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Abstract—The Ecovat system is a seasonal thermal storage
technology developed to supply the heat demand of a neigh-
bourhood of houses throughout the entire year. It consists
of a large subterranean water tank which is divided into a
number of virtual segments which can be charged or discharged
independently from each other. In this work, we present a fast
heuristic approach to model and control the charging (store
heat) and discharging (withdraw heat) of the Ecovat system.
We compare the results obtained with this approach to results
obtained with a previously developed integer linear programming
model (ILP) of the Ecovat system, which is too slow to be used in
practice. The heuristic is found to reduce the computational time
from 12+ hours for the ILP model to one second and is thereby
suitable to be used in practice. The price for this reduction is
an average decrease in performance of 5.2% and a maximum
observed decrease of 12.5%.

I. INTRODUCTION

In recent years the share of renewable energy sources, such
as sun and wind, has increased in an effort to reduce greenhouse
gas emissions as well as to reduce the dependence on fossil
fuels to supply our energy demands. However, these renewables
lead to a new challenge: generation peaks do not always
coincide with peaks in the energy demand. To overcome this
challenge much research has been done on solutions, such as
demand side management (DSM) and energy storage, which
both allow for a better matching of supply and demand. In this
work we focus on a specific thermal energy storage solution.

Thermal storage technologies can be divided into three
categories. The first is sensible heat storage, in which energy
is stored by increasing the temperature of the storage medium,
usually water or rock. Examples of sensible heat storage are
water tanks [1], [2], aquifers [3] and rock beds [4]. The second
is latent heat storage, in which energy is stored due to a phase
change in the storage medium, called phase change materials
(PCM). Compared to sensible heat storage latent heat storage
achieves higher energy densities, but at higher investment costs.
The use of PCM for thermal energy storage is reviewed in [5],
[6]. The final category is chemical storage, in which energy is
stored by means of reversible chemical reactions. Compared
to the previous two categories chemical storage achieves even
higher energy densities, but in general is also more expensive.
A review of chemical storage technologies is presented in [7].

In this paper we consider the Ecovat system [8]. The system
consists of the Ecovat buffer, which is a large underground
water tank, accompanied by a number of devices to charge and
discharge the buffer; PVT panels, heat pumps and a resistance
heater. The Ecovat buffer is a sensible heat storage technology,
i.e. charging of the buffer causes the water to increase in
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temperature. The feature that differentiates the Ecovat buffer
from other water tanks is the fact that water is not pumped
into or out of the buffer when charging or discharging. Instead,
the charging and discharging of the buffer is done by heat
exchangers integrated into the buffer walls. The Ecovat buffer
is divided into a number of horizontal segments, which can be
charged or discharged individually. However, these segments
are not physically separated from each other. The charging
and discharging of the buffer is done in such a way that the
stratification inside the buffer remains intact, as this has been
shown to increase efficiency [9], [10].

In previous work we modelled the Ecovat system and its
control by means of an integer linear programming (ILP)
model [11]. Based on predictions for the heat demand, ambient
temperature and energy prices during a given period the ILP
model determines a charging and discharging strategy for the
Ecovat system for that period. However, due to the complexity
of the problem, the ILP model can only be solved for short
time periods (up to a few days). To be able to apply the model
to longer time periods (preferably one year), a rolling horizon
approach is employed in the model. This approach optimizes
two days in advance with the ILP model, while only the first of
those days is realised. The results in [11] show that a weakness
of this model is that it might lead to a situation where the
model is not able to sufficiently incorporate seasonal effects.

In follow up work [12], we extended the ILP model with
a long-term planning, which determines, based on historical
heat demand data and predicted energy prices, a target state
of charge for the buffer for every day within the optimization
horizon. The ILP model is then penalized whenever the state
of charge drops below this target during the optimization. This
extension allowed the model to better incorporate seasonal
effects as shown in [12]. Furthermore, it was shown that the
model is very robust against prediction errors.

While the ILP model gives good solutions it is computation-
ally expensive. For example, a rolling horizon optimization
spanning a complete year takes 12 hours or more. This means
that on average a time of almost two minutes (and in some
extreme cases a much longer time) is required to determine a
strategy for a given day. For integration into a neighbourhood
level DSM system these computation times are too long. Even
more importantly, when controlling a real Ecovat system a
method capable of making fast (sub-second) decisions will be
necessary. In this paper we present such a fast, heuristic control
approach for the Ecovat system. The goal of this heuristic is
to provide fast solutions while retaining an acceptable level of
accuracy when compared to solutions given by the ILP model.

The remainder of this paper is structured as follows: in
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Fig. 1. Schematic overview of the Ecovat system, consisting of the Ecovat
buffer and a number of devices to charge the buffer, namely PVT panels (pvt),
a resistance heater (res) and heat pumps (lthp, hthp and awhp).

Section II the developed heuristic approach is presented, while
in Section III the input data is described. Next, in Section IV
the results of the comparison between the heuristic and the
ILP model are presented and discussed. Finally, in Section V
conclusions are presented and future work is outlined.

II. HEURISTIC APPROACH

The goal of the Ecovat system is to supply the heat demand
of a neighbourhood of houses for both space heating and tap
water, while minimizing the cost for supplying this energy. To
ensure that enough energy is available in the buffer to supply
this demand, the buffer is charged using photovoltaic-thermal
(PVT) panels, heat pumps and a resistance heater by using
locally generated energy or energy bought on the energy market,
preferably when the price is low or even negative.

In Fig. 1 a schematic overview of the Ecovat system is
shown. The Ecovat buffer is divided into five segments, each
with a different temperature. To avoid stratification issues the
temperature within the segments needs to be decreasing, with
Segment 1 having the highest temperature. In the left part of
Fig. 1 the devices to charge the buffer are shown. This charging
(and discharging) is done through heat exchangers integrated
into the buffer walls. The PVT panels (pvt in Fig. 1) can charge
the buffer if their output temperature is high enough. The output
of these panels can only be connected to the bottom segment,
since in general the temperature is relatively low. At the same
time the bottom segment will be kept at a low temperature so
that the PVT panels can be cooled to increase their efficiency.
The resistance heater (res in Fig. 1) is able to add a large
amount of energy to the buffer, however, it does so at a low
efficiency. This makes it an ideal device to charge the buffer
during intervals with negative energy prices.

The remaining devices are a number of heat pumps, namely
an air-water heat pump (awhp in Fig. 1) that can charge the
buffer using the outside air as heat source and two water-water
heat pumps that use one of the buffer segments as a heat source
and another segment (with higher temperature) as heat sink.

Because of the large temperature range in the buffer (from
about 5 ◦C in the bottom segment up to 90 ◦C in the top
segment) one of the water-water heat pumps is used to cover
the low temperatures and one to cover the high temperatures
(lthp and hthp respectively in Fig. 1). The exact temperature
ranges of the heat pumps are set as parameters in the heuristic.

The heuristic approach developed in this work is based
on the ILP model developed in [11] and [12]. The input
data for both methods consists of energy prices, weather
data and heat demand for every interval in the time hori-
zon. We define the set of intervals in the time horizon as
I = {1, 2, ..., Nint}, with Nint the number of intervals. As
common for DSM, we take the length of an interval to be
15 minutes. We define the set of segments in the Ecovat
buffer as S = {1, 2, ..., Nseg}, with Nseg = 5 the number
of segments. The input data consists of a vector containing
the energy prices p = (p1, p2, ..., pNint

), a vector containing
the ambient temperature Ta = (T a

1 , T
a
2 , ..., T

a
Nint

), a vector
containing the global radiation G = (G1, G2, ..., GNint) and a
vector containing the heat demand d = (d1, d2, ..., dNint

) for
every interval in the time horizon. In simulations these values
may be based on historical data and predictions, while in real
operation real time measurements may be used to update these
values. The goal of the heuristic is to determine for each time
interval the use of the devices while minimizing costs, and
thereby identical to that of the ILP model.

Similar to the ILP model, the heuristic starts by generating a
target, V = (V1, V2, ..., VbNint/96c), for the useful energy in the
buffer at the end of every day [12]. Here useful energy is defined
as energy that can be used to supply the heat demand, i.e. energy
at temperatures higher than the given demand temperature Td:

Ui =
∑
s∈S

ms cp max{Ti,s − Td, 0}, (1)

where Ui is the useful energy at interval i, Ti,s is the
temperature of segment s during interval i, ms is the mass of
segment s and cp is the specific heat coefficient of water. The
purpose of V is to make sure the buffer has enough energy
stored at times of high demand, in general during winter.

To describe the workings of the heuristic approach we will
first give an outline of the heuristic and subsequently elaborate
on the different steps of the heuristic in the rest of this section.
During every interval i in the time horizon the following steps
are performed:

1) Determine the maximum accepted energy price for the
devices to run.

2) Calculate the output temperature of the PVT panels.
3) Decide whether the PVT panels, lthp and/or hthp run.
4) Decide which segment supplies the heat demand and

whether the resistance heater and awhp run.
5) Calculate the heat losses in the Ecovat during interval i.
6) Calculate the energy change due to the decisions made.
7) Update temperatures Ti,s of the segments.
8) Calculate the costs incurred due to the decisions made.

After the last interval in the time horizon the total costs incurred
over the entire horizon are calculated. The objective of both
the ILP model and the heuristic is to minimize this total cost.



For time interval i the heuristic considers only the current
state of the buffer, i.e. the temperatures of the buffer segments,
as well the input data for that interval. The heuristic does not
take any future data into account, except indirectly through
the targets V. The heuristic uses a set of ’rules of thumb’ to
determine, based on the current state and input data, the devices
that will be connected to specific buffer segments. Whether
a device is connected to a buffer segment is modelled by
the binary variable xdevi,s , where dev is the device in question
(pvt, res, awhp, lthp, hthp and dem, whereby dem is the heat
demand). If xdevi,s = 1 device dev is connected to segment s
during interval i and if xdevi,s = 0 it is not connected. An
important constraint of the Ecovat system is that only one
of these devices can be connected to each buffer segment
during any time interval. In the following the steps taken by
the heuristic are explained in more detail.

Step 1: Based on the target Vd for a given day d and the
useful energy content Udi/96e−1 of the buffer at the start of
that day, the maximum accepted energy price p̄d is determined.
The value of pd is used to decide whether devices are turned
on during interval i. Here three cases are distinguished: (i) the
useful energy content of the buffer is below target, (ii) the
useful energy content of the buffer is above target, and (iii)
the buffer is almost full. More precisely, p̄d, is given by:

p̄d =


0.01 ·

(
Ū − 15000− Udi/96e−1

)
if Udi/96e−1 >

Ū − 15000

0 if Udi/96e−1 > Vd

241 ·
(

1− Udi/96e−1

Vd

)2
+ 9 if Udi/96e−1 < Vd,

(2)

where Ū is the maximum amount of useful energy that
can be stored in the buffer. The value of Ū depends on the
maximum allowed temperatures T̄s in the buffer. Ū can be
calculated using equation (1) by substituting Ti,s with T̄s. The
maximum accepted energy price ranges from 9 to 250 e/MWh
when the useful energy content of the buffer drops below the
target and from 0 to -150 e/MWh when the useful energy
content of the buffer is approaching Ū . The constants used
have experimentally been found to work well, but can easily
be changed if for example the energy prices are expected to
change in the future.

Step 2: The output temperature T out
i of the PVT panels at

interval i is calculated as in [11]:

T out
i =

2ṁcpT
in
i − athAT in

i + 2Aηth0 Gi + 2athAT
a
i

athA+ 2ṁcp
, (3)

where ṁ is the mass flow rate of the liquid through the PVT
panels, T in

i is the input temperature of that liquid, ath is the
thermal loss coefficient of the PVT panels, A is the surface
area of the PVT panels, Gi is the global radiation, T a

i is the
ambient temperature and ηth0 is the thermal efficiency of the
PVT panels at a reduced temperature of zero. Using this output
temperature the efficiency of the PVT panels can be calculated,

which is required in step 6 of the heuristic. For this we first
need the reduced temperature T r

i , which is given by:

T r
i =


Tin
i +Tout

i
2 −Ta

i

Gi
if Gi > 0

0 otherwise.
(4)

Finally the thermal and electrical efficiencies, ηthi and ηeli
respectively, of the PVT panels are modelled as a linear function
of T r

i [13], [14]:

ηthi = ηth0 − ath T r
i (5)

ηeli = ηel0 − ael T r
i , (6)

where ael is the electrical loss coefficient of the PVT panels
and ηel0 is the electrical efficiency of the PVT panels at a
reduced temperature of zero. For a more extensive discussion
on the modelling of the PVT panels we refer to the description
of the ILP model presented in [11].

Step 3: Since the temperature of the bottom segment of the
buffer has to stay below 5 ◦C to cool the PVT panels the lthp
is forced to run to transfer heat from the bottom segment to
other segments if this condition is not fulfilled. In a similar
way, based on the technical specifications of the heat pumps
and temperature bounds T̄s on the buffer segments, the hthp is
forced to run if similar conditions are not fulfilled in the given
interval. Finally, the PVT panels are connected to the bottom
segment of the buffer only if the output temperature of the PVT
panels is higher than the temperature in the bottom segment
and the lthp is not connected to that segment. Furthermore, the
lthp and hthp must always be connected to two segments if
they are turned on, a heat source and a heat sink, labeled lthpc
and lthpw respectively for the low temperature heat pump and
hthpc and hthpw for the high temperature heat pump. This
leads to the following constraints for running the lthp and hthp:∑

s∈S
xlthpw

i,s =
∑
s∈S

xlthpc

i,s ∀i ∈ I (7)∑
s∈S

xhthpw

i,s =
∑
s∈S

xhthpc

i,s ∀i ∈ I. (8)

Step 4: Once it has been determined for interval i how the
lthp, hthp and the PVT panels are used, the demand, resistance
heater and awhp are considered. Due to the restriction that
only one device can be connected to a segment during a time
interval the choices for these devices strongly influence each
other. Furthermore, as the heat demand has to be fulfilled at
all times one of the segments has to be assigned to supplying
the heat demand during interval i. The rule of thumb here
is that the demand is assigned to a segment that minimally
constrains the ability of the resistance heater and awhp to run
and the resistance heater is prioritized over the awhp, because
of the larger profit it can generate during intervals with negative
energy prices. More precisely, the heuristic will try to use the
resistance heater if the energy price of the current time interval
is equal to or lower than the maximum accepted energy price
p̄d. Similarly, the heuristic will try to use the awhp if the
current energy price is equal to or lower than p̄d multiplied
with the coefficient of performance of the awhp. However, due
to the temperature bounds T̄s on the buffer segments and the



technical specifications of the awhp this may not always be
possible even if the price is low enough.

Step 5: In this step the heat losses to the environment in
interval i are taken into account. For this we use the same
approach as in the ILP model [11], i.e. we assume the relative
heat loss Qloss

i,s during interval i in segment s is given by:

Qloss
i,s =

(
1− (1− β)

1
4380

)
(Ti,s − Te)ms cp, (9)

where β is the heat loss factor of the buffer over six months,
Te is the temperature of the environment and the factor 4380
is the number of hours in six months. The heat loss factor of
an Ecovat buffer over six months has been calculated in an
internal study of the company. Ideally, measurements from a
real Ecovat system should be used instead. However, at the
time of writing these were not available yet.

Step 6: The amount of energy added to or extracted from the
buffer depends on the capacities of the devices, Cdev , and their
coefficients of performance, COP dev. The (thermal) energy
changes, Qdev

i,s due to the different devices are given by:

Qpvt
i,s =

{
0 if s = 1, .., 4

ηthi Gi A xpvti,s if s = 5
(10)

Qres
i,s = Cres xresi,s (11)

Qawhp
i,s = Cawhp COP awhp xawhp

i,s (12)

Qlthpw

i,s = Clthp COP lthp xlthpw

i,s (13)

Qlthpc

i,s = −Clthp (COP lthp − 1) xlthpc

i,s (14)

Qhthpw

i,s = Chthp COPhthp xhthpw

i,s (15)

Qhthpc

i,s = −Chthp (COPhthp − 1) xhthpc

i,s (16)

Qdem
i,s = −di xdemi,s . (17)

Note that even though Cdev COP dev thermal energy is
transferred to the heat sink (equations (13) and (15)) only
Cdev (COP dev − 1) comes from the heat source (equations
(14) and (16)). The remainder comes from the electrical energy
used to operate the heat pump. For simplicity we assume no
heat losses in the heat pump operation. The electrical energy
generated by the PVT panels is given by:

Epvt
i =

∑
s∈S

ηeli Gi A xpvti,s . (18)

Step 7: The temperature change in the buffer segments due to
the energy changes during an interval are calculated by:

Ti,s = Ti−1,s +
∆t

ms cp

(
Qpvt

i,s +Qres
i,s +Qawhp

i,s +Qlthpw

i,s

+Qlthpc

i,s +Qhthpw

i,s +Qhthpc

i,s +Qdem
i,s +Qloss

i,s

)
, (19)

where ∆t is the interval length.
Step 8: The total energy costs incurred during interval i, Ki,

is calculated by:

Ki = ∆t pi
∑
s∈S

(
Cres xresi,s + Cawhp xawhp

i,s

+ Clthp xlthpc

i,s + Chthp xhthpc

i,s

)
− Epvt

i . (20)

Due to equation (7) it does not matter whether we use xlthpc

i,s or
xlthpw

i,s to determine if the lthp is running during interval i. The
same holds for the hthp. At the end of the overall simulation
the total cost over the time horizon can be calculated by adding
up the costs per interval:

Ktot =
∑
i∈I

Ki (21)

The described heuristic solves the same problem as the ILP
model. However, the difference is that the ILP model solves
the problem for a set of time intervals simultaneously while
the heuristic solves the problem iteratively for successive time
intervals. Due to this difference some simplifying assumptions
have to be made compared to the ILP (the rules of thumb
discussed in this section), which leads to the heuristic having
a decreased performance when compared to the ILP model.

III. SIMULATION SETUP

To determine the performance of the heuristic we compare
the obtained results with the results from the ILP model in [11]
and [12]. As such we use the same input data as used in those
papers. This means that the used heat demand profiles and
ambient temperatures are averages taken over the period 2005-
2011. The real energy prices from the Dutch imbalance market
from the years 2011, 2013, 2014 and 2015 have been used
(the year 2012 was excluded to avoid normalization issues
because it is a leap year). The remaining input parameters
are the same as those used in [11] (summarized in Table I).
Constant COP values are used to be able to compare the results
of the heuristic approach to the ILP model from [11].

For the initial generation of the targets, V, the same
procedure as in [12] is used. More specifically, an optimization
problem is solved that determines a charging strategy to supply
the heat demand throughout the year at minimum cost. For this
problem only the historical data for the heat demand and energy
prices are used as input. Even though this optimization problem
is a great oversimplification of the actual Ecovat system it gives
a good indication for the desired useful energy content of the
buffer throughout the year. For example, it makes sure there is
enough energy in the buffer to cover all heat demand during
winter. As in [12], two cases are considered. In the first case
perfect predictions of the energy prices are available for the

TABLE I
INPUT PARAMETERS FOR THE HEURISTIC MODELLING THE ECOVAT SYSTEM.

Parameter Value Parameter Value
Nint 35040 ηth0 0.73
∆t 900 s ath 7.25
Nseg 5 ηel0 0.1
ms (1.04 · 106,1.04 · 106, ael 0.44

1.04 · 106,9.11 · 105, β 0.08
9.11 · 105) kg Cawhp 9 kW

cp 4.186 kJ
kg ◦C Clthp 15 kW

T0,s (90,75,50,30,5) ◦C Chthp 15 kW
T̄s (90,90,78,48,5) ◦C Cres 1000 kW
Td 40 or 60 ◦C COPawhp 2.686
Te 15 ◦C COP lthp 2.851
ṁ 0.018 kg

s COPhthp 3.681



TABLE II
COMPARISON BETWEEN THE ILP MODEL AND HEURISTIC.

ILP Heuristic Difference in costs
Costs(e) Useful energy (kWh) Costs(e) Useful energy(kWh) %

Td = 40 ◦C, 2011, NP -22091 148014 -21406 141615 3.1
Td = 40 ◦C, 2011, PP -22698 115764 -22073 115837 2.8
Td = 40 ◦C, 2013, NP -41607 117121 -40847 113889 1.8
Td = 40 ◦C, 2013, PP -41703 114719 -40976 111102 1.7
Td = 40 ◦C, 2014, NP -27773 110122 -27158 105850 2.2
Td = 40 ◦C, 2014, PP -27865 110383 -27445 103143 1.5
Td = 40 ◦C, 2015, NP -47077 131081 -48089 121663 -2.1
Td = 40 ◦C, 2015, PP -47077 131081 -47931 125347 -1.8
Td = 60 ◦C, 2011, NP -21008 78958 -18379 77896 12.5
Td = 60 ◦C, 2011, PP -22351 54101 -19950 64508 10.7
Td = 60 ◦C, 2013, NP -40709 59450 -38740 58350 4.8
Td = 60 ◦C, 2013, PP -41317 52539 -39275 51132 4.9
Td = 60 ◦C, 2014, NP -26409 57074 -25804 54728 2.3
Td = 60 ◦C, 2014, PP -27166 48090 -26170 48377 3.7
Td = 60 ◦C, 2015, NP -51615 61856 -46173 60204 10.5
Td = 60 ◦C, 2015, PP -52225 53687 -46516 54252 10.9

entire year (PP case), which means that charging of the buffer
in the aforementioned optimization problem is done in intervals
with negative energy prices as much as possible. In the second
case no predictions for the energy prices are available (NP
case). In the NP case the targets, V, are determined by simply
distributing the charging equally over the entire year. The only
difference between both cases is in the target generation.

In the ILP model from [12] a maximum energy price, p̄ilpd , of
9 e/MWh is accepted when the useful energy content, Udi/96e,
of the buffer is above the target, Vd. For the results presented in
this paper p̄ilpd has been set to 0 e/MWh when Udi/96e 6 Vd,
the same as p̄d in equation (2), to better compare the results
from both approaches.

IV. RESULTS

The goal of the presented control heuristic for the Ecovat
system is to provide a faster method than the ILP model pre-
sented in [11] and [12]. To investigate the relative performance
of the two approaches 16 cases have been simulated. These
cases were created by all possible combinations of the energy
prices from four years, two demand temperatures (40 and 60
◦C) and two sets of target values (PP vs NP case). The results
of these simulations are summarized in Table II, where both
the costs (with negative costs meaning profit) and the useful
energy content of the buffer at the end of the time horizon are
given. The last column in Table II gives the relative difference
in costs between the two approaches.

We can see that for a demand temperature, Td, of 40 ◦C the
differences between the ILP and heuristic is only a few percent.
As an example; in Fig. 2 the temperature evolution of the five
segments inside the Ecovat buffer is shown for both the ILP
model and the heuristic for the PP case, using energy price
data from 2014 and a demand temperature of 40 ◦C. There
are some small differences between the two approaches, but
in general both approaches give very similar results.

There are two at first sight unexpected results in Table II.
This concerns the two cases using the energy price data from
2015 with a demand temperature of 40 ◦C. First, note that the
PP and NP cases both give exactly the same results for the ILP
model. Second, the heuristic in these cases gives better results

than the ILP model. The first observation can be explained
by the high number of intervals with a negative energy price
in 2015. The only difference between the two cases is in the
target values calculated at the start of the model. However, due
to the high amount of intervals with a negative energy price
the useful energy content of the buffer never drops below the
target value for both the PP and NP cases meaning these cases
become effectively the same.

The second observation can be explained by the fact that
the heuristic starts decreasing the maximum energy price it
is willing to accept when the buffer is almost full, while the
ILP does not. Because of the complexity of the model the ILP
employs a rolling horizon, in which the ILP model in each
step considers input data for two days at a time. Due to this it
is possible for the ILP model to fully charge the buffer even
though some intervals with very low energy prices might still
come up at a later date, leading to the heuristic outperforming
the ILP model. If a constraint is added to the ILP model to start
accepting lower maximum energy prices when the buffer is
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Fig. 2. Temperature evolution inside the Ecovat buffer for the PP case using
energy price data from 2014 and a demand temperature Td = 40 ◦C
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Fig. 3. Temperature evolution inside the Ecovat buffer for the NP case using
energy price data from 2011 and a demand temperature Td = 60 ◦C.

almost full, like the heuristic does, it outperforms the heuristic
as expected (costs of -50550 and -50629 are obtained for the
NP and PP cases respectively).

Comparing the results of both approaches for a demand
temperature of 60 ◦C we can see from Table II that the relative
difference between the approaches becomes larger, up to 12.5%
for the NP case using energy price data from 2011. Fig. 3
shows the temperature evolution within the buffer for both
approaches in this case. As expected, the differences between
both approaches are larger than in Fig. 2. However, even in this
case the structure of the results looks very similar. The average
decrease in performance is 5.2%, excluding the 2015 cases
with a demand temperature of 40 ◦C. In general we expect
the decrease in performance to be larger for higher demand
temperatures as shown in Table II.

From Table II we observe the same trend when comparing
the NP and PP cases as in [12], namely the difference between
the two cases is small. In general the PP case does slightly better
when considering costs, however, the useful energy content of
the buffer at the end of the time horizon is slightly lower.

We observe that the cases in which the relative difference
between the approaches is largest are the cases in which the
buffer is either almost empty or almost full at some time during
the year. Intuitively it makes sense that the advantage of being
able to consider future input data, which the ILP model has over
the heuristic, is largest in these extreme cases. However, even in
these cases the largest observed difference is only 12.5%. Note
that the ILP model gives an upper bound on the performance
of the heuristic by additionally using input data for future
time intervals to determine the optimal strategy for the current
interval. Given that in a real world situation it is unlikely to
have very accurate predictions for the energy prices, a worst
case difference of 12.5% between both approaches seems to
be an acceptable decrease in performance. On the other hand
the computational time difference between the approaches is
very significant. For most cases the ILP model requires around
12 hours to obtain a solution for a complete year (even up to

a few days in some cases) while the heuristic only requires
around a second to obtain a solution. This makes the heuristic
a suitable method to control the Ecovat within a decentralized
energy management setting.

V. CONCLUSION

In this work we have presented a heuristic approach for the
control of the Ecovat system, with the goal of providing a
fast alternative to the ILP model presented in [11] and [12],
while retaining an acceptable level of accuracy. The presented
heuristic reduces the computational time from 12+ hours for
the ILP model to a second for the heuristic, with at most
a 12.5% decrease in performance. However, on average the
decrease in performance is only 5.2%.

In future work we plan to incorporate the heuristic presented
here in the DEMKit simulation platform [15], designed to
perform hybrid energy DSM simulations. Furthermore, the
heuristic can also be used for the control of a real Ecovat
system due to the very fast decision making it provides.
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