02}. Then
freq (0) ([0,0.5]a?[0,0.5]b) = 2-1.3 =13
freq (0) ([0,0.5]a?[0,0.6]0)) = 2.1.2-=1
freq (O) (]0,0.6] a? [0, 0.6] b!)

Il

\

\

\

\
—

Acceptable Outcomes. A sample O is accepted, if freq(O) lies within some
distance r, of the expected measure EP. All measures deviating at most 74
from the expected measures are contained within the ball B, _(E?). The actual
7o 18 chosen, such that the error of accepting an erroneous sample is limited,
while keeping the error of rejecting a correct sample smaller than «, i.e.

o & inf{r € Ry | Pp(freqg " (B,(EP))) > 1 — a}.

Definition 5.25. For k,m € N and an IOMA M the acceptable outcomes of
D € trd(M, k) of significance level a € (0,1) are given by the set

Obs(D, a, k,m) = {0 € [Rf Act]<F*™ | dist (freq(O),E”) <4}
We obtain the set of acceptable outcomes of M by

Obs(M,a, k,m) = U Obs(D, a, k,m).
Detrd(M,k)

Like in the pIOTS case, the set of acceptable outcomes consists of all possible
samples, we are willing to accept as close enough to the expectations. Note that
this takes all possible trace distributions of the IOMA M into consideration. As
such, the construction of the set of acceptable outcomes has a striking similarity
to the one defined for pIOTSs (Definition [4.23)). This is due to the fact, that
both sets are built on trace distributions of the respective underlying modelling
formalism.

The set of acceptable outcomes of an IOMA M has two properties, reflecting
the error of false rejection, and the error of false acceptance respectively.

1. If a sample was generated by a truthful trace distribution of the specifica-
tion, we correctly accept it with probability higher than 1 — «, i.e.

Pp(0Obs(D,a, k,m)) > 1 — «
2. If a sample was generated by a trace distribution not admitted by the
specification, the chance of falsely accepting it is smaller than some [,,.

Again, « is the a priori defined level of significance, and 3, is unknown, but
minimal by construction. Additionally, 5,, — 0 as m — oo. Thus, the error of
falsely accepting an observation decreases with increasing sample size.

Remark 5.26. The set of acceptable outcomes comprises samples of the form
O € [R Act]SF*™ . In order to align observations with the Mar-ioco relation,
we define the set of acceptable output outcomes like follows

OutObs(D,a,k,m) = {0 € (R Act]=F1 - R Acto)™ |
dist (freq(O),IED) <7ra}

CHOICE AND CHANCE 119

Verdict Functions. With all necessary components in place, the following
decision process summarizes if an implementation fails a test, or test suite
respectively, based on a functional or a statistical verdict. The overall pass
verdict is given iff both sub-verdicts yield a pass.

Definition 5.27. Given a specification IOMA S, an annotated test t for S,
k,m € N, where k is given by the length of the longest trace of t, and o € (0,1),
we define the functional verdict as vpune : IOMA x IOMA — {pass, fail}, with

pass, if Vo € traces®™(I||t) : ann‘}\;/[m,_iow (o) = pass

fail, otherwise,

Ufunc(:L tA) = {

the statistical verdict as the function vprop : IOMA x IOMA — {pass, fail}, with

pass, if VD € trd(T||£)3D’ € trd(S, k) :
Uprob (L, 1) = Pp/(0utObs(D, o, k,m)) > 1 —

fail, otherwise,

and the overall verdict as V : IOMA x IOMA — {pass, fail}, with

V(T f) _) pass, if Vjune(Z, f) = Uprob (Z, f) = pass
’ fail, otherwise.

An implementation passes a lest suite T, if it passes the overall verdict for all
testst e T.

Even though IOMA include three properties in 1. functional behaviour,
2. discrete probabilistic behaviour, and 3. continuous real time we only have two
verdicts. We point out, that continuous real time is only present in the form of
stochastic delay. Thus, on the purely mathematical level the decision whether or
not a delay in the implementation adheres to the one specified, is covered by the
probabilistic verdict vp..p. It is only on the practical side of things, that a new
decision procedure is needed. We study this in Section

5.2.4 Correctness of the Framework

In Chapter [we saw that soundness and completeness are no absolute entities,
when referring to probabilistic systems - A system of inherently probabilistic
nature may only be sound and complete with some probability. This is due to the
fact, that the statistical verdict is of probabilistic nature. Thus, the capability
to judge probabilistic systems as correct, is largely dependent on the errors of
first and second kind. Since IOMA are a conservative extension of pIOTSs, it is
only natural that this trade-off carries over.

We reiterate: Soundness incorporates the probability that the fail verdict
is erroneously assigned to a conforming implementation, while completeness is
concerned with the probability to assign the pass verdict to a non-conforming
implementation. A test suite may only fulfil these properties with a guaranteed
(high) probability.

120 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

Definition 5.28. Let S be a specification IOMA over an action signature
(Acty, Acto), a € (0,1) be the level of significance, and T an annotated test suite
for S. Then

o T is sound for S with respect to C prar—ioco, if for all input-enabled IOMAs
T and sufficiently large m € N it holds for allt € T

7 EMarfioco S = V(I, {) = pass.

o T is complete for S with respect to T prar—ioco, if for all input—gnabled
IOMAs T and sufficiently large m € N, there is at least one t € T, such
that

7 ZMarfioco S = V(I, tA) = fall

Soundness expresses for a given « € (0,1), that there is a 1 — « chance that
a correct system passes the annotated test suite for sufficiently large sample size
m. This relates to false rejection of a correct hypothesis, or rejection of a correct
implementation, respectively.

Theorem 5.29. Fach annotated test for an IOMA S is sound for every level
of significance o € (0,1) with respect to Cptar—ioco-

Proof sketch. The proof sketch is similar to the one for pIOTS (Theorem ,
since the verdicts were defined in a similar manner, and both proofs rely on
trace distributions. We assume Z to be an input enabled IOMA and ¢ to be
an annotated test case for the IOMA S. The proof requires to show that
T T Mar—ioco S implies V(Z, f) = pass. The latter is split into functional verdict
Vfune(Z, f) and probabilistic verdict vproy(Z, 5)7 which are treated separately.

e The functional verdict requires to show that the annotation of every trace
o € traces®™(Z||f) is pass. Note that the annotations do not depend on
time delay, and the proof is therefore equivalent to the pIOTS case. We
start by taking a prefix ¢’ of 0. We can assume ¢’ to be a trace of S —
such a trace surely exists, as the empty trace ¢ is always a prefix of . The
proof consists of showing that ¢’ ta C o is a trace in S for all outputs a
and some t € Rar. If no such output exists, then o solely consists of inputs
and gets the pass label by the definition of annotations (Definition .
Without loss of generality, we choose a trace distribution D € ¢rd(S) which
assigns positive probability to ¢’. Since o ta is a trace in Z || it must also
be a trace in Z. Hence, there is a trace distribution D’ € outcontz (D) that
assigns positive probability to it. By Z C par—ioco S We know that D’ is
also a trace distribution of S, which implies ¢’ ta to be a trace in S. This
results in the pass annotation, and thus the functional pass verdict.

e The probabilistic verdict requires that all observations of Z || get assigned
a measure greater or equal to 1 — « for a trace distribution of S. The proof
consists of letting D € trd(Z || ¢), and showing that D € #rd(S). This is

CHOICE AND CHANCE 121

sufficient by merit of the definition of observations (Definition [5.25)), i.e.
we always have Pp(0Obs(D, a, k,m)) > 1 — « for any D.

The proof consists of three steps: 1. D might still schedule positive prob-
ability to input actions in the k-th step; we choose a new scheduler that
assigns all this probability to halting instead. The measure of OutObs is
unaffected by this, as it only consists of traces ending in output. 2. We
show that D is a trace distribution of Z. In particular, this lets us use the
assumption Z Cpzar—ioco S in the next step. Intuitively, Z||# is internally
deterministic by the construction of test cases. Hence, there is an injective
mapping from paths of Z||# to the paths of Z. We can then construct a
scheduler in Sched(Z) that can copy the behaviour of the scheduler of Z||#
step-by-step. Lastly, 3. we apply the assumption Z C 14— ioco S to show
D € trd(S). This ultimately yields vy, (S, 1) = pass.

O

Completeness of a test suite is inherently a theoretical result. Since loops
are allowed in the system models, we naturally require test suites of infinite
size. Moreover, there is the chance of falsely accepting an erroneous hypothesis
or implementation, respectively. However, the latter is bound from above by
construction, and decreases for larger sample sizes (Definition .

Theorem 5.30. The set of all annotated test cases for an IOMA S is complete
for every level of significance « € (0,1) with respect t0 T prar—ioco fOr sufficiently
large sample size.

Proof sketch. The proof is again similar to the one for pIOTSs (Theorem .
We assume Z to be an input enabled IOMA and T to be the test suite con-
taining all annotated test cases for S. We prove the statement by showing
that Z Z par—ioco S implies V(Z,T) = fail. By the definition of verdicts (Defini-
tion this requires the existence of a test case ¢ such that either the functional
verdict, or the probabilistic verdict fails. Assuming 7 IZ psar—ioco S implies the
existence of a trace ending in output in Z, whose probability cannot be matched
under any trace distribution in §. This can have two causes: 1. the mismatch
arises due to the trace not being present in S, or 2. all such traces are present in
S, and the mismatch arises due to different probability distributions in Z and
S. We relate the first to vpyne(Z, t) = fail and the second to Vprob (L, t) = fail for
some test 7.

e We show that the first case implies vjync(Z, f) = fail. The proof is straight-
forward, and requires to show that the trace in S has the fail annotation
for some annotated test case. This follows immediately from the definitions
of test cases and their annotations (Definitions and , and by T
containing all test cases for S.

e We show that the second case implies v,0p(Z,t) = fail. According to the
definition of verdicts (Definition [5.27)), we need to show that there is a
test case ¢ and a trace distribution of Z ||t under which all observations

122 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

get assigned a measure smaller than 1 — « for all trace distributions
of § for sufficiently large m. By the definition of acceptable outcomes
(Definition we know that Pp(OutObs(D’, o, k,m)) < B, for some
B 2% 0 whenever D # D'. By initial assumption, we know this holds
for all D’ € outconts(D*) with D* € trd(S, k). This estimate is unaffected
by increasing the search space to all D’ € trd(S, k + 1) instead, since the
measure of the set OutObs is maximised for trace distributions of outcont.

It remains to be shown that there is a test case ¢ for all trace distributions
D € outcontz(D*), such that D € trd(Z ||). By assumption, all traces
getting assigned a positive probability under D are traces in S. We select
a test case t, that contains all these traces. In particular, all such traces
end in output by assumption. The IOTS structure and absence of internal-
or Markovian actions ensures that Z || ¢ is internally deterministic, and
there is no interleaving. This means that a scheduler of Z || ¢ can copy the
behaviour of the scheduler inducing D step-by-step. A careful construction
shows that D € trd(Z || t), for which all D’ € trd(S) assign all of D’s
observations a measure smaller than 1 — « for sufficiently large m. This
yields vy (Z,1) = fail.

The mismatch of probability of a trace has to belong to one of the two mentioned
cases, and thus V(Z,T) = fail. O

5.3 Implementing Markovian Testing

The previous section laid the theoretical foundations of the Markov automata-
based testing framework. In order to cope with the rather abstractly defined
concepts in practice, we present applicable procedures. We point out that
the majority of them carries over from the pIOTS case. However, having
stochastically delayed continuous real-time in the underlying modelling formalism
demands slight adjustments from the ones seen in Section [4.3

First, we discuss how the goodness of fit-method we saw in form of Pearson’s
x? test is adjusted to cope with real time. While we keep Pearson’s x? test as a
necessary condition for further reasoning, the overall procedure is enriched with
confidence interval analysis on the time stamps. In particular this means that
the corresponding waiting times recorded in traces are grouped together and
compared to their prescribed Markovian parameter A in the model. Note that
additional assumptions are necessary to enable a clean and efficient framework.

Next, we present the intricate interplay that stochastically delayed time and
the notion of quiescence induces in a practical testing scenario. The presence of
inherent delay requires us to wait before possibly judging the implementation
quiescent. On a purely formal level quiescence means the indefinite absence of
outputs. In practice, this is done via global waiting times [I5] [29] indicating
when an implementation is judged as quiescent indefinitely. However, in the
interest of the global time of the overall test procedure we would like to keep

CHOICE AND CHANCE 123

this waiting time at a minimum. We discuss sensible solutions to deal with this
dilemma.

Lastly, we point out that test cases for IOMA are essentially IOTSs. Hence,
the test generation algorithms seen in Chapters[3land 4 can directly be transferred,
and are not further discussed here.

The section ends with a summary of all practical steps, that enable the
model-based test approach when working with the Markovian formalism.

5.3.1 Goodness of Fit

We need practically applicable methods to decide about the verdicts given by
Definition The functional verdict requires that all traces of the implementa-
tion under test are labelled with the pass label. However, in practice we do not
have access to all traces, and rely on those encountered during testing instead.
While the functional verdict is determined via test annotations, we are currently
lacking a procedure to decide about the probabilistic verdict, i.e. the probabilistic
(incl. Markovian) correctness of an implementation. This procedure consists of
two subcomponents: Pearson’s x? hypothesis test for discrete probabilities, and
interval estimation for time stamps.

Pearson’s x2 test. A method we used in the case of discrete probabilities
only, was the x? hypothesis test, cf. Section Our approach was based
on a theorem known from the literature [40]: Between two pIOTSs, there
is an embedding of trace distributions iff there is an embedding on the set
of observations. Neither the set of trace distributions, nor the entire set of
observations of the implementation are directly accessible to us. Instead, we
pose a null-hypothesis for a statistical hypothesis test. Its outcome is based on
a sample O taken from the implementation under test. Should O prove to be
a sample of the set OutObs(S, «, k, m) for some « € (0,1), we are willing to
accept the hypothesis of the embeddings of observations. This, in turn, lets us
conclude the embedding of trace distributions, and consequently, the statistical
pass verdict.

In the Markovian case, we argue along the same lines. However, only applying
the x? hypothesis test is insufficient, as it does not take into account the delay
times observed in abstract traces. Nonetheless, passing the x? test is a necessary
condition for an implementation to be accepted.

We reiterate how the x? score of a sample is calculated. Therefore, for a
finite trace o = t1 a1tz as... t,ay, let ¢ = RS‘ aq Ra' as... RS‘ a, be its time
closure. Then the empiric x? score is given as

2 def Z (|{|§\QEOA@:5|}|_mED(5))2.

mEP () (5.1)

X
ce{c|loeO}

Equation (5.1) essentially compares observed traces to their respective expected
counterparts. We use the time closure of traces to ignore time stamps for the 2

124 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

analysis. The empirical x? value is compared to critical values of given degrees
of freedom and levels of significance. These values can be calculated, or looked
up in a x? table (Appendix . In case the empiric x2 score is below the given
threshold x?2,,;, the hypothesis is accepted, or consequently rejected if it is not.

However, the expected value EP depends on the resulting trace distribution
of a scheduler. Thus, finding a scheduler such that x? < x2,., turns into a
minimisation problem (or satisfaction problem, respectively).

2

3 (H2lecono=o}-nE%()

Dewd(S.k) L) mEP (5)

(5.2)

The probability of a trace is given by a scheduler and the corresponding path
probability function, (Definition . Hence, by construction, we need to find
probabilities p used by a scheduler to resolve non-determinism. This turns (5.2))
into a minimisation or constraint solving problem of a rational function f(p)/g(p)
with inequality constraints on the vector p. As [I37] show: minimizing general
rational functions is NP-hard.

Remark 5.31. Recall the discussion of Remark on schedulers with the
capability to wait before scheduling the next action. The minimisation step
presented in Equation highlights our choice of schedulers in Definition .
We chose not to equip schedulers with the potential to wait before choosing the
next action, as this would make the minimisation or constraint solving step
needlessly complex to warrant any application outside of trivial scenarios.

An dllustrative example is given by the trace o = 0.1a!. Even for a simple
trace like o, it would not be clear whether the time stamp 0.1 originated from
the implementation, or a scheduler that decided to wait before scheduling the a!
action. Moreover, it is possible that both the implementation and the scheduler
contributed to the delay. Backwards analysis on the best fitting scheduler of a
non-trivial sample, and deciding the null-hypothesis becomes too complex to utilize
this approach in practice, and warrants the choice of non-waiting schedulers.

Interval estimation. While passing the y? test is a necessary condition
in order to accept the null-hypothesis O € OutObs(S, a, k,m), it is not yet
sufficient. Note that the used hypothesis test did neglect time information
completely, and we are currently lacking a metric to decide whether observed
time delays correspond to a prescribed exponential distribution. We overcome
this with the help of interval estimation on the parameter of the exponential
distributions.

Assume values x1,...,x, are given, and suppose we ought to test whether
the values follow an exponential distribution with parameter A. Our goal is to
construct the confidence interval for given o € (0,1) of these values, i.e. upon
further sampling and interval estimations, there is a 1 — « chance that the true
parameter A, is contained in the interval. The 1 — « confidence interval for

CHOICE AND CHANCE 125

the given values is given by

lX%—a/Q,Qn Xi/2,2n] (5 3)

250 ;2%

where Xi,Qn is the 1 — o quantile of the x2 distribution of 2n degrees of freedom.
We refer to Appendix Proposition for the derivation of the presented
interval.

ID Trace o ID Trace o
1 0.03 a! 9 2.28 b!
2 0.30 a! 10 4.52 b!
3 0.37 a! 11 8.28 b!
/\1 =1 —_— 4 0.64 a! 12 8.71 b!
5 1.38 a! 13 14.27 b!
6 1.79 al! 14 19.01 b!
7 1.82 al!
8 2.69 a!

Figure 5.8: Example specification model IOMA and sample observation.

Example 5.32. Figure[5.8 shows an example specification model alongside a
potential sample observation from a real implementation. In state sy are two
outgoing internal T actions, followed by two Markovian transitions in s1 and Sg
respectively. In states ss and s4 we either observe action a! or b!, respectively.

The sample shows 14 recorded traces of length one, thus m =14 and k = 1.
We ordered the traces in an increasing manner according to their time stamps.
Note that this is not possible in general, as there is no such simple order on
higher dimensional vectors.

There are two steps to assess whether the observed data is a truthful sample
of the specification model with a confidence of « = 0.1: 1. find a trace distribution
that minimises the x2 statistic and 2. evaluate two confidence intervals to assess
whether the observed time data is a sample of \y = 1 and Ay = 0.1, respectively.

There are two classes of traces solely based on the action signature: ID 1-8
with a! and ID 9-14 with b!. Let p be the probability that a scheduler assigns to
taking the left branch in sg, and 1 — p the probability for the right branch. Upon
drawing a sample with m = 14 we expect m-p as frequency for a! and m- (1 —p)
as frequency for b!. The empirical x? score therefore calculates as

e 8-l 6-14-(-p)
14-p 14-(1—p) °

An easy calculation yields x* = 0 for p = 8/14. This is obviously smaller than
the value X2, = X311 = 2.706. We proceed to the second step; confidence
interval estimation.

Lett; = 0.03,...,ts = 2.69 be the data associated to Ay and t) = 2.28,... t; =
19.01 be the data associated to Ay. Calculating the confidence intervals according

126 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

to equation (5.3) yields
Cy = [0.441,1.458] and Cy = [0.092, 0.368].

We see that \y € C1 and Ao € Cy and are therefore willing to accept that the
recorded sample was drawn from the prescribed parameters.

Note that these two subsequent steps do not yet make a sound statement
about the acceptance of the hypothesis O € OutObs(S,0.05,1,14), since we test
multiple hypothesis at once. We need to adjust the individual level of significance
for the statistical tests, to conclude the overall acceptance with o = 0.1. This is
known as the inflation of the error of first kind, and discussed subsequently.

Example [5.32] highlights the necessity of two additional assumptions we need
to make, if we are to apply confidence intervals as the method of choice:

e The model illustrates the importance to uniquely identify every recorded
trace. Assume for the sake of the illustration that a! = bl. It is not
directly possible to associate values t; with A; and t; with Ao. Without an
additional assumption, we were left to check all possible permutations of t;
and t; for the induced confidence intervals. The increase of computational
complexity is immediately visible, and therefore we assume all specification
models to be internally deterministic for this method to be applicable.
That is, we assume there to be a bijection between paths and traces.

e The sum of two exponential distribution is not an exponential distribution.
Hence, confidence interval estimation may be flawed for two sequential
Markovian actions. It is known that the sum of exponential distributions
is a phase type distribution; a distribution known to be dense in the set of
all positively valued distributions. It is easy to imagine a non-exponential
distribution with the same mean. To avoid calculating confidence intervals
for variance, skewness etc. we assume models to not enable two consecutive
Markovian actions (possibly intercepted by an internal 7 action).

Multiple comparisons problem. Since the x? test and all subsequent con-
fidence interval estimations are statistical hypothesis tests on their own, we face
the issue of error accumulation. To illustrate: if a statistical hypothesis test
is performed at o = 0.05 there is a 5% chance of performing an error of first
kind. That is the erroneous rejection of a true hypothesis. If we are to apply
100 individual tests with o = 0.05 we expect to perform this error 5 times. If we
assume the tests to be independent of each other, the probability of committing
at least one error of first kind calculates as 1 — (1 — 0.05)19° = 99.4%.

There are several techniques to cope with the inflation of the error of first kind.
We refer to Appendix [A22] for a more detailed discussion on possibly applicable
methods. For the remainder of this section, we use the straightforward Bonferroni

correction, i.e.

o Qglobal
Alocal = I

where [is the total number of statistical hypothesis tests to be performed.

CHOICE AND CHANCE 127

Example 5.33. We return to Ezample[5.334 We established that performing
three hypothesis tests with a = 0.1 does not have an overall type I error of
a = 0.1. Applying Bonferroni correction for a total of three hypothesis tests
yields aocqr = 0.033. These entail the x? test and two interval estimations. The
x? test still passes, and the new confidence intervals are

C! = [0.353,1.677] and C} = [0.070,0.432).

Naturally Ay € C] and Ay € C4 still hold, and we give the implementation the
probabilistic pass verdict.

5.3.2 Stochastic Delay and Quiescence

Testing needs to assess if an implementation is allowed to be unresponsive when
output was expected [166]. In our formalism, quiescence J models the absence
of outputs for an indefinite time. It should be regarded with caution in practice.
A common way to deal with quiescence is a global fixed time-out value set by
a user [29, [15]. The time progress in an IOMA is governed by exponential
distributions, hence a global time-out has two disadvantages: First, a time-out
might occur before a specified Markovian transition is taken. The average waiting
time of this event might be substantially higher than the global time-out. Second,
a global time-out might unnecessarily prolong the overall test process.

A time-out can be seen as a delay that follows a Dirac distribution, e.g.
a deterministic time-out after t time units. This is incompatible with TOMA:
Dirac delays cannot be represented in IOMA, and consequently they were not
considered in the statistical evaluation that we developed in the previous section.

We now detail a possible solution for IOMA that avoids the problem of
Dirac distributions, and aims at minimising the probability of erroneously
declaring quiescence, while keeping the overall testing time as low as possible. In
order to avoid Dirac distributions, an MBT tool for IOMA needs to implement
quiescence by racing an exponentially distributed delay with rate As against the
implementation; this quiescence timer winning the race is then treated as the
quiescence output §. Let A > 0 be the minimum exit rate over all Markovian
states. With level of significance o € (0, 1), we would like the probability that
the quiescence timer expires before a Markovian transition is executed, i.e. that
we incorrectly report quiescence when the implementation could make progress,
to be at most a. Choosing us = A - 12 as the quiescence timer’s rate achieves
this probability with the shortest waiting time in case of actual quiescence. We
can further reduce the waiting time by using a different rate in every state: if
the exit rate of state s is \s, we use rate pu5 = As - 12- to judge quiescence in s.

The statistical evaluation only has to be adjusted to consider the new exit
rate A 4+ ps and the newly added “Markovian transition” for quiescence. In fact,
we can directly represent this approach by rewriting the specification model as
shown in Example below. For non-Markovian states a default maximal
waiting time is still applicable.

128 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

snd_small?

snd_large?

Figure 5.9: Two example specifications for quiescence timeouts

Example 5.34. The left hand side of Figure shows a simple specification
of a file transmission protocol. FExponential distributions model the delay between
sending a file and acknowledging its reception. Different delays are associated with
sending small or large files, respectively. After a file was sent, there is a chance
that it gets lost, and we do not receive an acknowledgement. In this case the
system is judged as quiescent, and therefore erroneous. However, since Ao << A1,
a test should use a quiescence timer rate of \3* =10 - 19— in s1, and \§* = 19~
in So to minimise the probability to erroneously judge quiescence, while also
keeping the global testing time as low as possible. Regardless, for sufficiently large
sample size, an MBT tool eventually erroneously observes quiescence. Rather
than assigning the functional fail verdict right away, the right hand side of
Figure [5.9 therefore allows some amount of quiescence observations depending
on «, i.e. how many erroneous quiescent judgements we are willing to accept.
We compare a global quiescence timer rate to individual ones by assuming
a = 0.05, and by assuming we are to test the protocol as illustrated on the left

hand side in Figure 100 times:

Long global: A sensible long global quiescence timer rate is Aj* ~ 0.053. Ez-
ecuting 100 test cases yields a worst case expected waiting time for the
case where the implementation is always quiescent of 100/A3* = 1900 time
units. However, we are (more than) guaranteed to incorrectly judge the
implementation quiescence in at most 5% of all cases.

Short global: A sensible short global quiescence timer rate is A5 ~ 0.526. The
worst-case expected time is only 190 time units. However, the probability
of the transition with rate Ay not firing before the quiescence timer becomes
~ 34%. We would then incorrectly judge the implementation quiescent
even though the Markovian transition might still take place.

Individual: Using the long rate in state so and the short one in state s; guar-
antees that we erroneously judge quiescence overall in 5% of the cases.
Note that this is accounted for in the specification on the right hand side
in Figure[5.9 The worst case waiting time now depends on the probability
p of sending a small file instead of a large one; it is p- 190 + (1 — p) - 1900.
In general, time is saved in the overall test process whenever a small file is
sent.

CHOICE AND CHANCE 129

5.3.3 Markovian Test Algorithm Outline

We summarize all necessary steps to perform model-based testing with Markov
automata using our framework:

1. Generate a test case (suite resp.) for the specification IOMA

2. Execute the test case (all test cases of the test suite resp.) m times. If the
functional fail verdict is encountered in any of the m executions, then fail
the implementation for functional reasons.

3. Calculate the number of necessary statistical hypothesis tests for each test
case. Apply «a correction accordingly.

4. Perform statistical analysis on the gathered sample of size m for the test
case with the new parameter @ (all test cases of the test suite resp.).

(a) Use optimisation or constraint solving to find a scheduler such that
X2 < X2, If no such scheduler is found, reject the implementation
for probabilistic reasons.

(b) Perform confidence interval estimation, and check if all Markovian
parameters are contained in their respective intervals. If there is at
least one parameter, which is not contained in its confidence interval,
reject the implementation for probabilistic reasons.

5. If no fail was encountered during the process, accept the implementation.

We point out that item 4.b is generally only applicable if we assume that the
specification model 1. is internally deterministic, and 2. only contains paths,
where a Markovian action is eventually proceeded by an externally visible action
before traversing another Markovian transition. These are necessary assumptions
for the interval estimation to work, as pointed out in this section.

5.4 Experiments on the Bluetooth Device Dis-
covery Protocol

Bluetooth is a wireless communication technology standard [I61] specifically
aimed at low-powered devices that communicate over short distances. To cope
with inference, the protocol uses a frequency hopping scheme in its initialisation
period. Before any communication can take place, Bluetooth devices organise
themselves into small networks called piconets consisting of one master and up
to seven slave devices.

To illustrate our framework, we study the discovery phase for one master
and one slave device. The protocol is inherently stochastic due to the initially
random and unsynchronised state of the devices. We give a high level overview of
the protocol in this case. The reader is referred to a case study performed with
PRISM [64] for a detailed description and for formal analysis on the protocol in
a more general setting.

130 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

We point out, that the protocol specification prescribes a time delay, which
is not exponentially distributed. Therefore, we have to approximate the true
distribution via parameter estimation as our theory intends to.

Device Discovery Protocol. To resolve possible interference, the master
and slave device communicate via a prescribed sequence of 32 frequencies. Both
devices have a 28-bit clock that ticks every 312.5us. The master device broadcasts
on two frequencies for two consecutive ticks, followed by a two-tick listening
period on the same frequencies. It picks the broadcasting frequency according
to the formula:

freq = [CLK16-12 + off + (CLK 4_20 — CLK16_12) mod 16] mod 32,

where CLK;_; marks the bits ¢ to j of the clock and off € N is an offset. The
master device chooses one of two tracks and switches to the respective other
every 2.56s. Moreover, every 1.28s, i.e. every time the 12th bit of the clock
changes, a frequency is swapped between the two tracks. For simplicity, we
chose off =1 for track one and off = 17 for track two, such that the two tracks
initially comprise frequencies 1,...,16 and 17,...,32.

Conversely, the slave device periodically scans on the 32 frequencies and is
either in a sleeping or listening state. To ensure the eventual connection, the
hopping rate of the slave device is much slower. Every 0.64s it listens to one
frequency in a window of 11.25ms and is in a sleeping state during the remaining
time. It cycles to the next frequency after 1.28s. This is enough for the master
device to broadcast on 16 different frequencies.

Parameter Estimation. Note that the time to connect two devices is deter-
ministic for any initial state. That is, assuming we know the initial state of both
devices, we can calculate the time needed until a connection is established. We
assume that the clocks of both devices are desynchronized to avoid this trivial
scenario, i.e. the master sends out packages, while the slave starts listening after
a uniformly chosen random waiting time. Naturally, this obfuscates the initial
states, and prevents an easy calculation of the connection time.
However, we are left with four scenarios that enable synchronisation:

e Synchronisation happens during the first 16 broadcasted frequencies. This
happens between 0s and 1.28s and comprises 16 frequencies.

e Synchronisation happens after the first frequency swap of the master device.
This happens between 1.28s and 2.56s and comprises one frequency.

e Synchronisation happens after the first switch of tracks and two frequency
swaps of the master device. This happens between 2.56s and 3.84s and
comprises 14 frequencies.

e Synchronisation happens after the first switch of tracks and three frequency
swaps of the master device. This happens between 3.84s and 5.12s and
comprises one frequency.

CHOICE AND CHANCE 131

Note that these four scenarios are exhaustive, i.e. the master device broadcasts
frequencies, such that the slave device necessarily must listen to at least one
coinciding frequency within 5.12s according to the specification. This also causes
the probability jumps notable in Figure

The different scenarios yield 32 possible exact waiting times to connect,
i.e. after 2 or 3 ticks, 6 or 7 ticks, etc. Calculating the mean of all waiting
times, gives us the average waiting time as approximately 1.325s. Taking the
reciprocal finally yields the parameter A = 0.755 as the estimated parameter for
the exponential delay, i.e. % = 1.325 is the average time we expect to wait before
connection is established. We use this exponential distribution to approximate
the true distribution.

outputs .
_ JTorX sampling
SUT — | Log files
-
inputs Spec.
J analysis
functional verdict
Verdict: MATLAB

5
pass or fail / prob. verdict

Figure 5.10: Experimental set up entailing the system under test, the MBT tool
JTorX [15] and MATLAB [86]. Logs are gathered during the conformance test,
and analysed later for a probabilistic verdict.

Experimental Setup. Our tool-chain is depicted in Figure Although it
is the same as for the case studies performed in Chapter [4] we point out, that
MATLAB additionally calculates the acceptance regions for the timed parameters.
The implementation is tested on-the-fly via the MBT tool JTorX [15], which
generates tests with respect to a transition system abstraction of the specification
(Figure . JTorX returns the functional fail verdict, if unforeseen output
is observed at any time throughout the test process. Additionally, we chose a
global time-out of approximately 5.2s in accordance with the specification, i.e.
the time that the master device needs to broadcast all available frequencies at
least once. The recorded log files of JTorX comprise the sample.
We implemented the protocol and three mutants in Java 7;

M1 The master mutant M1 never switches between tracks one and two, there-
fore covering fewer different frequencies than the correct protocol in the
same time. An easy calculation yields, that this mutant needs a total
of 16 x 1.28s = 20.48s to cover all 32 frequencies. Hence, we expect a
much lower probability to connect in the same time when compared to
the correct counterpart.

132 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

[
d

ﬁﬁ =
0.9 /"__,.,
D . -
v
-
c y
connect? £ s y,
b /
B ;
(1) Z"* :
= ’
Zo4 ’
A~ 0.755 5 ;’i
So3 .
= ," ————— 1-exp(-0.755T)
@ 02t 4 Correct
; Mutant M1
0.1 ,‘] Mutant M2
connected! i Mutant S1
0 i
a 1 2 3 4 5 6
@ T (sec)
(a) Specification IOMA (b) Probability to establish connection

Figure 5.11: High level specification of the Bluetooth device discovery protocol
for one master and one slave device. The time to establish a connection for a
correct implementation and two mutants is compared to the assumed underlying
exponential distribution with parameter A ~ 0.755.

M The master mutant Mo never swaps frequencies, and only switches between
the two tracks. Therefore, it covers all available frequencies in at most
3.84s. The expected probability to connect is higher in the same time
when compared to the correct counterpart.

81 The slave mutant has its listening period halved, and thus only listens for
5.65ms every 1.28s. Therefore it has a longer sleeping period, and we
expect that the probability to connect in the same time as the correct
implementation is slightly reduced.

Figure [5.1T4] shows the high level specification of the protocol. The request
for both devices to synchronise is either followed by an acknowledgement or a
time-out. A collected sample therefore consisted of the traces

o1 = 0connect?t connected!,

oo = 0connect?td.

Results. We collected samples of varying sizes to calculate the confidence
intervals of the delay parameter A = 0.755 for a = 0.05. Figure shows
the cumulative probability distribution to connect within 7" seconds of the
assumed underlying exponential distribution 1 — e=%7%T alongside empiric
distribution functions of sample data collected for 1000 executions of the correct
implementation and the three mutants, respectively.

Table [5.1] shows the resulting calculated confidence intervals for o = 0.05
for sample sizes m = 100, m = 1000, and m = 10000, respectively. Note that

CHOICE AND CHANCE 133
correct mutants

MJS M. S Mz [S M5
k=2 Accept Reject Accept Accept
m = 100 [0.586, 0.868] — [0.597, 0.885] [0.673,0.997]
Timeouts 0 33 0 0
k=2 Accept Reject Reject Reject
m = 1000 [0.729, 0.826] — [0.767,0.868] [0.756, 0.855]
Timeouts 0 376 0 0
k=2 Accept Reject Reject Reject
m = 10000 [0.735,0.764] — [0.772,0.803] [0.757,0.787]
Timeouts 0 3753 0 0

Table 5.1: Verdicts and interval estimations for the Bluetooth initialisation.
An implementation is accepted if A &~ 0.755 € C, where C is the confidence
interval for o = 0.05 of the true mean of the assumed underlying exponential
distribution.

no « correction was necessary, as the confidence intervals were the only tested
statistical hypotheses on the sample data. An implementation was accepted, if
the parameter A\ = 0.755 was contained in the calculated confidence intervals.
The confidence intervals were calculated according to Equation .

The correct implementation M || S was accepted for all three sample sizes.
Master mutant one M, || S was rejected for all cases due to the functional fail
verdict, as multiple time-outs were observed. Conversely, master mutant two
Mz || S and the slave mutant M || S; were accepted for m = 100, because the
parameter A was contained in the calculated confidence interval. However, we
see that both were rejected for larger sample sizes, as the confidence intervals
grew smaller to the point of not containing A any longer.

Discussion. The performed case study was not tailored towards MBT with
Markov automata. The waiting time of interest is clearly not exponentially
distributed, and only means of the delay until connection happens are compared.
Evidently, the underlying distribution has an entirely different shape, when
compared to an exponential distribution, while approximately preserving the
mean value. Nonetheless, the framework is applicable and rightfully judged the
correct implementation as conforming, while eliminating the three mutants.
The confidence interval for the waiting time of the slave mutant, marginally
not contained the parameter A. Sufficiently many repetitions of the experiment
should eventually result in a confidence interval that contains A, and a type
IT error is performed. However, upon comparing one specific implementation
over varying sample sizes, we conjecture that the confidence intervals grow even
smaller with a larger sample. This is in line with the decreasing error of second
kind for increasing sample size pointed out in Section On the contrary,
master mutant two was eliminated with a larger margin. This illustrates the
potential of Markovian test theory given the right circumstances. The framework
is best applied, if the specification prescribes average time delays, as opposed to
fully-fledged non-exponential distributions. The latter is treated in Chapter
where testing is based on the more powerful stochastic automata. There is a

134 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

trade-off in flexibility and complexity when comparing test theory for Markov-
and stochastic automata: While the latter allows more involved distributions,
the statistical analysis is reduced to a mere estimation of confidence intervals for
the former.

5.5 Conclusions

We presented a sound and complete MBT framework to test probabilistic systems
with stochastic-time delays. The underlying modelling formalism are Markov
automata with a separation of its alphabet in inputs and outputs. They limit the
use of time delay to exponential distributions, but mark a relevant intermediate
step between probabilistic and stochastic automata. The relevance comes with
two feats over the more involved stochastic automata: 1. they are intuitive to
construct and apply, and 2. they are straightforward to evaluate in the subsequent
statistical analysis necessary to our framework.

To that end, we recalled their definition and defined trace distribution
semantics based on schedulers. Further, we defined a conformance relation in
the ioco tradition called Mar-ioco pinning down precisely what conformance
between two Markov automata means. Much like for pIOTSs, we derived the
notion of test cases and their annotations based on this conformance relation. The

Physical Ingredients: Formal Ingredients:
e Informal requirements e Model: Definition [5.3] IOMA
e Black-box implementation e Conformance: Definition [5.15
e Observations: Definition [5.25] C Mar—ioco
Obs(Z||t,a, k,m) o Test verdicts: Definition (5.27]
Tooling: Objectives:
e MBT tool: JTorX [15] e Soundness: Theorem [5.29]
e Test adapter: Implementable e Completeness: Theorem
e Test generation method: Ran-
dom testing & quiescence esti-
mates
Assumptions:

e Every physical implementation has a corresponding IOMA model

e The specification is internally deterministic

e The specification does not allow consecutive Markovian actions

Table 5.2: The MBT ingredients instantiated by the Mar-ioco framework.

CHOICE AND CHANCE 135

practical test generation algorithms carried over from pIOTSs, too. Probabilistic
correctness is assessed after a sampling process that counts frequencies of traces
and compares them to statistical requirements. As an addition, we check if
the observed time stamps correspond to the prescribed Markovian parameters,
which are mean values of an exponential distribution. The use of multiple
statistical hypothesis tests in tandem necessitates the use of methods to correct
the level of significance . We had to make additional assumptions in order
to end up with a practically functioning algorithmic outline. That is, in order
for confidence intervals to work, we assumed that the specification model is
internally deterministic. This ensures that timestamps can be uniquely identified,
and attributed to their respective Markovian parameters. We instantiated all
necessary items, and summarized them in Table

To put the framework into practice, we studied the Bluetooth device discovery
protocol for two communicating parties: a master device and a slave device.
While the case study enables vastly more complex scenarios, we focused on the
time it takes for the two devices to connect, checking if it coincides with the
prescribed average time. To test the generosity of the framework, we compared
the correct implementation to three mutants: All mutants were consequently
eliminated, and the correct implementation was accepted.

5.6 Proofs

We present the proofs of the theorems within this chapter. Reoccurring theorems
are numbered according to their occurrence in the chapter.

Theorem Let T and S be two pIOTSs and I be input enabled, then
7z EMarfioco S=1 Epioco S.

Proof. T and S have ~»z=~»s= @, and are pIOTSs in the sense of Definition [{.1]
This means that every trace distribution in #rd(Z) and trd(S) in the sense of
Definition [£.14lis a trace distribution in the sense of Definition .11} Note that
the reverse always holds. The proof is immediate, if we consider that schedulers
according to Definition [5.8| require to schedule probability mass 1, i.e. no mass
remains for Markovian transitions. [

Theorem Let A, B and C be IOMAs and let A and B be input-enabled,
then

(i) A Cafar—ioco B if and only if A E’E’) B.
(11) A EMa'rfioco B and B EMarfioco c Zmply A EManioco C.

Proof. Assume A C jrar—ioco B. We need to show A Ej;% B, i.e. that
D € trd(A,n) implies D € trd(B,n) for all n € N.

136 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

Let n € N and D* € trd(A,n). We prove the statement for every trace
distribution prefix smaller or equal to n via induction: Assume D € trd(A,0).
Obviously D Ty D*, and consequently D € trd(B,0).

Now assume that the above statement has been shown for m with m = k-1 <
n. We proceed by showing it holds for m = k. Let D € trd(A, k) with D Ty D*.
Then take D’ € trd(A,k — 1) with D' C;_; D. By induction assumption we
know D’ € trd(B, k — 1). With the initial assumption, i.e. A Csar—ioco B, wWe
know in particular that

outcont o(D') C outcontg(D').
Therefore, we choose D" € outcont o(D’), such that
Vo € [R§ Act]* 'R Acto : Pp(X) = Ppn (%), (5.4)

i.e. D and D” assign the same probability to abstract traces of length & ending
in output. Note that D" € outcontp(D’) and thus D" € trd(B, k).
We are left to show that there is a trace distribution, say D’”, that assigns

Vo € Act* "t Act; : Pp(X) = Ppn (%),

in addition to (5.4, i.e. D" assigns the same probability to all abstract traces
of length k. However, the existence of D"’ is straightforward, since A and B
are input-enabled. That is, all inputs are enabled in every state of both A and
B. We conclude trd(A,m) C trd(B,m) for all m < n, and with it consequently
trd(A,n) C trd(B,n). Hence A Q;% B.

Let A E'lg% B. We need to show A C pjer—ioco B, i.e. for all n € N and
all D* € trd(B,n), we have outcont 4(D*) C outcontg(D*). Let n € N and D* €
trd(B,n). Choose D € outcont 4(D*), then we need to show D € outcontz(D*).

By definition of the set outcont, we know that D € trd(A,n + 1). Together
with the initial assumption, i.e. A EJF}% B, we conclude D € trd(B,n +1). We
are left to show that D € outcontg(D*). However, this is straightforward, as
for all traces o € [R{ Act]"R7 Act; it holds that Pp(X) = 0 by construction of
outcont. Consequently D € outcontg(D*), and therefore A Cprar—ioco B-

We need to show that A Cper_ioco B and B Cpar—ioco C imply

A C par—ioco C. By initial assumptions we know

1. Vn € NVYD* € trd(B,n) : outcont 4(D*) C outcontg(D*), and
2. Vn € NVD* € trd(C,n) : outcontg(D*) C outcontc(D*).

We need to show
3. ¥n € NVD* € trd(C,n) : outcont 4(D*) C outconte(D*).

Let n € N, choose D* € trd(C,n), and assume D € outcont 4(D*). Obviously,
D € trd(A,n + 1). Together with (i), and since A and B are input enabled
by assumption, we know D € trd(B,n + 1). Note that for all traces o €
R Act]"R§ Acty we have Pp(X) = 0. With item 1., we know D € outconts(D*).
Together with the assumption B C /4 —ioco C, we conclude D € outconte (D).

O]

CHOICE AND CHANCE 137

Theorem Each annotated test for an IOMA S is sound for every level of
significance a € (0,1) with respect t0 Cprar—ioco-

Proof. Let Z be an input enabled IOMA and # be a test for S. Further assume
that Z Cpfar—ioco S- Then we want to show V(Z, f) = pass, i.e. we show that
a Mar-ioco correct implementation passes an annotated test case. By the
definition of verdicts (Definition we have V(Z,%) = pass if and only if

Ufunc (I; tA) = vprob(I7 f) = pass.

We proceed by showing that v (Z, f) = pass, and Vprep(Z, f) = pass in two
separate steps:

1. In order for vfn.(Z,t) = pass, we need to show that
annSy, o (0) = pass for all o € traces®™ (I ||t),

according to the definition of verdicts (Definition [5.27)). Therefore, let
o € traces®™(Z||t). We need to show ann$,,_;...(0) = pass by definition
of annotations (Definition |5.22)). Assume o’ € traces/™(S) and a! € Acto
such that ¢’ ta! C o for some t € R(J{.

We observe two things:

e Since € € traces/™(S), i.e. the empty trace is a trace and is in
traces™(S), o’ always exists.

e If no such a! € Actp exists, then o is a trace solely consisting of
inputs. By definition of annotations (Definition [5.22)) consequently
a’nn‘]?/lar—ioco (U) = pass.

By construction of o we have ¢’ ta! € traces™ (T ||#) and therefore also
o' ta! € traces™(I). We conclude, o’ € traces™(I) N traces™(S). Our
goal is to show o’ ta! € traces"(S).

Let [= |o’| be the length of ¢’. Without loss of generality, we can now
choose D € trd(S,1), such that Pp(X’) > 0, where ¥’ is the corresponding
abstract trace to o’. Note that this, together with the previous observation,
yields that outcontz(D) # @. Again, without loss of generality, we choose
D' € outcontz(D), such that Pp/ (X' [0,4al) > 0.

Lastly, we assumed Z T par—ioco S, hence outcontz(D) C outconts(D).
We conclude D’ € trd(S,l + 1), and Pp/(X'[0,4a!) > 0. By construc-
tion of trace distributions (Definition [5.14)), this implies that ¢’ ta! €
traces™(S). If additionally o’ ta € traces™(Z||t), then o’ ta = o. Hence
annS,,ioeo (0) = pass, which ultimately yields vy, (Z,t) = pass.

2. In order for vyp(Z, f) = pass we need to show that

VD € trd(Z||t, k) ID' € trd(S,k) : Pp: (OutObs (D, k,m)) > 1 — «a,

138

CHAPTER 5. MBT wiTH MARKOV AUTOMATA

according to the definition of verdicts (Definition [5.27)). Therefore, let
D € trd(Z||t, k). By definition of output-observations (Remark [5.26)), we
have

OutObs(D,a,k,m) = {0 € ([RFAct]SF'RT Acto)™ |
dist (freq(0),EP) < 1o}

There exists D € trd(Z ||, k) with

0 if o € [R{ Act]* 1R} Act;

5.9
PD(E) if o e [RS_ACﬂSkflRS_ACto. ()

Pp/(%) = {

To see why, consider the scheduler that assigns all probability to halting
instead of inputs for traces of length k, while assigning the same probability
to outputs as the scheduler of D. This scheduler exists by definition
(Deﬁnition. By construction of the set OutObs (Remark, observe
that

Pp/(OutObs(D', e, k,m)) = Pp/(OutObs(D, o, k,m))
= Pp(OutObs(D, a, k,m))
> 11—«

since only traces ending in output are measured.

It is now sufficient to show that D’ € ¢rd(S, k). However, as an intermediate
step, we first show that D’ € trd(Z, k), as this will let us make use of the
assumption Z C prar—ioco S-

Consider the mapping f from the finite paths of Z || to the finite paths of
T, ie. f:paths™ (Z||{) — paths™™(I), where for every fragment of the
path we have

fh..(s,Q)pa(s,¢d)...)=...spas"

Since tests are internally deterministic IOTSs, it holds that u((s, q),) =
v(s,a). Note that this holds for a € Act, as well as a € R{, where
v = P,. In the latter case, and whenever a = 7, it is ¢ = ¢/, since test
cases do not contain Markovian actions (Definition . That is, the
parallel composition of an implementation with a test case does not change
the discrete (or Markovian) probability distributions, and probabilities
directly transfer. It is then easy to see that f is an injective mapping, i.e.
f(m1) = f(m2) = m = 7.

By definition of trace distributions (Definition [5.14)), there is a scheduler,
say A’ € Sched (T ||t,k), such that trd(A") = D’. With the help of f, we
construct a scheduler A” € Sched(Z), such that for all traces we have
Pig(A)(E) = Py (A" (D), ie. trd(A") =D

CHOICE AND CHANCE 139

For every path 7 € paths™™(Z) with f~1(x) € paths”™(Z ||#) we define A"
as

A () (v) & A (fH) (),

where p and v are discrete probability distributions. Observe |A”(7)| =
| A’(7)], hence, Markovian actions also get assigned the same probability
under A”. Note in particular that P (IT) = 0 if IT ¢ AbsPaths™ (T ||#).

The construction of A” is straightforward: By definition of test cases
(Definition we know that Z || £ is internally deterministic. Z and #
are defined over the same alphabet, and ¢ does not contain internal- or
Markovian actions. Hence, in particular Z||# does not contain interleaving.
This means A” can copy the behaviour of A’ in a step-by-step manner.
We set D" = trd(A"”) and conclude D" € trd(Z, k).

Further, we have

Ppr(OutObs(D", o, k,m)) = Ppr(OutObs(D', v, k,m))
Ppi (OutObs(D, o, k, m))
= Pp/(OutObs(D, o, k,m))
= Pp(OutObs(D,a, k,m))
> 11—«

We proceed to show that D" € trd(S, k).

The proof is by induction over trace distribution length of prefixes of D"
up to k. Trivially, if D" € trd(Z,0), then also D" € trd(S,0). Assume this
has been shown for length n. We proceed by showing that the statement
holds for n +1 < k.

Let D" € trd(Z,n + 1) and take D" C,, D”. By induction assumption
D" € trd(S,n). Together with the assumption Z C ps4r—ioco S, we have

outcontz(D"") C outconts (D).

Since D" € outcontz(D"') (Equation (5.5)) we have D" € outconts(D"),
and consequently D" € trd(S,n + 1). We have shown D" € trd(S,k)
and conclude Pp»(OutObs(D, a, k,m)) > 1 — a.. Ultimately, this yields
Vprob (Z,) = pass by the definition of verdicts (Definition

Both parts together give V(Z, f) = pass. This means that an annotated test for
S is sound with respect to T pzqr—ioco for every a € (0, 1). O

Theorem The set of all annotated test cases for an IOMA S is complete
for every level of significance a € (0,1) with respect to Cafar—ioco fOT
sufficiently large sample size.

Proof. In order to show the completeness of test suite T consisting of all an-
notated tests for S, assume that Z [Zar—ioco0 S. Our goal is to show that

140 CHAPTER 5. MBT wiTH MARKOV AUTOMATA

V(Z,T) = fail. By the definition of verdicts (Definition 5.27) this is the case iff
Vfune(Z, t) = fail or Uprob (L, t) = fail for some ¢ € T.

Since Z Z par—ioco S, there is k € N, such that there is D* € trd(S, k), for
which

outcontz(D*)Zoutconts (D).

More specifically
3D € outcontz(D*)VD' € outconts(D*)Io € C: Pp(X) # Pp/(X), (5.6)

where € & traces™(Z) N [Ry Act]*R{ Acto, and X is the corresponding abstract
trace to 0. Without loss of generality, we can assume k to be minimal. There
are two cases to consider:

1. do € €0 ¢ traces™(S), or
2. Vo € €: 0 € traces™(S),

We will relate the two cases to the functional and the statistical verdict (Defini-
tion 7 respectively. We prove that item 1. implies vync(Z, T) = fail, and
item 2. implies vyop(Z,T) = fail. Therefore, let D € outcontz(D*) such that
Equation holds for all D" € outconts(D*).

1. In order for vpmc(Z, t) = fail, we need to show
Jo € traces™ (I ||) : annSy_ipe0 (0) = fail

for some £ € T', according to the definition of verdicts (Definition .
Assume there is o € €, such that o ¢ traces™(S). We show that there is
t € T for which o € traces®™(Z ||t), and ann$y,, _;pe0(0) = fail.

Without loss of generality we can assume Pp(X) > 0. To see why, assume
Pp(X) = 0. Then we can find a trace distribution in outconts(D*) with
an underlying scheduler Sched(S,k + 1) that does not assign positive
probability to the last action in ¥ to obtain probability 0. This violates
the assumption that Pp(X) # Pp/(X). We conclude o = ¢’ ta, for some
o' € R{ Act]*, t e R, and a € Acto.

The prefix o’ is in traces™(S), because it is of length k, and since D* €
trd(S, k). Since D and all D’ € outconts(D*) are continuations of D*, we
conclude Pp«(YX') = Pp(YX') = Pp/(Y'), i.e. all trace distributions of the
respective sets assign every prefix of o the same probability by merit of
outcont. We conclude o’ € traces™(S), but o’ ta ¢ traces™(S).

By initial assumption T contains all annotated test cases for S. Hence,
let i € T such that o € traces®™(f). By the definition of annotations
(Deﬁnition we have ann$,,,_....(c) = fail. Since o € traces”™(Z) and
o € traces®™(t), we obviously also have o € traces®™(Z||t). Ultimately,
this yields vfunc(Z, t) = fail.

CHOICE AND CHANCE 141

2. In order for vy, (Z,%) = fail, we need to show
3D € trd(T||t,1)VD’ € trd(S,1) : Pp/(OutObs(D,a,1,m)) <1 — a,

for some £ € T and [€ N, according to the definition of verdicts (Defini-
tion [5.27)).

Together with Equation (5.6) and the definition of acceptable outcomes
(Definition [5.25)), we conclude

VD' € outconts(D*) : Pp:/(OutObs(D, o,k +1,m)) < B (5.7)
for some 3,, — 0 as m — co. Observe that

SUPp etra(s k1) o (OutObs(D, o, k + 1,m))
= SUPprcoutconts () P (OutObs(D, a, k +1,m)), (5.8)

by definition of OutObs (Remark . OutObs only comprises traces
ending in output, thus its measure under any trace distribution of trd (S, k+
1) cannot be larger than the ones already contained in outconts(D*).
Together with Equation this yields

VD' € trd(S,k + 1) : Pp/(OutObs(D,a, k + 1,m)) < B (5.9)

for some (,, — 0 as m — oo.

We are left to show that D € trd(Z || &,k + 1) for some £ € T. Let
8 = {0 € traces™(I) | Pp(X) > 0}, i.e. all traces getting assigned a
positive probability under D. Obviously € C K. By initial assumption,
we know that € C traces”™(S), but implicitly also £ C traces/™(S). That
means there is a test case ¢ for S, such that all ¢ € & are in traces®™(f).
In particular, observe that all ¢ end in output by assumption. Hence, the
last stage of the test case is the second bullet of the definition of test cases
(Definition . We now construct a scheduler A’ € Sched(Z || ¢,k + 1)
such that trd(A") = D.

Consider the mapping f : & — paths™ (Z || t), where for every path
fragment

fl..spas ..)=...(s,qva(s,q¢)....

The state ¢ is uniquely determined, because test cases are internally
deterministic. In particular g = ¢ if a =7 or a €]Rar. In the latter case
uw = v = P,. Since every discrete distribution of test cases is the Dirac
distribution, it is u(s,a) = v((s,q),a). It is then easy to see that f is an
injection, i.e. f(m1) = f(m2) = m = ma.

We now construct the scheduler A’ € Sched(Z | t,k + 1), such that D =
trd(A"). Let A € Sched(Z, k+ 1) be the scheduler inducing D by definition
of trace distributions (Definition [5.14). For every m € tr—!(f), we define

A (m)(v) = A(F () (1),

142

CHAPTER 5. MBT wiTH MARKOV AUTOMATA

where p and v are discrete probability distributions as above. Observe
|A' ()] = |A(m)], i.e. all Markovian actions get assigned the same prob-
ability. The construction of A’ is straightforward: Since f is internally
deterministic, and does neither contain internal- nor Markovian actions,
there is no interleaving in Z||. Since there are no non-Dirac distributions
in #, the scheduler of Z||# can simply copy the behaviour of A step-by-step.
Hence P4 (2) = Pp(X) for all 0 € 8.

Together with Equation (5.8), we have found a scheduler A" such that
trd(A’) € trd(Z||t, k + 1), and for all D’ € trd(S,k + 1) we have

Pp/ (OutObs(trd(A'), a,k +1,m)) < Bp. (5.10)
Now iff « <1 — 3,,,, we estimate (5.10]) further to
Pp: (OutObs(trd(A'), a,k +1,m)) < B <1 —a.

However, the inequality a < 1 — f3,,, always holds for sufficiently large
m, since ,, — 0 as m — oo by the definition of acceptable outcomes
(Definition [5.25). Ultimately, this yields v,0p(Z,t) = fail.

Together, the two cases yield Z £ par—ioco S implies V(Z, T) = fail. O

CHAPTER 0O

Stoic Trace Semantics for Markov Automata

Equivalence relations are a corner stone in process theory, providing fundamental
insight when two systems are essentially the same. Also, they are paramount for
both the design of complex systems and their analysis by abstraction. Typical and
important concepts include [I84]: 1. bisimulation 2. testing, and 3. trace-based
equivalences or pre-orders. These concepts and their interrelations have been
studied in many different settings, including (interactive) Markov chains [93]
10], and probabilistic automata [I58]. A coarse and abstract framework for
the prominent formalism of Markov automata, relating processes whenever an
external observer cannot distinguish them is, however, missing. Instead, the
scientific focus has so far been on bisimulation relations.

This chapter develops a trace-based semantics for open Markov automata.
What sets this framework apart from other, more restricted, approaches is that
the underlying schedulers may decide to wait before scheduling the next action.
Hence their name - stoic schedulers. This property is natural in an open setting,
where processes may have to wait before being able to synchronize with their
environment, and allows us to relate processes for which other propositions
struggle. We characterize the resulting notion of trace distribution equivalence
in terms of an intuitive button pushing experiment, thereby relating it to
observations an external observer could make.

To that end, we follow a different notion of schedulers compared to the
previous chapter. In particular Remark discusses this fork in the definition
of schedulers. However, we opted to not incorporate the potential to wait
previously, to guarantee more accessible statistical analysis in MBT. Since the
focal point of this chapter is not model-based testing, we investigate this potential
branch of stoic schedulers and their implications nonetheless.

At each step of the computation, a scheduler resolves non-deterministic
choices and decides for the system how to proceed. We consider open Markov
automata that entail the capability to interact with the environment. Working
with open MA grants us to supersede the urgency assumption [93], stating
that any action has precedence over Markovian transitions. In particular, our
schedulers may decide to wait a certain amount of time prior to scheduling actions

143

144 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

— hence their name stoic. This imposes an additional stoic race between the
scheduler decisions and Markovian actions. The ability to wait before scheduling
an action is crucial in open semantics, since in an open context, one MA may
need to wait before it can synchronize with its environment. As a result, our
stoic relation enjoys several natural properties that existing approaches fail to
have. In particular, our trace semantics are coarser than weak bisimulation, a
classical property for linear semantics.

Further, two systems are deemed equivalent if an external observer cannot
distinguish them. We argue that this setting allows for better analysis, due to
its most natural abstraction from superfluous details. We propose an intuitive
button pushing experiment for MAs. Each experiment is run a number of
times and frequency information about the observed traces is collected. Then,
non-equivalent MAs can be distinguished via appropriate trace classes and
statistical techniques, and our trace semantics can be characterized in terms of
this experiment; This observational characterization provides additional evidence
that our trace semantics arise as a natural equivalence for MAs. As such, we
relate prominent equivalences cross cutting the earlier mentioned approaches
based on bisimulation, testing, and traces.

We summarize the main contributions of this chapter:

e solid definition of stoic schedulers and resulting trace based semantics,
e a testing scenario, relating trace distributions to observations, and

e a comparison to prevalent equivalences known from the literature.

Related Work. For processes with non-determinism, trace equivalence is
usually based on the notion of schedulers, both in the discrete-time setting
of probabilistic automata (PA) [I58], [164], as well as for the continuous-time
formalism of interactive Markov chains (IMC) [I96]. In continuous-time, the
scheduler was not assumed [196] to be able to delay, i.e. scheduled actions have
to be taken immediately. We add the ability to delay, inspired by previous work
on verification of open interactive Markov chains [32]. Other works define trace
semantics for continuous stochastic systems from a co-algebraic perspective [T13].

Research in the context of Markov automata focussed primarily on bisimula-
tion relations. Eisentraut et al. [67] were first to define weak bisimulation for
Markov automata. Their definition is a conservative extension of weak bisimula-
tion for both IMCs and PAs. The intricacy of the formalism required to employ
bisimulation on distributions over states. This technical tool inspired further
work of Deng and Hennessy [59] and Song et al. [66] that refined the original
definitions. Distribution bisimulations are actively studied in various related
contexts [38, [70,[95]. The algorithmic analysis of MA was studied in [83], [85] [170].
Lastly, similar testing scenarios for probabilistic systems are given in [40] [195].

Origins of the chapter. The research underlying this chapter was performed
from September 2015 to March 2017 in collaboration with Dennis Guck, Holger
Hermanns, Jan Kréal, and Mariélle Stoelinga.

CHOICE AND CHANCE 145

Organisation of the chapter. Section [6.1] shortly recalls Markov automata,
and establishes stoic trace semantics. We relate the semantics to test observations
in a black-box testing scenario in Section A hierarchy of equivalences is
presented in Section [6.3] covering similar approaches and bisimulation. Lastly,
Section ends the chapter with concluding remarks.

6.1 Markov Automata

We shortly defined Markov automata in Chapter [5] before going to the purely
open modelling formalism in input/output Markov automata (IOMA). In this
section, we reiterate the definition of basic Markov automata, and define language
theoretic concepts in paths and traces, as well as their respective abstract
counterparts. Note that IOMA were defined as input-reactive and output-
generative. This necessitates a fresh definition of (abstract) paths and traces,
since we have not cleanly defined them for Markov automata yet.

Even though our definition of Markov automata does not separate the action
alphabet into inputs and outputs, we consider them to be open, i.e. capable
of interacting with their environments. Working with open Markov automata
grants us to supersede the urgency assumption [93], stating that any action has
precedence over Markovian transition.

This provides a segue to investigate an alternate definition of schedulers,
compared to the one seen in Chapter |5l Recall that Remark discusses a
notion of schedulers capable to wait before scheduling the next action. While
we chose not to use this notion in Chapter [5| because it increases the complexity
of the subsequent statistical analysis in an MBT setting, we utilize it here. A
stoic scheduler may decide to wait a certain amount of time prior to scheduling
actions. This implies an additional race between scheduler and Markovian
actions, whereas before only multiple Markovian actions caused a race condition.

Since model-based testing is not the focal point of this chapter, there is no
need for posteriori statistical analysis. This lets us focus on the theoretical
implications that such a framework brings with it.

6.1.1 Definition and Notation

We recall the definition of Markov automata. This is a reiteration of Definition|5.1
and only mentioned here for the sake of textual completeness.

Definition 6.1. A Markov Automaton (MA) is a tuple M = (S, so, Act,,—
,~), where

e S is a set of states, with sg € S as the initial state.

e Act, is a set of actions, containing the distinguished element T.

e — C S x Act, x Distr(S) is the countable probabilistic transition relation.

e ~ C S xRT xS is the countable Markovian transition relation.

146 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

Even though there is no obvious separation into inputs and outputs in
the alphabet Act,, we consider Markov automata to be open. This enables
interaction with their environment, and motivates stoic schedulers.

Note that we worked with input output Markov automata in Chapter [5 that
were input-reactive and output-generative. This detail becomes relevant in the
set of probabilistic transitions, as the target of a distribution is now a set of
states, compared to a set of actions and states like before.

Remark 6.2. We reiterate notations for the sake of completeness. We point
out that some notations changed, due to MA not being input-generative and
output-reactive.

e Throughout this chapter we let T represent an internal action. Further,
we let p and v be discrete probability distributions, and X\; be positive
real-valued numbers denoting parameters of Markovian transitions.

o We abbreviate (s,a,pu) €— with s = u, and for (s, \,s') €~, we write
5.

o The element A in (s, A\, 8') €~ is referred to as Markovian action.

o We use o € Act, URT to denote Markovian and non-Markovian actions.

e We write s — a, if there are p € Distr(S), such that s = pu.

o We write s < pq 1, etc. to clarify that a transition belongs to the MA M
if ambiguities arise.

o A state s € S is called probabilistic, if there is at least one a € Act, such
that s — a. In that case, we also say action a is enabled in s. The set
enabled(s) comprises all enabled actions in s.

o A state is called stable, if it enables no internal action 7.
o A state s € S is called Markovian, if there is at least one A € Rt such
that s <> s'. A state can be probabilistic and Markovian.

e The rate to go from a state s to s’ is the sum of all A € RT, such that
(s,\,8") €~ and is denoted R (s,).

e The exit rate of a state s is the sum of all rates and is denoted E (s). We
require E (s) < oo for all s € S.

e The discrete branching probability distribution quantifying race conditions
is given by Ps(s') =R (s,s') /E (s).
6.1.2 Language Theoretic Concepts

Let M = (S, sg, Act,,—,~>) be an MA. We define the usual language theoretic
concepts. A path m of M is a (possibly) infinite sequence of the form

T =Sgt1 a1y S1taQ oSz ...,

where s; € S, t; € RT, and either p; € Distr(S) and «; € Act, or p; = P,
and «; € Rar for : = 1,2,.... We require that each finite path ends in a state,

CHOICE AND CHANCE 147

and either s;_1 —% yu; with wu(s;) > 0, or s;_1 i s, for each non-final i. The
sequence s;_1 t; a; p1; s; means that the MA resided ¢; time units in state s;_1
before moving to s; using action «; via distribution u;. If 7 is finite, then it
ends in the state last(m). We write 7’ C 7 to denote 7’ as a prefix of 7, i.e. 7’
is finite, ends in a state, and coincides with 7 on the first finitely many symbols
of the sequence. The set of all finite paths of M is set as paths™ (M), and all
paths by paths(M).

Note that a single time point has probability zero to occur in any given
continuous time span. Hence, it is necessary to talk about time intervals instead
of individual time values. This gives rise to abstract paths. An abstract path is
a path, where each occurrence of single time values t; is replaced by intervals
I; C Rg . However, we are only interested in intervals of the form [0,¢] with
te Rar . Thus, any path can be replaced with its corresponding abstract path by
changing ¢ to [0, t], or vice versa. Hence, there is an obvious one-to-one mapping
between paths and abstract paths. Throughout this chapter, we use 7 to denote
a path and II to denote the corresponding abstract path, or vice versa. We
summarise all abstract finite paths in the set AbsPaths'™" (M), and all abstract
paths in AbsPaths(M). For two abstract paths IT and I’ with

M=sgliy 1 pt151.--8n andH/:soliaiu/ls/l...,

we say II is a prefix of II', denoted II C IT', if ay; = o}, s; = s, u; = p} and
I; =1/ for i=1,2,...,n. That is, IT and II' coincide on the first n steps.

The trace of a path ¢r(m) records its visible behaviour, i.e. time and actions.
It is a mapping tr : paths(M) — (Ry x Act)*. We overload tr to account for
finite paths, i.c. tr: paths™ (M) — (R$ x Act)*. Hence, a trace is the (possibly)
infinite sequence of the form

o=1tr(r) =t; a; t;, ai, t; ai, ...,

where t;j € Ry and a;; € Act for j = 1,2,.... Note that a path fragment
8111 A 82 to a psg s3 collapses to (t1 + t2) a if A is a Markovian action. This rule
is applied recursively in case of multiple Markovian actions. The set tr~!(o) is
the set of all paths, which have o as their trace. The length of a path 7, denoted
|| is the number of actions on its trace. All finite traces of M are summarized
in traces (M), and all traces in traces(M).

Similar to abstract paths, an abstract trace is given, if all ¢; € Rar of a trace
are replaced by intervals I; C Ré{ . Again, we are only interested in abstract
traces using intervals of the form [0,¢] with ¢ € Rf. This induces a one-to-one
mapping between traces and abstract traces. Like for paths, we denote the
corresponding abstract trace of a trace o via ¥. We summarise all finite abstract
traces in the set AbsTraces™ (M), and all abstract traces in AbsTraces(M). We
define the prefix relation for abstract traces similarly to the prefix relation for
abstract paths. Let act (7) return the action path of m by removing all values t;
and distributions p;. For traces act (o) returns visible actions only.

148 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

6.1.3 Stoic Trace Semantics

Trace semantics represent a linear view on a system’s behaviour and are essential
to understand how it evolves over time. Trace semantics for MAs are given by
their trace distributions, assigning probabilities to measurable sets of traces, and
are established via schedulers. A scheduler resolves all non-deterministic choices
in the MA. Its trace distribution is obtained by removing all invisible behaviour,
leading to a purely probabilistic execution tree.

Schedulers form the core concept of our framework. Given any finite piece of
history leading to the current state, a scheduler returns a probability measure over
time and the available transitions. The essential difference to existing schedulers
[196] and schedulers of Chapter [5]is the ability to wait before scheduling an
action. This feature is crucial for semantics of open systems. One MA may have
to wait until its environment is ready to synchronize on a certain action.

Definition 6.3. A stoic scheduler A of an MA M = (S, so, Act;,—,~) is a
measurable function

A : paths™ (M) — Meas (Ry x ([Actr x Distr(S)]U{L}))

such that 1. only available transitions or halting are chosen, and 2. internal
actions are immediate and cannot be postponed , i.e.

1. Vr € paths™ (M) : A () (R x (a,pn)) >0 = (last(r),a, p) €.
2. If T € enabled(last()), then A(w)(0 x (Act, x Distr(S)) U{L}) =1.

The value A () (t, L) is the probability to interrupt/halt the process at time t.
A scheduler A halts on path 7 at time t € RY, if A(7) (¢, L) = 1. We say a
scheduler is of length k € N, if it halts for all paths m with length greater or equal
than k at time 0. We denote this set by Sched(M, k) and the set of all finite
schedulers by Sched(M), respectively.

The key difference to the schedulers of Definition [5.8|is that stoic schedulers
may assign a measure over time after every finite path, as opposed to only
discrete probability distributions. Thus, rather than accumulating all probability
mass at time zero, stoic schedulers may spread out the probability to choose an
action over time. Naturally, this leads to an additional race condition between
Markovian actions and scheduler decisions.

To illustrate, let X be the random variable with underlying probability
measure accounting for scheduler decisions, and let Y be the random variables
accounting for all Markovian actions. That is, Y is exponentially distributed
with the exit rate of a state as parameter. In order to calculate the probability
to see a particular action (Markovian, or not) within time interval I = [0,¢], we
are studying events like P(X <Y AX <t),or PY < X AY <1).

This has vast implications for Markovian states; For instance, a scheduler
might choose to halt the execution after some time. However, before the halting
is executed, a Markovian action might intervene, resulting in a new scheduler

CHOICE AND CHANCE 149

decision in the new state etc. The only way to guarantee halting is by scheduling
at time zero, where the probability of any Markovian action to take place is zero.

A scheduler induces a probability measure to all abstract finite paths. Since
the probability to choose an action at precisely time T is zero, we require the
Lebesgue integral [178] to assign probability to time intervals [0, 7] in case the
scheduler chooses a continuous probability distribution.

Definition 6.4. Let A be a scheduler of M, then we define the path probability
function Q4 : AbsPaths™ (M) — [0,1] inductively by QA (so) = 1, and for
given IT let s = last(IT), then QA (I1 - Taus') = Q4 (T1) -

fOT [A(m) (2, o, p) - p(sE (s) e BE)dt da if « € Act,
fOT ftoo E(S’a’#)eﬁ A(m)(x,a, 1) - - e BOdgpdt if a € RY

and the probability to halt after I1 in time interval I is given as

T ')
A .) (x s) e B gt do
QA / / A(m)(, L)E (s) e B d

Here I = [0,T) CR™, and 7 is the corresponding path to the abstract path II.

The path probability function assigns the unique starting state probability 1,
and each following transition either multiplies by the probability of taking the
Markovian transition or by taking a scheduled probabilistic transition in a time
interval I. In addition, if A(7) is a measure, there is a race condition between
Markovian actions and scheduler decisions taking place. The probability to see
action « € Act, in time interval I, is the product of the probability that the
scheduler wins the race and whatever probability mass the scheduler to the given
interval to o. Conversely, the probability to perform o € R*, is the product of
the probability that Markovian actions win the race and the probability that a
particular Markovian action wins the Markovian race condition in interval I.

We summarize all infinite paths and all paths that may halt in the set of
maximal paths.

Definition 6.5. A path m of a scheduler A is a finite or infinite path
T = Spt1 1 1 S1t2 2 2 S2t3 U3 43 83 .. -,

where A(soti p1oq 81 ... 8:)(ti, i, ;) > 0 for each i = 1,2,.... The maximal
paths of a scheduler A are the infinite paths of A and the finite paths w such that
A(m)(t, L) > 0 with t € Rf. The maximal abstract paths of a scheduler A are
the corresponding abstract paths of mazimal paths of A. We denote paths™*(A)
as the set of mazimal paths, and AbsPaths™** (A) as the set of mazimal abstract
paths of A.

Like before, a scheduler and its induced path probability function lead to a
probability space via the standard cone construction [I5§].

150 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

Definition 6.6. The probability space associated to a scheduler A of an MA M
is the probability space (4, Fa, Pa), where

o Q4 = AbsPaths™*(A),

o F 4 is the smallest o-field generated by the set {C’H |1 € AbsPathsﬁ"(./\/l)},
where Cpp = {II' € Q4 |IIC IT'}, and

e Py is the unique probability measure on F4, such that P4[Cr] = QA(II)
for all IL € AbsPaths"™ (M)

Standard measure theory arguments [46] ensure that P4 induces a unique
probability measure on the measurable space (24, F.4). Hence, a scheduler
induces the unique probability space (24, Fa, Pa)-

Trace Distributions. A trace distribution is obtained from the probability
space of a scheduler by removing all invisible information. The probability
assigned to a set of abstract traces X, is the probability assigned to all abstract
paths whose abstract trace is an element of X.

Definition 6.7. For a scheduler A of a Markov automaton M, we define its
trace distribution D = trd(A) as the probability space (p, Fp, Pp), where

o Op = AbsTraces(M),

o Fp is the smallest o-field generated by the set {Cg RS AbsTmcesﬁ"(M)},
where Cy, = {3 € Qp | C X'}, and

e Pp is the unique probability measure for Fp, such that the probability
measure Pp(X) = Pa(Tr™* (X)), where X € Fp.

Since P4 is the unique probability measure induced by scheduler A, we
conclude that Pp is the unique probability measure on the measurable space
(Qp, Fp). Thus, a scheduler induces a unique trace distribution (Qp, Fp, Pp).

Trace distribution equivalence. Trace distributions are the probabilistic
counterpart to traces. They quantify the probability to observe abstract traces.
Thus, it is natural to regard trace distributions as relation between two Markov
automata, i.e. we relate two Markov automata M; and M if they have the
same set of trace distributions, and write My =7p Ms. The intuition is, that
an external observer cannot distinguish M; and My based on observed traces
and regards them as equivalent.

A trace distribution is of length k, if it is based on a scheduler of length k.
The set of such trace distributions is denoted trd(M, k), and the set of all finite
trace distributions by ¢rd(M), respectively. This captures the notion of trace
distribution inclusion, denoted My C%, My iff trd(My, k) C trd(My).

Trace distribution equivalence thus joins other equivalence relations defined
for Markov automata. While [196] follow an equivalent approach in equating
IMCs based on trace distributions, the main focal point of the literature has
so far been on bisimulation [67, (59, [[62]. We explore other relations in greater
detail in Section [6.3

CHOICE AND CHANCE 151

Figure 6.1: Counterexample that shows that compositonality of the trace distri-
bution semantics does not hold for IMCs. Note that states in A|C and B||C
were abbreviated, and that states not relevant for the counterexample were
withheld for readability.

6.1.4 Compositionality

By being a conservative extension of both probabilistic automata and interac-
tive Markov chains, Markov automata naturally inherit the property of being
non-compositional under trace distributions. That is, two trace distribution
equivalent Markov automata M; and My in general do not have the same trace
distribution under parallel composition with a third Markov automaton Msj.
Non-compositionality of both PAs and IMCs is a well known problem [164], and
equipping schedulers with the capability to wait does not circumvent this.

We give a classical counterexample known from the literature [164] for IMCs.
Recall that an IMC is a degenerate MA where every distribution in — is the
Dirac distribution. Thus, non-compositionality of trace distributions carries over,
if we consider that IMCs are a subset of MAs, and that parallel composition of
the latter is a conservative extension of the former.

Theorem 6.8. Stoic trace distribution semantics are not compositional, i.e. for
interactive Markov chains A, B and C it generally does not hold that

trd(A) = trd(B) = trd(A||C) = trd(A]|C).

Proof. Consider the IMCs in Figure We have trd(A) = trd(B). However,
there are trace distributions in A||C, which are not in B||C and vice versa.
Cousider the deterministic scheduler in A||C, that assigns probability 1 at
time 0 to the b transition from (s1,¢2) to (s2,¢2) and probability 1 at time 0
to the b transition from (s1,¢3) to (s3,qs3). A scheduler of B C intending to

152 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

imitate this behaviour has to assign probability 1 to both a transitions in (pg, qo)
at time 0. Obviously, this is impossible, hence there is no scheduler in B||C that
can imitate this behaviour. The dark-gray states in Figure [6.1] illustrate this.
Non-compositionality for IMCs then implies non-compositionality for MA. [

6.2 A Testing Scenario

A fundamental scheme in concurrency theory is that two processes are deemed
equivalent, if an external observer cannot distinguish them. A vast number of
behavioural equivalences have been characterized via intuitive testing scenarios
or button pushing experiments in various settings [56, [134], including systems
with discrete probability [40, 122, [158]. Except for [196], such notions have
hardly been studied in the context of IMCs and MAs.

Our testing scenario uses a black-box called timed trace machine from which
actions and their timing are recorded and collected in a sample. It is similar
to the one studied in Chapter Provided a large enough sample, we can
distinguish two MAs that are not (finite) trace distribution equivalent up to a
given confidence level a.

Thus, the goal of this section is to establish a relation between two Markov
automata based on their observations, that implies trace distribution equivalence.
First, we describe the sampling process, and how samples relate to a single
Markov automaton. This is similar to the sampling process used in previous
chapters. After establishing all acceptable observations for a Markov automaton,
we proceed to relate two Markov automata via their observations. Lastly, we
extend the theorem by Cheung, Stoelinga & Vaandrager [40] to finite trace
distributions of Markov automata. The theorem states that two probabilistic
automata are trace distribution equivalent, iff they are equivalent with respect
to their observations.

Since we are working in a continuous time domain, each individual trace has
probability 0. Hence, we identify recorded times ¢ with the intervals [0, ¢] and
thus map traces to their corresponding abstract traces. Recall that this induces
a one-to-one mapping between traces and abstract traces. Therefore, we use
both interchangeably in this section.

6.2.1 Sampling and Expectations

Assume that the underlying model of the black-box depicted in Figure[6.2]is a
Markov automaton. The black-box is equipped with a reset button, as well as
time- and action windows. The eponymous reset button resets the system to
its initial state, whereas both the time- and the action window help an external
observer record traces. The action window displays the currently executed action,
while the time window shows the relative passed time since the last action.

We perform a button pushing experiment in the sense of [I34], by recording
visible actions and their respective time occurrence. After recording a visible
action, the timer is set back to zero and starts anew. Given two such black-box

CHOICE AND CHANCE 153

reset button

time display action display

o M

Figure 6.2: Black-box timed trace machine with reset button, time and action
windows. The action window displays the current action, while the time window
shows the relative time that passed since the last action.

MAs M; and My, we say they are observational equivalent, if the frequencies
of all observable traces coincide. Naturally, an external observer does not have
a view on the inner workings of the machine. Our goal is to establish a result
in the lines of Proposition [£:30} stating that two Markov automata are finitely
trace distribution equivalent iff they are observationally equivalent. To that end,
we first define when to relate an observation to a trace distribution by means of
acceptable outcomes.

Sampling. An external observer performs various experiments on the black-
box, and records a sample. Before conducting an experiment, parameters for
trace length k£ € N and sample size m € N are set. The parameters characterise
how many visible actions need to be recorded before restarting the machine, and
how many runs of the machine are recorded. This yields a sample consisting of
m traces of length k.

The intuition of the experiment is to compare the measure induced by the
trace frequencies of a sample to the expected measure. The deviation of both
measures is quantified, and compared to a threshold. We call the sample an
acceptable outcome for a given level of significance « € (0, 1), if the deviation is
below the threshold. This is similar to accepting a coin as fair, if the number of
heads ranges between 42 and 58 for a = 0.05.

We proceed by defining the probability measures quantifying deviation.

Expected Measure. For given parameters k,m € N we assume that the
machine is governed by the same trace distribution D € trd(M, k) in each of the
m runs. In Section [6.1] we showed that D induces a unique probability space,
assigning each trace of length & a probability.

We treat each run of the trace machine as Bernoulli experiment, where success
occurs if trace o is observed, and failure if not. Let X; ~ Ber (Pp(X)) for i =
1,...,m be Bernoulli distributed random variables. We define Z = # Y X
as the empirical mean of o in m runs. Note that

1 1
EP(Z) = EP(=27, X;) = — X7 . EP(X;) = Pp(X).
(2) (m iy Xi) i1 (Xi) = Pp(%)

154 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

Since this holds for all traces o, EP defines the expected measure.

Sample Measure. The expected measure is compared to the sample measure,
i.e. the probability measure derived from a gathered sample. We use the
information gained from a sample in two steps: 1. collect traces with the same
action behaviour in trace classes, and 2. within a trace class, we use order
statistics to make inference about time intervals [77] . For a sample O, the class
of a trace o is defined as ¥, = {0 € O | act (9) = act (0)}. The frequency of any
abstract trace ¥ within a sample is then given as

1%, | 1y {o € =, | #2 < 17}
freq (0) (%) = i =Rl
m H %o

where t{ denotes the i-th time stamp of trace p. Like in Chapter [5|the frequency
function assumes the independence of all time intervals from each other. This
approach is warranted, since neither Markov automata nor scheduled probability
measures make use of clocks.

This holds for all o, hence, freq (O) defines the sample measure. Note that
the empirical measure of each time step converges uniformly to the unknown
real measure after the Glivenko-Cantelli Theorem as m — oo, cf. [(7]. That is,
the sample measure becomes increasingly more accurate with growing sample
size.

1D Recorded Trace o #o
o1 0 a 01 b 28¢ 1
o9 0 a 05 b 23c 1
o3 0 a 36 b 03c 1
o4 0 a 383 b 04c 1
o 0 a 22 d 13c 1
o6 0 a 24 d 1l4c 1

Table 6.1: Illustrating sample with £ = 3 and m = 6 drawn from a black-box
timed trace machine.

Example 6.9. Table[6.1] shows a possible sample recorded from a timed trace
machine. It contains m = 6 traces of length k = 3, together with their ID and the
amount of equivalent traces we observed. Naturally, recording in continuous time
makes it highly unlikely to record the exact same trace more than once, barring
rounding. The example shows two distinct trace classes X5, = {01,09,03,04}
and ¥,, = {05,06}. Measuring real-time makes grouping them any further
impractical, e.g. judging whether time stamps 0.1 and 0.5 belong to the same
trace, and would be highly vulnerable to different rounding techniques.
Howewver, by using the frequency function, we can still derive the induced
sample measure. To illustrate, the probability to see ¥ = [0,1] a [0,3]b[0,2] ¢
equates to freq (O) (¥) = % . (1 . % . i) = %. Note that we essentially infer three

CHOICE AND CHANCE 155

independent properties from a sample in tandem: what is the probability of
1. recording a within one time unit, 2. recording b within three time units, and
3. recording ¢ within two time units.

6.2.2 Observational Equivalence

We set a level of significance « € (0,1). If the sample measure induced by O lies
within some distance r, > 0 from the expected measure under D, we call O an
acceptable outcome. Here r,, is chosen such that the probability to identify a
truthful sample of the Markov automaton is at least 1 — a.. This reflects the error
of false rejection from hypothesis testing. The union of all acceptable outcomes
forms the set of observations.

Definition 6.10. For k,m € N and an MA M = (S, sg, Act;,—,~>) the ac-
ceptable outcomes under D € trd(M, k) of significance level a € (0,1) are given

by
Obs(D, k,m,a) = {0 € (Rsg x Act)SF*™ | dist (freq(O),ED) <ra},

where dist (11,V) = SUPse((0.4x act)=t |1 (E) — v (E)| is the total variation dis-
tance of two measures. We obtain the set of acceptable outcomes of M by

Obs(M,k,m,a) = U Obs(D, a, k,m).
Detrd(M,k)

The set of acceptable outcomes of a Markov automaton provides a link
between externally visible behaviour and trace distributions. Going back to
the example of a fair coin, this is similar to relating the interval [42, 58] for the
amount of observed heads to the probability 0.5 to flip heads.

The acceptable outcomes provide yet another way to characterize equivalence
of two Markov automata. We say two Markov automata are observationally
equivalent, if their respective sets of acceptable outcomes coincide. This is the
pendant to equating two coins, if their acceptance intervals coincide.

While trace distributions are inaccessible for an external observer, samples
and observations are not. Thus, we strive to characterize their trace distribution
equivalence via observational equivalence. That is: two Markov automata are
observationally equivalent if and only if they have the same set of finite trace
distributions. This extends the theorem by Cheung, Stoeling & Vaandrager [40]
used as Proposition [£:30] for probabilistic automata to Markov automata.

Theorem 6.11. Let M; and My be two MAs. Let k € N and o € (0,1). Then
there exists M € N such that for all m > M we have

trd(My, k) = trd(Ma, k) <= Obs(My,k,m,a) = Obs(Ma, k,m,).

Proof sketch. Note that [40] show the result for probabilistic automata. Our
proof follows the existing one closely, but is eased by the fact, that we only con-
sider finite trace distributions. The “==" is trivial, since the set of observations

156 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

is defined via trace distributions. The proof of “<=" is done via contra-position
and uses two auxiliary lemmas. The first establishes the set of finite trace
distributions of Markov automata to be closed. Hence, trd(M;) € trd(Ms)
implies that these two sets have a positive distance § via some distance function.
The second lemma ensures that there is m € N, such that the observations
contained in the %—ball around the expected measure has a probability greater
or equal to 1 — a. The observations are contained in these %—balls and hence do
not intersect. This shows that Obs(Mi, a,k,m) € Obs(Ma, a, k,m). O

The eponymous black-box prohibits an external observer to study its inner
workings. This is similar to the model-based testing hypotheses of the previous
chapters. We assume every black-box functions according to an underlying
Markov automaton, that is inaccessible to us. Theorem lets us infer the
relation of two Markov automata, by making sufficiently many observations.

6.3 Relation to other Equivalences

Studying the relations between process equivalences is a natural way to investigate
their distinguishing power. In the style of [I84], we compare trace distribution
equivalence to notions of bisimulation, thereby relating in one spectrum the MA
equivalences based on bisimulation, testing and traces. A natural and desirable
property is that trace-based relations are coarser than bisimulation. We show
that this holds for stoic trace distribution equivalence, but fails for existing
notions from the literature, that is if we generalize to MAs the trace equivalence
on IMCs. The rest of this section is dedicated to establish a hierarchy presented
at its end in Figure 6.5l The hierarchy includes trace distribution equivalence
by Baier et al. [196], strong and weak bisimulation by Eisentraut et al. [67] and
Hennessy and Deng [59], as well as late weak bisimulation by Song et al. [162].
Naturally, this requires certain repetitions of their equivalence definitions first.

6.3.1 Trace Distribution Equivalence by Baier et al.

An equivalence relation for IMCs using an approach eminently similar to ours is
given in [I96]. The framework resolves non-determinism via schedulers and builds
a probabilistic computation tree to measure probabilities of abstract traces. The
core difference to the approach of this chapter is, that in [196] schedulers cannot
decide to wait before scheduling action. Evidently, this is also the framework
used in Chapter

Definition 6.12. A scheduler A for an MA M is called a BMW-scheduler if
we require

A : paths™ (M) — SubDistr((Act, x Distr(S)) U {L}).

Remark 6.13. We lifted the work of Baier, Majster-Cederbaum and Wolf
(hence BMW scheduler) [196] to MAs to capture the essential properties of

CHOICE AND CHANCE 157

E
My

E F
Mg

Ms

Figure 6.3: Yardstick examples to relate Markov automata. Throughout this
section we study equivalence relations that distinguish or relate each pair.

their schedulers. In [196] a scheduler returns a discrete sub-distribution over
available actions and states. The remaining probability mass is assigned to wait
for Markovian transitions. If no such transition is present, the process halts. We
explicitly schedule halting here.

In contrast to schedulers defined in our sense, if a BMW-scheduler decides to
schedule an action, it must do so without delay. This makes BMW-schedulers
a subset of stoic schedulers and justifies probability spaces based on BMW-
schedulers and BMW-trace distributions respectively. Hence, trace distributions
of BMW-schedulers are denoted by Trd gprw (M). Further, two MAs are BMW-
equivalent, denoted by Mi=pgnw Ma, if Trdgyw (M1) = Trd gyw (Ma).

Despite the evident subset relation by construction of BMW- and stoic trace
distributions, their induced equivalence relations are incomparable. This fact is
spoiled by the maximal progress assumption, which forces immediate progress
and prohibits waiting.

Theorem 6.14. BMW-trace distribution equivalence, and stoic trace distribution
equivalence are incomparable.

Proof. Consider the Markov automata in Figure [6.4}

We see that M{=pgpw Mo, since either a or b have to be scheduled im-
mediately in M; using BMW-schedulers. A BMW-scheduler of My can then
schedule a or 7 with the same probability chosen in M and vice versa. However,
we have M1 #71p Mas, because a scheduler of M; might decide to wait before

158 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

MQ M3 M4

Figure 6.4: Distinguishing example for stoic trace distribution equivalence and
BMW-trace distribution equivalence. It is Mi=pgyw Ma, but My £7rp My
and M3 =7pp My, but M3 #gyw Ma.

scheduling a. This behaviour cannot be mimicked by schedulers of Ms, because
T is enabled in ¢y and waiting is prohibited due to maximal progress.

On the contrary, we have M3 =7p My. Intuitively, the Markovian transition
of rate A in My can be imitated by a stoic scheduler in M3 scheduling a based on
the measure of an exponential distribution with rate A in ug. This is not possible,
when we restrict schedulers to the BMW-type, and hence M3 #gpyw My. O

6.3.2 Bisimulation

Bisimulation takes a state-wise view on equating two systems. In strong bisimula-
tion two states are considered equivalent, if they enable the exact same stepwise
behaviour. However, internal actions might make it impossible for an external
observer to distinguish states, which are not strongly bisimilar. The notion of
weak bisimulation abstracts away from internal actions. Eisentraut et al. [67]
laid the foundation of defining weak bisimulation for Markov automata, such
that it conservatively extends weak bisimulation for both IMCs and PAs. Their
work was refined by Deng and Hennessy [59] and later by Song et al. [66, [162].

Strong bisimulation ~;,. We first recall strong bisimulation for Markov
automata as given in [67]. To relate two Markov automata, we relate their
respective initial states in their direct sum, i.e. the union of states, actions and
probabilistic and Markovian transitions.

Definition 6.15. Let M = (S, sg, Act,,—,~>) be an MA. An equivalence rela-
tion R on S is a strong bisimulation iff s R s' implies for all a € Act; URT :
s 5 poimplies s % ! with 1 (C) = ! (C) for all classes of equivalent states
CeS/R.

Two MAs My, My are strongly bisimilar My =5 Mo, if their initial states
are contained in a strong bisimulation of their direct sum.

Weak Bisimulation ~,, and ~;,. Instead of relating two states, we relate
two (sub)distributions over states. We write p = p/ with o € Act, URY, if there

CHOICE AND CHANCE 159

is a transition s % y, for all s € supp(u), such that p' = D sesupp(u) H(8) s

To abstract away from internal actions, [61, [59] first define weak transitions
as hyper-derivations. They are needed in the definition of weak bisimulation.
Let p == 1, if there are p = pg” + pg's pg” = by’ + (15 B =5 p1g" + iy oy
where p/ = 3", p . We write p == 1 if there exists y === //.

Lastly, for a transition relation —: Distr (S) x Act, x Distr (S), we let u ¢ 1/,
if there exist a finite set of real numbers w; > 0 and transitions p = p;, such
that >, w; =1 and p/ =, w; - ;. We call —¢ the combined transition of —.

Following [59], we give an alternate representation of MAs in the form of
Markov labelled transition systems (MLTSs) by treating race conditions as one
probabilistic transition.

Definition 6.16. A Markov labelled transition system (MLTS) is a quadruple
M = (S, sg, Actr, —), where

e S is a set of states with unique starting state s,
o Act. is a set of action labels containing the distinguished label T, and
e »C S x (Act; URT) x Distr(S).

Thus every MA M has a corresponding MLTS 9t = (S, sg, Act., —), where
—C S x (Act; URT) x Distr (). Every probabilistic state in an MLTS has at
least one outgoing transition for each of its enabled actions, but at most one
outgoing transition for all of its Markovian transitions.

We are now able to recapture weak bisimulation taken from [59]. Albeit there
are several notions of it , each reformulation proves that they are essentially the
same, cf. [67, [162]. Deng and Hennessy also show that their weak bisimulation
relation is the coarsest reduction barbed congruence possible [59].

Definition 6.17. Let M = (S, sg, Act,,—) be an MLTS. For a given relation R
over the set Distr(S)x Distr (S) let B(R) be the relation over Distr(S) x Distr (S)
determined by A B(R) O, if for all o € Act, URT and for all p1,...,p, with
Yo pi =1 we have:

1. If A= St pi- A for any distributions A;, there are distributions ©;
with © == " | p; - ©;, such that A; R ©; for eachi=1,...,n.

2. If0 = S pi- A; for any distributions A;, there are distributions A;
with A = S pi- A, such that A; R ©; for eachi=1,...,n.

A relation R is called weak bisimulation if R C B(R). The largest of these
weak bisimulations is denoted by =,,. Two MAs My, Mo are weakly bisimilar
My =, My if the initial distributions of their MLTSs are contained in a weak
bisimulation in the direct sum.

Note that Deng and Hennessy [59] point out, that the restriction to full
distributions in Definition [6.17] is insignificant and can be replaced by sub-
distributions.

160 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

Remark 6.18. Weak bisimulation definitions for IMCs frequently add an ad-
ditional clause to relate states that have different exit rates, e.q. vy and v, of
Figure . Checking clauses 1. and 2. in Definition except when o € RT
and R v extends this property to MA. This gives rise to weak bisimulation
ignoring Markovian self-loops, denoted as ==,. It is then easy to see that vgp R U3
also for p # v in My and =~,, C =;,. Here 5 is the Dirac distribution, i.e.

supp(s) = {s}.

Late Weak Bisimulation ~, and ~ . Song et al. [I62] observe that weak
bisimulation does not equate M3 and My in Figure[6.3] and introduce late weak
bistmulation. The idea is to interpret Markovian transitions as a sequence of
probabilistic choices followed by sojourn time distributions. A technical report
on late weak bisimimulation is provided in [162] and a version for PAs in [G6].

We recall some notation used in [I62]: A distribution p is called transition
consistent, denoted fi, if for all states s € supp(p) and o # 7, we have s == v
implies 1 == 4/ for some distributions 7, ~'. Intuitively, all states in the support
of a transition consistent distribution have the same enabled action set.

Lastly, [162] introduce another way to lift transitions of states to transitions
of distributions. The main difference is that internal actions cannot be blocked
in a bisimulation sense. For two distributions p, i/, we write g < 4/ with
o € Act; URT if either

1. for all s € supp(p), there is s = pg such that p' = Zsesupp(u) w(s) - ps or

2. a = 7 and there is s € supp(p) and s = pu, such that p' = (u — 8) 4 (8)- s
Definition 6.19. Let 9 = (S, sq, Act.,—) be an MLTS. We call a given relation
R C Distr(S) x Distr(S) late weak bisimulation, iff u R v implies

0
1. For p—¢ 1, there exists v éc V' such that u/ Rv'.

2. If not i, then there exists p =3 o pi- i and v ==c > 5 pi - Vi such
that fi; and p; Rv; fori=1,....,n and Y. ,p; = 1.

3. Symmetrical for v.

The largest of these late weak bisimulations is denoted ~y,. Two MAs M1, My
are late weak bisimilar, denoted M1 =y, Mo, if the initial distributions of their
MLTSs are contained in a late weak bisimulation.

Note that [I96] show, that weak bisimulation for IMCs implies BMW-trace
distribution equivalence, when restricted to time-abstract deterministic sched-
ulers. The following result is complementary to theirs.

Theorem 6.20. Late weak bisimulation is strictly finer than BMW-trace distri-
butions equivalence, i.e. =y, C =prpw -

Proof sketch. For two MLTSs 911 and 9y, we show that 9t =, My implies
Trd gprw (M) C Trd parw (M) as the inverse follows by symmetry. Thus, for a

CHOICE AND CHANCE 161

given trace distribution D € trd(9;) we construct a scheduler A" € Sched(9My),
such that ¢rd(A’) = D. This is done via induction over trace distribution length.
The construction requires careful treatment of classes of late weak bisimilar
states, in particular those belonging to abstract paths, which have the same
abstract trace. By induction assumption, we know there is a scheduler, that
induces the same probabilities for all abstract traces of length k. The induction
step requires us to show that there is a scheduler that continues this property for
abstract paths of length &£ + 1. The proof hinges on two observations made by
[66]: If a distribution p is transition consistent, then so is its late weak bisimilar
equivalent v. If y is not transition consistent, then v is also not transition
consistent. However, there exists a splitting of p and v, such that both are.
Recall that transition consistency of a distribution means that each element in
their support has the same enabled action set. With the addition of some corner
cases, e.g. T enabled or not, we can thus find a scheduler that assigns all abstract
traces the same probability. O

Remark 6.21. Similar to weak bisimulation ignoring Markovian self-loops, we
can make an exception in clause 1 of Deﬁnitionfor 0 € R and pRv. This
gives rise to late weak bisimulation ignoring Markovian self-loops, denoted as
~5,- Then, obviously ~y, C =7, .

Proposition 6.22. The inclusion ~, C ~,, C =y, holds and is strict.

Song et al. [162] prove that the largest class of schedulers, that guarantees
trace distribution equivalence under late weak bisimulation are partial informa-
tion schedulers. This is not in contrast with our results, since the most general
class of schedulers they consider are deterministic (cf. Ezample 6 in [162]).

Theorem 6.23. Late weak bisimulation ignoring Markovian self-loops is strictly
finer than trace distribution equivalence, i.e. =}, C=71p.

Proof sketch. The proof relies on a similar construction like the one of Theo-
rem However, the mazimal progress assumption states that internal actions
must be taken without delay. In order to prove the statement, we need an addi-
tional lemma. The lemma shows that two late weak bisimilar sub-distributions
over states are always late weak bisimilar to sub-distributions over stable states,
i.e. states not enabling T-actions. This stable sub-distribution can be reached
with probability 1 from the unstable sub-distribution. Additionally, the convex
combination of two measures is a measure. Thus, independently of the measure
scheduled by D € trd(M;), a scheduler A" € Sched(Ms) can copy it. O

Remark 6.24. Song et al. [162] point out that weak bisimulation according to
[59] and [67] proved to be congruences for time convergent Markov automata.
When considering divergent processes [93] suggests relating two states (resp.
distributions) if both of them are divergent, or none of them is. Another approach
is given by [59] in the form of indefinite delays or passive transitions. Song. et al
[162] remark that these aspects can be incorporated into late weak bisimulation.

162 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

6.3.3 Hierarchy

The previous two sections represent a cross-cut through the equivalence relations
for Markov automata. We present the established hierarchy in Figure [6.5(and
point out, that the reverse implications do not hold. To that end, we return
to the yardstick examples seen at the beginning of this section to provide an
illustration for the various equivalences.

(d) (b)

Figure 6.5: Hierarchical overview of equivalence relations, comparing strong
bisimulation =, [67], weak bisimulation =, [67], weak bisimulation ignoring
Markovian self-loops ~¢,, late weak bisimulation =, [162], late weak bisimulation
ignoring Markovian self-loops ~7,, trace distribution equivalence by Baier et al.
=pmw [196] and trace distribution equivalence =1p.

./\/l5 M8

Figure 6.6: Distinguishing examples with respect to the hierarchy of Figure
For details, see Theorem

Theorem 6.25. The reverse implications presented in Figure[6.5 do not hold.

CHOICE AND CHANCE 163

Proof. We present distinguishing examples in Figure [6.6]

(a) We have M; =, M3, but My %, My, since strong bisimulation does not
abstract away from internal 7 actions.

(b) We have M3 ~,, My and M3 =5, My, but M3 3%, My and M3 35 My,
since weak bisimulation cares for the order of the probabilistic and the
Markovian distributions. Late weak bisimulation does not distinguish rg
and sg, because the time and probability to reach E and F are the same.

(c) We have Ms=pyw M and M5 =rp Mg, but Ms %, Mg and M5 %5,
Meg. There is no state in Mg that enables the b and the ¢ action, hence
there is no bisimilar sate to ¢t;. Trace distribution equivalence cares for the
probabilities and times of traces and equates My and M.

(d) We have M7 =5 Mg and M7 =5, Mg, but M7 %, Mg and M7 %, Msg,

since weak and late weak bisimulation do not ignore Markovian self-loops.

For more details on these examples, we refer to [67], [I34], [162] and [196]. O

6.4 Conclusions

We presented a novel notion of trace distributions equivalence for Markov
automata by augmenting schedulers with the ability to wait before proceeding
with scheduled actions. This establishes an equivalence relation for Markov
automata, which is coarser than existing frameworks for weak bisimulation.
Despite being an extension to similar trace-based approaches, we show that our
trace distributions are incomparable to trace distributions not allowing waiting
time, due to the maximal progress assumption.

Giving schedulers the opportunity of allowing waiting time lets us relate
processes, which emit the same visible behaviour for an external observer. We
underlined this notion with a testing scenario in form of a button pushing exper-
iment, and showed that two Markov automata are observationally equivalent, if
and only if they have the same trace distributions.

A widely agreed upon opinion, is that general scheduler classes model too
powerful behaviour [66]. It is therefore important for future work to study more
restricted scheduler classes. Moreover, we see potential in the application of
our framework to model-based testing of stochastic systems , where a waiting
scheduler models the delayed input of a user. This potential is under the premise
that better methods to infer the underlying scheduler of a gathered sample exist
in the statistical analysis, e.g. via more restricted scheduler classes.

6.5 Proofs

We present the proofs of the theorems within this chapter, alongside some
lemmata. Reoccurring theorems are numbered according to their occurrence in

164 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

the chapter, while additional content is numbered alphanumerically. Note that
some results are proven immediately after they are stated in the main body of
the chapter, based on their simplicity or illustration of our methods. As to not
impede the reading flow, we present the remaining theorems in this section.

Lemma A. The set of finite trace distributions of a Markov automaton M is
closed.

Proof. Trace distributions for Markov automata are probability spaces in the
sense of Definition Note that [40] show that the set of trace distributions for
probabilistic automata is closed, i.e. probability spaces based on Act. Addition-
ally, the set of closed intervals on Ry is closed. Since the Cartesian product of
two closed sets is a closed set, and we only consider finite trace distributions, we
conclude that the set of trace distributions for Markov automata is closed. [

Lemma B. For a Markov automaton M and any given § > 0, there exists
M €N, such that for allm > M and D € trd(M, k)™, we have

Pp(freqfl(B(s(ED))) >1-—a.

Proof. Let M > 45%(1. By Chebychev’s inequality [77], we have for all m > M

Pp({0 € Obs(M)[Fo € O : |freq (O) (¢) —EP(0)| > 6}) < 45im <a

This yields for all m > M that

Pp(freg™* (Bs(EP)))
Pp({O € Obs(M) | Yo € O : |freq (O) (0) — EP(0)| < 6})
1— Pp({O € Obs(M) | 3o € O : |freq (O) (o) —EP(0)| > 6})

v

1-—a.
O

Theorem Let My and My be two MAs. Let k € N and o € (0,1). Then
there exists M € N such that for all m > M we have

trd(Mu, k) = trd(Mag, k) <= Obs(My, a, k,m) = Obs(Ma, o, k,m).

Proof. The “=" direction is trivial, since observations are based on trace dis-
tributions (Definition [6.10). For the converse, assume trd(My, k) € trd(Ma, k),

then there exists a trace distribution D € trd(My, k)\trd(Ma, k). We need to

show that Obs(My,a,k,m,) € Obs(Ma,a, k,m). By Lemmathe set of finite

trace distributions is closed. Hence, there is § > 0 such that dist (trd(My, k), trd(Ma, k)) >
d, for some distance function dist. Let D’ € trd(Ma, k) such that dist (Pp, Pp/) =

dist (trd(My, k), trd(Ma, k)). By Lemma[B] we know that there exist My, My €

N such that for all m > max(M;, Ms)

Pp(freg '(Bs (EP)) > 1—a and Pp(freg”" (Bg (EP))) >1—a.

3

CHOICE AND CHANCE 165

This yields

Obs(D, a, k,m) C freq ' (Bs (EP)) and Obs(D', k,m,) C freq ' (Bs (EP)).

s s
3 3

Since dist (Pp,Pp/) > ¢, we have B%(Pp) N B (Pp/) = 0. From here we
deduce that Obs(D, a, k,m) € Obs(Ma, a, k,m), and hence Obs(My,a, k,m) €
Obs(Ms, a, k, m). The other direction holds by symmetry. O

Theorem Late weak bisimulation is strictly finer than BMW-trace distri-
butions equivalence, i.e. <y, C =pypw -

Proof. Let My and My = be two MLTSs. Assume M =, Mo, where R is a
late weak bisimulation. We have to show that Mi;=pgyw Ms. Note that it is
sufficient to show that

VD € Trdgpw (Ml) dD € Trd gyw (MQ)VZ S ([X Act)* : PD(E) = PD/(Z),

where I C R are intervals, since the converse follows by symmetry.

Let D € Trdpyw (M;) be a BMW-trace distribution, then there is A €
Sched gppyw (M), such that ¢rd(A) = D. We show the existence of D’ by
induction over trace distribution length. Assume |X| = 0, then by definition of
trace distributions (Definition [6.7), we obviously have Pp(e) = Pp/(g) = 1.

Assume we have shown that Pp(X) = Pp/(X) for all ¥ with |X]| = n. Let
now % € (I x Act)"*1. Then

S=hLa ... InapIpt10n41 and ' =11 ay ... I, ay,

where I; C Rar are intervals, a; € Act, and ¥/ C,, X.

Since ¥ is an abstract trace, there are distinct abstract paths IIy,..., IIx
with tr(Il;) = X for i = 1,...,k . Let I}, ..., II} be the distinct abstract paths
with tr(l’[;-) =Y'for j =1,...,1 such that for all H; exists IT; such that H;- C II,.
Note that | < k. Let 07 = P4(II}) for j = 1,...,1. Then P4(Il;) = &} - p; for
some corresponding ¢} € [0,1] and p; € [0,1].

Since M =, Moy, there are abstract paths f[’l, R f[g, in My, such that for
all last(II}), there is last(ﬂg) such that last(Hg)Rlast(f[;) (the Dirac distribution
of the states). Equivalently, let f[l, . ,f[kf be abstract paths in My, such that
for each last(IT;) there is last(I1;) with last(IT;) R last(I1;) (the Dirac distribution
of the states). By induction assumption, we have

l

;
> Pp(tr(Il)) = Z Pp (tr(IT))).

i=1
Let C} = [last(II})]r C Sy be the equivalence class of (Dirac distributions over)
states in Sy for each II7,...,II;. It is possible that C] = C} for some i # j,

so assume there are m < [distinct such C/. Equivalently, let C7,...,C" the
corresponding equivalence classes in My. We overload tr by denoting tr(C;) =

166 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

{¥ € (I x Act)*|E = tr(IT) with last(I) € C;}. By induction assumption, we
can assume without loss of generality, that

Pp(tr(CY)) = Pp/ (tr(C1)) for each i = 1,...,m.
It now suffices to show, that there is A" € Sched(Mz) with trd(A") = D’ such that

Pp(tr(Cy)) = Ppi(tr(Cy)) for each i = 1,...,w, where C; = [last(IL;)]z C Sy
and C; = [last(T1;)]zr C Sa.

Let 4 € SubDistr(C!) for some . Since M; =y, Ma, there is a sub-
distribution v € SubDistr(C?) such that y R v. We need to show, that D’ can
assign a total of). _;p; to states in distribution v to go via the last trace
fragment I, 1a,41 to é'j for some j. Here, 7 is the set of indices for abstract
paths II/. such that II). C II, for some II, with last(Il;) € C;. Indeed, assume

1 o 1/, then by late weak bisimulation, there is v ==¢ ¢/, such that p/ R /.
If a € Act,, let
ICi]

. 1
Po = |O/‘ E “4(77;)(070‘7:[/)7
il =1

where] are the corresponding paths to IT} with last(II;) € C!. Intuitively, p, is
the probability that scheduler A assigns to equivalence class C] to schedule p'.
If « € RY, then we define p!, = 1 — EaeActT p’, as the remaining probability of
a Markovian transition taking place.

(a) f a =7, fi and v # v/, then ¥. This is a result proven in [66]. Then there
exists vg € Distr(S) with v —=¢ v1 —=¢ ... —¢ Vg —>C Va1 ——cC
v —+¢c V' such that there is A" € Sched pprw (My), with
i ifh=d
Z A5 0,7, 0181, 0,7, vp_151-1)(0, 7, vp,) = {po‘

ooy 1 ifh#£d,

and Trd gyrw (A’) = D’. This is possible, due to the transition consistency
vp for h =1,...,d implicitly given by v and late weak bisimulation.

(b) If @« =7, —ji and v # v/, then —#. This is a result taken from [66]. However,
by late weak bisimulation, there exists a splitting of u = Z;;l wj g, such
that v ==¢ ZJZ.:l w;v; with p; R v; and fij, and consequently /; for
j =1,...,z. Now, there exists a scheduler A" € Schedgpyw (Ms) with
Trdpyw (A') = D', that can reach >7_, w;v; with probability 1, because
1R v. We proceed with (a) for p; and vj for j=1,...,z.

(¢) fa=7and v =7/, then y/ R v. Then D’ stays in v with probability 1.

(d) If « € Act and fi. Similar to (a).

) If @ € Act and —ji. Similar to (b).
)

If « € RT and /i, then all s € supp(u) are stable, i.e. no T-transitions are
enabled. Consequently, also 7, and therefore, all states s € supp(v) are
stable. Since p R v we know that D’ has p’, as remaining probability for
Markovian transitions to take place.

CHOICE AND CHANCE 167

(g) If « € RT and —/i. This case is solved as a combination of (b) and (f).

Note that the choice of A’ solely depends on decisions of D and not individual
traces. Since all of the above cases are exclusive, there is a scheduler A’ €
Sched gyrw (./\/lg) that fulfils all of them with Trd gy (.A/) =7D.

Finally, this shows for each C; that

1Ci|

Pp(tr(Cy)) = ZPD (tr Cl ijk

|G|

= ZPD/ (tr(C ijk

= PD’(tT(Ci))a

where pj, are the probabilities in P4(II;) = Pa(II)p;, for each last(I;) € C;
with IT}, C,, TI; and last(I1}) € C; for some j (the same for I1; and C;). Summing
over all C; and C; respectively, gives Pp(X) = Pp/(2) for each .

Thus, we showed the existence of D’ € Trd gy (Ms), such that all abstract
traces of My get assigned the same probability as in M;. That yields My Cyw
M. The converse holds by symmetry. O

Lemma C. Let R be a late weak bisimulation on a non-divergent finite Markov
automaton M. Let u,v € SubDistr(S) with u R v with v unstable. Then there
exists v* € SubDistr(S) such that p R v* and v* stable.

Proof. Let p,v € SubDistr(S) with ¢ R v and v unstable. There are two cases:

1. Assume 7 € enabled(p). Then there is 1/ € SubDistr(S) with p <s¢ 1.
Since R is a late weak bisimulation, there is v/ € SubDistr(S), such that
v ==¢ v and i/ R v/. Additionally, ¢/ R v and xR /. Then either
7 € enabled(n') or T ¢ enabled(p'). In the first case, we repeat case 1, in
the latter we go to case 2. Note that this procedure can be repeated only
finitely many times. Assume we infinitely often execute case 1. Then either
M is divergent or M is not finite. Both cases violate our assumptions.

2. Assume 7 ¢ enabled (). Since v is unstable, there is v/ € SubDistr(S) with
v <5 /. Since R is a late weak bisimulation, there is ;4 € SubDistr(S),
such that u == ' and v/ R p/. Since 7 ¢ enabled (1), we necessarily have
w=p'. If 7 € enabled(V'), then we repeat case 2. If 7 ¢ enabled(v'), then
v =v*, i.e. v* is stable. Note that case 2 is repeated only finitely many
times. If this were not the case, then M would either be divergent or not
finite.

O

Theorem Late weak bisimulation ignoring Markovian self-loops is strictly
finer than trace distribution equivalence, i.e. =}, C=1p.

168 CHAPTER 6. STOIC TRACE SEMANTICS FOR MA

Proof sketch. The proof arises as a combination of Theorem [6.23] and Lemma [C]
Instead of assigning probability sub-distributions to trace fragments, the trace
distribution D’ assigns measures depending on the measures used by D. By
Lemma [C] a sub-distribution of states can always reach an equivalent and stable
sub-distribution of states with probability one. Note that a scheduler can
schedule any measures in a stable sub-distribution. Additionally, a finite convex
combination of measures is a measure. Hence, D’ can assign the same measure
to all equivalence classes and their corresponding trace fragments as D. O

CHAPTER 1

Model-Based Testing with Stochastic Automata

Stochastic behaviour and requirements are an important aspect of today’s com-
plex systems: network protocols extensively rely on randomised algorithms [I06],
165], cloud providers commit to service level agreements, the emerging field of
probabilistic robotics [I68] allows the automation of complex tasks via simple
randomised strategies, as seen in e.g. vacuum and lawn mowing robots, and we
see a proliferation of probabilistic programming languages [82].

Stochastic systems must satisfy stochastic requirements. Consider the exam-
ple of exponential back-off in Ethernet studied in Chapter d} an adapter that,
after a collision, sometimes retransmits earlier than prescribed by the standard
may not impact the overall functioning of the network, but may well gain an
unfair advantage in throughput at the expense of overall network performance.
In the case of cloud providers, the service level agreements are inherently stochas-
tic when guaranteeing a certain availability (i.e. average uptime) or a certain
distribution of maximum response times for different tasks. This has given rise
to extensive research in stochastic model checking techniques [IT1]. However, in
practice, testing remains the dominant technique to evaluate and certify systems
outside of a limited area of highly safety-critical applications.

In this chapter, we present an MBT framework based on input-output
stochastic automata (IOSA) [51], which are transition systems augmented with
discrete probabilistic choices and timers whose expiration is governed by general
probability distributions. IOSA mark the pinnacle of modelling formalisms in
terms of both complexity and power of this thesis. By using IOSA models, we can
quantitatively specify stochastic aspects of a system, in particular with respect to
timing. We support discrete as well as continuous probability distributions, so our
framework is suitable for both hard and soft real-time requirements. Since IOSA
extend transition systems, non-determinism is available for underspecification
as usual. We formally define the notions of stochastic ioco (sa-ioco), and of
test cases as a restriction of IOSA. We then outline practical algorithms for
test generation and sa-ioco conformance testing. The latter combines per-
trace functional verdicts as in standard ioco with a statistical evaluation that
builds upon the Kolmogorov-Smirnov test [99] known from non-parametric

169

170 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

statistics. While our theory of IOSA and sa-ioco is very general with respect to
supported probability distributions and non-determinism, we need to assume
some restrictions to arrive at practically feasible algorithms. We finally exemplify
our framework’s capabilities and its inherent trade-offs by testing timing aspects
of different implementation variants of the Bluetooth device discovery protocol.
This illustrates differences to purely Markovian test theory as seen in Chapter [f]
in a most practical way.

Since probabilistic automata and Markov automata are special cases of
stochastic automata, our new framework generalises both previous ones. However,
due to the memoryless assumption, the Mar-ioco conformance testing algorithm
only had to compare the means of the specified and observed delays. We do not
make any such assumption for sa-ioco instead we are checking the entire shape
of the distribution via the Kolmogorov-Smirnov test matches. It is thus a more
precise test, that comes at the slight increase of complexity.

We summarize the main contributions of this chapter:

e The input output stochastic automata (IOSA) model, comprising non
deterministic choices, discrete probability distributions, and discretely and
continuously distributed clocks for transition,

e a behavioural description for SA based on trace semantics,

e definitions of test cases, execution and verdicts,

e the soundness and completeness results of our framework,

e non-parametric tests for general continuous clock distributions, and

e the Bluetooth discovery protocol revisited with the SA framework.

Related Work. Early influential work had only deterministic time [21], 116,
120], later extended with time-outs/quiescence [29]. Probabilistic testing pre-
orders and equivalences are well-studied [45] [60} [158]. Probabilistic bisimulation
via hypothesis testing was first introduced in [122]. Our work is largely in-
fluenced by [40], which introduced a way to compare trace frequencies with
collected samples. Closely related is work by [97] [138] on stochastic finite state
machines, where stochastic delays are specified similarly, but discrete probability
distributions over target states are not included.

Origins of the chapter. The work underlying this chapter was performed in
collaboration with Arnd Hartmanns and Mariélle Stoelinga, and appeared in

e Marcus Gerhold, Arnd Hartmanns, and Mariélle Stoelinga. Model-based
testing for general stochastic time. In Proceedings of the 10th International
Symposium on NASA Formal Methods, NFM, pages 203-219, 2018.

Organisation of the chapter. Section[7.]establishes the underlying automa-
ton model in Stochastic automata, and recalls language theoretic concepts. The
theory of testing with stochastic automata is explored in Section This

CHOICE AND CHANCE 171

includes the conformance relation, test cases, verdicts and the framework’s cor-
rectness. An algorithmic outline and applicable methods for the framework in
practice are presented in Section The Bluetooth device discovery protocol is
revisited in Section [7.4] and differences to the Markov automaton framework are
explored. The chapter ends with concluding remarks in Section

7.1 Stochastic Automata

We introduce the underlying model for the remainder of this chapter in in-
put/output stochastic automata (IOSA). Stochastic automata are transition
systems augmented with non-determinism, discrete probability choices, and
real-time clocks whose expiration is governed by general discrete or continuous
probability distributions. Separating their alphabet into input- and output
actions gives rise to IOSA. As such, they are a conservative extension of both
probabilistic automata and Markov automata, as seen in Chapters [] and
We refer to Figure for an hierarchical

overview. SA are the most powerful and SA

complex modelling formalisms studied in ‘

this thesis, and thus mark the pinnacle of

MBT frameworks in a probabilistic setting

discussed here. / \

The remainder of this section is struc- PA)
tured similarly to PA and MA; the au-
tomaton model is introduced alongside il-) / \ / \
lustrating examples, and the meaning of D IMC LTS CTMC
paths and traces is explored. We define dize. prob. non-determ. exp. delay
parallel composition for IOSA to enable
communication between multiple compo-
nents, or with the environment, and in-
troduce schedulers. As before, schedulers "¢ E
ensure the quantification of probabilities
of traces with respect to a probability measure, and induce trace distributions.

Figure 7.1: Traversing the automata
formalism hierarchy shown in Fig-

7.1.1 Definition

SA [50] are transition systems augmented with non-determinism, discrete proba-
bility choices, and clocks whose expiration is governed by general probability
distributions, which are either discrete or continuous. The action alphabet of SA
is separated into inputs, outputs and internal actions, as we have done for other
modelling formalisms. Working in an open setting, where an implementation may
interact with other components, or the environment, warrants this distinction.
This gives rise to input output stochastic automata (IOSA) [51].

While strictly being an extension of Markov automata, working in general
continuous time not restricted to exponential distributions means IOSA lose the
desirable memoryless property. To account for the loss, SA use clocks; real-valued

172 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

variables that increase synchronously with rate 1 over time and expire some
random amount of time after they have been restarted. Their expiration time is
drawn according to an underlying probability distribution. Therefore, we define
SA to comprise locations rather than states; each location keeps track of all
real valued clocks, while a single state comprises a location, an evaluation of all
clocks, as well as their respective expiration times. The complexity of the state
space of an SA becomes evident, as there are uncountably many clock valuations
in each location. Similarly, each transition is a discrete probability distribution
(potentially Dirac). We point out that IOSAs are not defined as input-reactive
and output-generative this time around for technical reasons.

What sets SA apart further from previous models is the existence of both
guards and clock resets on transitions; a transition may only be taken once all
clocks in the guard sets are expired. This is similar to timed automata, except
expiration times are randomly distributed according to a discrete or continuous
probability distribution. The eponymous clock resets ensures clocks are properly
set back to zero whenever it is desired.

Definition 7.1. An input-output stochastic automaton (TOSA) is a 6-tuple
T = (Loc,C, Act, E, F, {y) where

e Loc is a countable set of locations, with £y € Loc as the initial location,
e C is a finite set of clocks,

e Act = Acty U Acto U Acty is the finite action alphabet partitioned into
inputs Act;, outputs Acto containing the distinct element § denoting
quiescence, and internal actions Acty,

e E : Loc — P(Edges) with Edges & P(C) x Act x Distr(T) and T &
P(C) x Loc is the edge function mapping each location to a finite set of
edges, that in turn consist of a guard set, a label, and a distribution over
targets in T consisting of a restart set of clocks and target locations, and

e F:C — Meas (Rar) is the delay measure function that maps each clock to
a probability measure.

Intuitively, a stochastic automaton starts its execution in the initial location
with all clocks expired. An edge may be taken only if all clocks in its guard
set G are expired. If any output edge is enabled, some edge must be taken,
i.e. all outputs are urgent. When an edge (¢,(C,a,u(R,¢'))) is taken, 1. its
action is a, 2. we select a target (R, ¢') € T randomly according to the discrete
distribution p, 3. all clocks in R are restarted and other expired clocks remain
expired, and 4. we move to successor location . There, another edge may be
taken immediately or we may need to wait until some further clocks expire
etc. When a clock ¢ is restarted, the time until it expires is chosen randomly
according to the probability measure F'(¢). We point out that each clock has its
own distribution, which is independent from locations, as well as independent
from other clocks.

Example 7.2. Figure[7.2d shows an ezample IOSA specifying the behaviour of
a file server with archival storage. We omit empty restart sets and the empty

CHOICE AND CHANCE 173

x ~ Uni[0, 1] x ~ Unil0, 1]
y ~ Det(5) y ~ Det(5) abort?
z ~ Exp(3) abort? z ~ Exp(3) -

abort? abort?

(a) File server specification. (b) File server implementation.

Figure 7.2: Specification and a possible implementation IOSA of a file server
with archival storage. Upon receiving a request, a server either directly transfers
the file, or needs to fetch it from the archives, resulting in different waiting times.
As usual, inputs are suffixed with “?” and outputs with “!”. Note that we omit
empty restart sets and the empty guard sets of inputs for readability.

guard sets of inputs. Upon receiving a request in the initial location £y, an
implementation may either move to €1 or ly. The latter represents the case of
a file in archive: the server must immediately deliver a wait! notification and
then attempt to retrieve the file from the archive. Clocks y and z are restarted,
and used to specify that retrieving the file shall take on average % of a time unit,
exponentially distributed, but no more than 5 time units. In location {3, there
is a race between retrieving the file and a deterministic time-out. In case of
time-out, an error message err! is returned; otherwise, the file can be delivered
as usual from location €1. Clock x is used to specify the transmission time of the
file: it is supposed to be uniformly distributed between 0 and 1 time units.

In Figure we show an implementation of this specification. One out
of ten files randomly requires to be fetched from the archive. This is allowed
by the specification: it is one particular resolution of the non-determinism, i.e.
underspecification, defined in ly. The implementation also manages to transmit
files from archive directly while fetching them, as evidenced by the direct edge
from €3 back to ly labelled file!. This violates the timing prescribed by the
specification, and must be detected by an MBT procedure for IOSA.

Notation. By convention, we use the following notations and concepts:

e As usual, we suffix inputs with “?” and outputs with “!”. Throughout
the chapter 7 denotes an internal action, and § denotes the distinguished
quiescence label contained in Actp. Further, we use p and v to denote
discrete probability distributions used in edges.

o We write £ E% 5 11 if (G, a, 1) € E(0).

e A multi-set is written as { ... [}.

174 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

e Val = V — R{ is the set of valuations for an (implicit) set V of (non-
negative real-valued) variables. 0 € Val assigns value zero to all variables.

e Given X C V and v € Val, we write v[X] for the valuation defined by
v[X](z) = 0if 2 € X and v[X](y) = v(y) otherwise. This notation is
usually used for clock resets. For t €]Ra' , U+t is the valuation defined by
(v+t)(x)=v(x)+tforall z e V.

e We write pdf(c) for the probability density function associated to the
cumulative distribution function F(c).

e We call an IOSA input-enabled if all input actions are available in every
location at every time, i.e. V£ € Loc,a € Acty Ip: (&, a,u) € E(L)

Parallel composition. We define parallel composition for IOSAs in order to
enable communication among various components, or with the environment.
Parallel composition is defined in the standard fashion [9] by synchronizing on
shared actions, and evolving independently on others. Since transitions in IOSAs
are stochastically independent, we multiply the probabilities when taking shared
actions.

Definition 7.3. Given two I0SAs
T = (Loc,C, Act,E,F,ly) and TI' = (Loc',C',Act',E',F' (})

with CNC' = @, Acty N Act’y = @, and M C Act x Act’, their parallel
composition is defined as T | I’ ¥ (Loc",C", Act”, E", F" (€o,,to,)) where

e Loc” = Loc x Loc’,
e C"=Cul

o Act”" & Act]UActdyUActly with outputs Acty = ActoU Acty,, internal ac-
tions Actyy = ActgUAct’y, and inputs Act] = (Act;UAct])\({ar € Acty |
Jaop € Acty: {ar,a0) € M} U{ar € Act) | Jap € Acto: {(ap,ar) €
M}),

o E" is the smallest edge function satisfying the inference rules

0y %El,u a=7Vhay € Acty: (a,a2) € M
(1, 05) E% pu { (R, (G, &2)) = p((B, 4)) | R € C, 6 € Locy }
0y M}Eﬂ 2 2—’G2>E/V aleActo/\<a1,a2>eM
(€1, 0y) 12290 g {(Ry U Ry, (€4, £)) v p((Ra, £)) - v((Ra, £5)) }

(indepy)

(sync)

plus symmetric rules indep, and syncy, for the corresponding steps of s,
and lastly

e F=FUF.

CHOICE AND CHANCE 175

We use the convention that two actions a; and ay match, i.e. (a1, a9) € M,
if they are the same except for the suffix (e.g. a! matches a? but not b? or a!).

The definition of parallel composition for IOSA is straightforward; since
clocks are required to be independent from each other, we simply take the
union of all clocks, as well as corresponding probability distributions attached to
them. The same holds for the action alphabet, except for synchronising actions.
Here, only inputs that do not have a corresponding synchronising output in the
other component are carried over. Perhaps the most involved item is the edge
function; an edge is carried over if its label is 7, it does not synchronise, or if both
IOSAs enable the same action that is synchronised upon. Note that the latter
requires to carry over both guard sets, clock reset sets, and to account for the
correct discrete probability over target states by multiplying their independent
distributions p and v.

7.1.2 Language Theoretic Concepts

TIOSAs comprise non-negative real-valued clocks that keep track of the time since
their last respective resets. Since there is no memoryless assumption for IOSAs,
they comprise locations, rather than states. Each state (¢,v,z) € S consists
of the current location ¢ and the values v and expiration times x of all clocks.
Consequently, the resulting state space of an IOSA consists of uncountably many
states, but countably many locations as required by Definition

Definition 7.4. The states of IOSA T are S %€ Loc x Val x Val.

With the notion of states in place, we are now able to define paths induced
by an IOSA. In order to do so, we let Ex(G,v,z) ¥ Ve € G: v(c) > x(c) be a
Boolean that checks whether all clocks in G are expired.

Definition 7.5. The set of all paths of an IOSA T is
paths(T) £ S x (R§ x Edges x P(C) x S)*

where the first state of each path is (£y,0,0), and contains precisely the sequences
7 of the form

™ = <£o, 1}0,1}0><t1, 61,R1, <€1,’U1,$1>> vy
where vg = xg = 0, and for all i > 1, we have e; = (G;,a;, ;) € E(li—1),
Ex(Gi,vi—1+t,xi—1), (Ri, £;) € support(u;), v; = (vi—1+t)[Ri], z; € {x € Val |
/\CEC\Ri z(c) = zi-1(c) A Necp, (c) > 0}, and if a; ¢ Acty, then additionally

ﬂt/ S [O,t[: \/ EX(G,’UZ‘,1 + tl,.’L'Z',l).
Ziflg&u

We write paths'™ (Z) as the set of finite paths. For a finite path w € paths™™)
we denote last(m) as its last state, and its length |w| is the number of edges with
non-internal action labels.

176 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

While Definition [7.5] certainly looks more technically involved compared to
previously seen counterparts, it is completely standard. We require that every
(finite) path starts in the initial location with all clocks and expiration times
set to zero. Every edge occurring on the path needs to be an edge in the IOSA.
An edge may only be taken if all its guarded clocks are expired, denoted by
the Boolean Ex(G,v,z). Moreover, we require that only valid valuations of
clocks and expiration times are recorded in a (finite) path. Lastly, we ensure the
urgency of non-input actions, i.e. no other action is enabled before time ¢. If
presented with a path 7, our thorough Definition lets us precisely reconstruct
an execution of the underlying IOSA. That is, we can track the precise behaviour
exhibited by an IOSA up to clock valuations and expiration times in every
location. The additional requirements ensure that only valid paths are contained
in the eponymous set, and no urgency assumptions or guard constraints are
violated.

Remark 7.6. We define states and paths of an IOSA explicitly, by setting states
as triples of locations, valuations and expirations. An alternative approach lies
in providing the semantics of a stochastic automaton by presenting its underlying
timed probabilistic transition system (TPTS). A TPTS treats states as “first
class citizens”, and language theoretic concepts can be defined similarly.

We opt for the explicit treatment of the semantics of IOSA in this chapter, and
make use of TPTS semantics in Chapter[§ In the latter, we require restrictions
of the information available in states, and working in TPTS ensures a clean
treatment of that.

Traces represent the behaviour of an automaton visible to an external observer.
In particular, they cannot see the values of individual clocks, but only the time
passed since the run started. As such, traces are (finite) sequences of time values
followed by externally visible actions. Since we intend to quantify the probability
of traces, we define abstract traces that comprise time intervals as opposed to
single time values. Note that this is a necessity when working in a continuous
real-time environment.

Definition 7.7. The trace of a (finite) path w is the overloaded projection
tr(m) : paths(T) — (RS x Act)® and tr(n) : paths™(T) — (RS x Act)* resp.

to the delays in Rg, and the actions in Act. T-steps are omitted and their delays
are added to that of the next visible action. The set of traces of T is traces(ZT),
and the set of finite traces is traces™™(T), respectively. traces®®™(T) is the set of
complete finite traces for T based on paths ending in terminal locations.

An abstract trace in AbsTraces(Z) is a sequence ¥ = Iy a1 Iz as ... where
I; C R0+ are closed intervals. Finite abstract traces are defined analogously, and
denoted AbsTraces"™ (Z). A finite abstract trace ¥ is a prefix of an abstract trace
Y/, denoted X T Y, ifa; =a} and I; =1} for alli=1,...,n.

As before, we point out, that there is a one-to-one mapping between traces
and their abstract counterparts due to our convention to identify time value ¢
with the interval [0, ¢].

CHOICE AND CHANCE 177

7.1.3 Schedulers and Trace Distributions

Input/Output stochastic automata comprise non-deterministic choices, discrete
probability distributions, as well as continuously distributed real-valued clocks.
Due to the non-determinism in an IOSA, it is not directly possible to assign
probabilities to (abstract) paths and traces directly. Rather, we resort to sched-
ulers that resolve non-determinism, and consequently yield a purely probabilistic
system. This construction was used in previous chapters, too.

Given any finite history leading to a state, a scheduler returns a discrete
probability distribution over the set of next transitions. In order to model
termination, we define schedulers such that they can continue paths with a
halting extension L, after which only quiescence is observed. We point out that
non-determinism in IOSA always has the form of timed non-determinism, i.e.
the choice between multiple transition only arises if the clocks of all guards on
transitions expire simultaneously. This includes the empty guard sets on inputs.

Definition 7.8. A scheduler of an IOSA T = (Loc,C, Act, E| F, ly) is a mea-
surable function

A : paths™ (T) — Distr(Edges U { 1 })

such that A(m)(G,a,pu)) > 0 with last(7) = (v,) implies ¢ <% 1 and
Ex(G,v+t,x) wheret € RS‘ is the minimal delay for which no other transition
was available before, i.e.

Pt € 0,t: \/ Ex(G,v+t' x).
Gy,

A(m)(L) is the probability to halt. A halts on 7 if A(m)(L) =1. A is of length
k e N if A(m)(L) =1 for all paths m of length > k. Lastly, Sched(Z, k) is the set
of all schedulers of T of length k, and Sched(Z) is the set of all finite schedulers.

A scheduler can only choose between the edges enabled at the points where
any edge just became enabled in an IOSA. Schedulers remove all non-determinism,
and transform an IOSA to a purely probabilistic system. As is usual, we restrict
to schedulers that let time diverge with probability 1 (Zenoness).

The probability of each step on a path is then given by the step probability
function:

Definition 7.9. Given IOSA T and A € Sched(Z), the step probability function

Q™ : paths™ (I) — Meas (R§ x Edges x P(C) x S)U{L})

is defined by Q*(m)(L) = A(r)(L) and, for m with last(n) = ({,v,z),
Q‘A(Tr)([tl,tg] X EQ X RQ X SQ) =

]]-te[h,tz]' Z ‘A(W)(e) Z (N«R? £,>)/ X}I%(’U/, 1"))

e=(G,a,n)€Eq ReRg V'€ Loc (¢ 2")eSq

178 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

where t is the minimal delay in ¢ as in Definition [7.5 and
1 ifc¢ RAx(c) =12'(c)

Xp(' ") = Ly—rom) H 0 if c¢ RAxz(c) # 2'(c)
R\ pdf (c)(z'(c)) ifc€R.

For a given scheduler A € Sched(Z, k), the step probability function ensures
that the probability of each abstract path is quantified. Note that abstract paths
for IOSA consist of time-intervals, and state intervals, where each state consists
of a location, the current clock valuations, and expiration time valuations. Since
the latter two are uncountable, we require intervals to construct the o-field over
abstract paths, as seen in Chapter|5} The step probability function Q# induces a
unique probability measure P4 over AbsPaths'™ (Z): Q* defines, for every path
7, a measure quantifying the probability to continue from state last(m) = (¢, v, x)
by incurring a delay in the interval I C R7, taking an edge in Eg, resetting a
set of clocks in Rg, and ending up in a state in Sg. Note that we require sets of
states Sq, since a single state (£, v, x) has probability zero to occur.

The probability to halt precisely after 7 is inferred from the probability a
scheduler assigns to the halting extension L. The probability to see an action and
the transition to a new location including expiration times and clock valuations
is defined as follows: At first, the indicator function ensures that only time
values contained in the interval [t;, t5] are accounted for. Next, the probability
of all scheduled edges is considered. Here, the discrete probabilities assigned to
every respective edge is multiplied with the outcome of their inherent discrete
probability distribution u, i.e. the distribution deciding on reset clocks and the
next location. Lastly, the Lebesgue integral [I78] over all states in S accounts
for clock valuations and expiration times; if a clock is not in the reset set, it
contributes with factor 1. On the contrary, it contributes factor 0 if the clock
was not reset, and yet new expiration times are sampled — a case that should
not occur in practice, that hence sets the probability to 0. Only the presence of
a clock ¢ in the set of reset clocks R allows for newly sampled expiration times.

The step probability function allows the construction of probability spaces
based on maximal abstract paths, as we have seen in Chapter o} We construct
trace distributions based on these probability spaces.

Trace Distributions. We can define the trace distribution for an IOSA T
and a scheduler as the probability measure over traces (using abstract traces to
construct the corresponding o-field) induced by the probability measure over
paths in the usual way. Then, the probability assigned to a set of abstract traces
X is the probability of all paths whose trace is an element of X.

Definition 7.10. The trace distribution D of a scheduler A of IOSA I, denoted
as D = trd(A), is the probability space (Qp, Fp, Pp) given by

o Op = AbsTraces(Z),

e Fp is the smallest o-field generated by the sets {Cs, | © € AbsTraces™ (M)},
where Cy, = {X' € Qp | L C ¥'}, and

CHOICE AND CHANCE 179

e Pp is the unique probability measure on Fp, such that

Pp(X) = Pa(tr (X)) for X € Fp.

Trace distribution equivalence. A trace distribution is of length k € N, if
it is based on a scheduler of length k. The set of all such trace distributions
is trd(Z,k). Conversely, the set of all finite trace distributions is denoted
trd(Z). This induces an equivalence relation =7p; two IOSA 7 and S are trace
distribution equivalent, written Z =rp S, if and only if trd(Z) = trd(S).

7.2 Stochastic Testing Theory

Model-based testing entails the automatic test case generation, execution, and
evaluation based on a requirements model. Our goal is to establish this three-
step procedure for input-output stochastic automata. As a first step, we define
what formal conformance between two models means. To that end, we define a
conformance relation akin to ioco aptly called sa-ioco.

In the next step, we formally define test cases, and present how tests are
generated based on an IOSA system specification. Their annotations evaluating
single traces are based on the previously established conformance relation. The
next step involves the execution of these tests on an implementation. Lastly,
we demonstrate how samples are evaluated both functionally, and statistically.
The functional evaluation is comparable to established procedures from the
literature [I74], and was described multiple times before in previous chapters.
Informally, we require all outputs offered by the SUT to be predictable by the
specification. This property is culminated in the ioco framework by Tretmans
[I74], and therefore utilized here. Conversely, similar to how a single coin toss
cannot evaluate whether the coin is fair or not, we require a sufficiently large
sample to apply statistical tests, that establish probabilistic correctness.

Alongside the functional correctness, we present evaluation procedures for
a separate probabilistic verdict. This probabilistic verdict accounts both for
implemented probabilities, as well as stochastically distributed time. We define
the set of acceptable outcomes of an IOSA, which aids us in relating two IOSAs
to each other.

7.2.1 The Conformance Relation C3?

—1t0co

Trace distribution equivalence =7p is the probabilistic counterpart of trace
equivalence for transition systems: it shows that there is a way for the traces of
two different models, e.g. the IOSA 7 and S, to all have the same probability
via some resolution of non-determinism. However, trace equivalence or inclusion
is too fine as a conformance relation for testing, as studied in Section [3:2] The
ioco relation [I74] for functional conformance solves this problem by allowing
underspecification of functional behaviour: an implementation Z is conforming

180 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

to a specification § if every experiment derived from S executed on Z leads to
an output that was foreseen in S. Formally:

T Cioco S & Yo € traces™(S): outz(o) C outs(o)

where outz(0) is the set of outputs in Z that is enabled after trace o.
To extend ioco testing to IOSA, we need two auxiliary concepts that mirror
trace prefixes, and the set out stochastically:

e Given a trace distribution D of length k, and a trace distribution D’ of
length greater or equal to k, we say D is a prefiz of D', written D Cy D/,
if both assign the same probability to all abstract traces of length k.

e For an IOSA 7 and a trace distribution D of length k, the output continua-
tion of D in Z contains all trace distributions D’ of length k + 1, such that
D C, D/, that assign every trace of length &+ 1 ending in input probability
0. We set

outcontz(D) =¥ {D' e trd(Z,k+1) |
D Cy D' AVo € [R] Act]*RJ Acty : Pp/ () = 0}.

Definition 7.11. Let S and I be two IOSA over the same action signature, and
let Z be input enabled. We say L is sa-toco-conforming to S, written Z C°5¢. S,
if and only if

Vk € NVD € trd(S) : outcontz(D) C outconts(D).

Intuitively, Z is conforming if, no matter how it resolves non-determinism, S
can mimic its behaviour by resolving non-determinism accordingly, such that all
abstract traces have the same probability. Like the original ioco, Definition
neglects traces ending in input.

Recall Theorem [4.16] and the fact that a stochastic automaton is an input
output transition system iff the set of clocks and clock resets is empty, and every
discrete probability distribution u is the Dirac distribution. This shows that
sa-ioco conservatively extends ioco.

Theorem 7.12. Let T and S be two IOTS with T input enabled, then

i Eioco S=1 Efgco S.
Proof sketch. Since an IOTS is an IOSA without any clocks, guard or reset
sets and only Dirac distributions on edges, the notions of schedulers for such
TIOSAs (Definition coincides with the notion of schedulers for pIOTSs only
containing Dirac distributions (Definition |4.9)). Hence, both definitions induce
the same trace distributions on IOTSs. The proof then immediately follows from
Theorem E.T16] O

CHOICE AND CHANCE 181

7.2.2 Test Cases

A test case describes the possible behaviour of a tester. The advantage of MBT
over manual testing is that test cases can be automatically generated from the
specification, and automatically executed on an implementation. In each step of
the execution, the tester may either 1. stop testing, 2. wait to observe output,
or 3. send an input to the implementation. A single test may provide multiple
options, giving rise to multiple concrete testing sequences. It may also prescribe
different reactions to different outputs.

Formally, test cases for a specification S are IOSA whose inputs are the
outputs of & and vice-versa. More specifically, we define test cases as IOTSs,
i.e. TOSAs with an empty set of clocks and only the Dirac distribution on
edges. This ensures that the model of an implementation under test is internally
deterministic. A test can also react to mo output being supplied, modelled
by quiescence 6, and check if that was expected. Since we can only judge the
correctness of specified behaviour, we limit the outputs a test case can give to
those occurring in the specification (cf. input-minimal tests [169]).

Definition 7.13. A test case t over an alphabet (Acty, Acto) is an IOSA
(Loc,@,Act'} U ActtO,E,Q,&)} that has the alphabet’s outputs as inputs and
vice-versa, i.e. Acty = Acto U {8} and Actl, = Act;\{0}, and that is a finite,
internally deterministic and connected tree. Additionally, we require for every
{ € Loc:

e E(0) =0,
e For all a € Act} there is ¢ ﬂ>E w where p the Dirac distribution, or

e There is exactly one a € Actly, such that ¢ %E u where p the Dirac
distribution.

A test suite T is a set of test cases. A test case (suite resp.) for an IOSA S,
is a test case (suite resp.) over its action signature, and whenever t sends an
input, this input must be present in S, too, i.e.

Vo € traces™(t) with 0 = o1 taoy and a € Acty: o1 ta € traces™(S).

Even though test cases are formally defined as IOSAs, their structure is
reminiscent of an IOTS. This is due to the fact that test cases do not make use of
clocks, or any non-Dirac distributions on their edges. A test case over an action
alphabet or specification respectively has a reversed interface: specification
inputs are test outputs and vice versa. This is to ensure proper synchronization
with respect to parallel composition. To take into account the history, tests are
formalized as internally deterministic trees.

Remark 7.14. We point out that allowing non-empty guard sets on input
transitions is an appealing approach, as it would allow to model the behaviour
of a tester to wait a certain amount of time before supplying inputs. This
approach, however, poses some difficulties: The correctness of our framework

182 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

fail

pass

err?

® pass .Aggggffﬂigggg% fail
file?© fail fail
fail pass
is: fail fail
err? err?
req! _/////;;;::P abort! .///;;1;;/20
. . o fail
§ o fail P pass
file? file?
pass fail

Figure 7.3: Three test cases i1, s, 3 for the file server specification.

crucially depends on test cases to be internally deterministic. This means that
we use test cases according to [173], as opposed to the more recent, input-enabled
ones [T7])]. The latter allow a test to catch output of the implementation, even
though it decided to give a stimulus itself. Not having this property means that
non-empty guards on test stimuli essentially block output of the implementation.
While this also holds for the predecessors of the SA framework, working with
clocks which may remain expired due to blocking obfuscates the behaviour of
the implementation in undesired ways. We therefore opt to not incorporate
non-empty guard sets on stimuli.

Annotations. To assess whether observed behaviour is functionally correct,
each complete trace of a test is annotated with a verdict: all leaf locations of
test cases are labelled with either pass or fail. We annotate exactly the traces
that are present in the specification with the pass verdict; formally:

Definition 7.15. For a given test t a test annotation is a function
ann : traces®™(t) — {pass, fail} .

A pair t = (t,ann) consisting of a test and a test annotation is called an
annotated test. A set of such t, denoted by T = {(ti, anm)iez} for some index
set I, is called an annotated test suite. Ift is a test case for a specification S
with alphabet (Actr, Acto), we define anns ., : traces®°™(t) — {pass, fail} by

fail if 3o € traces™(S),t € RY,a € Acto :
anns oo = otal CoAptal ¢ traces/™(S)

pass otherwise.

Annotations decide functional correctness only. The correctness of discrete
probability choices and stochastic clocks is assessed in a separate second step.

CHOICE AND CHANCE 183

reset button

time display action display

B

Figure 7.4: Black-box timed trace machine assumed to operate based on an
underlying IOSA. The black-box possesses a reset button, and various input
buttons, alongside an action window showing the most recently executed action,
and a time window showing the relative time since the last observable action.

Example 7.16. Figure[7.3 presents three test cases for the file server specifica-
tion of Figure . Test case t, uses the quiescence observation § to assure no
output is given in the initial state. The test to checks for eventual delivery of
the file, which may be in archive, requiring the intermediate wait! notification,
or may be sent directly. Lastly, t5 tests the abort? transition.

7.2.3 Test Execution and Sampling

We test stochastic systems, hence executing a test case ¢ once is insufficient to
establish sa-ioco conformance. We need many executions for a probabilistic
verdict about the stochastic behaviour in addition to the functional verdict
obtained from the annotation on each execution. As establishing the functional
verdict is the same as in standard ioco testing, cf. Chapter [3] we focus on the
statistical evaluation here.

Sampling. We perform a statistical hypothesis test on the implementation
based on the outcome of a push-button experiment in the sense of [134]. Before
the experiment, we fix the parameters for sample length k£ € N (the length of
the individual test executions), sample size m € N (how many test executions
to observe), and level of significance a € (0,1). The latter is a limit for the
statistical error of first kind. The statistical analysis is performed after collecting
the sample for the chosen parameters, while functional correctness is checked
during the sampling process.

As always, we assume implementations to be black-boxes; all we observe are
(timed) traces as in Definition and all possible inputs are given by the input
alphabet Act; = {ag?,...,a,?} of the specification, plus the ability to reset the
implementation to its initial state. Such a black-box is depicted in Figure [7.4]

Frequencies. Our goal is to determine the deviation of a sample of traces
O = {o01,...,0m } taken from Z compared to the results expected for the
specification S§. If it is too large, O was likely not generated by an IOSA
conforming to S and we reject Z. If the deviation is within bounds depending

184 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

on k, m and «, we have no evidence to suspect an underlying IOSA other than
S and accept Z as a conforming implementation. We compare the frequencies of
traces in O with their probabilities according to S.

Since 7 is a concrete implementation, the scheduler is assumed to be the
same for all executions, resulting in trace distribution D for Z and the expected
probability of abstract trace X is given by EP(X) = Pp(X). We define the
frequency measure

req (0) (5 e €O Vit e 1P|
m

i.e. the fraction of traces in O that are in . Specifically, we require all time
stamps to be contained in the intervals given in 3. Contrary to Chapter [5} this
frequency function does not assume the independence of clock valuations from
locations. This is due to the delay not being memoryless as it was for Markov
automata. Z is rejected on statistical evidence if the distance of the measures
EP and freq(O) exceeds a threshold based on . Like before EP denotes the
probability measure of abstract traces for a given trace distribution.

Acceptable outcomes. We accept a sample O if freq(O) lies within some
radius, say ro, around EP. To minimise the error of false acceptance, we choose
the smallest r, that guarantees that the error of false rejection is not greater
than «, i.e.

ro ¥ inf {r € RY | Pp(freg ' (B,(E?))) > 1~ a}, (7.1)

where By (z) is the closed ball centred at € X with radius y € RT and X a
metric space. The set of all measures defines a metric space together with the
total variation distance of measures
dist (u,v) & sup [u(X) — v(D)].
o €(RT x Act)<k
Definition 7.17. For k, m € N and an IOSA T, the acceptable outcomes under

a trace distribution D € trd(Z, k) of level of significance « € (0,1) are given by
the set

Obs(D, a,k,m) = { O € (R x A)SF™ | dist (freq(O),D) < 74 }.
The set of acceptable outcomes of T with o € (0,1) is then given by

Obs(Z,a, k,m) = U Obs(D, a, k,m).
Detrd(T k)

These sets limit the statistical error of first and second kind as follows: if
a sample was generated under a trace distribution of Z or a trace distribution
equivalent IOSA, we accept it with probability higher than 1 — a; and for all
samples generated under a trace distribution by non-equivalent IOSA, the chance
of erroneously accepting it is smaller than some (,,, where (3, is unknown but
minimal by construction, cf. Equation . Note that 3, — 0 as m — oo, i.e.
the error of accepting an erroneous sample decreases as sample size increases.

CHOICE AND CHANCE 185

Remark 7.18. The set of acceptable outcomes comprises samples of the form
O € [RF Act]SF*™ . In order to align observations with the sa-ioco relation, we
define the set of acceptable output outcomes like follows

OutObs(D, o, k,m) = {O € ([Rf Act]=F* 'R Acto)™ | dist (freq(O),EP) < 1o} .

Test annotations together with the set of acceptable outcomes let us define
mathematical functions, telling us precisely when an implementation under test
passes a test case or test suite respectively.

Definition 7.19. Given an IOSA S, an annotated test case t, k and m € N,
and a level of significance o € (0, 1), we define the functional verdict as given by
Vfune : TOSA x IOSA — { pass, fail } where
Opune (L,) = paiss, ifVo E. traces®™(Z || t): annS,,, (o) = pass,

fail, otherwise,

and the statistical verdict as given by vprop : IOSA x IOSA — { pass, fail } where

pass, if VD € trd(Z||t) 3D’ € trd(S, k) :
Vprob (Z, 1) = Pp (OutObs(D, o, k,m)) > 1 — «
fail, otherwise,

and lastly the overall verdict V (Z,t) = pass iff Vjune(Z,t) = vprobn(Z, 1) = pass. T
passes an annotated test suite T', if V(Z,t) = pass for all annotated tests t € T.

7.2.4 Correctness of the Framework

Ideally, only sa-ioco correct implementations pass a test suite. However, due
to the stochastic nature of IOSA, there remains a degree of uncertainty upon
giving verdicts. This is phrased as errors of first and second kind in hypothesis
testing: the probability to reject a true hypothesis, and to accept a false one,
respectively. They are reflected as the probability to reject a correct implemen-
tation, or to accept an erroneous one, in the context of probabilistic MBT. The
relevance of these errors becomes evident when we consider the correctness of
our test framework. Correctness comprises soundness and completeness: every
conforming implementation passes, and there is a test case to expose every non-
conforming one. A test suite can only be considered correct with a guaranteed
(high) probability 1 — o (as inherent from Definition [7.19).

Definition 7.20. Let S be an IOSA over the action signature (Acty, Acto),
a € (0,1) be level of significance, and T an annotated test suite for S. Then

e T is sound for S with respect to T3¢ for every a € (0,1), iff for every

=10co

input enabled IOSA T and every t € T we have that

T, S = V(I,t) = pass.

=10co

186 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

o T is complete for S with respect to C3% for every o € (0,1), iff for every
input-enabled I0SA T there exists £ € T such that for sufficiently large
m €N
Ty, S= V(Z,1) = fai
For given a € (0,1) soundness expresses that there is a 1 — « chance that a
correct system passes an annotated test suite. This relates to false rejection of a
correct hypothesis in statistical hypothesis testing, or the rejection of a correct
implementation, respectively.

Theorem 7.21. FEach annotated test for an IOSA S is sound for every level of
significance o € (0,1) with respect to T3

=1o0co"

Proof sketch. For a test case £ for S and an input enabled IOSA Z we need
to show that Z C$2 S implies V(Z,%) = pass. By the definition of verdicts

(Definition [7.19)) this is done in two steps relating to the functional- and the
probabilistic verdict. The proof is reminiscent of the ones for pIOTS or IOMA.

e Functional correctness requires that all o € traces®™ (Z||{) have the pass
annotation. This is shown by considering a prefix ¢’ of ¢ in the finite
traces of §. The intuition is showing that ¢’ta is a trace in S for all
outputs a present after ¢’ in Z. There is a trace distribution D of S that
assigns ¢’ positive probability. Without loss of generality, we choose a
trace distribution in outcontz(D) that assigns ¢’ ta positive probability.
Together with the Z T8¢, S assumption, this shows that o’ ta gets assigned
positive probability in S under this trace distribution. Hence ¢’ta is in
the finite traces of S. Since this holds for all such prefixes, o consequently

gets assigned the pass annotation. This, in turn, yields vpume(Z, f) = pass.

e Probabilistic correctness requires that all observations of Z || { get assigned
a measure greater or equal to 1 — « for a trace distribution of S, i.e.
they are acceptable outcomes of S. The proof encompasses to choose
D € trd(Z ||, k), and showing that then also D € trd(S). This is sufficient
by merit of the definition of observations (Definition , i.e. we always
have Pp(Obs(D, o, k,m)) > 1 — « for any D. This is done in three steps
1. D might still schedule positive probability to input actions in the k-th
step; we choose a new scheduler that assigns all this probability mass to
halting instead. Note that the measure of OutObs is unaffected by this
change, since it comprises traces ending in outputs only. 2. We show that D
is a trace distribution of ¢rd(Z). This is guaranteed to hold by construction
of test cases (Definition . In particular, they are constructed in such a
way, that Z||# is internally deterministic. A scheduler of Z can thus directly
copy the behaviour of the scheduler for Z|/Z. 3. We apply Z C2% S to
show D € trd(S). Finally, this yields vy.0p(Z,t) = pass.

Since both sub-verdicts were shown to yield pass we conclude that the overall

verdict is pass i.e. all tests are sound with respect to 352, . O

CHOICE AND CHANCE 187

Completeness of a test suite is inherently a theoretical result. Infinite be-
haviour of the implementation, for instance caused by loops, hypothetically
requires a test suite of infinite size. Moreover, there remains the possibility of
accepting an erroneous implementation by chance, i.e. committing a type II
error. However, the latter is bounded from above and decreases with increasing
sample size.

Theorem 7.22. The set of all annotated test cases for an IOSA S is complete
for every level of significance o € (0,1) with respect to T3% for sufficiently large
sample size.

Proof sketch. The proof is similar to the ones for plIOTS and IOMA. We assume
7 to be an input enabled IOSA and 7" to be the test suite containing all annotated
test cases for S. The statement is proven by showing that 7 £ =S implies
V(Z, T) = fail, i.e. there is a test case £ such that either the functional, or the
probabilistic verdict fails. Assuming 7 [Z5%. S implies the existence of a trace
ending in output in Z, such that its probability cannot be matched under any
trace distribution in §. Generally, this can have two causes: 1. the mismatch
arises due to the fact that the trace is simply not present in S, or 2. all such traces
are present in S, and the mismatch arises due to different inherent probability
distributions in Z and S. We show that the first implies vfun.(Z,#) = fail, and

the second implies vyop(Z, t) = fail for some test t € T

e Showing that the functional verdict yields fail is straightforward, and
requires us to show that there is a test case for which the trace not present
in S has the fail annotation. The proof follows directly from the definition
of test cases and test annotations (Definition and Definition [7.15)),
and the fact that T" contains all test cases for S.

e In order to show that the probabilistic verdict yields fail, we need to show
that there is a test case £ and a trace distribution of Z || #, under which
all observations get assigned a measure smaller than 1 — « for all trace
distributions of S for sufficiently large m. It is clear by the definition of
acceptable outcomes (Definition [7.17) that Pp(OutObs(D’, v, k,m)) < By,
for some B,, — 0 as m — oo whenever D # D’. By the assumption Z 2,

S, we know this holds for all D' € outconts(D*) with D* € trd(S, k).

This estimation does not change, if we increase the search space to all

D' € trd(S, k + 1) instead, as the measure of the OutObs set is maximised

for trace distributions of outcont.

It remains to be shown that for a trace distribution D € outcontz(D*),
there is a test case ¢ € T', such that D € trd(Z ||). However, by assumption,
we know that all abstract traces getting assigned positive probability under
D are present in S. Thus, we can choose ¢ as the test containing all those
traces. In particular, all such traces end in output, which means that
the last step of every branch in ¢ requires it to observe the system. By
construction of test cases (Definition T ||t is internally deterministic.
This means a scheduler of 7 ||£ can copy the behaviour of the underlying

188 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

scheduler of D step-by-step. This shows that D € trd(Z||t), for which all
D' € trd(S) assign all of D’s observations a measure smaller than 1 — «
for sufficiently large m. This yields exactly vy (Z,) = fail.

Since the mismatch of probability of an abstract trace has to belong to one of
the two cases, we have thus shown that V(Z,T) = fail. O

7.3 Implementing Stochastic Testing

The previous section laid the theoretical foundations of our IOSA-based testing
framework. Several aspects were specified very abstractly, for which we now
provide practical procedures. There are several ways to generate, annotate and
execute test cases in batch or on-the-fly in the classic ioco setting [I74], e.g.
Chapters [3| and4l These can be directly transferred to our framework, and are
therefore left undiscussed here.

The statistical analysis of gathered sample data in MBT, on the other hand, is
largely unexplored since few frameworks include probabilities or even stochastic
timing. Determining verdicts according to Definition [7.19] requires concrete
procedures to implement the statistical tests described in Subsection with
level of significance a. We now present practical methods to evaluate test cases
in line with this theory. In particular, we discuss how the goodness-of-fit method
that was first applied in Chapter [4 is adjusted in order to cope with real-time.

In Chapter [5] we saw the application of simple interval estimations for Marko-
vian parameters. Since IOSA are not limited to exponential distributions any-
more, we need more powerful ways to infer if a sample was drawn from a
particular distribution. In order to establish a generally applicable framework,
we resort to non-parametric statistical procedures. In particular, we apply the
Kolmogorov-Smirnov test (KS-test), which is capable to infer general probability
distributions. Applying various KS-tests alongside Pearson’s y2-test means we
are simultaneously performing a multitude of statistical hypothesis tests on the
same sample. In order to cope with the inflation of the error of first kind, we
apply « correction. We end the section by giving an algorithmic outline of the
model-based testing procedure for IOSA.

7.3.1 Goodness of Fit

We establish practically applicable methods to decide about the verdicts given in
Definition [7.19] While the functional verdict is solely based on test annotations,
we lack applicable procedures to decide about the probabilistic correctness of an
implementation. In Chapter [5| we used Pearson’s y? test alongside a multitude
of interval estimations. Working with IOSA means distributions are not limited
to the exponential distribution anymore. Since our models neither comprise
only one specific distribution, nor one specific parameter to test for, we resort
to non-parametric goodness of fit tests. Non-parametric statistical procedures
allow to test hypotheses that were designed for ordinal or nominal data [99],
matching our intention of 1. testing the overall distribution of trace frequencies

CHOICE AND CHANCE 189

in a sample O = {01,...,0., }, and 2. validating that the observed delays were
drawn from the specified clocks and distributions. We use Pearson’s x? test for
the first and multiple Kolmogorov-Smirnov tests for the latter.

Like before, our method is based on a theorem known from the literature [40],
relating trace distributions on the one hand, to the set of acceptable outcomes
on the other hand. However, neither set is readily available to us in case of a real
black-box implementation, and only experiments and samples give evidence about
its inner workings. Therefore, we pose a null-hypothesis test based on a gathered
sample of the implementation. Should the sample turn out to be an acceptable
outcome of the specification, too, we accept the hypothesis that all observations
of the implementation under test are also observations of the specification. In
tandem with the theorem by Cheung, Stoelinga & Vaandrager [40], this implies
an embedding on the set of trace distributions. Consequently, the resulting
probabilistic verdict in Definition [7.19]is pass.

Pearson’s x? test. The 2 test compares empirical sample data to its ex-
pectations (Appendix. It allows us to check the hypothesis that observed
data indeed originates from a specified distribution. The cumulative sum of
normalised squared errors is compared to a critical value, and the hypothesis is
rejected if the empiric value exceeds the threshold. We can thus check whether
trace frequencies correspond to a specification under a certain trace distribu-
tion. For a finite trace o = t1 a1tz as ...t ar, we define its timed closure as
7 ¥ Rta;...RTa,. Applying Pearson’s x? in our case results in

T (HelecOna=al|—m EP(@)"

m - EP(5)

X (7.2)

5e{a|ceO}

We need to find a trace distribution D € trd(S, k) that gives a high likelihood
to a sample, such that x? < x2,,;, where x2, depends on o and the degrees
of freedom. The latter is given by the number of different timed closures in O
minus one, as the probability of one item is set, if we know all other. The critical
values can be calculated or found in standard tables (Appendix .

Recall that a trace distribution is based on a scheduler that resolves non-
deterministic choices randomly. This turns into a satisfaction problem of
a probability vector p over a rational function f(p)/g(p), where f and g are
polynomials. Finding a resolution such that x? < x?, ensures that the error
of rejecting a conforming implementation is at most a. This can be done via
SMT solving, or optimisation with feasible constraints for p, and does account
for trace frequencies.

The Kolmogorov-Smirnov test. While Pearson’s x? test assesses the exis-
tence of a scheduler that explains the observed trace frequencies, it does not take
into account the observed delays. For this purpose, we use the non-parametric
Kolmogorov-Smirnov test (KS-test). We give a short introduction, but refer to
Appendix for further reading.

190 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

—

@ ~ Un [0, 2] Trace o ID Trace o

D
5 ~ Usa [0, 5] T [0.26 al 9 [0.29 b
2 | 0.33 al 10 | 0.38 b!
Sampling 3 | 0.55 a! 11| 1.90 bt
RN 4 | 077 al 12 | 2.4 b
5 | .18 al 13 | 2.71 b
{z},a! {y},b! 6 | .41 al 14 | 2.74 b
7 | 1.46 a
8 | 1.97 a

Figure 7.5: Tiny example specification IOSA and sample observation.

The KS-test assesses whether observed data matches a hypothesised con-
tinuous probability measure. We thus restrict the practical application of our
approach to IOSA where the F(c) for all clocks ¢ are continuous distributions.
Let t1,...,t, be the delays observed for a certain edge over multiple traces in
ascending order and F}, be the resulting step function, i.e. the right-continuous
function F,, defined by F, (t) =0 for t < t;, F,,(t) = n;/n for t; <t < t;y1, and
F,(t) =1 for t > ¢, where n; is the number of ¢; that are smaller or equal to ¢;.
Further, let ¢ be a clock with CDF F.. Then the n-th KS statistic is given by

K, ¥ sup |F.(t) — F, (t)|. (7.3)

terRy

If the sample values ty,...,t, are truly drawn from the CDF F_, then K,, — 0
almost surely as n — oo by the Glivenko-Cantelli Theorem [77]. Hence, for given
« and sample size n, we accept the hypothesis that the ¢; were drawn from F iff
K, < K, where K. is a critical value given by the Kolmogorov distribution.
Again, the critical values can be calculated or found in tables (Appendix [A.2)).

Example 7.23. We revisit Example[5.39 first encountered in Chapter[5 There,
the example only contained exponential distributions with parameters Ay and As.
Now, the left-hand side of Figure[7.5 shows a tiny example specification IOSA
with clocks x and y. The expiration times of both are uniformly distributed with
different parameters. In £y there is a non-deterministic choice to either take the
left or the right branch.

The right-hand side depicts a sample from this IOSA. There are two steps
to assess whether the observed data is a truthful sample of the specification with
a confidence of @ = 0.05: 1. find a trace distribution that minimises the x>
statistic, and 2. evaluate two KS tests to assess whether the observed time data
is a truthful sample of UNI[0,2] and UNI[0, 3], respectively.

There are two classes of traces solely based on the action signature: ID 1-8
with a! and ID 9-14 with b!. Let p be the probability that a scheduler assigns to
taking the left branch in £y and 1 — p that it assigns to taking the right branch.
Drawing a sample of size m, we expect p-m times a! and (1 —p)-m times b!.
The empirical x? value is therefore calculated as

s (8—14-p)% (6—14-(1—p))?
YT T) (14-(1—p)

CHOICE AND CHANCE 191

which is minimal for p = 8/14. Since it is smaller than x?2,;, = 3.84, we found a
scheduler that maximises the likelihood of the observed frequencies.

As for the second step, let t; = 0.26,...,tg = 1.97 be the data associated with
clock x and t} = 0.29,...,t; = 2.74 be the data associated with clock y. Since
there is no time that was recorded twice, observe that the step function of the t;
for these values is given as

t <ty
tk§t<tk+1,k=1,...,7
t>1s

Fy(t) =

— ol O

Dg = 0.145 is the maximal distance between the empirical step function of the
t; and UNI1|0,2]. The critical value of the Kolmogorov distribution for n = 8
and o = 0.05 18 Koy = 0.46. The value was taken from a standard table
(Appendiz . With Kg < K¢prit, the empiric value is below the given threshold.
Hence, the inferred measure is sufficiently close to the specification. The KS test
for t; and UNI[0, 3] can be performed analogously.

Note that the overall statistical acceptance of the implementation based on the
sample data at o = 0.05 requires a-correction first, to account for the multiple
statistical hypothesis tests performed on the same sample data.

Our intention is to provide universally applicable statistical tests. The KS-
test is conservative for general distributions, but can be made precise [47]. More
specialised and thus efficient tests exist for specific distributions, e.g. the Lilliefors
test [99] for Gaussian distributions, and parametric tests are generally preferred
due to higher power at equal sample size. The KS-test requires a comparably
large sample size, and e.g. the Anderson-Darling test [99] is an alternative.

Remark 7.24. The connection of two non-parametric tests is made immensely
more difficult in the presence of internal non-determinism in a specification,
cf. Ezxzample with a!=b!. Time values can no longer be unambiguously
addressed to unique distributions, and mo confidence bound for the measured
time data can be given. In this case, the scheduler probability decisions p are
used as parameters for mizture distributions, e.g. F (p) = p-F,+ (1 —p)-F,
in Figure[7.5. The parametrized distribution can then be used in the iterative
expectation-mazimization algorithm [135], and confidence can be given upon
convergence.

However, for the sake of simplicity, we assume that the specification is
internally deterministic, i.e. there are no two paths that result in the same
trace. While this largely decreases the space of potential specifications, we deem
it necessary to compromise in order to come up with feasible practical methods.

Multiple comparisons problem. A level of significance a € (0, 1) limits type
1 error by a. Performing several statistical experiments inflates this probability:
if one experiment is performed at o = 0.05, there is a 5% probability to incorrectly
reject a true hypothesis. Performing 100 experiments, we expect to see a type 1

192 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

error 5 times. If all experiments are independent, the chance is thus 99.4%. This
is the family-wise error rate (FWER). There are two approaches to control the
FWER: single step and sequential adjustments. The most prevalent example
for the first is Bonferroni correction, while a prototype of the latter is Holm’s
method. Both methods aim at limiting the global type I error in the statistical
testing process. We refer to Appendix [A.2] for a more detailed discussion on
possibly applicable methods.

For the remainder of this section, we use the straightforward Bonferroni

correction, i.e.

~ Qglobal
UAlocal = f

where [is the number of hypothesis tests to be performed.

7.3.2 Algorithmic Outline

The overall practical procedure to perform MBT for sa-ioco is then as follows:

1. Generate an annotated test case t of length k for the specification IOSA S.

2. Execute t on the implementation Z m times. If the functional fail verdict
is encountered in any of the m test executions then fail Z for functional
reasons.

3. Calculate the number of hypothesis tests and adjust « to avoid error
propagation.

4. Use SMT solving to find a scheduler such that the y? statistic of the sample
is below the critical value. If no scheduler is found, fail Z for probabilistic
reasons.

5. Group all time stamps assigned to the same clock and perform a KS-test
for each clock. If any of them fails, reject Z for probabilistic reasons.

6. Otherwise, accept Z as conforming to S according to .

Step 5 has the potential to vastly grow in complexity if traces cannot be uniquely
identified in the specification model. Recall Figure and assume a! = b!l: it is
now infeasible to differentiate between time values belonging to the left and the
right branch. To avoid this, we have to avoid this scenario at the time of modelling,
check all combinations of time value assignments, or resort to the iterative
expectation-maximization algorithm [I35] of parametrized distributions.

7.4 Bluetooth Device Discovery Revisited

We revisit the Bluetooth device discovery case study from Chapter [5| with our
new IOSA-based test framework. Bluetooth is a wireless communication protocol
for low-power devices communicating over short distances. Its devices organise
in small networks consisting of one master and up to seven slave devices. In this
initialisation period, Bluetooth uses a frequency hopping scheme to cope with

CHOICE AND CHANCE 193

inferences. To illustrate our framework, we study the initialisation for one master
and one slave device. It is inherently stochastic due to the initially random
unsynchronised states of the devices. We give a high level overview and refer
the reader to [64] for a detailed description and formal analysis of the protocol
in a more general scenario. Alternatively, we refer to Chapter [5| for a slightly
broader introduction.

Device discovery protocol. Master and slave try to connect via 32 prescribed
frequencies. Both have a 28-bit clock that ticks every 312.5 us. The master
broadcasts on two frequencies for two consecutive ticks, followed by a two-tick
listening period on the same frequencies, which are selected according to

freq = [CLK16_12 + off + (CLK4_2,Q — CLK16_12) mod 16] mod 32

where C'LK ;_; marks the bits 7,...,j of the clock and off € N is an offset. The
master switches between two tracks every 2.56s. When the 12th bit of the clock
changes, i.e. every 1.28s, a frequency is swapped between the tracks. We use
off =1 for track 1 and off = 17 for track 2, i.e. the tracks initially comprise
frequencies 1-16 and 17-32. The slave scans the 32 frequencies and is either in
sleeping or listening state. The Bluetooth standard leaves some flexibility with
respect to the length of the former. For our study, the slave listens for 11.25 ms
every 0.64s and sleeps for the remaining time. It picks the next frequency after
1.28 s, enough for the master to repeatedly cycle through 16 frequencies.

outputs .
_ JTorX sampling
—— | Log files
-
inputs Spec.
lanalysis
functional verdict
Verdict: MATLAB
-
pass or fail / stat. verdict

Figure 7.6: Experimental set up entailing the system under test, the MBT tool
JTorX [15] and MATLAB [86G]. Logs are gathered during the conformance test,
and analysed later for a verdict on the implemented probabilities.

Experimental setup. Our tool-chain is depicted in Figure The imple-
mentation is tested on-the-fly via the MBT tool JTorX [I5], which generates tests
with respect to a transition system abstraction of our IOSA specification mod-
elling the protocol described above. JTorX returns the functional fail verdict if
unforeseen output or a time-out (quiescence) is observed at any time throughout

194 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

the test process. We chose a time-out of approximately 5.2s in accordance with
the specification. JTorX’s log files comprise the sample, which were evaluated in
MATLAB [86]. We implemented the protocol and three mutants in Java 7:

M Master mutant My never switches tracks 1 and 2, slowing the coverage of
frequencies: new frequencies are only added in the swap every 1.28s.

M Master mutant My never swaps frequencies, and only switches between
tracks 1 and 2. The expected time to connect will therefore be around
2.56s.

S1 Slave mutant S; has its listening period halved: it is only in a receiving
state for 5.65ms every 0.64s.

We expect an increase in waiting time until connection establishment for M; and
&1, and slightly lower times for Mo when compared to the correct implementation.
We anticipate that the increase leads to functional fail verdicts due to time-outs
or to probabilistic fail verdicts based on differing connection time distributions
compared to the specification. We collected m = 100, m = 1000 and m =
10000 test executions for each implementation, and used o = 0.05. We used
MATLABs [86] kstest2 to execute a two sample Kolmogorov-Smirnov test to
analyse the samples with respect to the correct time distribution.

@,con? {x} {z}, ackl,@

Figure 7.7: Specification of the parallel composition of mutant and slave device.
The clock z is distributed according to the CDF F.

An TOSA specification is presented in Figure[7.7] The clock z is distributed
according to the CDF F,. Note that F, can be specified as the exponential
distribution with parameter A = 0.755 used in Chapter |5} or the exact time
distribution given in the Bluetooth specification [I6I]. This illustrates the
modelling power exhibited by IOSA, and shows that the framework of Chapter
is subsumed by the one presented here. For the sake of this section, we used the
precise time distribution, i.e. the distribution resulting in 32 steps in the step
function CDF with respect to the initial locations of both slave and master.

Results. Table [7.1] shows the verdicts and the observed KS statistics K,
alongside the corresponding critical values K..; for our experiments. The
statistical verdict Accept was given if K,,, < K., and Reject otherwise. Note
that the critical values depend on the level of significance o and the sample size
m. The correct implementation was accepted in all three experiments. During
the sampling of M1 || S, we observed several time-outs leading to a functional fail
verdict. It would also have failed the KS test in all three experiments. M5 ||S
passed the test for m = 100, but was rejected with increased sample size. M || Sy

CHOICE AND CHANCE 195
correct mutants
MS MiS M][S M[S:

k=2 Accept Reject Accept Accept

m = 100 K, = 0.065 K,, =0.110 Ky, = 0.065
Kerig = 0.136 o Kerig = 0.136 K = 0.136

Timeouts 0 40 0 0

k=2 Accept Reject Reject Accept

m = 1000 K,, = 0.028 K,, =0.05 K,, = 0.020
Kerip = 0.045 Kerie = 0.045 Kt = 0.045

Timeouts 0 399 0 0

k=2 Accept Reject Reject Reject

m = 10000 K, = 0.006 K,, =0.043 K, = 0.0193
Kerig = 0.019 o Kerig = 0.019 Kerig = 0.0192

Timeouts 0 3726 0 0

Table 7.1: Verdicts and Kolmogorov-Smirnov test results for Bluetooth initiali-
sation. An implementation under test passed the KS-test if K,, < K.

is the most subtle of the three mutants and was only rejected with m = 10000
at a narrow margin.

We point out that no x2? test was necessary due to the structure of the
specification. Only one KS-test was required, and consequently no « correction
was performed, as only one statistical hypothesis test was necessary. Lastly, the
critical values were taken from a standard KS-test table (Appendix .

Discussion. Observe that the critical value decreases faster than the observed
KS statistic in all three faulty implementations. We conjecture that an even larger
sample is expected to have a clearer verdict, as this is in line with the decrement
of the type 2 error for increasing sample size pointed out in Section [7.2] This
is especially desirable in the case of M || Sy, where a sample of size m = 10000
was needed to refute the mutant. It is therefore not entirely unrealistic that
gathering another sample of the same size would yield a statistical pass verdict.

The Bluetooth discovery protocol highlights the advantage of non-parametric
hypothesis tests, such as the KS-test. The time distribution to establish a
connection does not follow a specific parameter €, and is generally a non-standard
distribution unlike e.g. the Gaussian-, exponential-, or uniform distribution.
Hence, parametric hypothesis tests are generally not applicable here.

We point out that an alternate specification to the one given in Figure [7.7]
is possible. For instance, the entire specification could comprise a probabilistic
branching distribution over 32 distinct locations with deterministic guard sets
according to the step values of the distribution of the Bluetooth specification.
This illustrates the flexibility of the modelling capabilities in the IOSA test
framework, and goes to show there is no unique best model. Its effectiveness
highly depends on the metrics of interest, e.g. is the focus on functional,
probabilistic, or stochastically timed behaviour — all three are always covered,
but a posteriori analysis might differ in complexity.

196 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

7.5 Conclusions

We presented an MBT setup based on stochastic automata that combines non-
deterministic- and probabilistic choices, as well as continuous stochastic time.
The framework marks the pinnacle of this thesis, as far as modelling complexity
and power are concerned. Like in previous chapters, we use schedulers and the
resulting trace distributions to resolve non-determinism. This yields a purely
probabilistic system, and conformance is defined in the sa-ioco relation akin
to the original ioco framework of Tretmans [I74]. Test cases were defined as
IOTSs (degenerate IOSAs), and annotated to check functional correctness. The
statistical verdict requires a sampling process as in earlier chapters.

We instantiated the theoretical framework with a concrete procedure using
two statistical tests: Pearson’s x? to check trace frequencies, and the Kolmogorov-
Smirnov test to test clock distributions. The latter is a non-parametric test,
allowing to test for arbitrary probability distributions, as opposed to mere
confidence interval checks for mean values as seen in Chapter 5] We had to
assume some limitations, like internally deterministic models, to end up with a
practically feasible algorithm. Lastly, we explored the frameworks’ applicability
by revisiting the Bluetooth device discovery protocol. All ingredients of the
sa-ioco framework are summarized in Table

Physical Ingredients: Formal Ingredients:
e Informal requirements e Model: Definition [7.1} IOSA
o Black-box implementation e Conformance: Definition [7.11
e Observations: Definition [7.17} Eloco
Obs(T||t,a, k,m) e Test verdicts: Definition [Z.19]
Tooling: Objectives:
e MBT tool: JTorX [15] e Soundness: Theorem [7.21]
e Test adapter: Implementable e Completeness: Theorem [7.22]
e Test generation method: Ran-
dom testing

Assumptions:

e Every physical implementation has a corresponding IOSA
model

e Specification is internally deterministic

Table 7.2: The MBT ingredients instantiated by the sa-ioco framework.

CHOICE AND CHANCE 197

7.6 Proofs

Below we present the proofs for the theorems in this chapter. Reoccurring
theorems are numbered according to their occurrence in the chapter.

Theorem Let T and S be two IOTS with T input enabled, then

7z Efgco S=1 Eioco S.
Proof. Observe that an IOSA Z = (Loc,C, Act, E, F, {y) is an IOTS according
to Definition if C =@, E = Loc x Act x Loc and F' = &. Since there are no
clocks in IOTSs, there are naturally no guard sets on transitions. Consequently,
the definition of schedulers of IOSA (Definition coincides with the definition
of schedulers for pIOTSs (Definition , where every probability distribution
is the Dirac distribution. Hence, both definitions of schedulers induce the
same trace distributions on IOTS. The proof is then an immediate result of
Theorem 16| O

Theorem Each annotated test for an IOSA S is sound for every level of
significance o € (0, 1) with respect to C5¢

=1oco"

Proof. Let Z be an input enabled IOSA and £ be a test for S. Further assume
that Z £$% S. Then we want to show V(Z,%) = pass, i.e. we want to show

=1ioco
that a sa-ioco correct implementation passes an annotated test case. By the
definition of verdicts (Definition [7.19) we have V(Z,t) = pass if and only if

Vfune(Z, t) = Vprob (L, t) = pass.

We proceed by showing that v (Z, t) = pass, and v, (Z,1) = pass in two
separate steps:

1. In order for vpum.(Z, t) = pass, we need to show that
anns .. (0) = pass for all o € traces®™(T||1),

according to the definition of verdicts (Definition . Therefore, let
o € traces®™(Z ||t). We need to show ann? ;. (o) = pass by the definition
of annotations (Definition . Assume o’ € traces™(S) and a! € Acto
such that ¢’ ta! C o for some t € R0+.

We observe two things:
e Since ¢ € tmcesﬁ"(S), i.e. the empty trace is a trace and is in
traces™(S), o’ always exists.

e If no such a! € Actp exists, then o only consists of inputs. By
definition of annotations consequently anns ;.. (0) = pass.

198

CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

By construction of o we have o’ ta! € traces™™ (T ||#) and therefore also
o'ta! € traces™(T). Note in particular that the parallel composition with
a test case does not alter the guard sets on transitions. We conclude,
o’ € traces™(T) N traces/™(S). Our goal is to show o’ ta! € traces™(S).

Let | = |o'| be the length of ¢’/. Without loss of generality, we can now
choose D € trd(S,1), such that Pp(X') > 0. In particular, we point out
that this choice is not invalidated by urgent transitions. If a transition
has a guard set, whose clock can never expire in a location due to another
urgent output, then this transition is never part of a path (Definition .
Together with the previous observation, this yields outcontz(D) # @.
Again, without loss of generality, we choose D’ € outcontz (D), such that
PD’ (Z/ [0, f] a') > 0.

Lastly, we assumed Z T35, S, hence outcontz(D) C outconts(D). We
conclude D’ € trd(S,1 + 1), and Pp/(X'[0,ta!) > 0. By definition of
trace distributions (Definition , this implies that o’ ta! € traces™(S).
If additionally o’ ta! € traces®™ (T ||), then ¢ = ¢’ ta. Consequently
anns ;... (0) = pass by definition of annotations (Definition . This

ultimately yields vfunc(Z,t) = pass.
In order for vy, (Z,) = pass we need to show that
VD € trd(Z||t, k) ID' € trd(S,k) : Ppr (OutObs (D, k,m)) > 1 — a,

according to the definition of verdicts (Definition [7.19)). Therefore, let
D € trd(Z||, k). By definition of output-observations (Remark [7.18]), we
have

OutObs(D,a,k,m) = {0 € (R Act]SFIRT Acto)™ |
dist (freq(0),EP) <1y}

There exists D' € trd(Z | t, k) with

0 if o € [RY Act]*"1R{ Act;

7.4
Pp(X) if o € R Act]<SF—IR{ Acto. (7.4)

Pp/(3¥) = {

To see why, consider the scheduler that assigns all probability to halting
instead of inputs for traces of length k, while assigning the same probability
to outputs as the scheduler of D. By construction of the set OutObs
(Remark [7.18)), observe that

Pp/(OutObs(D', a, k,m)) Pp/ (OutObs(D, o, k,m))
Pp(OutObs(D, o, k, m))

> 1—«

since only traces ending in output are measured.

CHOICE AND CHANCE 199

It is now sufficient to show that D’ € trd(S, k). However, as an intermediate
step, we first show that D’ € trd(Z, k), as this will let us make use of the

assumption Z &35 S.

Consider the mapping f from the finite paths of Z || to the finite paths of
T, ie. f:paths™(Z|t) — paths™(I), where for every fragment of the
path we have

f(.. <(£, q),U07$0><t1,617R1, |(€/,q/)71}1,$1>> ..)
= ...<€,170,.f0><{1,él,lel,T}l,fl»...

This is possible, because test cases do not contain clocks and parallel
composition thus does not change guard sets, reset sets, or expiration times
(Definition . In particular this implies v; = 9;, z; = Z; for ¢ = 0,1,
t; =t and Ry = R;. For &; consider g: Eznf — E7 such that

g(e) = 9(C,a,u(R, (¢,9))) = (C,a, i(R, 1)) = &,

where (R, (¢,q)) = (R, ¢) for all £. This construction of y is possible, be-
cause tests only contain Dirac distributions, and discrete probabilities thus
directly transfer. Hence, ¢ is uniquely determined by parallel composition
(Definition . Since £ is internally deterministic, it is easy to see that f
is an injective mapping, i.e. f(m) = f(m) = 7 = ma.
By definition of trace distributions (Definition [7.10) there is a scheduler,
say A’ € Sched(Z | t, k), such that trd(A") = D’. With the help of f we
show the existence of a scheduler A” € Sched(Z), such that for all traces
o we have Pt?"d(A/)(E) = Ptr‘d(A”)(E)a i.e. t?"d(AH) =D
For every path 7 € paths™ () with f~'(x) € paths™ (Z||), we define A"
as

A(m)(e) & A (f7H(m)(e)
Note that Py (II) = 0 if 7 ¢ paths”™ (T ||#).
The construction of A" is straightforward: Due to the construction of test
cases, 7 ||t is internally deterministic. In particular, there is no interleaving.
This means that A" can copy the behaviour of A’ step by step. We set

D" = trd(A”) and conclude D" € trd(Z, k). By construction it is easy to
check that Pp»(¥) = Pp/(X) for all traces o. Further, we have

Ppi(OutObs(D”, o, k,m)) = Ppu(OutObs(D’, o, k,m))
Ppi (OutObs(D, o, k, m))
Pp/ (OutObs(D, a, k,m))
Pp(OutObs(D, a, k,m))
> 1—«

We proceed to show that D" € trd(S, k).

200 CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

The proof is by induction over trace distribution length of prefixes of D"
up to k. Trivially, if D" € trd(Z,0), then also D" € trd(S,0). Assume this
has been shown for length n. We proceed by showing that the statement
holds for n +1 < k.

Let D" € trd(Z,n + 1) and take D" C,, D”. By induction assumption
D" € trd(S,n). Together with the assumption Z C3% S, we have

=1ioco
outcontz(D"") C outconts (D).

Since D" € outcontz (D) (Equation (7.4))) we have D" € outconts(D"),
and consequently D" € trd(S,n + 1).

We showed D" € trd(S, k) and conclude
Ppi (OutObs(D, a, k,m)) > 1 — a.

Ultimately, this yields vp.05(Z,%) = pass by the definition of verdicts

(Definition [7.19)).

Both parts together give V(Z,%) = pass. This means that each annotated test
for S is sound with respect to C%% for every a € (0,1). O

=1%0co

Theorem The set of all annotated test cases for an IOSA S is complete
for every level of significance o € (0,1) with respect to T3% for sufficiently large
sample size.

Proof. In order to show the completeness of test suite 7' consisting of all anno-
tated tests for S, assume that Z (32 S. Our goal is to show that V(Z,T) = fail.

By the definition of verdicts (Definition [7.19) this is the case iff vjyne(Z,t) = fail
or Uprop (I, 1) = fail for some € T
Since Z [£$2 S, there is k € N, such that there is D* € trd(S, k), for which

outcontz(D*)Zoutconts (D).
More specifically
3D € outcontz(D*)VD' € outconts(D*)Io € €: Pp(X) # Pp/(X), (7.5)

where € & traces™(Z) N [R{ Act]*R{ Acto, and ¥ is the corresponding abstract
trace of 0. Without loss of generality, we can assume k to be minimal. There
are two cases to consider:

1. Jo € €0 ¢ traces™(S), or
2. Vo € €: 0 € traces™(S),

We will relate the two cases to the functional and the probabilistic verdict
(Definition , respectively. We prove that item 1. implies vpyunc(Z, T) = fail,
and item 2. implies vpop(Z,T) = fail. Therefore, let D € outcontz(D*) such
that Equation holds for all D’ € outconts(D*).

CHOICE AND CHANCE 201

1. In order for vpync(Z,t) = fail, we need to show

Jo € traces™ (T ||t) : annS ;.. (o) = fail

saioco

for some £ € T, according to the definition of verdicts (Definition [7.19).
Assume there is o € €, such that o ¢ traces™(S). Our goal is to show
that there is ¢ € T for which o € traces®™(Z||t), and anng,,., () = fail.

Without loss of generality we can assume Pp(X) > 0. To see why, assume
Pp(X) = 0. Then we can find a trace distribution in outconts(D*) with
an underlying scheduler Sched(S) that does not assign probability to the
last action in o to obtain probability 0. This violates the assumption that
Pp(X) # Pp/(X) for all D’ € trd(S). We conclude o = ¢’ ta, for some
o' € R{ Act]*, a € Acto and t € R{.

The prefix o’ is in traces™™(S), because it is of length k, and since D* €
trd(S, k). Since D and all D’ € outconts(D*) are continuations of D*, we
conclude Pp«(YX') = Pp(¥') = Pp/(Y'), i.e. all trace distributions of the
respective sets assign every prefix of o the same probability by merit of
outcont. We conclude o’ € traces™(S), but o’ ta ¢ traces™(S).

By initial assumption T contains all annotated test cases. Hence, let £ € T
such that o € traces®™(t). This is possible because o’ € traces"(S). By
the definition of annotations (Definition [7.15) we have ann<,; ., (o) = fail.

Recall that the set of clocks in test cases in empty. Since o € traces™(T)
and o € traces®™(t), we consequently also have o € traces™(Z ||), as
no guard sets or reset sets are changed under parallel composition with a
test case. Ultimately, this yields vpyn.(Z,t) = fail.

2. In order for vy, (Z,) = fail, we need to show
3D € trd(Z||t,1)V D' € trd(S,1) : Pp/(OutObs(D,a,1,m)) < 1 — a,

for some £ € T and some [€ N, according to the definition of verdicts
(Definition [7.19)).

Together with Equation (7.5)) and the definition of acceptable outcomes
(Definition [7.17)), we conclude

VD' € outconts(D*) : Pp/(OutObs(D,a, k + 1,m)) < B, (7.6)
for some 3, — 0 as m — oco. Observe that

SUDp etra(s k1) Lo (OutObs(D, o, k + 1,m))
= SUPprcoutconts(p+) P (OutObs(D, a, k + 1,m)), (7.7)
by definition of OutObs (Remark [7.18]). OutObs only comprises traces
ending in output, thus its measure under any trace distribution of trd (S, k+

1) cannot be larger than the ones already contained in outconts(D*).
Together with Equation (7.6 this yields

VD' € trd(S,k + 1) : Pp/(OutObs(D, a, k +1,m)) < B (7.8)

202

CHAPTER 7. MBT WITH STOCHASTIC AUTOMATA

for some 3, — 0 as m — oo. . We are left to show that D € trd(Z || £, k+1)
for some £ € T. Let & = {0 € traces™(I) | Pp(X) > 0}, i.e. all traces
getting assigned positive probability under D. Obviously € C K. By initial
assumption we know that all o € € are contained in traces/™(S). Hence
all ¢ € 8 are necessarily in traces™(S). That means, there is a test case £
for S, such that all o € & are in traces®™(t). In particular, observe that
all o end in output by assumption. Hence, the last stage of every test case
is the second bullet in the definition of test cases (Definition [7.13). We
now construct a scheduler A’ € Sched(T||t,k + 1) such that trd(A’) = D.

Consider the mapping f : tr~'(8) — paths™(Z||t), where for every path
fragment

f(o (lvo, o) (tr, €1, R (€, v1,21)) .. .)
= "'<(€7q)a®03j0><{176131%17<(€/7q/)7ﬁlajl>>"'
By definition of test cases (Definition [7.13)) observe that v; = v;, x; = T;

for i = 0,1, t; = t;, Ry = Ry, because the clock set of test cases is empty.
Further, we define g : Ez — Ez);, such that

g(e) = g(C,a, u(R,0)) = (C,a, i(R, L, q) =&,

where u(R, (¢, k)) = (R, ¢) for all £. The location ¢ is uniquely determined,
because tests are internally deterministic and every distribution is the
Dirac distribution. Thus, discrete probabilities carry over from p to f. In
particular ¢ = ¢’ if a = 7. It is then easy to see that f is an injection.

We proceed to construct A’. Let A € trd(Z) be the underlying scheduler
that induces D by definition of trace distributions (Definition [7.10)). For
every 7 € tr—1(R) we define

A'(m)(e) ¥ A(f () (e)-
The construction of A’ is straightforward: Since £ is internally deterministic,
and every of its discrete distributions is the Dirac distribution, there is no
interleaving in Z || £. Hence, a scheduler of Z || # may copy the decisions
of A step-by-step. Note in particular that Pyq4)(2X) =0 for o ¢ 8. We
conclude trd(A’) = D and therefore D € trd(Z ||,k + 1).

Together with Equation (|7.7), we have found a scheduler A" such that
trd(A') € trd(Z ||,k + 1), and for all D’ € trd(S, k + 1) we have

Pp/ (OutObs(trd(A'), a,k +1,m)) < Bp,. (7.9)
Now iff « < 1 — 8,,,, we estimate (7.9)) further to
Pp/ (OutObs(trd(A'),a,k +1,m)) < B <1 —a.

However, the inequality a < 1 — f3,,, always holds for sufficiently large
m, since f,, — 0 as m — oo by the definition of acceptable outcomes
(Definition [7.17). Ultimately, this yields vy.05(Z,t) = fail.

Together, the two cases yield Z Z32 S implies V(Z,T) = fail. O

10co

CHAPTER 8

Scheduler Hierarchy for Stochastic Automata

Stochastic automata are a formal compositional model for concurrent stochastic
timed systems, with general distributions and non-deterministic choices. In
this chapter we investigate the power of various theoretically and practically
motivated classes of schedulers, considering the classic complete-information
view [30] and a restriction to non-prophetic schedulers [91].

The need to analyse continuous-time stochastic models arises in many prac-
tical contexts, including critical infrastructures [8], railway engineering [I53],
space mission planning [17], and security [94]. Non-determinism arises through
inherent concurrency of independent processes [33], but may also be deliberate
underspecification. Modelling such uncertainty with probability is convenient
for simulation, but not always adequate [7, [I17]. Various models and formalisms
have thus been proposed to extend continuous-time stochastic processes with
non-determinism [22], B1], [67, 89, O3, [167]. It is then possible to verify such
systems by considering the extremal probabilities of a property. These are the
supremum and infimum of the probabilities of the property in the purely stochas-
tic systems induced by classes of schedulers that resolve all non-determinism.
If the non-determinism is considered controllable, one may alternatively be
interested in the planning problem of synthesising a scheduler that satisfies
certain probability bounds.

Unlike in the previous chapter, we consider closed stochastic automata
(SA) [50]. Numerical verification algorithms exist for very limited subclasses
of SA only: Buchholz et al. [35] restrict to phase-type or matrix-exponential
distributions, such that non-determinism cannot arise (as each edge is guarded
by a single clock). Bryans et al. [34] propose two algorithms that require an
a priori fixed scheduler, continuous bounded distributions, and that all active
clocks be reset when a location is entered. The latter forces regeneration on
every edge, making it impossible to use clocks as memory between locations.
Regeneration is central to the work of Paolieri et al. [II], however they again
exclude non-determinism. The only approach that handles non-determinism
is the region-based approximation scheme of Kwiatkowska et al. [119] for a
model closely related to SA, but restricted to bounded continuous distributions.

203

204 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

M;: x: UNi(0,1)

4} y: Un1(0, 1)
My: 2: Uni(0, 1) g({m,y})

@ y: UN1(0, 1)
1%
R({z,y})

(a) SA Mo

Figure 8.1: Illustration for maximal and minimal unbounded reachability prob-
abilities for schedulers. A scheduler of M, that has the information of the
expiration times of clocks = and y in #; can make a choice that ensures to reach
location v'with probability 1: go to ¢y if o expires first, and go to ¢o if y expires
first. On the same note, a history dependent scheduler of M; with access to the
information whether the left or right branch was taken in ¢, i.e. which clock
already expired, reaches v'with probability 1. In this chapter, we investigate
which information is relevant and separates scheduler classes

Without that restriction [88], error bounds and convergence guarantees are lost.
Evidently, the combination of non-determinism and continuous probability
distributions is a challenging one. In this chapter, we take on the underlying
problem from a fundamental perspective: we investigate the power of different
classes of schedulers for SA as illustrated in Figure [8:I] and prove a hierarchy
of scheduler classes with respect to unbounded probabilistic reachability. Our
motivation is, on the one hand, that a clear understanding of scheduler classes
is crucial to design verification algorithms. For example, Markov decision
process (MDP) model checking works well because memoryless schedulers suffice
for reachability, and the efficient time-bounded analysis of continuous-time
MDP (CTMDP) exploits a relationship between two scheduler classes that
are sufficiently simple, but on their own do not realise the desired extremal
probabilities [36]. On the other hand, practitioners in planning problems desire
simple solutions, i.e. schedulers that need little information and limited memory,
to be explainable and suitable for implementation on e.g. resource-constrained
embedded systems. Understanding the capabilities of scheduler classes helps
decide the trade-off between simplicity and the ability to get optimal results.
We use two perspectives on schedulers from the literature: the classic com-
plete-information residual lifetimes semantics [30], where optimality is defined via
history-dependent schedulers that see the entire current state, and non-prophetic
schedulers [91] that cannot observe the timing of future events. Within each
perspective, we define classes of schedulers whose views of the state and history
are variously restricted. We prove their relative ordering with respect to achieving

CHOICE AND CHANCE 205

optimal reachability probabilities. We find that SA distinguish most classes. In
particular, memoryless schedulers suffice in the complete-information setting
(as is implicit in the method of Kwiatkowska et al. [119]), but turn out to be
suboptimal in the more realistic non-prophetic case. Considering only the relative
order of clock expiration times, as suggested by the first algorithm of Bryans
et al. [34], surprisingly leads to partly suboptimal, partly incomparable classes.
Our distinguishing SA are small and employ a common non-deterministic gadget.
They precisely pinpoint the crucial differences and how schedulers interact with
the various features of SA, providing deep insights into the formalism itself.
Our study furthermore forms the basis for the application of lightweight
scheduler sampling (LSS) to SA. LSS is a technique to use Monte Carlo simula-
tion/statistical model checking with non-deterministic models. On every LSS
simulation step, a pseudo-random number generator (PRNG) is re-seeded with
a hash of the identifier of the current scheduler and the (restricted) information
about the current state (and previous states, for history-dependent schedulers)
that the scheduler’s class may observe. The PRNG’s first iteration then deter-
mines the scheduler’s action deterministically. LSS has been successfully applied
to MDP [52] 125, [126] and probabilistic timed automata [49] 02]. Using only
constant memory, LSS samples uniformly from a selected scheduler class to find
“near-optimal” schedulers that conservatively approximate the true extremal
probabilities. Its principal advantage is that it is largely indifferent to the size of
the state space and of the scheduler space — finding near-optimal schedulers for
huge state spaces may be very fast, while finding them in smaller ones may take
sufficiently more time. In general, sampling efficiency depends only on the likeli-
hood of selecting near-optimal schedulers. However, the mass of near-optimal
schedulers in a scheduler class that also includes the optimal scheduler may be
less than the mass in a class that does not include it. Given that the mass of
optimal schedulers may be vanishingly small, it may be advantageous to sample
from a class of less powerful schedulers to achieve better results on average.
We summarize the main contributions of this chapter

e a hierarchy of scheduler classes of closed SA with respect to unbounded
probabilistic reachability,

e a distinction of classic- and non-prophetic schedulers therein, and

e experiments on lightweight scheduler sampling to explore the trade-off
between powerful and efficient scheduler classes, and confirmation for our
theoretical results.

While the work within this chapter is not related to model-based testing
per se, we encountered schedulers in previous chapters. Even though we only
considered history dependent randomised schedulers, the restriction to more
refined scheduler classes is widely acknowledged to be of major importance [I8},[66].
We deem a hierarchical classification of schedulers imperative for future research
related to the topic of this thesis, especially when considering stochastic automata
as extension to all modelling formalisms contained therein.

206 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

Related work. Brazdil et al. [33] show that non-determinism (“unstable
behaviour”) is introduced even in generalised semi-Markov processes (GSMP) as
soon as there is more than one fixed-delay event, highlighting the importance
of properly treating non-determinism in any analysis approach. Alur et al.
first mention non-deterministic stochastic systems similar to SA in [5]. Markov
automata (MA [67]), interactive Markov chains (IMC [03]) and CTMDP are
special cases of SA restricted to exponential distributions. Song et al. [162]
look into partial information distributed schedulers for MA, combining earlier
works of De Alfaro [54], and Giro and D’Argenio [79] for MDP. Their focus
is on information flow and hiding in parallel specifications. Wolf et al. [196]
investigate the power of classic (time-abstract, deterministic and memoryless)
scheduler classes for IMC. They establish (non-strict) subset relationships for
almost all classes with respect to trace distribution equivalence — a very strong
measure. Wolovick and Johr [I98] show that the class of measurable schedulers
for CTMDP is complete and sufficient for reachability problems.

Origins of the chapter. This work is the result of a collaboration with Pedro
D’Argenio, Arnd Hartmanns, and Sean Sedwards that appeared in

e Pedro R. D’Argenio, Marcus Gerhold, Arnd Hartmanns, and Sean Sedwards.
A hierarchy of scheduler classes for stochastic automata. In Proceedings of
the 21st International Conference on Foundations of Software Science and
Computation Structures, FOSSACS, pages 384—402, 2018.

Organisation of the chapter. Section lays the foundations in defining
closed stochastic automata, and their underlying semantics in timed probabilistic
transition systems. We define various scheduler classes motivated by the literature
in Section [8:2] These include classical notions of schedulers, as well as non-
prophetic ones. Consequently, a hierarchy among the classes is established for
both notions of schedulers in Section[R:3l We validate the theoretical observations
by using lightweight scheduler sampling in Section Section concludes
with a small discussion, and final remarks.

8.1 Preliminaries

We define stochastic automata according to [50]. As opposed to the previous
chapter, we now treat SA as closed systems. In particular, there are no delayable
actions, and all actions are urgent, i.e. as soon as any edge becomes enabled,
some edge has to be taken. Moreover, in contrast to Chapter [7] we give the
semantics of an SA via their underlying timed probabilistic transition systems
(TPTS). This allows us to store the valuation, as well as expiration times of
clocks in every location explicitly as states of the TPTS. Lastly, rather than
defining schedulers for SA directly, we define them for their underlying TPTSs
based on runs/paths.

CHOICE AND CHANCE 207

8.1.1 Closed Stochastic Automata

The authors of [50] extend labelled transition systems with stochastic clocks:
real-valued variables that increase synchronously with rate 1 over time and expire
some random amount of time after having been restarted. As opposed to the
previous chapter, we define closed stochastic automata.

Definition 8.1. A stochastic automaton (SA) is a tuple (Loc,C, Act, E, F, {y),
where

e Loc is a countable set of locations, with ¢y € Loc as the initial location,
e C is a finite set of clocks,

e Act is the finite action alphabet, and

e E: Loc — P(P(C) x Act x P(C) x Dist(Loc)) is the edge function, which

maps each location to a finite set of edges that in turn consist of a guard
set of clocks, a label, a restart set of clocks and a discrete distribution over
target locations, and

e [: C — Meas(R{) is the delay measure function that maps each clock to
a probability measure.

We write ¢ S28 11y for (G a, R, 1) € E(¢). Without loss of generality, we

restrict to SA where edges are fully characterised by source and action label,
i.e. whenever /¢ Mﬁ; w1 and /¢ ME W2, then G; = G5, Ry = Ry and
@1 = po. This is a technical restriction to improve the presentation. In all
examples we thus assume each edge of a location to have a unique label.

Intuitively, an SA starts in £y with all clocks expired. An edge ¢ Gk, 1
may be taken only if all clocks in G are expired. If any edge is enabled, some
edge must be taken (i.e. all actions are urgent and thus the SA is closed). When
an edge is taken, its action is a, all clocks in R are restarted, other expired
clocks remain expired, and we move to successor location ¢ with probability
w(¢). There, another edge may be taken immediately or we may need to wait
until some further clocks expire etc. When a clock c¢ is restarted, the time until
it expires is chosen randomly according to the probability measure F'(c). We
point out that F' is defined independently from the current location, i.e. clock
probability measures are global. Formally, a clock counts up and expires as soon
as it hits its expiration time.

Example 8.2. We show an ezample SA, My, in Figure[8.2d Its initial location
is Lo. It has two clocks, x and y, with F(x) and F(y) both being the continuous
uniform distribution over the interval [0,1]. No time can pass in locations £y
and £y, since they have outgoing edges with empty guard sets. We omit action
labels and assume every edge to have a unique label. On entering {1, both clocks
are restarted. The choice of going to either £s or f3 from €1 is non-deterministic,
since the two edges are always enabled at the same time. In {5, we have to wait
until the first of the two clocks expires. If that is x, we have to move to location
v ;if it is y, we have to move to X. The probability that both expire at the exact

208 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

[Mo]: —s (Lo, (0,0), (0, 0))

Mo: z: Uni1(0, 1) N\II (0,1)?
@ y: UN1(0, 1)

(€1,(0,0),(0,0)) - - - (£1,(0,0), {e(z), e(y))) - - - (€1, (0,0), (1, 1))

~
(=)

o
R0 A N ey
(€2,0,0), (e(z), e(¥))) 3, (0,0), (e(x), e(y)))
e(z)l (assume e(z) < e(y)) le(z)
{z} {z} (€2, (e(z), e(@)), (e(x), e(¥))) (L3, (e(z), e(x)), (e(2), e(y)))
1 S
(v (e(x), e(2)), (e(@), e())) (X, (e(w), e(x)), {e(x), e(y)))
(a) Example SA My (b) Excerpt of the TPTS semantics of Mo

Figure 8.2: Example SA My and corresponding excerpt of its TPTS semantics.
The use of clocks results in uncountably many states, i.e. locations, clock
valuations and expiration times, as opposed to the countably many locations.

same time is zero. Location f3 behaves analogously, but with the target states
interchanged.

Remark 8.3. For compositional modelling, SA can be equipped with a standard
parallel composition operator that synchronises edges with matching action labels
as seen in Definition [7.3 The guard set of a synchronising edge is the union of
the guard sets of the component edges (i.e. actions are patient). In this chapter,
we assume that all parallel composition has been unrolled, i.e. we work with a
single SA and focus on closed systems. In open systems, some actions could
additionally be delayable: When an edge with a delayable action becomes enabled,
more time may pass before it or other edges are taken. Markov automata, and
thus MDP, are special cases of SA: An SA is an MA if F(c) is an exponential
distribution for all clocks ¢, every guard set is either empty (an immediate edge)
or singleton (a Markovian edge), and all clocks are restarted on all edges.

Remark 8.4. We point out the difference of SA to timed automata (TA) [6]:
While clock resets on edges are defined in a similar manner, guard sets behave
differently. The guard sets on edges TA generally consists of an a priori fixed time
interval. An edge may be taken iff the corresponding clock valuation remains in
this time interval. Naively, guard sets on edges in an SA are unions of intervals
of the form [x,00), where x is a realisation of a random variable distributed
according to F(c). Note that each clock ¢ has its own F(c). An edge must be
taken if all clocks of a single guard set of an outgoing edge reach their respective
intervals.

8.1.2 Timed Probabilistic Transition Systems

Timed probabilistic transition systems (TPTS) form the semantics of SA. We
define TPTS with uncountable state and action spaces. This is needed since we

CHOICE AND CHANCE 209

need to store the current valuation of real-valued clocks and expirations in each
state. They are finitely-non-deterministic uncountable-state transition systems.

Definition 8.5. A (finitely non-deterministic) timed probabilistic transition
system (TPTS) is a tuple (S, Act’, T, sy), where

e S is a measurable set of states, with the unique initial state sy € S,

o Act' =Rt U Act is the alphabet, partitioned into delays in RT and jumps
in Act.

o T: S — P(Act' x Meas(S)) is the transition function, which maps each
state to a finite set of transitions, each consisting of a label in Act’ and a
measure over target states.

All s € S admitting delays are required to be deterministic, i.e. |T(s)] =1 if
there is (t,u) € T(s) such that t € RT.

The requirement for states admitting delay to be deterministic ensures
that a delay cannot be split into two or more sub-delays. We write s %7
for (a,p) € T(s). A run is an infinite alternating sequence sg ag $1as... €
(S x Act")¥. A history is a finite prefix of a run ending in a state, i.e. an element
of (8 x Act’)* x S. We write last(h) to denote the last state of a run h. Runs
resolve all non-deterministic and probabilistic choices. A scheduler resolves only
the non-determinism:

Definition 8.6. A scheduler is a measurable function
s: (S x Act')* x S — dist (Act’ x Meas(S))

such that for all histories h € (S x Act’)* x S, {(a, u) € support(s(h)) implies
last(h) %7 .

Once a scheduler has chosen s; <1 u, the successor state s;;1 is picked
randomly according to . Every scheduler s defines a probability measure P on
the space of all runs. For a formal definition, see [I97]. As is usual, we restrict
to non-Zeno schedulers that make time diverge with probability one: we require
Ps(Il) = 1, where I, is the set of runs where the sum of delays is co. This
prevents performing infinite actions in a finite amount of time.

8.1.3 Semantics of Closed Stochastic Automata

We present the residual lifetimes semantics of [30], simplified for closed SA.
A closed SA induces a TPTS, if we require that any delay step must be the
minimum delay that enables some edge. First, we require some notation.

Notation. Let Val:V — R{ be the valuations for a set V of (non-negative
real-valued) variables. 0 € Val assigns value zero to all variables. For X C V
and v € Val, we write v[X] for the valuation defined by v[X](z) =0if x € X
and v[X](y) = v(y) otherwise. This notation is mainly used for clock resets. We

210 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

write Val if V is clear from the context. For ¢t €]Ra' , v+t is the defined by
(v+t)(x) = v(z) +t for all z € V. We define Ex(G,v,e) ¥ Vx € G: v(x) > e(x)
to be the Boolean that characterises enabled edges, i.e. the value Ex(G,v,e)
is true iff all clocks x of a guard set G have a valuation v(z) that is greater or
equal to their expiration time e(x). Given probability measures p and po, we
denote by p1 ® o the product measure (cf. Appendix [A.1)). For a collection of
measures (f;);er, we analogously denote the product measure by @, fi-

Definition 8.7. The semantics of an SA M = (Loc,C, Act, E, F,{y) is the
timed probabilistic transition system (TPTS)

[M] = (Loc x Val x Val, Act UR™, Ty, (£g,0,0))

where the states are triples (£,v,e) of the current location ¢, a valuation v
assigning to each clock its current value, and a valuation e keeping track of all
clocks’ expiration times. Ty is the smallest transition function satisfying the
inference rules

¢ &2 0y Ex(G,u,e)

(0, v,e) %, u® Dirac(v[R]) ® Sample]?

te Rt 3¢ Gl o Ex(Go+te) Viel0,t),0 E2tp i —Ex(Gv+te)

(l,v,€) i>TM Dirac({¢,v + t,e))

where (G,a,R,u) € E({), i.e. G € P(C) is a guard set, a € Act is an action,
R € P(C) is the set of reset clocks and p is the discrete distribution over target
locations. Further

€

. F(C) ’Lf ceER
Sample,” = @) ¢ {Dimc(e(c)) ifc¢ R.

The second rule creates delay steps of ¢ time units if no edge is enabled from
now until just before ¢ time units have elapsed (third premise) but then, after
exactly ¢ time units, some edge becomes enabled (second premise). The first rule
applies if an edge ¢ GaR, 1 is enabled: a transition is taken with the edge’s
label, the successor state’s location is chosen by the discrete distribution u, v is
updated by resetting the clocks in the reset set R to zero, and the expiration
times for the reset clocks ¢ € R are re-sampled according to their distribution
F(c). All other expiration times remain unchanged.

Example 8.8. Figure outlines the semantics of My. The first step from £y
to all the states in ¢y is a single transition. Its probability measure is the product
of F(x) and F(y), sampling the expiration times of the two clocks. We exemplify
the behaviour of all of these states by showing it for the case of expiration times
e(x) and e(y), with e(z) < e(y).

CHOICE AND CHANCE 211

8.2 Classes of Schedulers

We now define several classes of schedulers that are restricted in the information
available to them to make their choices. This includes the standard restriction
to memoryless schedulers, and schedulers that only see some part of the states,
hiding clock values and expiration times to various degrees. All definitions
consider TPTS as in Definition with states (¢,v,e), and we require for
all schedulers s that only available transitions are scheduled, i.e. ({(a,u) €
support(s(h)) implies last(h) <1 u, as in Definition

8.2.1 Classic Schedulers

We first consider the “classic” complete-information setting where schedulers
can in particular see expiration times [30]. Recall the definition of schedulers in
Definition [8.6] This scheduler class is history dependent, and has access to both
clock valuations and clock expiration times. We denote this set by 62’5;.

We proceed by restricting the information accessible by history-dependent
schedulers. We generally denote the information available to a scheduler by
subscripts on the set of states, e.g. S|sp.e ! Loc x Val x Val denotes that a
scheduler has access to the current location, clock valuation, and clock expiration
times. Our first restriction hides the wvalues of all clocks, only revealing the
total time since the start of the history. This is inspired by the step-counting or
time-tracking schedulers needed to obtain optimal step-bounded or time-bounded
reachability probabilities on MDP or Markov automata:

Definition 8.9. A classic history-dependent global-time scheduler is a measur-
able function

s: (Slgpe x Act')* x S|pqe — dist (Act’ x Meas(S)) ,

where S|g e < Loc x RS‘ x Val with the second component being the total time t
elapsed since the start of the history to the corresponding state, and the third
component being the clock expiration times e . We write Gé”fte for the set of all
such schedulers.

We next hide the values of all clocks, revealing only their expiration times.
This class is considered mainly for the sake of completion of the hierarchy.

Definition 8.10. A classic history-dependent location-based scheduler is a
measurable function

51 (S|ge x Act')* x S|ge — dist (Act’ x Meas(S)),

where S|¢. < Loc x Val, with the second component being the clock expiration
times e. We write GZZ:t for the set of all such schedulers.

hist

Having defined three classes of classic history-dependent schedulers, Sl

6%37’; and 6?}5’57 we also consider them with the restriction that they only see

212 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

the relative order of clock expiration, instead of the exact expiration times: for
each pair of clocks ¢, ca, these schedulers see the relation ~ € {<,=,>} in
e(c1) —v(cr) ~ e(ca) — v(ce). Knowing the expiration order is incomparable to
knowing only the expiration times e: The former is determined by the difference
e(c) —v(e) for each clock ¢, while current clock valuations are unknown in the
latter. Since the relation is defined for each pair of clocks, it induces a total order.
To illustrate, in ¢; of Example the scheduler would not see e(z) and e(y),
but only whether e(z) < e(y) or vice-versa (since v(z) = v(y) = 0, and equality
of expiration times has probability 0 here). We consider this case because the
expiration order is sufficient for the first algorithm of Bryans et al. [34], and
would allow optimal decisions in M of Figure 8.2l We denote the relative order
information by o, and the corresponding scheduler classes by &' &} and
&hist

"We now define memoryless schedulers, which only see the current state and
are at the core of e.g. MDP model checking. They suffice on some important
formalisms to obtain optimal reachability probabilities, e.g. MDP [0].

Definition 8.11. A classic memoryless scheduler only sees the current state,
i.e. it is a measurable function

s: S — dist (Act’ x Meas(S)) .

We write &7 for the set of all such schedulers.

lv,e

We apply the same restrictions as for history-dependent schedulers:

Definition 8.12. A classic memoryless global-time scheduler is a measurable
function

51 S|p1e — dist (Act’ x Meas(S)) ,
with S|g7t7e as in Definition . We write 6%’6 for the set of all such schedulers.

Definition 8.13. A classic memoryless location-based scheduler is a measurable
function

s: S|pe — dist (Act’ x Meas(S)) ,
with S|e,e as in Definition . We write 6}7}5 for the set of all such schedulers.

Again, we also consider memoryless schedulers that only see the expiration
order, so we have memoryless scheduler classes &7% &7 &r &prl —&nl

and (‘5}%. Class GZLOl is particularly attractive because it has a finite domain.

8.2.2 Non-Prophetic Schedulers

Consider the SA My in Figure 8.2 No matter which of the previously defined
scheduler classes we choose, we always find a scheduler that achieves probability
1 to reach v/, and a scheduler that achieves probability 0. This is because they
can all see the expiration times, or the expiration order of x and y when in ¢
and thus resolve the non-deterministic choice in that location optimally. This

CHOICE AND CHANCE 213

is somewhat counter-intuitive: When in ¢;, x and y have not yet expired—this
will only happen later, in £5 or £3—yet the schedulers already know which clock
expires first. The classic schedulers can thus be seen to make decisions based
on the timing of future events. This prophetic scheduling has already been
observed in [30], where a “fix” in the form of the spent lifetimes semantics was
proposed. Hartmanns et al. [91] have shown that this not only still permits
prophetic scheduling, but even admits divine scheduling, where a scheduler
can not only see, but change the future behaviour. The authors propose a
complex non-prophetic semantics that provably removes all prophetic and divine
behaviour, but is conceptually involved.

Much of the complication of the non-prophetic semantics of [91] is due to
it being specified for open SA that include delayable actions. For the closed
SA setting of this paper, prophetic scheduling can be more easily excluded by
hiding from the schedulers all information about what happens in the future
of the system’s evolution. This information is only contained in the expiration
times e or the expiration order o. The current location ¢ and the current values
of all clocks v do not permit any prophetic behaviour. We can thus keep the
semantics of Section [B:1.3] and modify the definition of schedulers to exclude
prophetic behaviour by construction.

In what follows, we thus also consider all scheduler classes of Section [8.2.1
with the added constraint that the expiration times, resp. the expiration order,
are not, visible, resulting in the non-prophetic classes S, &Spit, &'t &y,
6% and 62’”. Any non-prophetic scheduler can only reach v of M in Figure
with probability % The last three classes are the most interesting from a control
theory perspective, where we want to synthesise schedulers and implement them:
The only information that is likely to be readily available for an embedded
controller is the current state of the system. Clearly, it cannot know the timing
of future events, and will likely not be able to keep a long history of previous
states. Whether it may observe the values of some timers, or of a global one,
will depend on the specific case.

8.3 The Power of Schedulers

Now that we have defined a number of classes of schedulers, we need to determine
what the effect of the restrictions is on the ability to optimally control an SA.
We thus evaluate the power of scheduler classes with respect to unbounded
reachability probabilities, on the semantics of SA. We shall see that this simple
setting already suffices to reveal interesting differences between scheduler classes.
In the remainder of this section we consider extremal probabilities of reaching a
set of goal locations G:

Definition 8.14. For G C Loc, let Jg = {{{,v,e) € S| € G}. Let & be a

set of schedulers. Then PS. (G) and PS, (G) are the minimum and mazimum

reachability probabilities for G under &, defined as PS, (G) = infsee Ps(I1)

min

and PS5, (G) = sup,cs Ps(ILy,), where 11, are runs traversing Jg.

214 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

ml ml ml hist
&, < 6/, = 6 < &/%

l,v,0
RS R A Q
ey < 6y, < &5, - & e < &5 < 67
A A Q Q A A A
S A R A R R
(a) Hierarchy of classic scheduler classes (b) Non-prophetic classes

Figure 8.3: Scheduler hierarchy established in this section. For the difference
between classical- and prophetic schedulers, we refer to Section

Example 8.15. To mazimise the probability of reaching v of Mo in Figure[8.3
assuming e(x) < e(y) we should take the transition to the state in ly. If a
scheduler s can see the expiration times, noting that only their order matters
here, it can always make the optimal choice and achieve Pélz};(({ v/} =1.

For two scheduler classes &1 and G5, we write &1 = G5 if, for all SA and
all sets of goal locations G, PS! (G) < P92 (G) and PSL (G) > PS2 (G). We
write &1 = &, if additionally there exists at least one SA and set G’ where
PO (G') < PS2(G") or PS(G') > PS2 (G). Finally, we write &, ~ &, for
61 = G NGy = 61, and 61 % G,, i.e. the classes are incomparable, for
S, # 63 A Gy # G1. Unless noted otherwise, we omit proofs for &1 = So
when it is obvious that the information available to &7 includes the information
available to G5. All our distinguishing examples are based on the resolution of a
single non-deterministic choice between two actions to eventually reach one of
two locations. We therefore prove only with respect to the maximum probability,
Pmax, for these examples since the minimum probability is given by 1 — pmax
and an analogous proof for pyi, can be made by relabelling locations. We may
(&Y) for PS;;X({ v }) to improve readability.

write P,

8.3.1 The Classic Hierarchy

We first establish that all classic history-dependent scheduler classes are equiv-
alent. This is not surprising, as knowing the entire history always lets us
reconstruct all clock valuations and expiration times, respectively.

Theorem 8.16. &}, ~ &t ~ &pist.

Proof. From the transition labels in Act’ = Act URT in the history (S’ x Act’)*,
with S” € {5, S|e,.e,S|e,e } depending on the scheduler class, we can reconstruct
the total elapsed time as well as the values of all clocks: to obtain the total
elapsed time, sum the labels in R™ up to each state; to obtain the values of all

clocks, do the same per clock and perform the resets of the edges identified by
the actions. O

CHOICE AND CHANCE 215

The same argument applies among the expiration-order history-dependent
classes.
Theorem 8.17. 62’57’50 ~ é”fto ~ Ggfjt.

However, the expiration-order history-dependent schedulers are strictly less
powerful than the classic history-dependent ones.
Theorem 8.18. G}t » Ghist

lo,e Lw,0°

Proof. Consider the SA M; in Figure Note that the history does not
provide any information for making the choice in £;: we always arrive after
having spent zero time in ¢y and then having taken the single edge to ¢;. We can
analytically determine that P (GZi{ffe) = 2 by going from {1 to £y if e(z) < 1
and to ¢35 otherwise. We would obtain a probability equal to % by always going to
either /5 or /3 or by picking either edge with equal probability. This is the best

we can do if e is not visible, and thus P, (6}%") = 1: in {1, v(z) = v(y) =0

ax

max £,v,0
and the expiration order is always “y before x” because y has not yet been
started, so the scheduler has no basis to make an informed choice. O

Just like for MDP and unbounded reachability probabilities, the classic
history-dependent and memoryless schedulers with complete information are
equivalent.

Theorem 8.19. 6%‘?; ~ Gm

lv,e*

Proof sketch. Our definition of TPTS only allows finite non-deterministic choices,
i.e. we have a very restricted form of continuous-space MDP. We can thus adapt
the argument of the corresponding proof for MDP [9, Lemma 10.102]: For
each state (of possibly countably many), we construct an optimal memoryless
(and deterministic) scheduler in the same way, replacing the summation by an
integration for the continuous measures in the transition function. It remains
to be shown that this scheduler is indeed measurable. For TPTS that are the
semantics of SA, this follows from the way clock values are used in the guard
sets so that optimal decisions are constant over intervals of clock values and
expiration times (see e.g. the arguments in [34] or [I19]). O

On the other hand, when restricting schedulers to see the expiration order
only, history-dependent and memoryless schedulers are no longer equivalent.

Theorem 8.20. &t » @i

£L,v,0 Lw,0°

Proof. Consider the SA M, in Figure W Let 577) be the (unknown)

ml(l,v,0
ml
£,v,0

V. Define 5077 € &%, as: when in £5 and the last edge in the history is
the left one (i.e. = is expired), go to £3; otherwise, behave like §°7f . This

‘ ml(l,v,0)
scheduler distinguishes G%ffo and 6}%7 o+ Dy achieving a strictly higher maximal

optimal scheduler in & with respect to the max. probability of reaching

probability than 52{}2[v,0) if and only if there are some combinations of clock

216 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

Ms3: x: UNI(0, 1)

>? y: UN1(0, 1)
z
Ms: z: UN1(0, 8) R({z})
: Un1(0, 1
Y o)
2] {z}

M;: x: UNi(0, 1) R({z, z}) R({z,y})

(&) ()

*) y: UN1(0, 1)

(a) SA M1

Figure 8.4: Distinguishing examples used in Theorems [8.18] [8.20} [8.21 [8.24]

525 and B2

values (aspect v) and expiration orders (aspect o) in ¢5 that can be reached with
positive probability via the left edge into ¢4, for which 5%7(1,1;,0) must nevertheless
decide to go to {y4.

All possible clock valuations in /5 can be achieved via either the left or the
right edge, but taking the left edge implies that x expires before z in f5. It

is thus sufficient to show that 5fflt(l v,0) Must go to {4 in some cases where x

expires before z. The general form of schedulers in &7% | in £3 is “go to £3 iff
(a) x expires before z and v(x) € Sy or (b) z expires before z and v(z) € Sy”
where the S; are measurable subsets of [0,8]. S is in fact irrelevant: whatever

5%’;([%0) does when (b) is satisfied will be mimicked by 52%?5{’@,0) because z can

only expire before & when coming via the right edge into ¢5. Conditions (a) and
(b) are independent.

With S; = [0, 8], the maximal probability is % = 0.802083. Since this is
the only scheduler in 6?}570 that is relevant for our proof, and never goes to /4
when x expires before z, it remains to be shown that the maximal probability
under sfnplt() is > I With Sy = [0, 32), we have a maximal probability of

l,v,0
% ~ 0.820421. Thus 5;’5[?1’0’0) must sometimes go to Iy even when the left edge
vxias taken, so sfjﬁ‘zzvo) achieves a higher probability and thus distinguishes the
classes. O

Knowing only the global elapsed time is less powerful than knowing the full
history or the values of all clocks.

hist ml ml ml
Theorem 8.21. 6“’6 - 6“}6 and Ge,u,e - 6“,8.

Proof sketch. Consider the SA M3 in Figure We have Pmax(SZ’ii) =1
when in /3, the scheduler sees from the history which of the two incoming edges

CHOICE AND CHANCE 217

Ma: v 811:111[28’ %; Ms: x: UNi(0, 1) Ms: @: Un1(0, 1)
*’ Z UNI(O:Z) @ y: UNi(0,1) *) y: UNi(0, 1)
< 1%}
[t =) R({z,y})

{z}
R({y, z})

Figure 8.5: Distinguishing examples used in Theorems |8.22L |8.26L |8.28L and |8.30[

was used, and thus knows whether = or y is already expired. It can then make
the optimal choice: go to ¢4 if z is already expired, or to /5 otherwise. We also
have PmaX(GZiAe) = 1: the scheduler sees that either v(x) = 0 or v(y) = 0, which
implies that the other clock is already expired, and the argument above applies.

However, Pmax(6g7f7 .) < 1: the distribution of elapsed time t on entering /3 is

itself independent of which edge is taken. With probability , exactly one of e(z)
and e(y) is below ¢ in ¢3, which implies that that clock has just expired and thus
the scheduler can decide optimally. Yet with probability %, the expiration times
are not useful: they are both positive and drawn from the same distribution, but
one unknown clock is expired. The wait for x in £; ensures that comparing ¢ with
the expiration times in e does not reveal further information in this case. O

In the case of MDP, knowing the total elapsed time (i.e. steps) does not make
a difference for unbounded reachability. Only for step-bounded properties is that
extra knowledge necessary to achieve optimal probabilities. With SA, however,
it makes a difference even in the unbounded case.

Theorem 8.22. 62;176 - GZ”el.

Proof. Consider SA M, in Figure We have Pmax(6$f7e) = 1: in ¥y, the
remaining time until y expires is e(y) and the remaining time until = expires is
e(z) — t for the global time value ¢ as {5 is entered. The scheduler can observe
all of these quantities and thus optimally go to /3 if x will expire first, or to ¢4
otherwise. However, Pmax(Gz’?é) < 1: e(z) only contains the absolute expiration
time of x, but without knowing ¢ or the expiration time of z in ¢;, and thus
the current value v(x), this scheduler cannot know with certainty which of the

clocks expires first and is therefore unable to make an optimal choice in ¢5. [

Finally, we need to compare the memoryless schedulers that see the clock
expiration times with memoryless schedulers that see the expiration order. As

218 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

noted in before, these two views of the current state are incomparable unless we
also see the clock values.

Theorem 8.23. 6¢U o - Geuo

Proof. 64 e 7é S Z o follows from the same argument as in the proof of Theo-
rem 65 ve 7 SF 71}, , 1s because knowing the current clock values v and the
expiratlon times e is equivalent to knowing the expiration order, since that is
precisely the order of the differences e(c) — v(c) for all clocks c. O

Theorem 8.24. &7’ t o Gg o

Proof. 64 te £ G v t o follows from the same argument as in the proof of The-
orem For Gz b e # Ge tos consider the SA M3 of Figure We know
from the proof of Theorem [8.21] that P, (64 + o) < 1. However, if the scheduler

max
knows the order in which the clocks will expire, it knows which one has already
expired (the first one in the order), and can thus make the optimal choice in {3
to achieve P, (64 4 o) = L. O

max

Theorem 8.25. &7, L% Sy,

Proof. The argument of Theorem [8.24] applies by observing that, in M; of
Figure L, we also have Pmax((‘Sml) < 1 via the same argument as for G}”tl . in
the proo f Theorem [8.21

Among the expiration-order schedulers, the hierarchy is as expected.
Theorem 8.26. 64 o G“ 0 = GZ%

Proof sketch. Consider M; of Figure [8:5D] To maximise the probability, in 3
we should go to £4 whenever x is already expired or close to expiring, for which
the amount of time spent in /5 is an indicator. &}* only knows that = may have
expired when the expiration order is “x before y”, but definitely has not expired
when it is “y before z”. Schedulers in Gml can do better: They also see the
amount of time spent in 5. Thus &7 t o Gml If we modify M; by adding an
initial delay on x from a new fy to /1 as in Mg, then the same argument can be
used to prove 6€ vo 6@ t ot the extra delay makes knowing the elapsed time
t useless with positive probablhty, but the exact time spent in [is visible to
Sy, as v(x). O

We have thus established the hierarchy of classic schedulers shown in Fig-
ure noting that some of the relationships follow from the theorems by
transitivity.

CHOICE AND CHANCE 219

8.3.2 The Non-Prophetic Hierarchy

Each non-prophetic scheduler class is clearly dominated by the classic and
expiration-order scheduler classes that otherwise have the same information, for
example &}~ &}t This can be shown with very simple distinguishing SA.
We show that the non- prophetic hierarchy follows the shape of the classic case,
including the difference between global-time and pure memoryless schedulers,
with the notable exception of memoryless schedulers being weaker than history-
dependent ones.

To show the hierarchy of non-prophetic schedulers, we first re-use the ar-
gument of Theorem [8:I6] to establish that here, too, the history-dependent
schedulers are equivalent.

Theorem 8.27. &' ~ &% ~ &t
Proof. This follows from the argument of Theorem [8.16 O

In comparing non-prophetic history-dependent with non-prophetic memo-
ryless schedulers, we surprisingly obtain a different result than in the classic
setting.

Theorem 8.28. &' - &7

Proof. Consider the SA Mg in Figure It is similar to My of Figure[8.5a) and
our arguments are thus similar to the proof of Theorem [8.22] On Mjg, we have

maX(Gh”t) = 1: in /o, the history reveals which of the two incoming edges was
used, i.e. which clock is already expired, thus the scheduler can make the optimal
choice. However, if neither the history nor e is available, we get P, (&7) = 2
the only information that can be used in ¢ are the values of the clocks but
v(x) = v(y), so there is no basis for an informed choice. O

Other than that, the non-prophetic hierarchy is the same as in the classic case,
including the difference between global—time and pure memoryless schedulers.

Theorem 8.29. Gh”t “ and &7, b &7

Proof. Consider the SA M3 in Figure We have P,
1,but P

max

Theorem 8.30. 6 >- Gml

Proof. Consider the SA My in Figure The schedulers in 62’“ have no
information but the current location, so they cannot make an informed choice in
{5. This and the simple loop-free structure of My make it possible to analytically
calculate the resulting probability: P, (67") = 4T = 0.7083. If information
about the global elapsed time t in {5 is available, however, the value of x is
revealed. This allows making a better choice, e.g. going to ¢35 when ¢t < % and to
{4 otherwise, resulting in P, (&7 1) ~ 0.771 (statistically estimated with high
confidence). O

(617") = Prax(677) =
(6%) = % by the same arguments as in the proof of Theorem|8.21f [

We have thus established the hierarchy of non-prophetic schedulers shown in
Figure where some relationships follow by transitivity.

220 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

8.4 Experiments

We built a prototype implementation of lightweight scheduler sampling for SA by
extending the MODEST TOOLSET’s [88] MODES simulator, which already supports
deterministic stochastic timed automata (STA [22]). Our goal is to experimentally
find the minimal and maximal probabilities of unbounded reachability, that in
turn confirm, or refute the theoretical implications of Section Consequently,
the experimental results show the feasibility of lightweight scheduler sampling
when applied to SA with respect to the hierarchy of Figure 83|

Remark 8.31. This work was motivated by our desire to extend to SA the
lightweight scheduler sampling approach that allows statistical model checking
for non-deterministic models, which was first defined for MDP [52] and later
extended to probabilistic timed automata (PTA) [[9]. In contrast to model
checking algorithms like value iteration for MDP, which only implicitly deal with
schedulers, the lightweight approach has full control over the information that the
scheduler it currently simulates gets: this is the data fed into the hash function
to compute the seed for the pseudo-random number generator used to make the
non-deterministic choices for each state (see line 3 of Algorithm 1 and line 10 of
Algorithm 2 in [9]). To be effective, this approach needs the space of information
available to the scheduler to be “small” and at least countable. Otherwise, it
easily degenerates into performing simulation with the uniform scheduler. This is
why the extension to PTA used a variant of the zone graph, a discrete abstraction
of the PTA that preserves reachability probabilities. To extend the approach to
SA, we need to find a reasonable class of schedulers that is “as small as possible”.

Experimental setup. With some care, SA can be encoded into STA. Using
the original algorithm for MDP of [52], our prototype works by providing to the
schedulers a discretised view of the continuous components of the SA’s seman-
tics, which, we recall, is a continuous-space MDP. The currently implemented
discretisation is simple: for each real-valued quantity (the value v(c) of clock ¢,
its expiration time e(c), and the global elapsed time t), it identifies all values
that lie within the same interval [%, %), for integers i, n. We note that better
static discretisations are almost certainly possible, e.g. a region construction for
the clock values as in [119].

We have modelled M; through Mg as STA in MODEST. For each scheduler
class and model in the proof of a theorem, and discretisation factors n € {1,2,4 },
we sampled 10000 schedulers and performed statistical model checking for each
of them in the lightweight manner.

Results. In Figure we report the min. and max. estimates, (Pmin, Pmax)T
over all sampled schedulers. Where different discretisations lead to different
estimates, we report the most extremal values. The subscript Z denotes the
discretisation factors that achieved the reported estimates. The analysis for each
sampled scheduler was performed with a number of simulation runs sufficient for
the overall max./min. estimates to be within +0.01 of the true maxima/minima

CHOICE AND CHANCE 221

M1: M3: M22 M5:

Theorem [R. 18} Theorem [R.21} Theorem [R.20F Theorem [R3.26}

Ggfgfez (0.24,0.76)2,4 &7;",: (0.00,1.00)1 &}t : (0.06,0.94)1,2,4 &7 ,: (0.15,0.86)4
&hist 2 (0.49,0.51)1,2,4 G . (0.12,0.86)4 67, (0.18,0.83)1 &7 :(0.16,0.84)1,2.4

Lv,0° Lv,e” l,v,0°

Theorem [8:23 GZLLE : (0.37,0.65)2

My: Meg:
&7 1(0.24,0.76 3
£v,e ()24 Theorem B2 Theorem [8.22} Theorem [8.28]

ml . ml . :
S0t (049,050)12.4 S5 2 (087,065 gt . (0.95,0.70); &[5t (0.00,1.00)1 2

3 .
Theorem E.22 60t (000100012 gmi™ . (0.29,0.71);, &Pl : (0.49,0.51)1,2.4
G 1 (0.24,0.76 ’ '
f,’j’e (2.4 T}:Leloremm Theorem [8.30!
&y ,: (0.49,0.51)1 2,4 &L: (0.34,0.67)4 &7l (0.22,0.78)2.4
Wl &7 2 (0.00, 1.00) ;
Theorem [8.25) 2,0 s 1,2,4 62’”: (0.28,0.72)1.2.4
62?53: (0.24,0.76)2,4 Theorem [829}
&: (0.49,0.51)1,24 &% (0.00,1.00)1,2
&M ¢ (0.21,0.78)4
&7 1 (0.49,0.51)1,2,4

Figure 8.6: Results from the prototype of lightweight scheduler sampling for SA

of the sampled set of schedulers with probability > 0.95 [52]. Note that pmi, is
an upper bound on the true minimum probability and pmax is a lower bound on
the true maximum probability. We thus use these results to show the feasibility
of the lightweight scheduler sampling technique applied to SA through the
correspondence with the hierarchy of schedulers in the main body of the paper.
Increasing the discretisation factor or increasing the scheduler power generally
increases the number of decisions the schedulers can make. This may also
increase the number of critical decisions a scheduler must make to achieve the
extremal probability. Hence, the sets of discretisation factors associated to
specific experiments may be informally interpreted in the following way:

e {1,2,4}: Fine discretisation is not important for optimality and optimal
schedulers are not rare.

e {1,2}: Fine discretisation is not important for optimality, but increases
rarity of optimal schedulers.

e {2,4}: Fine discretisation is important for optimality, optimal schedulers
are not rare.

e {1}: Optimal schedulers are very rare.

e {2}: Fine discretisation is important for optimality, but increases rarity of
schedulers.

e {4}: Fine discretisation is important for optimality and optimal schedulers
are not rare.

The results in Figure [8:6] respect and differentiate our hierarchy. In most
cases, we found schedulers whose estimates were within the statistical error
of calculated optima or of high confidence estimates achieved by alternative

222 CHAPTER 8. SCHEDULER HIERARCHY FOR SA

statistical techniques. The exceptions involve M3 and My. We note that M,
makes use of an additional clock, increasing the dimensionality of the problem
and potentially making near-optimal schedulers rarer. The best result for M3
and class Gm{e was obtained using discretisation factor n = 2: a compromise
between nearness to optimality and rarity. A greater compromise was necessary
for My, and classes &}, and &}, where we found near-optimal schedulers to
be very rare and achieved best results using discretisation factor n = 1.

While we found no scheduler whose performance exceeded its defined theoret-
ical limits, we note that our sampling approach is not exhaustive, and that when
non-determinism is not spurious, there is a positive probability that we may
miss some (near-)optimal schedulers and potentially miss rare counterexamples,
if such exist. In the case of the present experiments, we also note that our static

grid discretisation makes some schedulers impossible.

Discussion. The experiments show that lightweight scheduler sampling pro-
duces useful and informative results with SA. We believe the few sub-optimal
values can be significantly improved by tailoring the discretisation to the partic-
ular instance. The continuous quantities do not all require the same granularity
of discretisation and not all boundaries within a discretisation are useful. The
present theoretical results allow us to develop better abstractions for SA, and
thus to construct a refinement algorithm for efficient lightweight verification
of SA that is applicable to realistically sized case studies. As is, they already
demonstrate the importance of selecting a proper scheduler class for efficient
verification, and that restricted classes are useful in planning scenarios.

8.5 Conclusions

Motivated by the possibility to apply statistical model checking to non-deterministic
stochastic automata, we have defined a number of classes of schedulers and com-
pared their expressiveness. We have shown that the various notions of information
available to a scheduler class, such as history, clock order, expiration times or
overall elapsed time, almost all make distinct contributions to the power of
the class in SA. Our choice of notions was based on classic scheduler classes
relevant for other stochastic models, previous literature on the character of
non-determinism in and verification of SA, and the need to synthesise simple
schedulers in planning. Our distinguishing examples clearly expose how to exploit
each notion to improve the probability of reaching a goal. For verification of SA,
we have demonstrated the feasibility of lightweight scheduler sampling, where
the different notions may be used to finely control the power of the lightweight
schedulers. To solve stochastic timed planning problems defined via SA, our
analysis helps in the case-by-case selection of an appropriate scheduler class
that achieves the desired trade-off between optimal probabilities and ease of
implementation of the resulting plan.

The outcome of our investigation into the power of schedulers could be seen as
a mostly negative result: there is no “easy” class that is equivalent to seeing the

CHOICE AND CHANCE 223

entirety of a state with all clock values and expiration times, even in the simple
setting of reachability probabilities. Even worse, in the non-prophetic setting,
history matters, too. However, due to the undecidability of the underlying model
checking problem, a strong, simple result was not to be expected. Yet we provide
several important insights, for example that merely considering the expiration
order is insufficient unless one restricts to regeneration on every edge as in [34]:
our distinguishing SA for this case indeed relies on clock memory across locations.
In general, our distinguishing SA clearly exhibit several interesting phenomena
that can occur in SA and need to be taken into account in any SA verification
approach. In particular, our insights are invaluable in building abstraction
refinement techniques for schedulers to replace the crude discretisation of our
prototype SMC tool, and they provide guidelines for control scenarios where an
implementable class of schedulers to synthesise needs to be picked. We note that
all the distinguishing SA we used in our proofs follow a simple common pattern
and do not make use of any potentially “exotic” features of our definition of
SA: they are simple acyclic SA with absolutely continuous probability measures,
edges with either empty or singleton guard sets only, and at most three clocks.

We conjecture that the arguments of this paper also extend to steady-
state/frequency measures (in the counterexamples, we would add loops back
from absorbing to initial states), and that our results for the classic schedulers
also transfer to SA with delayable actions. The next step should be to use the
results of this paper to build a proper refinement-based implementation of the
lightweight SMC approach as mentioned above.

CHAPTER 9

Conclusions

Model-based testing is appealing due to its high degree of automation: given a
model, the otherwise labour-intense and error-prone manual derivation of test
cases, their execution, and their evaluation can be performed in a fully automatic
way. It is therefore not surprising that MBT rapidly gained popularity in the
industry, by providing more structured and more efficient test procedures. The
widespread application of MBT thus benefits both suppliers and consumers, by
granting higher quality products and services at lower costs.

In this thesis, we set out to develop an applicable MBT framework, that
treats probabilistic decisions of systems and algorithms as “first class citizens”.
Probabilistic decisions and soft real-time constraints were a focal point of the
developed theory. In particular, we were interested to reconcile these properties
with non-deterministic choices, thus allowing underspecification and implemen-
tation freedom in a fully-fledged way. This represents the major advantage over
related approaches, that either assumed closed or fully probabilistic models that
allow no interaction. To conclude the thesis, we summarise the presented work,
and discuss possible future research.

9.1 Summary

The main contribution of this thesis is the applicable MBT framework for non-
deterministic systems that exhibit probabilistic behaviour. This includes discrete
probability choices made by the system itself, and soft real-time constraints on
its delays. We provided evidence for its theoretical correctness, as well as readily
available methods to apply it in practice.

Non-determinism in our models is resolved probabilistically by means of
schedulers, and their resulting trace distributions. A study on a novel notion of
schedulers, as well as a hierarchy of existing ones, thus mark another contribution
of this thesis.

225

226 CHAPTER 9. CONCLUSIONS

Model-Based Testing

Our endeavour to develop the presented framework started by recalling ioco
theory from the literature [I74] [169] in Chapter [3] This choice was motivated
by the fact, that ioco relied on labelled transition systems. LTSs utilize non-
determinism — a highly desirable feature, given that it allows underspecification,
implementation freedom, as well as the capabilities to model interaction with
the implementation via parallel composition. They also form the foundation
of many other modelling formalisms with varying properties. It thus seemed
natural to use the extensions of LTSs to extend ioco theory itself.

With our desire to focus on probabilistic systems, probabilistic automata [I58]
were an instinctive choice as underlying modelling formalism. They allow to
both model non-deterministic choices, as well as discrete probabilities. Inspired
by the seminal work of [40], we first set out to conservatively extend the con-
formance relation ioco itself. The authors work culminated in the connection
of observations and trace distributions — a connection that relates the invisible
content of a black-box implementation with examinations made by an external
observer. Hence, we developed the conformance relation pioco based on finite
schedulers that induce trace distributions in Chapter [} This enabled us to
compare two probabilistic input output transition systems on a purely formal
level. In particular, we showed our testing relation to be a conservative extension
of ioco. This guaranteed that desirable features carried over to our theory, e.g.
pioco is coarser than trace (distribution) inclusion. The remaining theory of
test cases, their executions and evaluations was developed thereafter. We proved
the framework to be sound and, in theory, complete. To see the framework’s ap-
plication in practice, we conducted smaller-sized case studies based on examples
known from the literature: 1. Kuth’s and Yao’s dice programs [114] 2. the binary
exponential back-off protocol [106], and 3. the FireWire root contention proto-
col [165]. We implemented mutant applications, all of which were successfully
eliminated, while all correct implementations passed our tests.

The next step comprised the incorporation of soft real-time constraints and
stochastic time delays. However, before taking on the challenge of general
probability distributions over time, we first focussed on exponential distributions.
Exponentials are attractive due to their memoryless property, which allowed us
to avoid clocks to account for real-time. Markov automata [67] were a tailor-
made model, given their usage of non-determinism, discrete probabilities and
exponential delays. This allowed us to study real-time in the established theory
for pIOTSs with minor extensions to the modelling formalism in Chapter 5] To
our surprise, the results carried over to the real-time setting almost exclusively.
The reason for that is the near-modular design of the developed MBT framework;
Conformance in pioco is defined via trace distributions, and the resulting
probabilities assigned to traces. Thus, constructing schedulers in a similar
manner meant that no major changes were needed on the theoretical side. On
the practical side, we required new methods to infer whether observed time could
be attributed to specified parameters of exponential distributions. In addition
to Pearson’s x2 test, we utilized confidence intervals for Markovian parameters.

CHOICE AND CHANCE 227

Carrying out multiple hypotheses tests on the same sample data meant that we
have to apply a-correction, to prevent an inflation of a type I error.

Lastly, we studied general continuous probability distributions as soft real-
time requirements. Stochastic automata [50] enabled a clean treatment of this by
utilizing clocks whose expiration time is based on such distributions. A careful
construction of schedulers resulted in the presented framework for stochastic
automata of Chapter [7]] While theoretical aspects like the conformance relation,
test cases, verdicts and the framework’s correctness carried over, we once again
needed to adjust practical methods. To that end, we used non-parametric
inference methods to decide whether a sample of time stamps was drawn from
a theoretical probability distribution. To define the framework as general as
possible, we used the Kolmogorov-Smirnov test, and pointed out, that more
efficient statistical tests exist for specific distributions.

Trace Distribution Semantics

Driven by the desire to model waiting of a tester, we studied a novel notion of
schedulers for Markov automata [67]. In particular, schedulers were equipped
with the capability to wait before choosing the next action by scheduling dis-
tributions over time. This resulted in the stoic trace distributions semantics of
Chapter [6] Trace distribution semantics of non-waiting schedulers were shown
to be incomparable to those induced by stoic schedulers — a surprising result,
given that the former are a subset of the latter. The comparison is spoiled by
the maximal progress assumption, meaning that time is not allowed to pass in
states that allow internal progress. However, stoic trace distribution semantics
were shown to be coarser than existing notions of bisimulation relations. This
is a natural result, given that trace-based semantics take on a linear view of a
system’s development, while bisimulation focuses on branching probabilities.

Non-determinism is resolved probabilistically by means of schedulers in
all chapters. We took on the fundamental challenge to study schedulers in
their own right in Chapter [§] Investigating schedulers for stochastic automata
means our results carry over to probabilistic- and Markov automata, given their
evident subset relation. We studied schedulers inspired by the literature of the
classic complete information-view [30] and the non-prophetic view [9I]. We
used unbounded reachability problems and altered the information available to
schedulers in any given location to establish a hierarchy of scheduler classes.
The outcome of our investigation could be seen as a mostly negative result, as
there was no simple class that yields optimal results. However, despite the fact
that in most settings, memoryless schedulers suffice for reachability problems,
we found that this is not the case for non-prophetic schedulers. Here, history
based schedulers perform better. The study of scheduling power was inspired by
their application in lightweight scheduler sampling. Our theoretical findings were
consequently confirmed by a small scale experiment on LSS on our presented
examples.

228 CHAPTER 9. CONCLUSIONS

9.2 Discussion and Future Work

The presented MBT framework is provably correct: Every conforming implemen-
tation has an arbitrarily high chance to pass a test suite, and there exist test
cases to reveal every non-conforming implementation. To apply the developed
theory in practice, we studied several smaller sized case studies. It is thus a
desirable goal to bring our theory into application on a larger scale.

To that end, the impeding factor is the non-existence of a proper tool.
Our small examples were carried out by a tool-chain consisting of JTorX [I7],
MATLAB [86] and semi-automatically performed tasks. This included the
evaluation of JTorX’s log files, where an off-the-shelf shell script was used to
count trace frequencies. On the same note, the probabilistic verdict relies on
a comparison of those trace frequencies to their expectations. Many of the
presented examples used relatively short sequences, so expected probabilities
were mostly calculated by hand. A push-button MBT tool for such systems,
would thus require to fill these two shortcomings. We do not expect this to
necessitate an entirely new tool, as existing MBT tools already implement
ioco theory. Rather, 1. existing tools could be extended to allow probabilistic
specifications. Parametrized expected probabilities can then be calculated, and
2. the tool could be provided with parameters like test length or sample size for
multiple test executions. This would aid in the sampling process necessary to
apply our theory.

A second bottleneck lies in the requirement to gather sufficiently large samples.
Collecting, say, 10° traces is an unreasonable amount when working in a realistic
and industrial setting, particularly if soft real-time constraints and time delay are
considered. While the execution of many passing test cases increases confidence in
the functional correctness of the system, we see a possible solution of this dilemma
in more efficient statistical hypothesis tests. That is, statistical tests with a
higher power for equal sample size. To that end, we investigated sequential
probability ratio tests (SPRT) — statistical tests that do not work on fixed
sample sizes, but fixed errors and variable sample size (Appendix [A.2]). With
every additional observation, a statistical test is performed to see whether a
probabilistic verdict can be given with the current information. This approach,
however, is spoiled by the fact that we still need to find the best fitting scheduler,
maximising the probability of a sample to occur. Hence, the advantage of SPRT's
is lost. The field of statistical hypothesis testing is a rich field, and more suitable
tests than Pearson’s x? may exist. A different solution to reduce sample size
requires more efficient tests than the Kolmogorov-Smirnov test. This is possible
for parametrized distributions, but highly dependent on the application domain.

Lastly, finding the best-fitting scheduler may be substantially reduced in
complexity, if smaller scheduler classes are considered.

Appendices

229

APPENDIX A

Mathematical Background

We provide the background for the mathematical concepts used within the thesis.
The covered material includes the basics of probability theory, and a short
introduction to statistical hypothesis testing. Many of these may be familiar to
the reader, and are appended for the sake of self-containment of the thesis. For
a thorough introduction to probability theory, we refer to [46l [123], and for a
better discussion on statistical hypothesis testing see [156].

A.1 Probability Theory

We shortly recall basic concepts from probability theory used in the main body
of the thesis. This is a brief overview for references, and the reader is referred to
textbooks covering probability theory for a thorough and detailed introduction,
e.g. [40] [123].

Definition A.1 (Probability Distribution). A probability sub-distribution over
a countable set S is a function p: S — [0,1], such that

D uls) <t

seS

We use SubDistr(S) to denote the set of all sub-distributions over S. We write
lul = > .cg i (s) for the probability mass of u. If u is a probability sub-
distribution with |u| = 1, then we call p a probability distribution and denote
all such distributions over S by Distr(S).

Definition A.2 (Support). The support of a sub-distribution p € SubDistr(S)
is denoted

supp(p) ={s € S| p(s) >0}
Given a real number x and a sub-distribution p we denote x -y the sub-distribution

such that (z -) (s) =z - u(s) for each s € supp(u) if © - |u| < 1.

231

232 APPENDIX A. MATHEMATICAL BACKGROUND

Definition A.3 (Dirac Distribution). If the support of a distribution is a
singleton {s}, we call it a Dirac distribution, and denote it by 5, or Dirac(s).

Definition A.4 (Field/o-Field). Let Q be a non-empty set and F C 2 a set
of subsets of Q. Then F is called a field, if it satisfies

1. Qe F,

2. Ae F = A€ F, and

3. Al,AQ,...An eF = U?:lAi e F.

F is called a o-field, if instead of item 3 we have

Ay, Ay, ... e F = UAie]-"

i=1

Definition A.5 (Borel o-field). The Borel o-field B(R) is the smallest o-field
generated by the field of finite disjoint unions of right-semiclosed intervals in R.

Definition A.6 (Measurable Space). Let S be a set and Fs a o-field of S.
Then we call (S, Fs) a measurable space.

Definition A.7 (o-additivity). Let F be a o-algebra, and Ay, As, As . .. pairwise
disjoint sets in F. A function p: F — RU{oo} is called o-additive, if

u(_U A;) = Zu(A»-

Definition A.8 (Probability Measure). Let (S, Fs) be a measurable space. A o-
additive function p : Fg — [0, 1] is called a probability sub-measure, if u (S) < 1.
We denote all sub-measures of S by SubMeas (S). If additionally p(S) =1, then
we call i1 a probability measure and denote all measures of S by Meas(S).

Definition A.9 (Product Measure). Given probability measures py and ps, we
denote by p1 ® po the product measure, which is the unique probability measure
such that (Nl X ,U,Q)(Bl X BQ) = ,U,l(Bl) . [LQ(BQ) fOT‘ all By € F1 and By € Fs.
For a collection of measures (u;)icr, we analogously denote the product measure
by Q;crpi- We lift the same notation to a collection of sets of probability
measures (M;);cr by

®Mid£f{®,ui|ui€Mif0ralli€I}.
i€l iel

Definition A.10 (Probability Space). A probability space is a triple (2, F, P),
such that

1. Q is a set, called the sample set,
2. F C 2% is a o-field over Q. The elements of F are called events, and
3. P:F —[0,1] is a probability measure.

CHOICE AND CHANCE 233

Definition A.11 (Measurable function). Let (Q, Fq) and (', Fqr) be measur-
able spaces. A function f: Q — Q' is called measurable with respect to Fq and
Far, if f7Y(B) € Fq for all B € Foy.

Definition A.12 (Borel-measurable function). Let (Q2, Fq) be a measurable
space. A measurable function f:Q — R with respect to Fo and B(R) is called
Borel-measurable. We write f : (Q, Fq) — (R, B(R)) to denote Borel-measurable
functions.

Definition A.13 (Random variable). Let (2, Fq, P) be a probability space. A
Borel-measurable function X : (Q, Fq) = (R, B(R)) is called a random variable.

Definition A.14 (Deunsity functions). Let X be a real-valued random variable
on a probability space (Q, Fa, P). A real-valued, Lebesgue-integrable function f
is called probability density function (PDF), if for all a € R

P(X <a)= / f(x)dx
The cumulative distribution function (CDF) Fx of a PDF is given by Fx(x) =
P(X < x).

Definition A.15 (Expected value). If X is a random variable with PDF f, we
define its expected value as

E(X) & /]Rx - f(z)dx.

Definition A.16 (Bernoulli Random Variable). A (discrete) random variable
X is Bernoulli distributed with parameter p € (0,1), denoted X ~ BER(P), if it

has the distribution
P ifr=1
f(z;p) = L
1—p ifx=0.

Definition A.17 (Uniform Distribution). A random wvariable X is uniformly
distributed on the interval [a,b], denoted X ~ UNI[A,B], if it has the PDF

ﬁ fora <z <b,
0 otherwise.

fx) =

Definition A.18 (Exponential Random Variable). A random variable X is
exponentially distributed with parameter A, denoted X ~ EXP(X), if it is has the

PDF
Xe ™ if x>0,
flw) = {0 otherwise.

Definition A.19 (x? Random Variable). A random variable is x* distributed
with n degrees of freedom, if it has the PDF

n_q1

sbled yppso o
fulz) =< 220(5) / , where T'(2) = / t*~teldt.
0

0 otherwise

234 APPENDIX A. MATHEMATICAL BACKGROUND

Proposition A.20. Let X ~Exp(\) and let zq,...,xz, be realizations of X.
For a € (0,1), the 1 — « confidence interval of A based on its realisations is then
given by
2 2
Xa/2,2n lea/Q,n

23 i 230w

Proof. We first prove: If X follows an exponential distribution with parameter
A, then Y = 2\ X follows an exponential distribution with parameter % The
density function of X is f(z | \) = Ae™** if z > 0 and 0 otherwise. It is easy to
see that the density function of Y is then given as g(y) = %e_%. Note that the
exponential distribution with parameter % is equivalent to 3 (Definition .

For X; ~ExP(A) with i = 1,...,n we define

WXy, .. Xn,\) & QAi:Xi = zn:Y
=1 =1

Each Y; follows a x3 distribution, and they are independent. Therefore h follows
a x3, distribution. Let Xi/z o, and Xiam on be the a/2 and the 1 — /2
quantiles of the x3,, distribution, then

P (Xi/zzn < 2)‘2Xi < X%a/2,2n> =1-oa

i=1

Rearranging yields

2 2

Xa/2,2n X1—a/2,2n

P n : S A S I —— =1- .
(221.:1 X; 230, XZ-)

A.2 Statistical Hypothesis Testing

Statistical hypothesis testing is concerned with the observation, and realization
of random variables. The intention of a statistical test is to find enough evidence
to formally reject a conjecture, commonly called the null hypothesis. Intuitive
examples of null hypothesis in practice are given in the conjecture that people of
a certain nationality have an average body height of 1.68m, or that the average
grade of a school class is 75%. The decision of rejection or acceptance is based on
concrete realizations of the random variables summarized as the sample. Should
the null hypothesis be rejected, we conclude that it is false. A common pitfall
lies in the reverse: Accepting a hypothesis does not imply its correctness, but
rather the lack of evidence to prove it wrong.

Mathematically, we utilize a mapping from a sample to a binary verdict:
accept or reject. Different domains and application areas require a wide selection
of concrete mappings, called the test statistic. Test statistics vary with the

CHOICE AND CHANCE 235

representation of the underlying sample data. Sample data can be categorized
into quantitative or qualitative data. We refer to Figure for an illustration.
Quantitative data comprises 1. nominal data, like the preference of political
parties within a population, 2. ordinal data, like school grades, or 3. binary
data, like yes and no, or pass and fail. On the other hand, qualitative data
encompasses 1. discrete data, like the number of damaged parts in a shipment,
or 2. continuous data, like the body height of a person.

Quantitative Qualitative

Nominal Ordinal Binary Discrete Continuous

Figure A.1: Qualitative and quantitative classification of sample data.

In this section we recall two statistical testing methods alongside two test
statistics, which are utilized within this thesis. We refer the avid reader to grad-
uate textbooks for a more detailed approach on the subject, see e.g., [I56]. For a
recent survey on hypothesis testing in statistical model checking we refer to [I51].

A common template of statistical hypothesis tests encompasses the quantities:

1. A formal statement of the null hypothesis Hy, such as: the mean of a
random variable is equal to p,

2. a mathematical statement of the alternative hypothesis H 4, such as: the
mean of the random variable is not equal to p,

3. the level of significance « € (0, 1), a.k.a. probability to perform an error
of first kind or type I error,

4. the probability to perform an error of second kind 8 € (0,1) or type IT
error, and

5. the sample size N.

A.2.1 Statistical errors.

The goal of hypothesis testing is to exhibit control over the probability of wrong
decisions. Since observations are based on random variables, there is no guarantee
that the decision made is correct. Therefore, statistical tests always encompass
two errors; the errors of first or type I error, and error of second kind or type II
error. The first describes the probability to reject a true null hypothesis, while
the latter entails the probability to accept a wrong null hypothesis.

236 APPENDIX A. MATHEMATICAL BACKGROUND

These properties are quantified in the parameters a and (8 respectively. Figure
summarizes the probabilities with which each decision is made. The value
1 — [is often referred to as the power p of a statistical test. It comprises the
ability to correctly reject the null hypothesis. The value 8 and the power p are
occasionally swapped in the literature.

Hypothesis Hy true | Alternative H 4 true
l-«a B
Ho accepted | oot Decision Type II Error
. a 1 - B
Hy rejected Type I Error Correct Decision

Figure A.2: Quantification of possible statistical errors. The statistical error of
first kind is denoted by «, while the statistical error of second kind is denoted
by 5. The value 1 — 3 is frequently called the test power p.

A.2.2 Two Types of Hypotheses Tests

It is inherently impossible to exhibit control over all three parameters «, 8 and N
simultaneously. Defining values for both a and § requires a certain sample size
N. On the contrary, having a sample of size IV, one can only exhibit control over
a, and [adjusts to that. Consequently, there are two fundamentally different
approaches of statistical testing: 1. Sequential probability ratio testing, where
both errors o and 3 are fixed, and 2. Fixed sample size testing, where the error
of first kind a and sample size N are fixed. We introduce both shortly in the
following and refer to Figure for a schematic illustration.

A
NC 7
N N
R
(a) Fixed sample size (b) Sequential probability ratio

Figure A.3: Schematic visualisation of test decisions and acceptance regions
for fixed sample size testing versus sequential ratio testing after [I5I]. .4 marks
acceptance, R marks rejection, Z marks inconclusiveness, and N'C marks the non-
critical region. The unlabelled ordinate represents values of the test observation.
Fixed sample size tests draw a conclusion as soon as they hit the boundary in
N, while sequential ratio tests stay in a non-critical region, as long as they do
not hit either the A boundary, or the R boundary.

CHOICE AND CHANCE 237

Sequential probability ratio testing The sequential probability ratio test
(SPRT), or sequential analysis is commonly attributed to Abraham Wald et. al
[189]. Its key feature is the specification of « and 3, which leaves N variable.
SPRT investigates a sample z; of a random variable X with distribution f(z;;8),
where 6 is unknown. The null-hypothesis is Hy : 6 = 6, whereas the alternative
hypothesis is given as H; : = ;. The test exhibits its control over both o and
3, i.e. the error of first kind is not supposed to be greater than «, and the error
of second kind is not supposed to be greater than 5. This requires the sample
size N to be variable.

The intuition is as follows: for a given sample z1,...,zyN the test calculates
the cumulative sum of the log-likelihood ratio.

log(f(ws;061))
log(f(4;02))

If Sy is above a certain threshold A, we accept H;. However, if Sy is below a
certain threshold B, we accept Hy. The test is inconclusive if neither of these
cases hold, and another observation zy41 is added. The decisive feature lies in
the choice of A and B to guarantee the maximality of errors as « and . This is

given for
_1-8 8
@

1—a’

Sy ¥ Sy_1+

A and B =

Controlling both errors simultaneously makes the test flexible and efficient.
However, its applicability is often hindered by the fact that new observations
are not available. E.g. if statistical analysis is performed on a given data set,
there might be no way to acquire additional samples, or if a certain population
is exhaustively studied, additional observations might not be available at all.

Fixed sample size testing A far more commonly applied hypothesis test
is given in the fixed sample size test. Here, the eponymous sample size N
is fixed and a level of significance « is chosen. The test establishes critical
regions based on the null-hypothesis, the test statistic and «. Then, a test
observation is calculated based on the sample. The precise calculations depend
on the test statistic, e.g. x2, t-value, etc. Acceptance of the null-hypothesis is
determined depending whether or not the test observation lies in the critical
region. Naturally, an error of second kind cannot be avoided, and statistical
tests aim at being optimal with respect to a minimal 5.
The general course of actions is as follows:

1. The hypothesis Hy, and its alternative H; are phrased. A level of signifi-
cance « € (0,1) is set and possibly other parameters are chosen.

A sample is drawn.

The test statistic is chosen and critical regions are determined.

The test observation is calculated.

U LN

A conclusion is made: H;p is accepted if the test observation lies in the
critical region, and Hj is accepted if not.

238 APPENDIX A. MATHEMATICAL BACKGROUND

Fixed sample size tests can be parametric or non-parametric. The null hypothesis
of the first entails a test for a parameter like a distribution mean or its variance.
Non-parametric tests use different hypotheses; the null-hypothesis tests whether
two distributions are equal independent from individual parameters.

Application in this thesis. While the SPRT seems appealing in the context
of a probabilistic MBT framework, since new observations are readily available
upon additional test executions, we opt for fixed sample sizes instead. The models
considered in this thesis contain non-deterministic choices whose resolution
depends on schedulers — They are thus initially not fully probabilistic. Thus,
analysing whether a collected sample of traces can be attributed to a certain
model, requires finding a fitting scheduler first. This makes SPRT not directly
applicable, as every new observation requires new calculations with respect to
schedulers. In addition, note that SPRT are parametric tests, whereas the used
hypotheses tests in the thesis are non-parametric. Hence, the hypothesis tests
used in this thesis are of fixed sample size.

We introduce the non-parametric fixed sample size tests used in this thesis
in the following. We point out, that the intent of the hypothesis tests in both
cases is to infer whether a sample belongs to a given probability distribution.
Therefore, we apply non-parametric two-sided statistical tests.

A.2.3 Pearson’s y? Test

Pearson’s x? test is a non-parametric test statistic applicable for nominal data [2]
dating back to Karl Pearson [145]. It is one of many x? tests whose results are
evaluated with respect to the x? distribution (Definition . Its purpose in
the context of this thesis is to test the null-hypothesis that observed frequencies
of a sample are consistent with a theoretical distribution. In particular, it used
in Chapters [4] [f] and [7] to assess whether observations made on a black-box
trace machine are consistent with a formal specification model. We point out,
that Pearson’s x? test has other applications, e.g. to test homogeneity of two
samples, or a test of independence of two variables.

To apply the test, the underlying data has to be distinguishable in n different
groups such that the probability of all categories in the theoretical distribution
adds up to 1, e.g. numbers on a six sided die, or the preference of a political party
within a given population. The test statistic x? is calculated as the normalized
accumulated squared deviation from a sample to its expectations, i.e.

o x— (0 — E;)?
X2 def Z (Ei) ,
i=1
where O; is the number of observations of type i, E; is the expected number of
type i, and n is the total number of categories. The empirical test observation
x* is then compared to critical values x7,;; * X2, ; to determine acceptance of
the null hypothesis. Here « is the level of significance, and d are the degrees of

freedom (d.f.). The degrees of freedom refer to the amount of categories that are

CHOICE AND CHANCE 239

independent of each other. A six sided die, for instance, has 5 degrees of freedom,
as the sixth value is immediately clear, if one knows the all the others. The
critical values represent the 1 — a-percentiles of the x? distribution of d degrees
of freedom. That is, the probability mass in the percentile (—oo, X(Q% 4) contains
1 — « of the total probability mass of the probability density function. These
values can be calculated according to Definition [A-I9] Values for commonly
used assignments of @ and d are documented in lookup tables, e.g. [2]. For the
convenience of the reader, we included one in Table

Example A.21. Suppose we want to infer whether a given sample suggests a
fair die for a = 0.05. The straightforward categorisation is then given in the
numbers 1 to 6 where each number occurs with probability é Table depicts

a B | row
18 16 20 20 12 1

Observation 14 00

Expectation | 16.6 16.6 16.6 16.6 16.6 16.6 | 100

Table A.1: Example observation and expectations of a six sided die.

a potential sample of size m. We calculate the empirical x? score as

5 (14 —16.6)2 (20 —16.6)> (20 — 16.6)?
X 16.6 16.6 16.6
(20 — 16.6)? N (20 — 16.6)? N (12 — 16.6)?
16.6 16.6 16.6
- 3.2.

The experiment has 5 degrees of freedom, as the 6-th value is immediately given,
if one knows he remaining 5. The critical value for d =5 and o = 0.05 is given
as X%_o575 = 11.07, c¢f. Table . Since the empirical value does not exceed this
threshold, we accept the hypothesis, that the sample was drawn from a fair die.

A.2.4 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (KS-test) is a non-parametric hypothesis test [77]
named after Andrey Kolmogorov and Nikolai Smirnov. Its purpose is to decide
whether a sample comes from a population with a specific distribution (1-sample
KS-test), or to test whether two samples were drawn from the same population
(2-sample KS-test). In this thesis, we utilize the former. In particular, it is
used to test whether recorded time stamps belong to a specified continuous
distribution over real time in Chapters [f] and [7]

Suppose we gathered a sample z1,...,z, of n independently and identically
distributed random variables X;, where the z; are assumed to be ordered
increasingly. The KS-test compares the step function induced by the values x;

240 APPENDIX A. MATHEMATICAL BACKGROUND

d.f. Probability «

m 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01
1 - 0.001 0.004 0.016 2.706 3.841 5.024 6.635
2 0.020 0.051 0.103 0.211 4.605 4.991 7.378 9.210
3 0.115 0.216 0.352 0.584 6.251 7.815 0.348 11.345
4 0.297 0.484 0.711 1.064 7.779 0.488 11.143 13.277
5 0.554 0.831 1.145 1.610 9.236 11.071 12.833 15.086
6 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812
7 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475
8 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090
9 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666
10 | 2558 3.247 3940 4.865 15987 18.307 20.483 23.209
11 3.053 3.816 4.575 5578 17.275 19.675 21.920 24.725
12 | 3.571 4404 5226 6.304 18549 21.026 23.337 26.217
13 | 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688
14 | 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141
15 | 5.229 6262 7.261 8547 22307 24.996 27.488 30.578
16 | 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000
17 | 6.408 7.564 8672 10.085 24.769 27.587 30.191 33.409
18 | 7.015 8231 9.390 10.865 25989 28.869 31.526 34.805
19 | 7.633 8907 10.117 11.651 27.204 30.144 32.852 36.191
20 | 8260 9.591 10.851 12.443 28.412 31.410 34.170 37.566
21 8.807 10.283 11.591 13.240 29.615 32.671 35.479 38.932
22 | 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289
23 | 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638
24 | 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980
25 | 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314
26 | 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642
27 | 12.879 14.573 16.151 18.114 36.741 40.113 43.194 46.963
28 | 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278
29 | 14.257 16.047 17.708 19.768 39.087 42.557 45.722 49.588
30 | 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892
40 | 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691
50 | 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154
60 | 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379
70 | 45.442 48758 51.739 55.329 85.527 90.531 95.023 100.425
80 | 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329
90 | 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116
100 | 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807

Table A.2: Percentiles x2 ,, of the x* distribution [2].

CHOICE AND CHANCE 241

to the supposed underlying CDF (Definition [A.14)) F. The step function, or
empirical distribution function (EDF) for n values, denoted F,,, is given as

0, if v <y
n

o ifl‘kSI<.Z’k+1,

1, ifxz>uz,

where ny is the multiplicity of element z;. The distance of F' to F,, is called the
n-th Kolmogorov-Smirnov statistic, i.e.

K, = sup |Fo (z) — Fy ()]

n—oo

The Glivenko-Cantelli theorem [77] guarantees that K, —— 0, if the sample
was indeed drawn from the distribution F. The Kolmogorov-Smirnov statistic
is then compared to the critical values K, ,. A null-hypothesis is rejected iff
K, > Kq . The critical values K, , depend on the level of significance o, and
are the 1 — a-percentiles of the n-th Kolmogorov distribution. To the best of our
knowledge there is no explicit method to calculate the distribution of K,,, but
[191] provide a procedure to calculate P(K,, < x) with 13-15 digits accuracy for
n ranging from 2 to at least 16.000. Its limiting distribution is given as

lim P(vnK, <z)=1- 22(_1)1'—16_21'%2.

n—oo ¢
=1

However, for all practical intents and purposes, values for n < 40 exist in lookup
tables, e.g. [139], and there is an approximation formula for n > 40 in

v/—0.51n(a/2)
Kon =~ T

For the convenience of the reader, we included a reference table in Table

Example A.22. Assume given are t; = 0.26,t5 = 0.33,t3 = 0.55,t4 = 0.77,
ts = 1.18,ts = 1.41,t; = 1.46,tg = 1.97 as sample data. We want to infer
whether the the sample is consistent with a uniform distribution UNI[0,2]. The
step function of the t; for these values is given as

t <ty
th <o <tpy1,k=1,...,7
t>1s

Fg (.’1?) =

— ol O

Kg = 0.145 is the distance between the EDF of the t; and UN1][0,2]. The critical
value of the Kolmogorov distribution for n = 8 and a = 0.05 is K.y = 0.454,
cf. Table[A 3 With Kg < Kpit, the empiric value is below the given threshold.
Hence, we accept the null-hypothesis that the data is consistent with UNI|[0,2]

242 APPENDIX A. MATHEMATICAL BACKGROUND

Probability « Probability «
n 0.1 0.05 0.02 0.01 n 0.1 0.06 0.02 0.01
1 {0950 0.975 0.990 0.995 || 21 | 0.259 0.287 0.321 0.344
2 | 0.776 0.842 0.900 0.929 || 22 | 0.253 0.281 0.314 0.337
3 10.636 0.708 0.785 0.829 || 23 | 0.247 0.275 0.307 0.330
4 10.566 0.624 0.689 0.734 || 24 | 0.242 0.270 0.301 0.323
5 1 0.509 0.563 0.627 0.669 || 25 | 0.238 0.264 0.295 0.317
6 | 0.468 0.520 0.577 0.617 || 26 | 0.233 0.260 0.290 0.310
7 | 0436 0.483 0.538 0.576 || 27 | 0.229 0.254 0.284 0.305
8 | 0.410 0.454 0.507 0.542 || 28 | 0.225 0.250 0.279 0.300
9 | 0.387 0.430 0.480 0.513 || 29 | 0.221 0.246 0.274 0.295
10 | 0.369 0.410 0.457 0.489 || 30 | 0.218 0.242 0.270 0.290
11 | 0.352 0.391 0.437 0.468 || 31 | 0.214 0.238 0.266 0.285
12 | 0.340 0.375 0.419 0.449 || 32 | 0.211 0.234 0.262 0.281
13 1 0.330 0.361 0.403 0.432 || 33 | 0.208 0.231 0.258 0.277
14 | 0.314 0.349 0.390 0.418 || 34 | 0.205 0.227 0.254 0.273
15 [0.304 0.338 0.377 0.404 || 35 | 0.202 0.224 0.260 0.270
16 | 0.295 0.327 0.366 0.392 || 36 | 0.199 0.221 0.247 0.265
17 | 0.286 0.318 0.355 0.381 || 37 | 0.196 0.218 0.244 0.262
18 | 0.279 0.310 0.346 0.371 || 38 | 0.194 0.215 0.240 0.258
19 | 0.271 0.301 0.337 0.361 || 39 | 0.192 0.213 0.238 0.255
20 | 0.265 0.294 0.329 0.352 || 40 | 0.189 0.210 0.235 0.252

Table A.3: Percentiles K, ,, of the n-th Kolmogorov statistic [139)].

A.2.5 Accumulation of Type I Errors

A level of significance « € (0,1) limits type 1 error by «. Performing several
statistical experiments on the same sample inflates this probability: if one
experiment is performed at o = 0.05, there is a 5% probability to incorrectly
reject a true hypothesis. Performing 100 experiments, we expect to see a type 1
error 5 times. If all experiments are independent, the chance is thus 99.4%. This
probability is known as the family wise error rate (FWER) [172]. The FWER
becomes relevant in Chapters [5| and E], where one 2 test, as well as multiple
hypothesis tests for each delayed transition are performed.

There are generally two approaches to control this inflation: single step and
sequential adjustments. The first evenly distributes the probability to perform
a Type I error, while the latter adjusts it sequentially for every additional
hypothesis. Both aim at limiting the global type I error in the statistical testing
process by adjusting the local level of significance. Note that this correction
comes at the cost of globally increasing 3, thus decreasing the statistical power
p of a hypothesis test. We point out that there is no best correction, and usage
may vary with the number of hypotheses and other factors.

CHOICE AND CHANCE 243

Bonferroni correction. The most prevalent example for single step adjust-
ment is Bonferroni correction [I72]. The method is straightforward: the corrected
Qoca 1s evenly distributed for all m hypotheses, i.e.

Qglobal
m

Alocal =

Sidak correction. Another single step adjustment is given in the Siddk correc-
tion [I72]. Tt is shown to be slightly more powerful than Bonferroni correction [IJ.
If the total number of hypothesis tests to be performed is m, then

1
Qjocal = 1- (1 - aglobal) /m

Holm-Bonferroni correction. A sequential procedure is given in the Holm-
Bonferroni correction [I72]. It is shown to be more powerful than Bonferroni
correction [3] Rather than distributing « evenly, it is adjusted for every additional
hypothesis test performed. That is, for hypotheses Hy,..., Hy,, let p1,...,pm
be their corresponding power. The hypotheses are then ordered H(y), ..., Hmy)

according to their increasingly ordered powers p(1), ..., P(m). Then hypotheses
Hy, ..., Hg—1y are rejected, and H gy, ..., H(,,) are not, where k is the smallest
index such that
Qglobal
Pty > +1-—k

All three corrections ensure the FWER to be smaller or equal to o gjopar. For
more correction methods we refer the reader to [172].

APPENDIX B

Publications by the Author

e Marcus Gerhold and Mariélle Stoelinga. ioco theory for probabilistic
automata. In Proceedings of the 10th Workshop on Model Based Testing,
MBT, pages 23-40, 2015,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of proba-
bilistic systems. In Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering, FASE, pages 251-268,
2016,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of stochastic
systems with ioco theory. In Proceedings of the 7th International Workshop
on Automating Test Case Design, Selection, and Evaluation, A-TEST,
pages 45-51, 2016,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems with stochastic time. In Proceedings of the 11th International
Conference on Tests and Proofs, TAP, pages 77-97, 2017,

e Pedro R. D’Argenio, Marcus Gerhold, Arnd Hartmanns, and Sean Sedwards.
A hierarchy of scheduler classes for stochastic automata. In Proceedings of
the 21st International Conference on Foundations of Software Science and
Computation Structures, FOSSACS, pages 384—402, 2018,

e Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems. Formal Aspects of Computing, 30(1):77-106, 2018,

e Marcus Gerhold, Arnd Hartmanns, and Mariélle Stoelinga. Model-based
testing for general stochastic time. In Proceedings of the 10th International
Symposium on NASA Formal Methods, NFM, pages 203-219, 2018.

245

Bibliography

1]

[10]

Hervé Abdi. Bonferroni and siddk corrections for multiple comparisons.
Encyclopedia of measurement and statistics, 3:103—107, 2007.

Alan Agresti. An introduction to categorical data analysis, volume 135.
Wiley New York, 1996.

Mikel Aickin and Helen Gensler. Adjusting for multiple testing when
reporting research results: the bonferroni vs holm methods. American
journal of public health, 86(5):726-728, 1996.

Jamal N. Al-Karaki and Ahmed E. Kamal. Routing techniques in wireless
sensor networks: A survey. IEEE Wireless Communication, 11(6):6-28,
2004.

Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for
probabilistic real-time systems (extended abstract). In ICALP, volume
510 of LNCS, pages 115-126. Springer, 1991.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
computer science, 126(2):183-235, 1994.

Todd R. Andel and Alec Yasinsac. On the credibility of MANET simula-
tions. IEEE Computer, 39(7):48-54, 2006.

Alberto Avritzer, Laura Carnevali, Hamed Ghasemieh, Lucia Happe,
Boudewijn R. Haverkort, Anne Koziolek, Daniel S. Menasché, Anne Remke,
Sahra Sedigh Sarvestani, and Enrico Vicario. Survivability evaluation of
gas, water and electricity infrastructures. FElectronic Notes in Theoretical
Computer Science, 310:5-25, 2015.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf.
Comparative branching-time semantics for markov chains. Inf. Comput.,

200(2):149-214, 2005.

247

248

BIBLIOGRAPHY

[11]

[17]

Paolo Ballarini, Nathalie Bertrand, Andras Horvath, Marco Paolieri, and
Enrico Vicario. Transient analysis of networks of stochastic timed automata
using stochastic state classes. In QEST, volume 8054 of LNCS, pages
355-371. Springer, 2013.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaégl Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,
Cesar Munoz, Chetan Murthy, et al. The Coq proof assistant reference
manual: Version 6.1. Technical report, Inria, 1997.

Mark A. Beaumont, Wenyang Zhang, and David J. Balding. Approximate
bayesian computation in population genetics. Genetics, 162(4):2025-2035,
2002.

Joachim Behar, Aoife Roebuck, Joao S. Domingos, Elnaz Gederi, and
Gari D. Clifford. A review of current sleep screening applications for
smartphones. Physiological measurement, 34(7):R29, 2013.

Axel Belinfante. JTorX: exploring model-based testing. PhD thesis, Uni-
versity of Twente, Enschede, Netherlands, 2014.

Matthias Beyer and Winfried Dulz. Scenario-based statistical testing
of quality of service requirements. In Revised Selected Papers from the
International Workshop on Scenarios: Models, Transformations and Tools,
pages 152-173, 2003.

Morten Bisgaard, David Gerhardt, Holger Hermanns, Jan Krcal, Gilles
Nies, and Marvin Stenger. Battery-aware scheduling in low orbit: The
GomX-3 case. In FM, volume 9995 of LNCS, pages 559-576. Springer,
2016.

Nikolaj Bjgrner and Frank S. de Boer, editors. Proceedings of the 20th
International Symposium on Formal Methods, FM, volume 9109 of LNCS.
Springer, 2015.

Stefan Blom and Marieke Huisman. The VerCors tool for verification of
concurrent programs. In International Symposium on Formal Methods,
pages 127-131. Springer, 2014.

Barry W. Boehm. Software Engineering Economics, pages 99-150. Springer
Berlin Heidelberg, 2001.

Henrik Bohnenkamp and Axel Belinfante. Timed testing with TorX. In
Formal Methods Furope, volume 3582 of LNCS, pages 173-188. Springer,
2005.

Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-
Pieter Katoen. MoDeST: A compositional modeling formalism for hard
and softly timed systems. IEEE Trans. Software Eng., 32(10):812-830,
2006.

CHOICE AND CHANCE 249

[23]

[24]

Frank Bohr. Model-based statistical testing of embedded systems. In IEEE
4th Intl. Conf. on Software Testing, Verification and Validation, pages
18-25, 2011.

Frank Bohr. Model-Based Statistical Testing of Embedded Real-Time Soft-
ware with Continuous and Discrete Signals in a Concurrent Environment:
The Usage Net Approach. PhD thesis, University of Kaiserslautern, 2012.

George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability
and logic. Cambridge university press, 2002.

Steven Borowiec. AlphaGo seals 4-1 victory over Go grandmaster Lee
Sedol. The Guardian, 15, 2016.

Robert H. Bourdeau and Betty H. C. Cheng. A formal semantics for object
model diagrams. IEEE Trans. Software Eng., 21(10):799-821, 1995.

Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen
Nguyen, Thomas Noll, and Marco Roveri. Safety, dependability and per-
formance analysis of extended AADL models. Comput. J., 54(5):754-775,
2011.

Laura Brandén Briones and Ed Brinksma. A test generation framework
for quiescent real-time systems. In 4th International Workshop, FATES,
pages 6478, 2004.

Mario Bravetti and Pedro R. D’Argenio. Tutte le algebre insieme: Con-
cepts, discussions and relations of stochastic process algebras with general
distributions. In Validation of Stochastic Systems, volume 2925 of LNCS,
pages 44-88. Springer, 2004.

Mario Bravetti and Roberto Gorrieri. The theory of interactive generalized
semi-Markov processes. Theor. Comput. Sci., 282(1):5-32, 2002.

Tomaés Bréazdil, Holger Hermanns, Jan Krcal, Jan Kretinsky, and Vojtech
Rehék. Verification of open interactive Markov chains. In TARCS An-
nual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS, pages 474-485, 2012.

Tomas Brazdil, Jan Krcal, Jan Kretinsky, and Vojtech Rehék. Fixed-
delay events in generalized semi-Markov processes revisited. In CONCUR,
volume 6901 of LNCS, pages 140-155. Springer, 2011.

Jeremy Bryans, Howard Bowman, and John Derrick. Model checking
stochastic automata. ACM Trans. Comput. Log., 4(4):452-492, 2003.

Peter Buchholz, Jan Kriege, and Dimitri Scheftelowitsch. Model checking
stochastic automata for dependability and performance measures. In DSN,
pages 503-514. IEEE Computer Society, 2014.

250

BIBLIOGRAPHY

[36]

[37]

[38]

[39]

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, and Jan Krcédl. Optimal
continuous time Markov decisions. In ATVA, volume 9364 of LNCS, pages
166-182. Springer, 2015.

Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. Deep Blue.
Artificial intelligence, 134(1-2):57-83, 2002.

Stefano Cattani. Trace-Based Process Algebras for Real-Time Probabilistic
Systems. PhD thesis, University of Birmingham, 2005.

Ling Cheung, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager.
Switched PIOA: parallel composition via distributed scheduling. Theor.
Comput. Sci., 365(1-2):83-108, 2006.

Ling Cheung, Mariélle Stoelinga, and Frits W. Vaandrager. A testing
scenario for probabilistic processes. J. ACM, 54(6), 2007.

Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee.
Improved non-committing encryption with applications to adaptively secure
protocols. In ASTACRYPT, volume 5912 of LNCS, pages 287-302. Springer,
2009.

Tsun S. Chow. Testing software design modeled by finite-state machines.
IEFEF transactions on software engineering, (3):178-187, 1978.

Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A
symbolic test generation tool. In 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS,
pages 470-475, 2002.

Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the
art and future directions. ACM Comput. Surv., 28(4):626—-643, December
1996.

Rance Cleaveland, Zeynep Dayar, Scott A. Smolka, and Shoji Yuen. Test-
ing preorders for probabilistic processes. Information and Computation,
154(2):93 — 148, 1999.

Donald L. Cohn. Measure Theory. Birkhauser.

William J. Conover. A Kolmogorov goodness-of-fit test for discontinuous
distributions. Journal of the American Statistical Association, 67(339):591—
596, 1972.

Pedro R. D’Argenio, Marcus Gerhold, Arnd Hartmanns, and Sean Sed-
wards. A hierarchy of scheduler classes for stochastic automata. In Pro-
ceedings of the 21st International Conference on Foundations of Software
Science and Computation Structures, FOSSACS, pages 384-402, 2018.

CHOICE AND CHANCE 251

[49]

[50]

[51]

[52]

[53]

[54]

Pedro R. D’Argenio, Arnd Hartmanns, Axel Legay, and Sean Sedwards.
Statistical approximation of optimal schedulers for probabilistic timed
automata. In ¢F'M, volume 9681 of LNCS, pages 99-114. Springer, 2016.

Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochastic
systems part I: stochastic automata. Inf. Comput., 203(1):1-38, 2005.

Pedro R. D’Argenio, Matias David Lee, and Rail E. Monti. Input/output
stochastic automata. In FORMATS, volume 9884 of LNCS, pages 53-68.
Springer, 2016.

Pedro R. D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie
Traonouez. Smart sampling for lightweight verification of Markov de-
cision processes. STTT, 17(4):469-484, 2015.

Mohammad Torabi Dashti and David A. Basin. Tests and refutation. In
Proceedings of the 15th International Symposium on Automated Technology
for Verification and Analysis, ATVA, pages 119-138, 2017.

Luca de Alfaro. The verification of probabilistic systems under memoryless
partial-information policies is hard. Technical report, DTIC Document,
1999.

Rocco De Nicola. Extensional equivalences for transition systems. Acta
Inf., 24(2):211-237, 1987.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.

René G. de Vries, Axel Belinfante, and Jan Feenstra. Automated testing
in practice: The highway tolling system. In Proceedings of the 14th
International Conference on Testing Communicating Systems, pages 219—
234, 2002.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A storm is coming: A modern probabilistic model checker. In
International Conference on Computer Aided Verification, CAV, pages
592—-600. Springer, 2017.

Yuxin Deng and Matthew Hennessy. On the semantics of Markov automata.
Information and Computation, 222:139-168, 2013.

Yuxin Deng, Matthew Hennessy, Rob J. van Glabbeek, and Carroll Morgan.
Characterising testing preorders for finite probabilistic processes. CoRR,
2008.

Yuxin Deng, Rob J. van Glabbeek, Matthew Hennessy, and Carroll Morgan.
Testing finitary probabilistic processes. In Proceedings of the 20th Inter-
national Conference on Concurrency Theory, CONCUR, pages 274-288,
20009.

252

BIBLIOGRAPHY

[62]

Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H.
Travassos. A survey on model-based testing approaches: A systematic re-
view. In Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held
in Congunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering, ASE, WEASELTech, pages 31-36. ACM,
2007.

Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An improved
conformance testing method. In Proceedings of the 25th International
Conference on Formal Techniques for Networked and Distributed Systems,
pages 204-218, 2005.

Marie Duflot, Marta Kwiatkowska, Gethin Norman, and David Parker. A
formal analysis of bluetooth device discovery. Int. Journal on Software
Tools for Technology Transfer, 8(6):621-632, 2006.

Winfried Dulz and Fenhua Zhen. MaTeLo - statistical usage testing
by annotated sequence diagrams, markov chains and TTCN-3. In 3rd
International Conference on Quality Software, QSIC, pages 336—-342, 2003.

Christian Eisentraut, Jens Chr. Godskesen, Holger Hermanns, Lei Song,
and Lijun Zhang. Probabilistic bisimulation for realistic schedulers. In
Proceedings of the 20th International Symposium on Formal Methods, FM,
pages 248-264, 2015.

Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic
automata in continuous time. In LICS, pages 342-351. IEEE Computer
Society, 2010.

Juhan P. Ernits, Andres Kull, Kullo Raiend, and Jiiri Vain. Generating
tests from EFSM models using guided model checking and iterated search
refinement. In Revised Selected Papers of the First Combined Interna-

tional Workshops on Formal Approaches to Software Testing and Runtime
Verification, FATES and RV, pages 85-99, 2006.

Loe M. G. Feijs, Nicolae Goga, and Sjouke Mauw. Probabilities in the
TorX test derivation algorithm. In SAM, 2nd Workshop on SDL and MSC,
pages 173-188, 2000.

Yuan Feng and Lijun Zhang. When equivalence and bisimulation join
forces in probabilistic automata. In 19th International Symposium on
Formal Methods, FM, pages 247-262, 2014.

Marcus Gerhold, Arnd Hartmanns, and Mariélle Stoelinga. Model-based
testing for general stochastic time. In Proceedings of the 10th International
Symposium on NASA Formal Methods, NFM, pages 203-219, 2018.

CHOICE AND CHANCE 253

[72] Marcus Gerhold and Mariélle Stoelinga. ioco theory for probabilistic
automata. In Proceedings of the 10th Workshop on Model Based Testing,
MBT, pages 23-40, 2015.

[73] Marcus Gerhold and Mariélle Stoelinga. Model-based testing of proba-
bilistic systems. In Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering, FASE, pages 251-268,
2016.

[74] Marcus Gerhold and Mariélle Stoelinga. Model-based testing of stochastic
systems with ioco theory. In Proceedings of the 7th International Workshop
on Automating Test Case Design, Selection, and Evaluation, A-TEST,
pages 45-51, 2016.

[75] Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems with stochastic time. In Proceedings of the 11th International
Conference on Tests and Proofs, TAP, pages 77-97, 2017.

[76] Marcus Gerhold and Mariélle Stoelinga. Model-based testing of probabilis-
tic systems. Formal Aspects of Computing, 30(1):77-106, 2018.

[77] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric
Statistical Inference. Springer, 2011.

[78] Elizabeth Gibney. Google AI algorithm masters ancient game of Go. Nature
News, 529(7587):445, 2016.

[79] Sergio Giro and Pedro R. D’Argenio. Quantitative model checking revisited:
Neither decidable nor approximable. In FORMATS, volume 4763 of LNCS,
pages 179-194. Springer, 2007.

[80] Noah J. Goodall. Can you program ethics into a self-driving car? IEEE
Spectrum, 53(6):28-58, 2016.

[81] David Goodman and Raymond Keene. Man versus machine: Kasparov
versus deep blue. ICGA Journal, 20(3):186-187, 1997.

[82] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K.
Rajamani. Probabilistic programming. In FOSE, pages 167-181. ACM,
2014.

[83] Dennis Guck, Hassan Hatefi, Holger Hermanns, Joost-Pieter Katoen, and
Mark Timmer. Analysis of timed and long-run objectives for markov
automata. LMCS, 10(3), 2014.

[84] Dennis Guck, Mark Timmer, Hassan Hatefi, Enno Ruijters, and Mariélle
Stoelinga. Modelling and analysis of markov reward automata. In Pro-
ceedings of the 12th International Symposium on Automated Technology
for Verification and Analysis, ATVA, pages 168-184, 2014.

254

BIBLIOGRAPHY

[85]

[89)]

[90]

[91]

[92]

[96]

[97]

[98]

Dennis Guck, Mark Timmer, Hassan Hatefi, Enno Ruijters, and Mariélle
Stoelinga. Modelling and analysis of markov reward automata. In Proc.
of the 12th Int. Symposium on Automated Technology for Verification and
Analysis, ATVA, pages 168-184, 2014.

MATLAB Users Guide. The Mathworks. Inc., Natick, MA, 5:333, 1998.

Havva Gulay Gurbuz and Bedir Tekinerdogan. Model-based testing for
software safety: a systematic mapping study. Software Quality Journal,
Sep 2017.

Ernst Moritz Hahn, Arnd Hartmanns, and Holger Hermanns. Reachability
and reward checking for stochastic timed automata. In AVoCS, volume 70
of Electronic Communications of the EASST, 2014.

Peter G. Harrison and Ben Strulo. SPADES — a process algebra for discrete
event simulation. J. Log. Comput., 10(1):3-42, 2000.

Arnd Hartmanns. On the analysis of stochastic timed systems. PhD thesis,
Saarland University, 2015.

Arnd Hartmanns, Holger Hermanns, and Jan Krcal. Schedulers are no
prophets. In Semantics, Logics, and Calculi, volume 9560 of LNCS, pages
214-235. Springer, 2016.

Arnd Hartmanns, Sean Sedwards, and Pedro R. D’Argenio. Efficient
simulation-based verification of probabilistic timed automata. In Winter
Stmulation Conference, WSC, pages 1419-1430, 2017.

Holger Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality, volume 2428 of LNCS. Springer, 2002.

Holger Hermanns, Julia Kramer, Jan Krcal, and Mariélle Stoelinga. The
value of attack-defence diagrams. In POST, volume 9635 of LNCS, pages
163-185. Springer, 2016.

Holger Hermanns, Jan Krcél, and Jan Kretinsky. Probabilistic bisimula-
tion: Naturally on distributions. In Proceedings of the 25th International
Conference on Concurrency Theory, CONCUR, pages 249-265, 2014.

Robert M. Hierons and Mercedes G. Merayo. Mutation testing from
probabilistic and stochastic finite state machines. Journal of Systems and
Software, pages 1804-1818, 2009.

Robert M. Hierons, Mercedes G. Merayo, and Manuel Nunez. Testing from
a stochastic timed system with a fault model. J. Log. Algebr. Program.,
78(2):98-115, 2009.

Robert M. Hierons and Manuel Ninez. Testing probabilistic distributed
systems. volume 6117 of LNCS, pages 63—77. Springer, 2010.

CHOICE AND CHANCE 255

[99]

[100]

[101]

[102]

[103]

[104]

[105)

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Myles Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric
Statistical Methods. John Wiley & Sons, 2013.

Wen-ling Huang and Jan Peleska. Complete model-based equivalence class
testing for nondeterministic systems. Formal Asp. Comput., 29(2):335-364,
2017.

Felix Hiibner, Wen-ling Huang, and Jan Peleska. Experimental evaluation
of a novel equivalence class partition testing strategy. Software € Systems
Modeling, 2017.

Antti Huima. Implementing Conformiq Qtronic. In Testing of Software
and Communicating Systems, pages 1-12. Springer Berlin Heidelberg, 2007.

Iksoon Hwang and Ana R. Cavalli. Testing a probabilistic FSM using
interval estimation. Computer Networks, pages 11081125, 2010.

Shantanu Ingle and Madhuri Phute. Tesla autopilot: semi autonomous
driving, an uptick for future autonomy. International Research Journal of
Engineering and Technology, 3(9), 2016.

Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms.
STTT, 7(4):297-315, 2005.

Bertrand Jeannet, Pedro R. D’Argenio, and Kim G. Larsen. Rapture: A
tool for verifying markov decision processes. Tools Day, 2:149, 2002.

Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEFE transactions on software engineering, 37(5):649—
678, 2011.

Macarthur Job. Air disaster, vol. 2. Canberra: Aerospace Publications,
1996.

Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom,
and Tom van Dijk. LTSmin: high-performance language-independent
model checking. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS, pages 692-707.
Springer, 2015.

Kristian Karl. Graphwalker. www.graphwalker.org. Accessed: 2018-09-18.

Joost-Pieter Katoen. The probabilistic model checking landscape. In LICS,
pages 31-45. ACM, 2016.

John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An analysis of
defect densities found during software inspections. Journal of Systems and
Software, 17(2):111 — 117, 1992.

256

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

18]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Henning Kerstan and Barbara Konig. Coalgebraic trace semantics for
continuous probabilistic transition systems. Logical Methods in Computer
Science, 9(4), 2013.

Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform
random number generation. Algorithms and complexity: new directions
and recent results, pages 357—428, 1976.

Daniel Krawczyk. Reasoning: The Neuroscience of how We Think. Aca-
demic Press, 2017.

Moez Krichen and Stavros Tripakis. Conformance testing for real-time
systems. Formal Methods in System Design, 34(3):238-304, 2009.

Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. MANET simu-
lation studies: the incredibles. Mobile Computing and Communications

Review, 9(4):50-61, 2005.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In Proceedings of the 23rd
International Conference on Computer Aided Verification, CAV, pages
585-591, 2011.

Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy
Sproston. Verifying quantitative properties of continuous probabilistic
timed automata. In CONCUR, volume 1877 of LNCS, pages 123-137.
Springer, 2000.

Kim G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time
systems using UPPAAL. volume 3395 of LNCS, pages 79-94. Springer,
2005.

Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. UPPAAL TRON
user manual. CISS, BRICS, Aalborg University, Aalborg, Denmark, 2009.

Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing.
Information and computation, 94(1):1-28, 1991.

Harold J. Larson. Introduction to probability theory and statistical inference,
volume 12. Wiley New York, 1969.

David Lee and Mihalis Yannakakis. Principles and methods of testing
finite state machines - a survey. Proceedings of the IEEFE, 84(8):1090-1123,
1996.

Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Estimating
rewards & rare events in nondeterministic systems. In AVoCS, volume 72
of Electronic Communications of the EASST, 2015.

CHOICE AND CHANCE 257

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Scalable verifica-
tion of Markov decision processes. In SEFM, volume 8938 of LNCS, pages
350-362. Springer, 2015.

Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25
accidents. IEEE computer, 26(7):18-41, 1993.

Markus Lohrey, Pedro R. D’Argenio, and Holger Hermanns. Axiomatising
divergence. In International Collogquium on Automata, Languages, and
Programming, pages 585-596. Springer, 2002.

Robyn R. Lutz. Analyzing software requirements errors in safety-critical,
embedded systems. In Proceedings of IEEE International Symposium on
Requirements Engineering, pages 126-133. IEEE, 1993.

Robyn R. Lutz. Targeting safety-related errors during software require-
ments analysis. Journal of Systems and Software, 34(3):223-230, 1996.

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output
automata. 1988.

Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Do-
natelli, and Giuliana Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons, Inc., 1994.

Mercedes G. Merayo, Tksoon Hwang, Manuel Nifiez, and Ana Cavalli. A
statistical approach to test stochastic and probabilistic systems. In Formal
Methods and Software Engineering, volume 5885 of LNCS, pages 186—205.
Springer, 2009.

Robin Milner. A Calculus of Communicating Systems. Springer, 1982.

Todd K. Moon. The expectation-maximization algorithm. IEFEE Signal
processing magazine, 13(6):47-60, 1996.

Wojciech Mostowski, Erik Poll, Julien Schmaltz, Jan Tretmans, and
Ronny Wichers Schreur. Model-based testing of electronic passports.
In Proceedings of the 14th International Workshop on Formal Methods for
Industrial Critical Systems, FMICS, pages 207-209, 2009.

Jiawang Nie, James Demmel, and Ming Gu. Global minimization of
rational functions and the nearest GCDs. Journal of Global Optimization,
40(4):697-718, 2008.

Manuel Nunez and Ismael Rodriguez. Towards testing stochastic timed
systems. In FORTE, pages 335-350, 2003.

Patrick O’Connor and Andre Kleyner. Practical reliability engineering.
John Wiley & Sons, 2012.

258

BIBLIOGRAPHY

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

National Institute of Standards and Technology. The economic impacts of
inadequate infrastructure for software testing. Strategic Planning, 2002.

Chee-Mun Ong. Dynamic simulation of electric machinery: using MAT-
LAB/SIMULINK, volume 5. Prentice hall PTR Upper Saddle River, NJ,
1998.

Brooks Paige and Frank Wood. A compilation target for probabilistic
programming languages. CoRR, arXiv:1403.0504, 2014.

Sofia Costa Paiva, Adenilso Simao, Mahsa Varshosaz, and Mohammad Reza
Mousavi. Complete ioco test cases: a case study. In Proceedings of the 7th
International Workshop on Automating Test Case Design, Selection, and
Evaluation, pages 38-44. ACM, 2016.

Lawrence C. Paulson. Isabelle: A generic theorem prover, volume 828.
Springer Science & Business Media, 1994.

Karl Pearson. X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 50(302):157-175, 1900.

Alexandre Petrenko, Arnaud Dury, S. Ramesh, and Swarup Mohalik. A
method and tool for test optimization for automotive controllers. In
IEEE Sizth International Conference on Software Testing, Verification and
Validation Workshops ICSTW, pages 198-207. IEEE, 2013.

Alexandre Petrenko, Nina Yevtushenko, and Gregor von Bochmann. Fault
models for testing in context. In International Conference on Formal
Description Techniques IX, pages 163-178, 1996.

Avi Pfeffer. Practical probabilistic programming. In Inductive Logic
Programming, volume 6489 of LNCS, pages 2—-3. Springer Berlin Heidelberg,
2011.

Alexander Pretschner. Model-based testing. In 27th International Confer-
ence on Software Engineering, ICSE, pages 722-723, 2005.

Stacy J. Prowell. JUMBL: A tool for model-based statistical testing.
In Proceedings of the 36th Annual International Conference on System
Sciences, pages 9—pp. IEEE, 2003.

Daniél Reijsbergen, Pieter-Tjerk de Boer, Werner R. W. Scheinhardt,
and Boudewijn R. Haverkort. On hypothesis testing for statistical model
checking. STTT, 17(4):377-395, 2015.

Enno Ruijters and Mariélle Stoelinga. Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools. Computer Science Review,
15:29-62, 2015.

CHOICE AND CHANCE 259

[153] Enno Ruijters and Mariélle Stoelinga. Better railway engineering through
statistical model checking. In ISoLA, volume 9952 of LNCS, pages 151-165.
Springer, 2016.

[154] Martin Russell and Roger Moore. Explicit modelling of state occupancy
in hidden Markov models for automatic speech recognition. In IFEFE
International Conference on Acoustics, Speech, and Signal Processing,
ICASSP, volume 10, pages 5-8, 1985.

[155] Jonathan Schaeffer and Aske Plaat. Kasparov versus Deep Blue: The
rematch. ICGA Journal, 20(2):95-101, 1997.

[156] Mark J. Schervish. Theory of statistics. Springer Science & Business Media,
2012.

[157] Ina Schieferdecker. Model-based testing. IEEE Software, 29(1):14-18,
2012.

[158] Roberto Segala. Modeling and Verification of Randomized Distributed
Real-Time Systems. PhD thesis, MIT, Cambridge, MA, USA, 1995.

[159] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model
checking of black-box probabilistic systems. In Computer Aided Verification,
pages 202-215. Springer Berlin Heidelberg, 2004.

[160] Muhammad Shafique and Yvan Labiche. A systematic review of state-
based test tools. International Journal on Software Tools for Technology
Transfer, 17(1):59-76, Feb 2015.

[161] Bluetooth SIG. Bluetooth specification, version 1.2. www.bluetooth.com,
2003. Accessed: 2018-09-18.

[162] Lei Song, Lijun Zhang, and Jens Chr. Godskesen. Late weak bisimulation
for Markov automata. CoRR, abs/1202.4116, 2012.

[163] Graham Steel. Formal analysis of PIN block attacks. Theoretical Computer
Science, 367(1-2):257-270, 2006.

[164] Mariélle Stoelinga. Alea Jacta Est: Verification of Probabilistic, Real-
Time and Parametric Systems. PhD thesis, University of Nijmegen, The
Netherlands, 2002.

[165] Marielle Stoelinga and Frits Vaandrager. Root contention in IEEE 1394.
In Formal Methods for Real-Time and Probabilistic Systems, volume 1601
of LNCS, pages 53-74. Springer, 1999.

[166] Willem Gerrit Johan Stokkink, Mark Timmer, and Mariélle Stoelinga. Di-
vergent quiescent transition systems. In Proceedings of the 7th International
Conference on Tests and Proofs, TAP, pages 214-231, 2013.

260

BIBLIOGRAPHY

167)

168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]
[179]

[180]

Ben Strulo. Process algebra for discrete event simulation. PhD thesis,
Imperial College of Science, Technology and Medicine. University of London,
October 1993.

Sebastian Thrun. Probabilistic robotics. Communications of the ACM,
45(3):52-57, 2002.

Mark Timmer, Ed Brinksma, and Mariélle Stoelinga. Model-based testing.
In Software and Systems Safety - Specification and Verification, pages 1-32.
2011.

Mark Timmer, Joost-Pieter Katoen, Jaco van de Pol, and Mariélle
Stoelinga. Efficient modelling and generation of Markov automata. In
23rd International Conference on Concurrency Theory, CONCUR, volume
7454 of LNCS, pages 364-379. Springer, 2012.

Mark Timmer, Jaco van de Pol, and Mari€lle Stoelinga. Confluence re-
duction for Markov automata. In Proceedings of the 11th International
Conference on Formal Modeling and Analysis of Timed Systems, FOR-
MATS, volume 8053 of Lecture Notes in Computer Science, pages 243-257.
Springer, 2013.

Larry E. Toothaker. Multiple comparison procedures. Number 89. Sage,
1993.

Jan Tretmans. Conformance testing with labelled transition systems:
Implementation relations and test generation. Computer Networks and
ISDN Systems, 29(1):49-79, 1996.

Jan Tretmans. Model based testing with labelled transition systems. In
Formal Methods and Testing, An Outcome of the FORTEST Network,
Revised Selected Papers, pages 1-38, 2008.

Jan Tretmans. On the Ezistence of Practical Testers, pages 87—106.
Springer International Publishing, 2017.

Jan Tretmans and Ed Brinksma. Cote de resyste — automated model based
testing. 2002.

Jan Tretmans, Klaas Wijbrans, and Michel R. V. Chaudron. Software
engineering with formal methods: The development of a storm surge barrier
control system revisiting seven myths of formal methods. Formal Methods
in System Design, 19(2):195-215, 2001.

Hans Triebel. Higher Analysis, volume 93. Barth, 1992.

Hasan Ural. Formal methods for test sequence generation. Computer
Communications, 15(5):311 — 325, 1992.

Mark Utting. How to design extended finite state machine test models in
java. Model-Based Testing for Embedded Systems, pages 147-169, 2012.

CHOICE AND CHANCE 261

[181]

[182]

[183]

[184]

[185)

[186]

[187)

[188]

[189)]

[190]

[191]

[192]

193]

Mark Utting, Bruno Legeard, Fabrice Bouquet, Elizabeta Fourneret, Fabien
Peureux, and Alexandre Vernotte. Recent advances in model-based testing.
In Advances in Computers, volume 101, pages 53-120. Elsevier, 2016.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing approaches. Software Testing, Verification and
Reliability, 22(5):297-312, 2012.

Petra van den Bos, Ramon Janssen, and Joshua Moerman. n-complete
test suites for IOCO. In Proceedings of the 29th International Conference
Testing on Software and Systems, IFIP, pages 91-107, 2017.

Rob J. van Glabbeek. The linear time-branching time spectrum. In
Proceedings of Theories of Concurrency, CONCUR, pages 278-297, 1990.

Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive,
generative, and stratified models of probabilistic processes. volume 121,
pages 59-80. Elsevier, 1995.

Axel van Lamsweerde. Formal specification: a roadmap. In Proceedings of
the 22nd International Conference on the Future of Software Engineering,

ICSE, pages 147-159, 2000.

Michiel van Osch. Hybrid input-output conformance and test generation.
In Revised Selected Papers from the First Combined International Work-
shops on Formal Approaches to Software Testing and Runtime Verification,
FATES and RV, pages 70-84, 2006.

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte,
Nikolai Tillmann, and Lev Nachmanson. Model-based testing of object-
oriented reactive systems with spec explorer. In Formal Methods and
Testing, An Outcome of the FORTEST Network, Revised Selected Papers,
pages 39-76, 2008.

Abraham Wald. Sequential tests of statistical hypotheses. Ann. Math.
Statist., 16(2):117-186, 06 1945.

Gwendolyn H. Walton, Jesse H. Poore, and Carmen J. Trammell. Statistical
testing of software based on a usage model. Softw., Pract. Exper., 25(1):97—
108, 1995.

Jingbo Wang, Wai Wan Tsang, and George Marsaglia. Evaluating kol-
mogorov’s distribution. Journal of Statistical Software, 8(18), 2003.

Gou Watanabe and Norihiro Ishikawa. Da Vinci surgical system. Kyobu
geka. The Japanese journal of thoracic surgery, 67(8):686—689, 2014.

Bruce Weber. Swift and slashing, computer topples Kasparov. New York
Times, 12, 1997.

262 BIBLIOGRAPHY

[194] James A. Whittaker. What is software testing? And why is it so hard?
IEEFE software, 17(1):70-79, 2000.

[195] Verena Wolf, Christel Baier, and Mila E. Majster-Cederbaum. Trace
machines for observing continuous-time Markov chains. ENTCS, 153(2):259—
277, 2006.

[196] Verena Wolf, Christel Baier, and Mila E. Majster-Cederbaum. Trace
semantics for stochastic systems with nondeterminism. FElectr. Notes
Theor. Comput. Sci., 164(3):187-204, 2006.

[197] Nicolds Wolovick. Continuous probability and nondeterminism in labeled
transition systems. PhD thesis, Universidad Nacional de Cérdoba, Cérdoba,
Argentina, 2012.

[198] Nicolds Wolovick and Sven Johr. A characterization of meaningful sched-
ulers for continuous-time Markov decision processes. In FORMATS, volume
4202 of LNCS, pages 352—-367. Springer, 2006.

Samenvatting

Kansen spelen een belangrijke rol in veel computerapplicaties. Een groot scala
aan algoritmen, protocollen en berekenmethoden gebruiken randomisatie om hun
doelen te bereiken. Een cruciale vraag is dan of zulke probabilistische systemen
werken zoals bedoeld. Om dit te onderzoeken worden zulke systemen getest door
een groot aantal goed ontworpen tests, die het geobserveerde gedrag vergelijken
met een specificatie. Doorgaans worden deze tests gemaakt met de hand, waarbij
menselijke fouten niet onmogelijk zijn. Een andere aanpak is het automatisch
genereren van deze tests. Model-gebaseerd testen is een innovatieve testmethode
vanuit de formele methoden, die de taak van tests maken poogt te automatiseren.
Het heeft tractie gevonden in zowel academia als de industrie, doordat het sneller
en rigoreuzer kan testen. Echter, klassiek model-gebaseerde testmethoden zijn
niet afdoende wanneer de systemen van stochastische aard zijn.

Dit proefschrift introduceert een rigoreus model-gebaseerd testraamwerk, dat
het mogelijk maakt dergelijke systemen automatisch te testen. De gepresenteerde
methoden kunnen functionele correctheid beoordelen, discrete probabilistische
keuzes, en harde en zachte tijdsbeperkingen. Allereerst wordt het vakgebied
van model-gebaseerd testen beschreven en gerelateerd werk besproken. Het
raamwerk is daarna duidelijk en stapsgewijs opgesteld. Vervolgens wordt een
model-gebaseerd testraamwerk geinstantieerd om het doel aan te geven van de
theoretische compentenen, zoals een conformiteitsrelatie of testgevallen. Dit
raamwerk wordt dan conservatief uitgebreid door discrete probabilistische keuzes
aan de specificatietaal toe te voegen. Ten slotte wordt dit probalistische raamwerk
uitgebreid met harde en zachte tijdsbeperkingen. Uitspraken over klassiek func-
tionele correctheid zijn dus uitgebreid met statistische goodness of fit methoden.
Het bewijs dat dit raamwerk correct is worden gegeven alvorens de mogelijkheden
ervan aan te stippen door middel van kleine casussen bekend van de literatuur.

Het raamwerk verenigt niet-deterministische en probabilistische keuzes op
een volwaardige manier middels het gebruik van schedulers. Dit maakt sched-
ulers op zich zelf al interessant voor een eigen studie. Dit wordt gedaan in
het tweede deel van dit proefschrift: We introduceren een gelijkwaardigheid-
srelatie gebaseerd op schedulers voor Markov-automaten en vergelijken haar
onderscheidende expressiviteit wat betreft spoordistributies en bisimulatierelaties.
Als laatst onderzoeken we de kracht van verschillende schedulerklassen voor
stochastische automaten. We vergelijken de bereikbaardheidskansen van verschil-
lende schedulers door de informatie die voor hen beschikbaar is te veranderen
om een hirarchie van schedulerklassen te vestigen.

263

Titles in the IPA Dissertation Series since 2015

G. Alpar. Attribute-Based Iden-
tity Management: Bridging the Cryp-
tographic Design of ABCs with the
Real World. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-01

A.J. van der Ploeg. Efficient
Abstractions for Visualization and
Interaction. Faculty of Science,
UvA. 2015-02

R.J.M. Theunissen. Supervisory
Control in Health Care Systems.
Faculty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flex-
wbility and Trustworthiness. Faculty of

Mathematics and Computer Science,
TU/e. 2015-04

A. Guazzi. Supporting Develop-
ers’ Teamwork from within the IDE.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and
Their Clients. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Networks.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics
and Computer Science, TU/e. 2015-08

S. Cranen. Getting the point
— Obtaining and understanding fiz-
points in model checking. Faculty of

Mathematics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and TLS
security protocols. Faculty of Science,

Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an
Architecture Framework and Quality
FEvaluation for Automotive Software
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2015-12

J. Bransen. On the Incremen-
tal Evaluation of Higher-Order At-
tribute Grammars. Faculty of Science,
UU. 2015-13

S. Picek. Applications of FEvolu-
tionary Computation to Cryptology.
Faculty of Science, Mathematics and
Computer Science, RU. 2015-14

C. Chen. Automated Fault Local-
ization for Service-Oriented Software
Systems. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Mathematics
and Computer Science, RU. 2015-17

J.C. Rot. FEnhanced coinduction.
Faculty of Mathematics and Natural
Sciences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifica-
tions of Probabilistic Processes. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA FExpressions —
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of In-
terconnects. Faculty of Mathematics
and Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic,
Games, and Relations of Consequence.
Faculty of Mathematics and Computer
Science, TU/e. 2016-03

S. Keshishzadeh. Formal Anal-
ysis and Verification of Embedded
Systems for Healthcare. Faculty of
Mathematics and Computer Science,
TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-
in-Time. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2016-05

Y. Luo. From Conceptual Models to
Safety Assurance — Applying Model-
Based Techniques to Support Safety
Assurance. Faculty of Mathematics
and Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-07

A.l. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2016-09

I. David. Run-time resource man-
agement for component-based systems.
Faculty of Mathematics and Computer
Science, TU/e. 2016-10

A.C. van Hulst. Control Synthesis
using Modal Logic and Partial Bisimi-
larity — A Treatise Supported by Com-
puter Verified Proofs. Faculty of Me-
chanical Engineering, TU/e. 2016-11

A. Zawedde. Modeling the Dynam-
ics of Requirements Process Improve-
ment. Faculty of Mathematics and
Computer Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile
Communication Security. Faculty of
Science, Mathematics and Computer
Science, RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Faculty
of Mathematics and Natural Sciences,
UL. 2016-14

M.J. Steindorfer. FEfficient Im-
mutable Collections. Faculty of Sci-
ence, UvA. 2017-01

W. Ahmad. Green Computing: Ef-
ficient Energy Management of Multi-
processor Streaming Applications via
Model Checking. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2017-02

D. Guck. Reliable Systems — Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2017-03

H.L. Salunkhe. Modeling and
Buffer Analysis of Real-time Stream-
ing Radio Applications Scheduled on
Heterogeneous Multiprocessors. Fac-
ulty of Mathematics and Computer
Science, TU fe. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communica-
tion on the Internet and in the Inter-
net of Things (IoT). Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty of
Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of
Limitations and Opportunities. Fac-

ulty of Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography — Having your cake
and eating it too. Faculty of Science,
Mathematics and Computer Science,
RU. 2017-08

A.M. Sutii. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific

Languages. Faculty of Mathematics
and Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph
Construction and Visualization. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2017-11

A. Amighi. Specification and Verifi-
cation of Synchronisation Classes in
Java: A Practical Approach. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2018-01

S. Darabi. Verification of Program
Parallelization. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2018-02

J.R. Salamanca Tellez. Co-
equations and Filenberg-type Corre-
spondences. Faculty of Science,

Mathematics and Computer Science,
RU. 2018-03

P. Fiterau-Brostean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,

Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State
Machines to Reliable Multi-threaded
Java Code. Faculty of Mathematics
and Computer Science, TU/e. 2018-05

H. Basold. Mized Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,

Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling: Model
Refinements for Timing Analysis
of Runtime Scheduling in Real-time
Streaming Systems. Faculty of

Mathematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Behav-
ioral Specification: unifying model-
ing and programming. Faculty of

Mathematics and Natural Sciences,
UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art
of railway maintenance: Analysis
and optimization of maintenance via
fault trees and statistical model check-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2018-10

F. Yang. A Theory of Executabil-
ity: with a Focus on the FExpressiv-
ity of Process Calculi. Faculty of
Mathematics and Computer Science,
TU/e. 2018-11

L. Swartjes. Model-based de-
sign of baggage handling systems.
Faculty of Mechanical Engineering,
TU/e. 2018-12

T.A.E. Ophelders. Continuous
Similarity Measures for Curves and
Surfaces. Faculty of Mathematics and
Computer Science, TU/e. 2018-13

M. Talebi. Scalable Performance
Analysis of Wireless Sensor Network.
Faculty of Mathematics and Computer
Science, TU/e. 2018-14

R. Kumar. Truth or Dare: Quan-
titative security analysis using attack
trees. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software De-
velopment. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2018-16

M. Mehr. Faster Algorithms for Ge-
ometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identification, Analysis and
Understanding of Deviations. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2018-18

P.A. Inostroza Valdera. Struc-
turing Languages as Object-Oriented

Libraries. Faculty of Science,
UvA. 2018-19

M. Gerhold. Choice and Chance
- Model-Based Testing of Stochastic
Behaviour. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2018-20

	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	The Formal Methods Approach
	Verification and Validation
	Testing and Properties of Interest
	Modelling Formalisms and Contributions
	Structure and Synopsis of this Thesis

	The Model-Based Testing Landscape
	Overview
	Components of Model-Based Testing
	A Taxonomy of Model-Based Testing
	Classification of the Probabilistic Framework

	Model-Based Testing in the ioco Framework
	Model and Language-Theoretic Concepts
	The Conformance Relation ioco
	Testing and Test Verdicts
	Correctness of the Framework
	Algorithms and Algorithmic Correctness
	Summary and Discussion

	Model-Based Testing with Probabilistic Automata
	Model and Language-Theoretic Concepts
	Probabilistic Input Output Transition Systems
	Paths and Traces
	Schedulers and Trace Distributions

	Probabilistic Testing Theory
	The Conformance Relation pioco
	Test Cases and Test Annotations
	Test Evaluation and Verdicts
	Correctness of the Framework

	Implementing Probabilistic Testing
	Test Generation Algorithms
	Goodness of Fit
	Probabilistic Test Algorithm Outline

	Experiments
	Dice programs by Knuth and Yao
	The Binary Exponential Backoff Algorithm
	The FireWire Root Contention Protocol

	Summary and Discussion
	Proofs

	Model-Based Testing with Markov Automata
	Input Output Markov Automata
	Definition
	Abstract Paths and Abstract Traces
	Schedulers and Trace Distributions

	Markovian Test Theory
	The Conformance relation Marioco
	Test Cases and Annotations
	Test Evaluation and Verdicts
	Correctness of the Framework

	Implementing Markovian Testing
	Goodness of Fit
	Stochastic Delay and Quiescence
	Markovian Test Algorithm Outline

	Experiments on the Bluetooth Device Discovery Protocol
	Conclusions
	Proofs

	Stoic Trace Semantics for Markov Automata
	Markov Automata
	Definition and Notation
	Language Theoretic Concepts
	Stoic Trace Semantics
	Compositionality

	A Testing Scenario
	Sampling and Expectations
	Observational Equivalence

	Relation to other Equivalences
	Trace Distribution Equivalence by Baier et al.
	Bisimulation
	Hierarchy

	Conclusions
	Proofs

	Model-Based Testing with Stochastic Automata
	Stochastic Automata
	Definition
	Language Theoretic Concepts
	Schedulers and Trace Distributions

	Stochastic Testing Theory
	The Conformance Relation saioco
	Test Cases
	Test Execution and Sampling
	Correctness of the Framework

	Implementing Stochastic Testing
	Goodness of Fit
	Algorithmic Outline

	Bluetooth Device Discovery Revisited
	Conclusions
	Proofs

	Scheduler Hierarchy for Stochastic Automata
	Preliminaries
	Closed Stochastic Automata
	Timed Probabilistic Transition Systems
	Semantics of Closed Stochastic Automata

	Classes of Schedulers
	Classic Schedulers
	Non-Prophetic Schedulers

	The Power of Schedulers
	The Classic Hierarchy
	The Non-Prophetic Hierarchy

	Experiments
	Conclusions

	Conclusions
	Summary
	Discussion and Future Work

	Appendices
	Mathematical Background
	Probability Theory
	Statistical Hypothesis Testing
	Statistical errors.
	Two Types of Hypotheses Tests
	Pearson's Chi Square Test
	Kolmogorov-Smirnov Test
	Accumulation of Type I Errors

	Publications by the Author
	Bibliography
	Samenvatting

