
Markov Processes Relat. Fields 24, 759–778 (2018)
Markov MPRF&��

��
Processes
and
Related Fields
c©Polymat, Moscow 2018

Asymptotic Period of an Aperiodic

Markov Chain

E.A. van Doorn
Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE
Enschede, The Netherlands. E-mail: e.a.vandoorn@utwente.nl

Received December 11, 2017, revised May 16, 2018

Abstract. We introduce the concept of asymptotic period for an irreducible
and aperiodic, discrete-time Markov chain X on a countable state space, and
develop the theory leading to its formal definition. The asymptotic period of
X equals one – its period – if X is recurrent, but may be larger than one if
X is transient; X is asymptotically aperiodic if its asymptotic period equals
one. Some sufficient conditions for asymptotic aperiodicity are presented. The
asymptotic period of a birth-death process on the nonnegative integers is studied
in detail and shown to be equal to 1, 2 or∞. Criteria for the occurrence of each
value in terms of the 1-step transition probabilities are established.
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1. Introduction

Let P := (P (i, j), i, j ∈ S) be the matrix of 1-step transition probabilities
of a homogeneous, discrete-time Markov chain X := {X(n), n = 0, 1, . . .} on a
countably infinite state space S, so that the matrix P (n) := (P (n)(i, j), i, j ∈ S)
of n-step transition probabilities

P (n)(i, j) := Pr{X(m+ n) = j |X(m) = i}, i, j ∈ S, m, n = 0, 1, . . . ,

is given by
P (n) = Pn, n = 0, 1, . . . .

We will assume throughout that X is stochastic, irreducible, and aperiodic.
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Although the Markov chain X is aperiodic it may happen, if X is transient,
that in the long run the process evolves cyclically through a finite number of
sets constituting a partition of S. This phenomenon occurs for instance when X
is a transient birth-death process on the nonnegative integers with only a finite
number of positive self-transition probabilities, for in this case the process will
eventually move cyclically between the even-numbered and the odd-numbered
states. It seems natural then to say that the asymptotic period of X equals two
or, perhaps, a multiple of two. In our general setting the asymptotic period of
X may be defined as the maximum number of sets involved in the type of cyclic
behaviour described above. In this paper these ideas will be formalized, and
some of their consequences will be investigated.

After discussing preliminary concepts and results in Section 2 we formally
define, in Section 3, the asymptotic period of a Markov chain that is, in a sense
to be defined, simple. Some sufficient conditions for asymptotic aperiodicity will
subsequently be derived. The framework developed in Section 2 draws heavily
on the work of Blackwell [2] on transient Markov chains, while our definition
of asymptotic period resembles in some aspects the definition of period of an
irreducible positive operator by Moy [11], and is directly related to the definition
of asymptotic period of a tail sequence of subsets of S, proposed by Abrahamse
[1] in a setting that is more general than ours. Actually, Abrahamse introduces
the concept of asymptotic period while generalizing Blackwell’s results. Our
further elaboration of the concept in a more restricted setting makes it more
convenient for us to build directly on the foundations laid down by Blackwell.

In Section 4 we investigate asymptotic periodicity in the specific setting of a
birth-death process on the nonnegative integers. We show that the asymptotic
period equals 1, 2 or ∞, and identify the circumstances under which each value
occurs in terms of the 1-step transition probabilities of the process. In particular,
we establish a necessary and sufficient condition for asymptotic aperiodicity.

Our motivation for introducing the concept of asymptotic aperiodicity has
been our aim to gain more insight into the strong ratio limit property, which is
said to prevail if there exist positive constants R, µ(i), i ∈ S, and f(i), i ∈ S,
such that

lim
n→∞

P (n+m)(i, j)

P (n)(k, l)
= R−m

f(i)µ(j)

f(k)µ(l)
, i, j, k, l ∈ S, m ∈ Z. (1.1)

The strong ratio limit property was enunciated in the setting of recurrent
Markov chains by Orey [12], and introduced in the more general setting at
hand by Pruitt [13]. More recently, Kesten [10] and Handelmann [7] have made
substantial contributions, but a satisfactory solution to the problem of finding
conditions for the strong ratio limit property is still lacking. Since aperiodicity
is necessary and sufficient for a positive recurrent Markov chain to possess the
strong ratio limit property, it is to be expected that asymptotic aperiodicity is
a relevant property in the more general setting at hand. Actually, the rela-
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tion between asymptotic aperiodicity and the strong ratio limit property is –
at least in the general setting – not clear-cut. However, in a more restricted
setting asymptotic aperiodicity has been shown in [5] to be sufficient for the
strong ratio limit property.

We end this introduction with some notation and terminology. Namely,
when X is a discrete-time birth-death process on the nonnegative integers – a
process often encountered in what follows – we write

pi := P (i, i+ 1), qi+1 := P (i+ 1, i) and ri := P (i, i), i = 0, 1, . . . , (1.2)

for the birth, death and self-transition probabilities, respectively. It will be
convenient to define q0 := 0. Since X is stochastic, irreducible and aperiodic,
we have pi > 0, qi+1 > 0, and ri ≥ 0 for i ≥ 0, with ri > 0 for at least one state
i, while pi + qi + ri = 1 for i ≥ 0. In what follows a birth-death process will
always refer to a discrete-time birth-death process on the nonnegative integers.

2. Preliminaries

We start off by introducing some further notation and terminology related
to the Markov chain X = {X(n), n = 0, 1, . . .}. By P we denote the probability
measure on the set of sample paths induced by P and the (unspecified) initial
distribution. Recall that a nonzero function f on S is called a harmonic function
(or invariant vector) for P (or, for X ) if

Pf(i) :=
∑
j∈S

P (i, j)f(j) = f(i), i ∈ S. (2.1)

Evidently, in our setting the constant function is a harmonic function for P .
For C ⊂ S we define the events

U(C) := ∩∞n=0 ∪∞k=n {X(k) ∈ C} and L(C) := ∪∞n=0 ∩∞k=n {X(k) ∈ C},

and we let
T := {C ⊂ S |U(C)

a.s.
= ∅},

that is, C ∈ T if P(X(n) ∈ C infinitely often) = 0, and

R := {C ⊂ S |U(C)
a.s.
= L(C)},

that is, C ∈ R if the events {X(n) ∈ C infinitely often} and {X(n) ∈ C for
n sufficiently large} are almost surely equal. In the terminology of Revuz [14,
Sect. 2.3] T is the collection of transient sets and R is the collection of regular
sets. Evidently, T ⊂ R, while it is not difficult to see that R is closed under
finite union and complementation, and hence a field. Note that T and R are
independent of the initial distribution, since, by the irreducibility of X , P(U(C))
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and P(U(C)\L(C)) are zero or positive for all initial states (and hence all initial
distributions) simultaneously.

We will say that two regular sets C1 and C2 are equivalent if their symmetric
difference C1∆C2 := (C1∪C2)\(C1∩C2) is transient, and almost disjoint if their
intersection C1 ∩ C2 is transient. Following Blackwell [2] (see also Chung [3,
Section I.17]), we call a subset C ⊂ S almost closed if C /∈ T and C ∈ R.
An almost closed set C is said to be atomic if C does not contain two disjoint
almost closed subsets. The relevance of these concepts comes to light in the
next theorem.

Theorem 2.1 (Blackwell [2]). Associated with the Markov chain X is a fi-
nite or countable collection {C1, C2, . . .} of disjoint almost closed sets, which is
unique up to equivalence and such that

(i) every Ci, except at most one, is atomic;

(ii) the nonatomic Ci, if present, contains no atomic subsets and consists of
transient states;

(iii)
∑
i P(L(Ci)) = 1.

A collection of sets {C1, C2, . . .} satisfying the conditions in the theorem will
be called a Blackwell decomposition (of S) for X . A set C ⊂ S is a Blackwell
component (of S) for X if there exists a Blackwell decomposition for X such
that C is one of the almost closed sets in the decomposition. The uniqueness
up to equivalence of the Blackwell decomposition for X implies that if C1 and
C2 are Blackwell components, then they are either equivalent or almost disjoint.
The number of almost closed sets in the Blackwell decomposition for X will be
denoted by β(X ). If β(X ) = 1 then X is called simple, and a simple Markov
chain is called atomic or nonatomic according to the type of its state space.
Evidently, if X is simple and nonatomic then S does not contain atomic subsets,
but infinitely many disjoint almost closed subsets. It will be useful to observe
the following.

Lemma 2.1. Let S = {0, 1, . . . } and X have jumps that are uniformly bounded
by M . Then β(X ) ≤M , and every Blackwell component for X is atomic.

Proof. Let C be an almost closed set for X and let s1 < s2 < . . . denote the
states of C. We claim that there exists a constant N such that for every n ≥ N
we have sn+1 ≤ sn +M . Indeed, if sn+1 > sn +M , then the process will leave
C when it leaves the set {s1, s2, . . . , sn}. The irreducibility of S insures that a
visit to this finite set of states will almost surely be followed by a departure from
the set. So if, for each N , there is an integer n ≥ N such that sn+1 > sn +M ,
then each entrance in C is almost surely followed by a departure from C, and
hence P(L(C)) = 0, contradicting the fact that C is almost closed.
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Next, let {C1, C2, . . . , Cβ}, with β ≡ β(X ), be a Blackwell decomposition

for X , s
(i)
1 < s

(i)
2 < . . . the states of Ci, and Ni such that for every n ≥ Ni we

have s
(i)
n+1 ≤ s

(i)
n +M . If β > M , then, choosing

s = max
1≤i≤M+1

{s(i)Ni
},

the set {s+1, s+2, . . . , s+M} must have a nonempty intersection with each of
the disjoint sets C1, C2, . . . , CM+1, which is clearly impossible. Hence, β ≤M .

Finally, let C be a Blackwell component for X and suppose C is nonatomic.
Then C contains infinitely many disjoint almost closed subsets, so we can choose
M + 1 disjoint almost closed subsets C1, C2, . . . , CM+1 of C. By the same
argument as before there must be a state s in C such that each of the disjoint
sets C1, C2, . . . , CM+1 shares a state with the set {s+ 1, s+ 2, . . . , s+M}. This
is impossible, so C must be atomic. 2

A criterion for deciding whether a Markov chain is simple and atomic is
given in the next theorem.

Theorem 2.2 (Blackwell [2]). The Markov chain X is simple and atomic if
and only if the only bounded harmonic function for X is the constant function.

As an aside we note that when X is transient – the setting of primary interest
to us – and the constant function is the only bounded harmonic function, then
there is precisely one escape route to infinity, or, in the terminology of Hou and
Guo [8] (see, in particular, Sections 7.13 and 7.16), the exit space of X contains
exactly one atomic exit point.

Of course, the existence, up to a multiplicative constant, of a unique bounded
harmonic function does not, in general, preclude the existence of an unbounded
harmonic function. But when X is recurrent the constant function happens
to be the only (bounded or unbounded) harmonic function (see, for example,
Chung [3, Theorem I.7.6]). It follows in particular that X is simple and atomic
if X is recurrent.

A function f on the space Ω := {(ω0, ω1, . . .) |ωi ∈ S, i = 0, 1, . . .} will be
called m-invariant if, for every ω := (ω0, ω1, . . .) ∈ Ω, f(ω) = f(θmω), where
θ is the shift operator θ(ω0, ω1, . . .) = (ω1, ω2, . . .), and θmω = θ(θm−1ω). We
also use the notation θmE := {θmω |ω ∈ E}, for E ⊂ Ω. An event is called m-
invariant if its indicator function is m-invariant. A 1-invariant event is simply
referred to as invariant. Evidently, the collection of invariant events constitutes
a σ-field. We shall need another result of Blackwell’s, involving invariant events
(see [1, Theorem 5] for a generalization).

Theorem 2.3 (Blackwell [2]). For any invariant event E there is a C ∈ R
such that E

a.s.
= U(C).
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Note that the event U(C) is actually invariant for any subset C of S, so for

every C ⊂ S there must be a regular set C̃ such that U(C)
a.s.
= U(C̃). It follows

in particular that every invariant event has probability zero or one if X is simple
and atomic.

The regular set corresponding to an invariant event is unique up to equiva-
lence. For if C1 and C2 are regular sets satisfying U(C1)

a.s.
= U(C2), then

U(C1\C2) ⊂ U(C1)\L(C2)
a.s.
= U(C2)\L(C2)

a.s.
= ∅,

and similarly with C1 and C2 interchanged. Since U(C1∆C2) ⊂ U(C1\C2) ∪
U(C2\C1), it follows that C1∆C2 must be transient. So, up to events of proba-
bility zero, the σ-field of invariant events is identical with the σ-field of events
of the form U(C) with C ∈ R.

Theorem 2.3 plays a crucial role in the proof of Theorem 2.4, which involves
X (m) := {X(m)(n) ≡ X(nm), n = 0, 1, . . .}, the m-step Markov chain associ-
ated with X , and is instrumental in our definition of asymptotic period. For
C ⊂ S we let

U (m)(C) := ∩∞n=0∪∞k=n{X(km) ∈ C} and L(m)(C) := ∪∞n=0∩∞k=n{X(km) ∈ C},

so that U (1)(C) = U(C) and L(1)(C) = L(C). Since E = θmE if (and only if)
E is m-invariant, we have θmU (m)(C) = U (m)(C). But actually we have, more
generally,

θm−jU (m)(C) = ∩∞n=0 ∪∞k=n {X(km+ j) ∈ C}, j = 0, 1, . . . ,m− 1, (2.2)

and

θm−jL(m)(C) = ∪∞n=0 ∩∞k=n {X(km+ j) ∈ C}, j = 0, 1, . . . ,m− 1, (2.3)

as can easily be verified. The following simple observation will prove useful.

Lemma 2.2. Let E be an m-invariant event for some m ≥ 1. Then, for all
i ≥ 1,

E
a.s.
= ∅ ⇐⇒ θiE

a.s.
= ∅.

Proof. If P(E) > 0 there must be a state s, say, such that P(E |X(0) = s) > 0.
Moreover, aperiodicity and irreducibility of the chain imply that there is an in-
teger k such that P(X(km− i) = s) > 0. Since, by Theorem 2.3, E

a.s.
= U (m)(C)

for some set C, we obviously have P(θiE |X(km − i) = s) = P(E |X(0) = s).
Hence, if P(E) > 0, then

P(θiE) ≥ P(θiE |X(km− i) = s)P(X(km− i) = s)

= P(E |X(0) = s)P(X(km− i) = s) > 0.

The same argument with E and θiE interchanged and km−i replaced by km+i
yields the converse. 2
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Before stating and proving Theorem 2.4 we establish some additional auxil-

iary lemmas. In what follows we write E
a.s.
⊂ F for E\F a.s.

= ∅.

Lemma 2.3. Let E1 and E2 be m-invariant events for some m ≥ 1. Then, for
all i ≥ 0 and j ≥ 0,

(i) E1

a.s.
⊂ θjE2 ⇐⇒ θiE1

a.s.
⊂ θi+jE2,

(ii) E1
a.s.
= θjE2 ⇐⇒ θiE1

a.s.
= θi+jE2.

Proof. The event E1\θjE2 is m-invariant, so, by Lemma 2.2, we have

E1\θjE2
a.s.
= ∅ ⇐⇒ θi(E1\θjE2)

a.s.
= ∅,

which implies the first statement. Moreover, the first statement remains valid,
by a similar argument, if we interchange the sets E1 and θjE2. Combining both
results yields the second statement. 2

Note that the second statement of this lemma generalizes Lemma 2.2. The
next auxiliary result is a straightforward corollary of the previous lemma.

Lemma 2.4. Let E be an m-invariant event for some m ≥ 1. Then, for all
j ≥ 0 and k2 ≥ k1 ≥ 0,

(i) E
a.s.
⊂ θjE ⇒ θk1jE

a.s.
⊂ θk2jE,

(ii) E
a.s.
= θjE ⇒ θk1jE

a.s.
= θk2jE.

Our final preparatory lemma is the following.

Lemma 2.5. Let C1 and C2 be subsets of S that are regular with respect to
X (m) for some m ≥ 1. Then

U (m)(C1 ∩ C2)
a.s.
= U (m)(C1) ∩ U (m)(C2).

Proof. We clearly have

U (m)(C1 ∩ C2) ⊂ U (m)(C1) ∩ U (m)(C2)
a.s.
= L(m)(C1) ∩ L(m)(C2).

Since
L(m)(C1) ∩ L(m)(C2) = L(m)(C1 ∩ C2) ⊂ U (m)(C1 ∩ C2),

the result follows. 2
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Theorem 2.4. If X is simple and atomic and m > 1, then β ≡ β(X (m)) is a
divisor of m and the Blackwell decomposition for X (m) consists of a collection
{C0, C1, . . . , Cβ−1} of disjoint atomic almost closed sets, which can be chosen
such that, for each i = 0, 1, . . . , β − 1,

P(θjL(m)(Ci+1 (mod β)) | θj+1L(m)(Ci)) = 1, j = 0, 1, . . . ,m− 1. (2.4)

If X is simple and nonatomic, then X (m) is simple and nonatomic for all m ≥ 1.

Proof. First suppose X is simple and atomic. Let C0 be a Blackwell component
for X (m) and assume, for the time being, that C0 is atomic. Since θiU (m)(C0)
is m-invariant for all i, we can apply Theorem 2.3 to X (m) and conclude that
there is a sequence C1, C2, . . . of regular sets (with respect to X (m)) such that

θiU (m)(C0)
a.s.
= U (m)(Ci), i = 1, 2, . . . . (2.5)

By Lemma 2.2 the sets Ci are almost closed, since C0 is almost closed. Also,
by Lemma 2.3, we have

U (m)(Ci+1)
a.s.
= θi+1U (m)(C0)

a.s.
= θU (m)(Ci),

and hence
L(m)(Ci+1)

a.s.
= θL(m)(Ci), i = 0, 1, 2, . . . . (2.6)

Next defining

b := min{i ≥ 1 | θiU (m)(C0)
a.s.
= U (m)(C0)}, (2.7)

we have b ≤ m since U (m)(C0) is m-invariant. Also, b must be a divisor of m,
for otherwise, by Lemma 2.4, we would have

U (m)(C0)
a.s.
= θ`bU (m)(C0) = θm+iU (m)(C0) = θiU (m)(C0),

with ` = min{k ∈ N | kb > m} and i = `b − m < b, contradicting (2.7). For
i ≥ b we have, by Lemma 2.3,

U (m)(Ci)
a.s.
= θiU (m)(C0)

a.s.
= θi−bU (m)(C0)

a.s.
= U (m)(Ci−b),

so that Ci and Ci−b are equivalent (with respect to X (m)). We can therefore
replace (2.6) by

L(m)(Ci+1 (mod b))
a.s.
= θL(m)(Ci), i = 0, 1, 2, . . . , b− 1.

But in view of Lemma 2.3 we can actually write, for any value of j,

θjL(m)(Ci+1 (mod b))
a.s.
= θj+1L(m)(Ci), i = 0, 1, 2, . . . , b− 1, (2.8)
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so that (2.4) prevails for i = 0, 1, . . . , b− 1.
Our next step will be to prove that the sets C0, C1, . . . , Cb−1 are almost

disjoint. Since the collection of sets that are regular with respect to X (m)

constitutes a field, the sets C0\Ci and C0 ∩Ci, with 0 < i < b, are regular. But
C0, being an atomic Blackwell component for X (m), cannot contain two almost
closed subsets, so that either C0\Ci or C0 ∩ Ci must be transient. If C0\Ci is
transient, then

U (m)(C0)\U (m)(Ci) ⊂ U (m)(C0\Ci)
a.s.
= ∅,

which implies

U (m)(C0)
a.s.
= U (m)(C0) ∩ U (m)(Ci) ⊂ U (m)(Ci)

a.s.
= θiU (m)(C0),

that is, U (m)(C0)
a.s.
⊂ θiU (m)(C0). But then, by Lemma 2.4,

θiU (m)(C0)
a.s.
⊂ θbiU (m)(C0)

a.s.
= U (m)(C0),

so that U (m)(C0)
a.s.
= θiU (m)(C0), contradicting (2.7). So we conclude, for 0 <

i < b, that C0 ∩ Ci is transient, and hence that C0 and Ci, are almost disjoint.
It subsequently follows that Ci and Cj , with 0 ≤ i < j < b, are also almost
disjoint. Indeed, C0 and Cj−i being almost disjoint, we have, by Lemma 2.5,

U (m)(C0) ∩ θj−iU (m)(C0)
a.s.
= U (m)(C0) ∩ U (m)(Cj−i)
a.s.
= U (m)(C0 ∩ Cj−i)

a.s.
= ∅.

Hence, by Lemma 2.2 and Lemma 2.5,

U (m)(Ci ∩ Cj)
a.s.
= U (m)(Ci) ∩ U (m)(Cj)

a.s.
= θi

(
U (m)(C0) ∩ θj−iU (m)(C0)

)
a.s.
= ∅,

establishing our claim. It is no restriction of generality to assume that the
sets C0, C1, . . . , Cb−1 are actually disjoint (rather than almost disjoint), since
replacing Ci by the equivalent set C ′i, where C ′0 = C0 and C ′i = Ci\∪j<iCj , i =
1, . . . , b− 1, does not disturb the validity of (2.5).

Our next step will be to show that {C0, C1, . . . , Cb−1} constitutes a Black-
well decomposition for X (m), still assuming the Blackwell component C0 to
be atomic. First note that ∪b−1i=0Ci is regular with respect to X . Indeed, by
definition of Ci and in view of (2.2) and (2.3), we have

U(∪b−1i=0Ci) = ∪b−1i=0 ∪
m−1
j=0 θm−jU (m)(Ci)

a.s.
= ∪b−1i=0 ∪

m−1
j=0 θ

m−jL(m)(Ci)
a.s.
⊂ L(∪b−1i=0Ci),
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so that U(∪b−1i=0Ci)
a.s.
= L(∪b−1i=0Ci). Moreover,

P(U(∪b−1i=0Ci)) ≥ P(U (m)(∪b−1i=0Ci)) ≥ P(U (m)(C0)) > 0,

so ∪b−1i=0Ci is in fact almost closed. It follows, X being simple and atomic, that
∪b−1i=0Ci and S are equivalent with respect to X . As a consequence

P(U (m)(S\ ∪b−1i=0 Ci)) ≤ P(U(S\ ∪b−1i=0 Ci)) = 0,

that is, ∪b−1i=0Ci and S are also equivalent with respect to X (m). Hence

b−1∑
i=0

P(U (m)(Ci)) ≥ P(U (m)(∪b−1i=0Ci)) ≥ 1− P(U (m)(S\ ∪b−1i=0 Ci)) = 1,

so that
b−1∑
i=0

P(L(m)(Ci)) =

b−1∑
i=0

P(U (m)(Ci)) = 1.

If b = 1 then C0 and S are equivalent with respect to X (m), so that β(X (m)) = 1,
and we are done. So suppose b > 1 and let Γ be an arbitrary almost closed subset
of Ci, 0 < i < b. Since θb−iU (m)(Γ) is invariant with respect to X (m), there

exists, by Theorem 2.3, a regular set Γ0 such that θb−iU (m)(Γ)
a.s.
= U (m)(Γ0).

Lemma 2.2 implies that Γ0 is almost closed, while, by (2.8),

U (m)(Γ0)
a.s.
⊂ U (m)(C0).

But since C0 is atomic, we must actually have U (m)(Γ0)
a.s.
= U (m)(C0). Hence,

by Lemma 2.3,

U (m)(Γ) = θi(θb−iU (m)(Γ))
a.s.
= θiU (m)(Γ0)

a.s.
= θiU (m)(C0)

a.s.
= U (m)(Ci),

so that Γ and Ci are equivalent. Hence Ci is atomic. So we conclude that if
C0 is atomic then {C0, C1, . . . , Cb−1} constitutes a Blackwell decomposition for
X (m) (with atomic components) and hence β ≡ β(X (m)) = b, a divisor of m.

We will now show that, in fact, each component in the Blackwell decompo-
sition for X (m) has to be atomic if X is simple and atomic. If β(X (m)) > 1, we
could replace C0 in the preceding argument by an atomic Blackwell component
for X (m), and subsequently reach a contradiction, since all the components in
the Blackwell decomposition for X (m) have to be atomic if C0 is atomic. So it
remains to consider the case β(X (m)) = 1. Assuming S to be nonatomic with
respect to X (m), there are almost closed sets that are not equivalent to S. Let
Γ0 be such a set. Then, by Theorem 2.3, there are sets Γi, regular with respect
to X (m) and unique up to equivalence, such that

θiU (m)(Γ0)
a.s.
= U (m)(Γi), i = 1, 2, . . . .
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Copying the argument following (2.5) up to and including (2.8) with Ci replaced
by Γi, we conclude from the analogue of (2.8) that ∪b−1i=0Γi is regular with respect
to X , while

P(U(∪b−1i=0Γi)) ≥ P(U (m)(∪b−1i=0Γi)) ≥ P(U (m)(Γ0)) > 0.

So ∪b−1i=0Γi is in fact almost closed, and it follows, X being simple and atomic,
that ∪b−1i=0Γi and S are equivalent with respect to X .

It is no restriction of generality to assume that the sets Γ0,Γ1, . . . ,Γb−1 are
disjoint. Indeed, Γ0\Γi cannot be transient, by the same argument we have
used earlier for C0\Ci. Hence, the collection of regular sets constituting a field,
Γ0\Γi must be almost closed with respect to X (m). So, if Γ0∩Γi is not transient,
we may replace Γ0 by Γ0\Γi in the preceding argument and end up with new
sets Γ0,Γ1, . . . ,Γb−1 such that Γ0 ∩ Γi is transient. Repeating the procedure
if necessary, we reach, after less than b steps, a situation in which Γ0 ∩ Γi
is transient for each i < b. It follows, by the same argument we have used
before for the Ci’s, that all Γi’s are almost disjoint and by a similar adaptation
as before for the Ci’s we can actually make them disjoint without essentially
changing the situation. But if Γ0,Γ1, . . . ,Γb−1 are disjoint almost closed sets
such that the analogue of (2.8) is satisfied, and ∪b−1i=0Γi and S are equivalent with
respect to X , then {Γ0,Γ1, . . . ,Γb−1} constitutes a Blackwell decomposition for
X (m), which, since β(X (m)) = 1, implies b = 1, and hence that Γ0 and S are
equivalent, contradicting our assumption on Γ0. So if X is simple and atomic
and β(X (m)) = 1, then S has to be atomic. Summarizing we conclude that
every component in the Blackwell decomposition of S for X (m) must be atomic
if X is simple and atomic.

Finally, suppose X is simple and nonatomic. Evidently, each subset of S
that is almost closed with respect to X contains a subset that is almost closed
with respect to X (m), and it follows that a nonatomic almost closed set with
respect to X must contain a nonatomic almost closed set with respect to X (m).
So S must contain a nonatomic almost closed set with respect to X (m). We
have seen that all components in the Blackwell decomposition of S for X (m)

must be atomic if β(X (m)) > 1, so the only remaining possibility is that X (m)

is simple and nonatomic. 2

Note that (2.4) is equivalent to stating that for j = 0, 1, . . . ,m− 1,

{X(km+ j) ∈ Ci for k sufficiently large}
a.s.
= {X(km+ j + 1) ∈ Ci+1 (mod β) for k sufficiently large}.

In what follows we will refer to a Blackwell decomposition of S for X (m) with
this property as a cyclic decomposition.

Theorem 2.4 provides the framework for the formal definition of the asymp-
totic period of a simple Markov chain in the next section. We conclude this
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section with a series of lemmas and corollaries, which supply further informa-
tion on β(X (m)).

Lemma 2.6. Let X be simple and atomic, and m ≥ 1. Then a Blackwell
component for X (m) is almost closed with respect to X (kβ) for all k ≥ 1, where
β ≡ β(X (m)). Also, β(X (β)) = β.

Proof. Let C be a Blackwell component for X (m). As a consequence of (2.4)

we have U (β)(C)
a.s.
= L(β)(C), and hence U (kβ)(C)

a.s.
= L(kβ)(C) for any k ≥ 1.

Also,

P(L(kβ)(C)) ≥ P(L(β)(C)) = P(U (β)(C)) ≥ P(U (m)(C)) > 0,

since β is a divisor of m. So we conclude that C is almost closed with respect to
X (kβ). It follows in particular that a Blackwell component for X (m) must contain
a Blackwell component for X (β). Hence β(X (β)) ≥ β, and so β(X (β)) = β, since
β(X (β)) is a divisor of β. 2

The following corollary is immediate.

Corollary 2.1. Let X be simple. If β(X (m)) < m for allm > 1, then β(X (m))=
1 for all m.

Lemma 2.7. Let X be simple and k, ` ≥ 1. Then β(X (k`)) = κβ(X (`)), where
κ is a divisor of β(X (k)).

Proof. If X is nonatomic then, by Theorem 2.4, β(X (m)) = 1 for all m, so that
the statement is trivially true. So let us assume that X is simple and atomic.
We write β` ≡ β(X (`)), and denote the (atomic) Blackwell components for X (`)

by B0, B1, . . . , Bβ`
. By the previous lemma these sets are almost closed with

respect to X (k`), so each Bi must contain at least one Blackwell component for
X (k`). Let C0 ⊂ B0 be such a Blackwell component and consider the sets Ci
defined in the proof of Theorem 2.4 in terms of C0 and m = k`. We let

κ := min{k ≥ 1 | θkβ`U (k`)(C0)
a.s.
= U (k`)(C0)},

and claim that κβ` = β(X (k`)).
To prove the claim we first note that part of the proof of Theorem 2.4

can be copied to show that the sets C0, Cβ`
, . . . , C(κ−1)β`

are almost disjoint,
while, for i ≥ κ, the sets Ciβ`

and C(i−κ)β`
are equivalent with respect to

X (m). Since B0 is a Blackwell component for X (`) and C0 ⊂ B0, we have
∪k−1i=0 Ciβ`

⊂ B0. But, again in analogy with part of the proof of Theorem 2.4, it
is easily seen that ∪κ−1i=0 Ciβ`

is almost closed with respect to X (`), so, B0 being

atomic, we actually have ∪κ−1i=0 Ciβ`

a.s.
= B0. As in the proof of Theorem 2.4 it is
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no restriction to assume that the sets C0, Cβ`
, . . . , C(κ−1)β`

are disjoint rather
than almost disjoint.

Assuming that the Blackwell components for X (`) are suitably numbered,
we have C1 ⊂ B1 and the preceding argument can be repeated to show that the
sets C1, Cβ`+1, . . . , C(κ−1)β`+1 are disjoint, while ∪κ−1i=0 Ciβ`+1

a.s.
= B1. Thus pro-

ceeding it follows eventually that {C0, C1, . . . , Cκβ`−1} constitutes a Blackwell
decomposition of S for X (m), so that β(X (m)) = κβ`, as claimed.

We finally observe that the κ sets ∪β`−1
i=0 Ciκ+j , j = 0, 1, . . . , κ−1, are almost

closed with respect to X (k), so that κ must be a divisor of β(X (k)). 2

This lemma has some interesting and useful corollaries, of which the first is
immediate.

Corollary 2.2. Let X be simple and m > 1. If ` is a divisor of m, then β(X (`))
is a divisor of β(X (m)).

Corollary 2.3. Let X be simple and m > 1. If β(X (m)) = m, then β(X (`)) = `
for all divisors ` of m.

Proof. Let m = k`. Then, by Lemma 2.7,

β(X (m)) = k` = κβ(X (`)),

with κ a divisor of β(X (k)), and, hence, by Theorem 2.4, of k. Since β(X (`)) is
a divisor of ` we must have κ = k and β(X (`)) = `. 2

Corollary 2.4. Let X be simple and k, ` ≥ 1. Then β(X (k`)) = β(X (k))β(X (`))
if β(X (k)) and β(X (`)) are relatively prime.

Proof. By Lemma 2.7 we have β(X (k`)) = κβ(X (`)) = λβ(X (k)), with κ a divisor
of β(X (k)) and λ a divisor of β(X (`)). But if β(X (k)) and β(X (`)) are relatively
prime this is possible only if κ = β(X (k)) and λ = β(X (`)). 2

3. Asymptotic period

We are now ready to formally define the asymptotic period of a simple
Markov chain. As in the previous section, X denotes the Markov chain of
Section 1, and is, accordingly, stochastic, irreducible, and aperiodic.

Definition 3.1. Let the Markov chain X be simple. The asymptotic period of
X is given by

d(X ) := sup{m ≥ 1 |β(X (m)) = m}; (3.1)

X is asymptotically aperiodic if d(X ) = 1, otherwise X is asymptotically periodic
with asymptotic period d(X ) > 1.
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We shall see that it is possible for X to have d(X ) =∞.
If, for some m, we would have β ≡ β(X (m)) > d(X ), then, by Lemma 2.6,

β(X (β)) = β > d(X ), which is a contradiction. So we actually have the following
result, which formalizes the intuitive concept of asymptotic period put forward
in the introduction.

Theorem 3.1. The asymptotic period of a simple Markov chain X satisfies

d(X ) = sup{β(X (m)) |m ≥ 1}. (3.2)

From Theorem 2.4 we immediately conclude the following.

Theorem 3.2. If X is simple and nonatomic then X is asymptotically aperi-
odic.

The next theorem confirms the intimation in the introduction that an asymp-
totic period larger than one requires the chain to be transient.

Theorem 3.3. If X is simple and recurrent then X is asymptotically aperiodic.

Proof. Suppose d(X ) > 1, so that β(X (m)) = m for some m > 1. Let {C0, C1,
. . . , Cm−1} be a cyclic Blackwell decomposition for X (m), and choose i ∈ C0.
As a consequence of Theorem 2.4 and the recurrence of state i we must have
P (`m+1)(i, C1) = 1 for all `. On the other hand, the aperiodicity of i implies
P (`m+1)(i, i) > 0 for ` sufficiently large, contradicting the fact that C0 and C1

are disjoint. So X must be asymptotically aperiodic if it is recurrent. 2

An example of a chain with an asymptotic period greater than 1 is obtained
by letting X be a transient birth-death process on the nonnegative integers
(as defined in the introduction) with self-transition probabilities ri = 0 except
r0 = 1 − p0 > 0. Clearly, X is irreducible and aperiodic, while Lemma 2.1
implies that X is simple (and atomic). But it is readily seen that β(X (2)) = 2,
so that d(X ) > 1. (We will see in the next section that, actually, d(X ) = 2.)

It is possible for the asymptotic period of a Markov chain to be infinity.
Indeed, let us assume that the birth probabilities pi in a birth-death process
are such that

∏∞
i=0 pi > 0. Then there is a probability

∏∞
i=j pi ≥

∏∞
i=0 pi that a

visit to state j is followed solely by jumps to the right. Hence, with probability
one, the process will make only a finite number of self-transitions or jumps to
the left. It follows that the sets Ci := {i, n+i, 2n+i, . . .}, i = 0, 1, . . . , n−1, are
(disjoint) atomic almost closed sets with respect to X (n), so that β(X (n)) = n
for all n and, hence, d(X ) =∞.

Some further conditions for a simple Markov chain to be asymptotically
aperiodic are given next.

Theorem 3.4. Let X be a simple Markov chain. Then the following are equiv-
alent:
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(i) X is asymptotically aperiodic;

(ii) X (m) is simple for all m > 1;

(iii) X (m) is simple for all prime numbers m.

Proof. By Corollary 2.1 the first statement implies the second. Evidently, the
second statement implies the third. To show that the third statement implies the
first, suppose β(X (m)) = 1 for all primes m. If d ≡ d(X ) > 1, then β(X (d)) = d
and d must have a prime factor p > 1. But then, by Corollary 2.4, β(X (p)) = p,
which is impossible. 2

It may be desirable to have an upper bound on the asymptotic period of a
Markov chain. The next theorem, involving the condition

there exists a constant δ > 0 such that P (n)(i, i) ≥ δ for all but
finitely many states i ∈ S, (3.3)

provides a criterion which may be used for this purpose.

Theorem 3.5. If, for some n, the simple Markov chain X satisfies condition
(3.3), then d(X ) is a divisor of n.

Proof. In view of Theorem 3.3 we may assume that X is transient. Suppose
β(X (m)) = m for some m ≥ 1, and let {C0, C1, . . . , Cm−1} be a cyclic Blackwell
decomposition for X (m). If (3.3) holds, then P (n)(i, C0) ≥ δ for all but finitely
many states i ∈ C0. As a consequence P(U (m)(C0) | θnU (m)(C0)) = 1, and
hence,

P(L(m)(C0) | θnL(m)(C0)) = 1,

since C0 is almost closed with respect to X (m). But by Theorem 2.4 this is
possible only if C0 = Cn (modm), that is, if m is a divisor of n. The result
follows by definition of d(X ). 2

We conclude this section with two corollaries of Theorem 3.5, the first one
being evident.

Corollary 3.1. If the simple Markov chain X is such that P (i, i) ≥ δ for some
δ > 0 and all but finitely many states i ∈ S, then X is asymptotically aperiodic.

Corollary 3.2. If, for some n, the simple Markov chain X satisfies condition
(3.3) while X (n) is simple, then X is asymptotically aperiodic.

Proof. If X satisfies (3.3), then, by Theorem 3.5, d ≡ d(X ) is a divisor of n,
so that, by Corollary 2.2, β(X (d)) is a divisor of β(X (n)). Hence we must have
d = β(X (d)) = 1 if β(X (n)) = 1. 2
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4. Birth-death processes

Throughout this section S = {0, 1, . . . } and X is a stochastic and irreducible
birth-death process on S with at least one positive self-transition probability,
so that X is aperiodic. Note that X is simple and atomic by Lemma 2.1. As
before, P denotes the matrix of 1-step transition probabilities of X , and we use
the notation (1.2). Letting

π0 := 1, πn :=
p0p1 . . . pn−1
q1q2 . . . qn

, n ≥ 1,

and

Kn :=

n∑
j=0

πj , Ln :=

n∑
j=0

1

pjπj
. 0 ≤ n ≤ ∞, (4.1)

we observe that K∞ + L∞ =∞, and recall that

X is

 positive recurrent ⇐⇒ K∞ <∞, L∞ =∞
null recurrent ⇐⇒ K∞ =∞, L∞ =∞
transient ⇐⇒ K∞ =∞, L∞ <∞.

(4.2)

Theorem 4.1. The asymptotic period d(X ) of the birth-death process X equals
1, 2, or ∞.

Proof. Suppose 2 < d ≡ d(X ) < ∞, and let {C0, C1, . . . , Cd−1} be a cyclic
Blackwell decomposition of S for X (d).

By (2.4) we have, for ` = 0, 1 . . . and k sufficiently large, X(k+`) ∈ C` (mod d)

if X(k) ∈ C0, and in particular X(k + 1) ∈ C1. Since C0 and C1 are disjoint,
X(k + 1) = X(k) is impossible, but also X(k + 1) = X(k) − 1 leads to a
contradiction. Indeed, if X(k) ∈ C0 and X(k+ 1) = X(k)− 1 ∈ C1 then X(k+
2) ∈ C2 and hence X(k+2) = X(k)−2, since the other options would contradict
the fact that C0, C1 and C2 are disjoint. Thus continuing we eventually find
that X(k+X(k)−1) = 1 ∈ CX(k)−1 (mod d) and X(k+X(k)) = 0 ∈ CX(k) (mod d).
But this would imply X(k + X(k) + 1) = 0 or X(k + X(k) + 1) = 1, which is
impossible since CX(k)−1 (mod d), CX(k) (mod d) and CX(k)+1 (mod d) are disjoint.

So, assuming k sufficiently large and X(k) ∈ C0, we must have X(k + 1) =
X(k) + 1 ∈ C1. Repeating the argument leads to the conclusion that for k
sufficiently large, X(k) ∈ C0 implies X(k + `) = s + ` ∈ C` (mod d) for all
` = 0, 1, . . . . We conclude that in the long run X will solely make jumps to
the right, that is, the number of self-transitions or jumps to the left will be
finite. But then, as we have observed in Section 3, β(X (n)) = n for all n, since
the sets C ′i := {i, n + i, 2n + i, . . .}, i = 0, 1, . . . , n − 1, are (disjoint) atomic
almost closed sets with respect to X (n). Hence d(X ) = ∞, contradicting our
assumption d(X ) <∞. 2
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In what follows we derive necessary and sufficient conditions for d(X ) =∞
and for d(X ) = 1 (that is, for asymptotic aperiodicity) in terms of the 1-step
transition probabilities of the process X . By the above theorem we must have
d(X ) = 2 in the cases not covered by these criteria. The next theorem tells us
when d(X ) =∞.

Theorem 4.2. The birth-death process X has asymptotic period d(X )=∞ if
and only if Π∞i=0pi > 0.

Proof. It has been shown already in Section 3 that d(X ) = ∞ if Π∞i=0pi > 0,
so it remains to prove the converse. So suppose d(X ) = ∞ and let d > 2 be
such that β(X (d)) = d. The argument used in the proof of Theorem 4.1 can
be copied to conclude that, with probability one, X will, in the long run, solely
make jumps to the right, but this obviously implies Π∞i=0pi > 0. 2

A criterion for asymptotic aperiodicity in terms of the 1-step transition prob-
abilities follows after having established the validity of three lemmas. The first
is the following.

Lemma 4.1. X is asymptotically aperiodic if and only if X (2) is simple.

Proof. If X is asymptotically aperiodic, then, by definition, β(X (2)) < 2, and
hence β(X (2)) = 1, that is, X (2) is simple. On the other hand, if X is not asymp-
totically aperiodic then d(X ) = 2 or d(X ) =∞, which both imply β(X (2)) = 2,
that is, X (2) is not simple. 2

Note that, by Lemma 2.1, X (2) will be atomic if it is simple.
In the next lemma a necessary and sufficient condition for X (2) to be simple

is given in terms of the polynomials Qn, n ≥ 0, that are uniquely determined
by the 1-step transition probabilities of X via the recurrence relation

xQn(x) = qnQn−1(x) + rnQn(x) + pnQn+1(x), n > 1,
Q0(x) = 1, p0Q1(x) = x− r0.

(4.3)

The result is mentioned already in [6, p. 275], but for completeness’ sake we
give its proof.

Lemma 4.2. X (2) is simple if and only if |Qn(−1)| → ∞ as n→∞.

Proof. WritingQ(x) := (Q0(x), Q1(x), . . .)T (where superscript T denotes trans-
position), the recurrence relation (4.3) may be succinctly represented by

PQ(x) = xQ(x). (4.4)

It follows that
P 2Q(x) = x2Q(x), (4.5)
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so that the vectors Q(1) and Q(−1) are two distinct solutions of the system of
equations

P 2y = y. (4.6)

Moreover, P 2 being a pentadiagonal matrix, any solution to (4.6) must be a
linear combination of Q(1) and Q(−1). It follows that the constant function is
the only bounded harmonic function for P 2 if and only if Qn(−1) is unbounded.
Since |Qn(−1)| is increasing (see Karlin and McGregor [9, p. 76] and Lemma
4.3 below), Theorem 2.2 leads to the required result. 2

The third lemma constitutes an extension of Karlin and McGregor’s result
on the sequence {Qn(−1)}n referred to in the proof of the previous lemma.

Lemma 4.3. The sequence {(−1)nQn(−1)}n is increasing, and strictly increas-
ing for n sufficiently large. Moreover,

lim
n→∞

(−1)nQn(−1) =∞ ⇐⇒
∞∑
j=0

1

pjπj

j∑
k=0

rkπk =∞.

Proof. Writing Q̄n(x) := (−1)nQn(x) the recurrence relation (4.3) implies

pnπn(Q̄n+1(x)− Q̄n(x)) = pn−1πn−1(Q̄n(x)− Q̄n−1(x))

+ (2rn − 1− x)πnQ̄n(x), n ≥ 1,

p0π0(Q̄1(x)− Q̄0(x)) = (2r0 − 1− x)π0Q̄0(x),

so that

pnπn(Q̄n+1(x)− Q̄n(x)) =

n∑
k=0

(2rk − 1− x)πkQ̄k(x), n ≥ 0,

and hence

Q̄n+1(x) = 1 +

n∑
j=0

1

pjπj

j∑
k=0

(2rk − 1− x)πkQ̄k(x), n ≥ 0. (4.7)

It follows in particular (as observed already by Karlin and McGregor [9, p. 76])
that

Q̄n+1(−1) = 1 + 2

n∑
j=0

1

pjπj

j∑
k=0

rkπkQ̄k(−1), n ≥ 0, (4.8)

and hence

Q̄n+1(−1) = Q̄n(−1) +
2

pnπn

n∑
k=0

rkπkQ̄k(−1), n ≥ 0. (4.9)
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Since Q̄0(−1) = 1 while rk > 0 for at least one state k by the aperiodicity of
X , the first statement follows. So we have Q̄n(−1) ≥ 1, which, in view of (4.8),
implies the necessity in the second statement. To prove the sufficiency we let

βj :=
2

pjπj

j∑
k=0

rkπk, j ≥ 0,

and assume that
∑
j βj converges. By (4.9) we then have

Q̄n+1(−1) ≤ Q̄n(−1)(1 + βn), n ≥ 0,

since Q̄n(−1) is increasing in n. It follows that

Q̄n+1(−1) ≤
n∏
j=0

(1 + βj), n ≥ 0.

But, as is well known,
∏
j(1 + βj) and

∑
j βj converge together, so we must

have limn→∞ Q̄n(−1) <∞. 2

The Lemmas 4.1 – 4.3 give us a necessary and sufficient condition for X to
be asymptotically aperiodic in terms of the 1-step transition probabilities.

Theorem 4.3. The birth-death process X is asymptotically aperiodic if and
only if

∞∑
j=0

1

pjπj

j∑
k=0

rkπk =∞. (4.10)

Considering (4.2) and the fact that rk > 0 for at least one state k by the
aperiodicity of X , we see that X is asymptotically aperiodic if X is recurrent, as
we had observed already in the more general setting of Theorem 3.3. Another
simple sufficient condition for asymptotic aperiodicity is obtained by noting that

n∑
j=0

1

pjπj

j∑
k=0

rkπk ≥
n∑
j=0

rj
pj
,

so that X is asymptotically aperiodic if
∑∞
j=0 rj/pj = ∞. Note that the latter

condition is substantially weaker than the condition given, in a more general
setting, in Corollary 3.1.

References

[1] A.F. Abrahamse (1969) The tail field of a Markov chain. Ann. Math. Statist.
40, 127–136.



778 E.A. van Doorn

[2] D. Blackwell (1955) On transient Markov processes with a countable number
of states and stationary transition probabilities. Ann. Math. Statist. 26, 654–658.

[3] K.L. Chung (1967) Markov Chains With Stationary Transition Probabilities,
2nd ed., Springer-Verlag, Berlin.

[4] P. Coolen-Schrijner and E.A. van Doorn (2006) Quasistationary distribu-
tions for a class of discrete-time Markov chains. Methodol. Comput. Appl. Probab.
8, 449–465.

[5] E.A. van Doorn (2018) On the strong ratio limit property for discrete-time
birth-death processes. SIGMA Symmetry Integrability Geom. Methods Appl. 14,
047, 9 pages.

[6] E.A. van Doorn and P. Schrijner (1995) Ratio limits and limiting conditional
distributions for discrete-time birth-death processes. J. Math. Anal. Appl. 190,
263–284.

[7] D.E. Handelman (1999) Eigenvectors and ratio limit theorems for Markov chains
and their relatives. J. Anal. Math. 78, 61–116.

[8] Hou Zhenting and Guo Qingfeng (1988) Homogeneous Denumerable Markov
Processes, Springer-Verlag, Berlin.

[9] S. Karlin and J.L. McGregor (1959) Random walks. Illinois J. Math. 3,
66–81.

[10] H. Kesten (1995) A ratio limit theorem for (sub) Markov chains on {1, 2, . . .}
with bounded jumps. Adv. Appl. Probab. 27, 652–691.

[11] Shu-Teh C. Moy (1967) Period of an irreducible positive operator. Illinois J.
Math. 11, 24–39.

[12] S. Orey (1961) Strong ratio limit property. Bull. Amer. Math. Soc. 67, 571–574.

[13] W.E. Pruitt (1965) Strong ratio limit property for R-recurrent Markov chains.
Proc. Amer. Math. Soc. 16, 196–200.

[14] D. Revuz (1984) Markov Chains, rev. ed. North-Holland, Amsterdam.


