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Preface

This book is for bachelor students in social, behavioural and management sci-
ences that want to learn how to analyze their data, with the specific aim to
answer research questions. The book has a practical take on data analysis: how
to do it, how to interpret the results, and how to report the results. All tech-
niques are presented within the framework of linear models: this includes simple
and multiple regression models, to linear mixed models and generalized linear
models. All methods can be carried out within one supermodel: the generalized
linear mixed model. This approach is illustrated using SPSS.
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Chapter 1

Variables, variation and
co-variation

1.1 Units, variables, and the data matrix

Data is the plural of datum, and datum is the Latin translation of ’given’. That
the world is round, is a given. That you are reading these lines, is a given,
and that my dog’s name is Philip, is a given. Sometimes we have a bunch of
given facts (data), for example the names of all students in a school, and their
marks for a particular course. I could put these data in a table, like the one in
Table [[.1l There we see information about seven students. And of these seven
students we know two things: their name and their grade. You see that the data
are put in a matrix with seven (horizontal) rows and two (vertical) columns.
Each row stands for one student, and each column stands for one property.

In data analysis, we always put data in such a matrix format. In general,
we put the objects of our study in rows, and their properties in columns. The
objects of our study we call units, and the properties we call variables.

Table 1.1: Data matrix with 7 units and 2 variables.

name grade
Mark Zimmerman 5
Daisy Doe 8

Mohammed Solmaz
Monique Gambin

Inga Svensson 1
Piet van der Keuken

Floor de Vries

DN O O Ut

Let’s look at the first column in Table[I.1] We see that it regards the variable
name. We call the property name a variable, because it varies across our units
(the students): in this case, every unit has a different value for the variable
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name. In sum, a variable is a property of units that shows different values for
different units.

The second column represents the variable grade. Grade is here a variable,
because it takes different values for different students. Note that both Mark
Zimmerman and Mohammed Solmaz have the same value for this variable.

What we see in Table is called a data matriz: it is a matrix (a collection
of rows and columns) that contains information on units (in the rows) in the
form of variables (in the columns).

A unit is something we’d like to say something about. For example, I might
want to say something about students and how they score on a course. In that
case, students are my units of analysis.

If my interest is in schools, the data matrix in Table might be useful,
which shows a different row for each school with a couple of variables. Here
again, we see a variable for grade on a course, but now averaged per school. In
this case, school is my unit of analysis.

Table 1.2: Data matrix on schools.
school number.students grade.average teacher

5 6.1 Alice Monroe

5.9 Daphne Stuart

6.9 Stephanie Morrison
5.9 Clark Davies

6.4 David Sanchez Gomez
6.1 Metin Demirci

5.2  Frederika Karlsson
6.8 Advika Agrawal

CO J O UL i W N
—
O© YN D O Ut

1.2 Multiple observations: wide format and long
format data matrices

In many instances, units of analysis are observed more than once. This means
that we have more than one observation for the same variable for the same unit
of analysis. Storing this information in the rows and columns of a data matrix
can be done in two ways: using wide format or using long format. We first look
at wide format, and then see that generally, long format is to be preferred.

Suppose we measure depression levels in four men four times during cog-
nitive behavioural therapy. Sometimes you see data presented in the way of
Table where there are four separate variables for depression level, one for
each measurement: depression.1, depression.2, depression.3, and depres-
sion.4.

This way of representing data on a variable that was measured more than
once is called wide format. We call it wide because we simply add columns when
we have more measurements, which increases the width of the data matrix. Each



Table 1.3: Data matrix with depression levels in wide format.
client depression.1 depression.2 depression.3 depression.4
1 5 6 9 3

2 9 5) 8 7
3 9 0 9 3
4 9 2 8 6

Table 1.4: Data matrix with depression levels in long format.
client time depression

o R R W W WWINDNN NN =
WO N R WN - WN R WN -
DO N O WODOOJ0ITO WO ot

new observation of the same variable on the same unit of analysis leads to a
new column in the data matrix.

Note that this is only one way of looking at this problem of measuring de-
pression four times. Here, you can say that there are really four depression
variables: there is depression measured at timepoint 1, there is depression mea-
sured at timepoint 2, and so on, and these four variables vary only across units
of analysis. This way of thinking leads to a wide format representation.

An alternative way of looking at this problem of measuring depression four
times, is that depression is really only one variable and that it varies across
units of analysis (some people are more depressed than others) and that it also
varies across time (at times you feel more depressed than at other times).

Therefore, instead of adding columns, we could simply stick to one variable
and only add rows. That way, the data matrix becomes longer, which is the
reason that we call that format long format. Table shows the same data
from Table but now in long format. Instead of four different variables, we
have only one variable for depression level, and one extra variable time that
indicates to which timepoint a particular depression measure refers to. Thus,



both Tables and tell us that the second depression measure for client
number 3 was 0.

Now let’s look at a slightly more complex example, where the advantage of
long format becomes clear. Suppose we have data on weather forecasts for a
number of specific days (days are our units of analysis). We present the data in
long format in Table (1.5 and in wide format in Table

Table 1.5: Data matrix on weather forecasts.

day precipitation sunshine forecaster
Jan 1 3 2 Dump
Jan 1 3 3 Taylor
Jan 2 3 8 Dump
Jan 2 3 2 Taylor
Jan 3 20 5 Dump
Jan 3 1 38 Taylor
Jan 4 95 4 Dump
Jan 4 1 7 Taylor
Jan 5 7 5 Dump
Jan b 55 23 Taylor
Jan 6 1 24 Dump
Jan 6 20 4  Taylor
Jan 7 7 6 Dump
Jan 7 7 9 Taylor

Table 1.6: Data matrix on weather forecasts in wide format.

day precip.Taylor precip.Dump sunshine.Taylor sunshine.Dump
Jan 1 3 3 3 2
Jan 2 3 3 2 8
Jan 3 1 20 38 5
Jan 4 1 55 7 4
Jan 5 55 7 23 5
Jan 6 20 1 4 24
Jan 7 7 7 9 6

One thing we notice when we compare the weather forecast data in long and
wide format is the wording of the variable names: they tend to become very
long in wide format. Imagine for example that we would have weather forecast
data by several forecasters for two regions: South and North. Then one vari-
able should be called Precipitation.Taylor.North, another variable should be
called Precipitation.Taylor.South, another variable should be called Pre-
cipitation.Dump.North, and another variable should be called Precipita-
tion.Dump.South. And what if we would have in addition separate forecasts
for mornings and afternoons? Then we would have to have variables with names
like Precipitation.Taylor.North.am, Precipitation.Taylor.North.pm, et

4



cetera. Table[L.7]shows an example of a weather forecast data set that is simply
too complex to store in wide format: the variable names would become too
horrible to print. In sum, if a data set becomes large and complex, it is much
better stored in long format than in wide format, as in wide format the names
of variables become too wordy to handle. Of course, a solution could be to use
very short variable names like vl and v2 and then keep track of their meaning
in a log file, but that is rather inconvenient. SPSS does have a nice feature
to keep variable names and variable meanings close but separate, but not all
software packages do.

The second thing we can say about the difference in data in long and wide
format, is that it is much easier to add data in long format than it is in wide for-
mat. Imagine that we start with the data in wide format in Table Suppose
we get some new data on forecasts on wind speed. If we want to include that
information in our data matrix, we would have to make two new variables: one
for wind speed as predicted by Taylor and one for wind speed as predicted by
Dump. In the case of long format, see Table we would only have to add one
new variable Wind.speed. If in addition, we could obtain new data in terms
of data coming from a third forecaster named Gibson, in the case of data in
wide format we would have to add three new wordy variables: Precip.Gibson,
Sunshine.Gibson, and Wind.speed.Gibson. In the case of long format, we
would only have to add a few extra rows.

A third reason for preferring long format over wide format is that in wide
format there can sometimes be very many zeros. Imagine a large well-known
online shop where there are thousands of customers and thousands of products.
If you want to keep track of which customer has bought which product, and
you use a wide data matrix format, you have thousands of rows (customers)
and thousands of columns (products). In the cells you can then keep track of
how many of a certain product have been bought by a certain customer. The
result would be a huge matrix like Table [I.8] with a huge number of cells with
the number 0 in them and only a very few cells with a number larger than ()E|

In contrast, if you would use a long data matrix format, the data matrix
would be much smaller, as you would not need space for all combinations of
products and customers that do not exist. More importantly, there would be
even space to include more information, like the date of purchase and the method
of payment, see Table something that would be practically impossible in
wide format.

A fourth reason for preferring long format over wide format is the most prac-
tical one for data analysis: when analysing data using linear models, software
packages require your data to be in long format. In this book, all the analyses
with linear models require your data to be in long format. However, we will also
come across some analyses apart from linear models that require your data to
be in wide format. If your data happen to be in the wrong format, rearrange
your data first. Of course you should never do this by hand as this will lead to
typing errors and would take too much time. Statistical software packages have

LA phenomenon called sparsity or sparseness.



Table 1.7: Data matrix on weather forecasts.

day region time.of.day day.of.forec w.speed precip sunsh forecaster
Jan1 south am Dec 31 ) 7 3  Taylor
Jan1 south am Dec 31 6 55 8 Dump
Jan1 south pm Dec 31 2 20 5 Taylor
Jan1 south pm Dec 31 5 3 4  Dump
Jan1 south am Jan 1 3 403 23  Taylor
Jan1 south am Jan 1 ) 3 24 Dump
Jan 1 mnorth pm Jan 1 5 1097 6 Taylor
Jan 1 mnorth pm Jan 1 3 3 5 Dump
Jan1 north am Dec 31 5 3 17  Taylor
Jan1 north am Dec 31 5 7 22 Dump
Jan1 mnorth pm Dec 31 ) 3 8 Taylor
Jan1l mnorth pm Dec 31 3 1 8 Dump
Jan 2 south am Jan 1 1 20 8 Taylor
Jan 2 south am Jan 1 5 7 11 Dump
Jan 2 south pm Jan 1 2 20 2 Taylor
Jan 2 south pm Jan 1 2 20 2 Dump
Jan 2 south am Dec 31 1 7 38 Taylor
Jan 2 south am Dec 31 6 55 7 Dump
Jan 2 north pm Dec 31 3 7 5 Taylor
Jan 2 north pm Dec 31 4 20 4  Dump
Jan 2 north am Jan 1 3 20 9 Taylor
Jan 2 north am Jan 1 3 20 5 Dump
Jan 2 north pm Jan 1 1 7 2 Taylor
Jan 2 north pm Jan 1 2 7 6 Dump

helpful tools for rearranging your data from wide format to long format, and
vice versa.

1.2.1 Exercises

1. In Table you see data on two companies that paid taxes in 2016 and
2017. Are the data displayed in wide format or in long format? Explain.

2. Put the data in Table in wide format if you think they are in long
format, or in long format if they are in wide format. Hint: Look at the

depression example for inspiration.

1.2.2 Answers

1. The data are in wide format. There is one variable, how much tax was

paid, and that variable was observed twice for each unit of analysis.

2. An example of the data displayed in long format is displayed in Table



Table 1.8: Example customer and product data using wide data format.
CUSTOMER ID AAiUUKDVV BJDulKKHDFHJ JJCITUulICJI

000000011

0 0 0
000000012 0 0 0
000000013 0 0 0
000000014 0 2 1
000000015 0 0 0

Table 1.9: Example customer and product data using long data format.

CUSTOMER ID Product Code Date of Purchase Method of Payment
000000014 BJDuIKKHDFHJ Jan 15 2018 Mastercard
000000014 BJDulKKHDFHJ May 17 2018 Visacard
000000014 JJCITUuICII May 17 2018 Visacard

1.3 Measurement level

Data analysis is about variables an relationships among them. In essence, data
analysis is about describing how different values in one variable go together with
different values in one or more other variables (co-variation). For example, if we
have the variable age with values 'young’ and ’old’, and the variable happiness
with values "happy’ and 'unhappy’, we'd like to know whether ’happy’ mostly
comes together with either ’young’ or ’old’. Therefore, data analysis is about
variation and co-variation in variables.

Linear models are important tools when describing co-varying variables.
When we want to use linear models, we need to distinguish between differ-
ent kinds of variables. One important distinction is about the measurement
level of the variable: numeric, ordinal or categorical.

1.3.1 Numeric variables

Numeric variables have values that describe a measurable quantity as a num-
ber, like ’how many’ or "how much’. A numeric variable can be a count variable,
for instance the number of children in a classroom. A count variable can only
consist of discrete, natural numbers: 0, 1, 2, 3, etcetera. But a numeric variable
can also be a continuous variable. Continuous variables can take any value from
the set of real numbers, for instance values like -200.765, -9.78, -2, 0.001, 4, and
7.8. The number of decimals can be as large as the instrument of measurement
allows. Examples of continuous variables include height, time, age, blood pres-
sure and temperature. Note that in all these examples, quantities (age, height,
temperature) are expressed as the number of a particular measurement unit
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Table 1.10: Paid taxes in 2016 and 2017.
company tax.2016  tax.2017

Daisy’s 569875 8765447
Burger Queen 98765433 87865443

Table 1.11: Paid taxes in 2016 and 2017.

company year tax
Daisy’s 2016 569875
Burger Queen 2016 98765433
Daisy’s 2017 8765447

Burger Queen 2017 87865443

(years, inches, degrees).

Whether a numeric variable is a count variable or a continuous variable, it
is always expressing quantities, and therefore numeric variables can be called
quantitative variables.

There is a further distinction between interval variables and ratio variables
that is rather technical. For both interval and ratio variables, the interval be-
tween measurements is the same, for example the interval between one kilogram
and two kilograms is the same as the interval between three kilograms and four
kilograms: in both cases the interval (the difference) is one kilogram. The dif-
ference between two buildings and three buildings, is the same as the difference
between four buildings and five buildings: in both cases the difference is one
building.

The difference between interval and ratio variables is that for interval vari-
ables, the ratio between measurements is not known. A common case of this
is temperature measured in degrees Fahrenheit or degrees Celcius. Suppose we
measure the temperature of two classrooms: one is 10 degrees Celcius and the
other is 20 degrees Celcius. The ratio of these two temperatures is 20/10 = 2,
but does that ratio convey meaningful information? Can we really say that the
second classroom is twice as warm as the first classroom? The answer is no,
and the reason is simple: had we expressed temperature in Fahrenheit we would
have gotten a very different ratio. Temperatures of 10 and 20 degrees Celcius
correspond to 50 and 68 degrees Fahrenheit, respectively. This corresponds to
a ratio of 68/50=1.36. Based on the Fahrenheit metric, the second classroom
would now be 1.36 times warmer than the first classroom. The reason why
the ratios depend on the metric system, is because the Celcius and Fahrenheit
systems have different meanings for the zero-point. They both have arbitrary
zero-points. All such numeric variables for which ratios are meaningless are
interval variables.

An example of a ratio variable is height. You could measure height in two
persons where one measures 1 meter and the other measures 2 meters. You can
then say that the second person is twice as long as the first person, because
had we chosen a different measurement unit, the ratio would be the same. For



instance, suppose we express the heights of the two persons in inches, we get
39.37 and 78.74 respectively. The ratio remains 2: 78.74/39.37. The same
ratio would hold for measurements in feet, miles or millimeters. For height we
have a natural zero-point: a zero reflects the absence of height. Note that this
interpretation cannot be used for temperature: zero degrees Fahrenheit does not
imply the absence of temperature. Thus, for every numeric variable where there
is a natural zero-point that expresses the absence of a quantity, ratios between
values have meaning. That is the reason why they are called ratio variables.

1.3.2 Ordinal variables

Ordinal variables are also about quantities. However, the important difference
with numeric variables is that ordinal variables are not measured in units. An
example would be a variable that would quantify size, by stating whether a
T-shirt is small, medium or large. Yes, there is a quantity here, size, but there
is no unit to state exactly how much of that quantity is present in that T-shirt.

Even though ordinal variables are not measured in specific units, you can
still have a meaningful order in the values of the variable. For instance, we know
that a large T-shirt is larger than a medium T-shirt, and a medium T-shirt is
larger than a small T-shirt.

Similar for age, we could code a number of people as young, middle-aged
or old, but on the basis of such a variable we could not state by how much
two individuals differ in age. As opposed to numeric variables that are often
continuous, ordinal variables are usually discrete: there are no infinite number
of levels of the variable. If we have sizes small, medium and large, there are no
meaningful other values in between these values.

Ordinal variables often involve subjective measurements. One example would
be having people rank five films by preference in order from one to five. A dif-
ferent example would be having people assess pain: ”On a scale of 1 to 10, how
bad is the pain?”

1.3.3 Categorical variables

Categorical variables are not about quantity at all. Categorical variables are
about quality. They have values that describe what type’ or to which category’
a unit of belongs. For example, a school could either be publicly funded or not,
or a person could either have the Swedish nationality or not. A variable that
indicates such a dichotomy between publicly funded ’yes’ or 'no’, or Swedish
nationality ’yes’ or 'no’; is called a dichotomous variable, and is a subtype of
a categorical variable. Another subtype of a categorical variable is a nominal
variable. Nominal comes from the Latin nomen, which means name. When
you name the nationality of a person, you have a nominal variable. Table
shows an example of both an dichotomous variable (Swedish) that always has
only two different values, and a nominal variable (Nationality), that can have
as many different values as you want (usually more than two).

9



Table 1.12: Nationalities.
ID Swedish Nationality

1 Yes Swedish

2 Yes Swedish

3 No Angolan

4 No Norwegian
5 Yes Swedish

6 Yes Swedish

7 No Danish

8 No Unknown

Another example of a nominal variable could be the answer to the question:
"name the colours of a number of pencils”. Nothing quantitative could be
stated about a bunch of pencils that are only assessed regarding their colour.
In addition, there is usually no logical order in the values of such variables,
something that we do see with ordinal variables.

1.3.4 Exercises

In the following, identify the type of variable in termes of numeric, ordinal, or
categorical:

1.
2.

10.
11.
12.

13.

Age: ... years

Exercise intensity: low, moderate, high

Size: ...meters

Size: small, medium, large

Weight: ... kilograms

Agreement: not agree, somewhat agree, agree

Agreement: totally not agree, somewhat not agree, neither disagree nor
agree, somewhat agree, totally agree

Pain: 1, 2.. ..... , 99, 100, with 1="total absence of pain” and 100="the
worst imaginable pain”

. Quality of life: 1=extremely low, ..., ..., 7=extremely high

Colour: blue, green, yellow, other
Nationality: Chinese, Korean, Australian, Dutch, other
Gender: Female, Male, other

Gender: 0=Female, 1=Male

10



14.
15.

Number of shoes:

How would you describe count variables: are they always ratio variables
or always interval variables?

Answers:

1.

10.
11.
12.
13.

14.

15.

2
3
4.
5
6
7

Numeric

. Ordinal

. Numeric

Ordinal

. Numeric
. Ordinal

. Technically this is an ordinal variable as there is no measurement unit

and there is only an ordering in the intensity of the agreement. However,
given the number of categories and the small differences in meaning across
adjacent categories, such variables are sometimes treated as numeric by
using numbers 1, 2, 3, 4, 5 for the respective categories.

. The numbers might trick you into thinking it is a numeric variable. How-

ever, again, this is technically an ordinal variable as there is no measure-
ment unit and there is only an ordering in the intensity of pain. However,
given the large the number of categories, such variables are most often
treated as numeric.

. The numbers might trick you into thinking it is a numeric variable. But

technically it is still an ordinal variable because there is no measurement
unit and there is only a meaningful order. But again, given the large
number of categories, such variables are often treated as numeric.

Categorical
Categorical
Categorical

The numbers might trick you into thinking it is a numeric variable. How-
ever, it is conceptually still a categorical variable as there is no measure-
ment unit and there is no ordering.

Numeric, because you count the number of shoes. It is a discrete variable,
but one can also imagine that 2.5 shoes is a meaningful value.

A count of 0 means the absence of the thing that is being counted. If
one person has two balloons, and the other person has six balloons, it is
meaningful to say that the second person has three times more balloons
than the first person. Count variables are therefore always ratio variables.

11



1.3.5 Treatment of variables in data analysis

For data analysis with linear models, you have to decide for each variable
whether you want to treat it as numeric or as categoricalﬂ The easiest choice is
for numeric variables: numeric variables should always be treated as numeric.

Categorical data should always be treated as categorical. However, the prob-
lem with categorical variables is that they often look like numeric variables. For
example, take the categorical variable country. In your data file, this variable
could be coded with strings like ” Netherlands”, ”Belgium”, ” Luxemburg”, etc.
But the variable could also be coded with numbers: 1, 2 and 3. In a codebook
that belongs to a data file, it could be stated that 1 stands for ”Netherlands”,
2 for ”Belgium”, and 3 for ”Luxemburg” (these are the value labels), but still
in your data matrix your variable would look numeric. You then have to make
sure that, even though the variable looks numeric, it should be interpreted as a
categorical variable and therefore be treated like a categorical variable.

The most difficult problem lies with ordinal variables: in linear models you
can either treat them as numeric variables or as categorical variables. The
choice is usually based on common sense and whether the results are meaning-
ful. For instance, if you have an ordinal variable with 7 levels, like a Likert
scale, the variable is often coded with numbers 1 through 7, with value la-
bels 1="completely disagree”, 2="mostly disagree”, 3="somewhat disagree”,
4="ambivalent”, 5="somewhat agree”, 6="mostly agree”, and 7="completely
agree”. You could in this example choose to treat this variable like a categorical
variable, recognizing that this is not a numeric variable as there is no measure-
ment unit. However, if you feel this is akward, you could choose to treat the
variable as numeric, but be aware that this implies that you feel that the differ-
ence between 1 and 2 is the same as the difference between 2 and 3. In general,
with ordinal data like Likert scales or sizes like, Small, Medium and Large, one
generally chooses to use categorical treatment for low numbers of categories,
say 3 or 4 categories, and numerical treatment for variables with many cate-
gories, say 5 or more. However, this should not be used as a rule of thumb:
first think about the meaning of your variable and the objective of your data
analysis project, and only then take the most reasonable choice. Often, you can
start with numerical treatment, and if the analysis shows peculiar resultsﬂ you
can choose categorical treatment in secondary analyses.

In the coming chapters, we will come back to the important distinction
between categorical and numerical treatment (mostly in Chapter @ For now,
remember that numeric variables are always treated as numeric variables and
categorical variables are always treated as categorical variables.

2In data analysis, it is possible to treat variables as ordinal, but only in more advanced
models and methods than treated in this book.

3For instance, you may find that the assumptions of your linear model are not met, see
Chapter El
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1.4 Frequency tables, frequency plots and his-
tograms

Variables have different values. For example, age is a numeric variable: lots of
people have different ages, between 0 days and 130 years. Suppose we measure
age in years, then we have 131 different values, from 0 years to 120 years. For
each observed age separately, we can compute how many observations we have.
For instance, suppose we have an imaginary town with 1000 children. For each
age, we can count the number of children who have that particular age. The
results of the counting are in Table[I.13] The number of observed children with
a certain age, say 40, is called the frequency of age 40. The table is therefore
called a frequency table. Generally, in a frequency table values that are not
observed are omitted (i.e., the frequency of children with age 16 is 0).

Table 1.13: Fregency table for age, with proportions and cumulative propor-
tions.

age frequency proportion cum.frequency cum.proportion

0 2 0.002 2 0.002
1 7 0.007 9 0.009
2 20 0.020 29 0.029
3 50 0.050 79 0.079
4 105 0.105 184 0.184
) 113 0.113 297 0.297
6 159 0.159 456 0.456
7 150 0.150 606 0.606
8 124 0.124 730 0.730
9 108 0.108 838 0.838
10 70 0.070 908 0.908
11 34 0.034 942 0.942
12 32 0.032 974 0.974
13 14 0.014 988 0.988
14 9 0.009 997 0.997
15 2 0.002 999 0.999
17 1 0.001 1000 1.000

The data in the frequency table can also be represented using a frequency
plot. Figure gives the same information, not in numbers but in a graphical
way. On the horizontal axis we see several possible values for age in years,
and on the vertical axis we see the number of children (the count) that were
observed for each particular age. Both the frequency table and the frequency
plot tell us something about the distribution of age in this imaginary town with
1000 children. For example, both tell us that the oldest child is 17 years old.
Furthermore, we see that there are quite a lot of children with ages between 5
and 8, but not so many children with ages below 3 or above 14. The advantage
of the table over the graph is that we can get the exact number of children of a
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Figure 1.1: A frequency plot

particular age very easily. But on the other hand, the graph makes it easier to
get a quick idea about the shape of the distribution, which is hard to make out
from the table.

Instead of frequency plots, one often see histograms. Histograms contain the
same information as frequency plots, except that groups of values can be taken
together. Such a group of values is called a bin. Figure shows the same
age data, but uses only 9 bins: for the first bin, we take values of age 0 and 1
together, for the second bin we take ages 2 and 3 together, etcetera, until we
take ages 16 and 17 together for the last bin. For each bin, we compute how
often we observe the ages in that bin.

Histograms are very convenient for continuous data, for instance if we have
values like 3.4, 2,1, etcetera. Or, more generally, for variables with values that
have very low frequencies. Suppose that we had measured age not in years but
in days. Then we could have had a data set of 1000 children where each and
every child had a unique value for age. In that case, the length of the frequency
table would be 1000 rows (each value observed only once) and the frequency
plot would be very flat. By using age measured in years, what we have actually
done is putting all children with an age less than 365 days into the first bin
(age 0 years) and the children with an age of at least 365 but less than 730
days into the second bin (age 1 year). And so on. Thus, if you happen to have
data with many many values with each of them very low frequencies, consider
binning the data, and using a histogram to visualize the distribution of your
numeric variable.
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Figure 1.2: A histogram

1.5 Frequencies, proportions and cumulative fre-
quencies and proportions

When we have for each observed age the frequency, we can calculate the relative
frequency or proportion of children that have that particular age. For example,
when we look again at the frequencies in Table we see that there are two
children who have age 0. Given that there are in total 1000 children, we know
that the proportion of people with age 0 equals 2/1000 = 0.002. Thus, the
proportion is calculated by taking the frequency and dividing it by the total
number of people.

We can also compute cumulative frequencies. You get cumulative frequencies
by accumulating (summing) frequencies. For instance, the cumulative frequency
for the age of 3, is the frequency for age 3 plus all freqencies for younger ages.
Thus, the cumulative frequency of age 3 equals 50 + 20 (for age 2) + 7 (for age
1) + 2 (for age 0) = 79. The cumulative frequencies for all ages are presented
in Table

We can also compute cumulative proportions: if we take for each age the
proportion of people who have that age or less, we get the fifth column in Table
For example, for age 2, we see that there are 20 children with an age of
2. This corresponds to a proportion of 0.020 of all children. Furthermore, there
are 9 children who have an even younger age. The proportion of children with
an age of 1 equals 0.007, and the proportion of children with an age of 0 equals
0.002. Therefore, the proportion of all children with an age of 2 or less equals
0.020 + 0.007 + 0.002 = 0.029, which is called the cumulative proportion for the
age of 2.

15



1.6 Quartiles, quantiles and percentiles

Suppose we want to split the group of 1000 children into 4 equally-sized sub-
groups, with the 25% youngest children in the first group, the 25% oldest chil-
dren in the last group, and the remaining 50% of the children in two equally
sized middle groups. What ages should we then use to divide the groups? First,
we can order the 1000 children on the basis of their age: the youngest first, and
the oldest last. We could then use the concept of quartiles (from quarter, a
fourth) to divide the group in four. In order to break up all ages into 4 sub-
groups, we need 3 points to make the division, so there are three quartiles. The
first quartile is the value below which 25% of the observations fall, the second
quartile is the value below which 50% of the observations fall, and the third
quartile is the value below which 75% of the observations fall[]

Let’s first look at a smaller but similar problem. For example, suppose your
observed values are 10, 5, 6, 21, 11, 1, 7, 9. You first order them from low to
high so that you obtain 1, 5, 6, 7, 9, 10, 11, 21. You have 8 values, so the first
25% of your values are the first two. The highest value of these two equals 5,
and this we define as our quartileEI We find the second quartile by looking at
the values of the first 50% of the observations, so 4 values. The first 4 values
are 1, 5, 6, and 7. The last of these is 7, so that is our second quartile. The
first 75% of the observations are 1, 5 ,6 ,7 , 9, and 10. The value last in line is
10, so our fourth quartile is 10.

The quartiles as defined here can also be found graphically, using cumulative
proportions. Figure shows for each observed value the cumulative propor-
tion. It also shows where the cumulative proportions are equal to 0.25, 0.50 and
0.75. We see that the 0.25 line intersects the other line at the value of 5. This
is the first quartile. The 0.50 line intersects the other line at a value of 7, and
the 0.75 line intersects at a value of 10. The three percentiles are therefore 5, 7
and 10.

The graphical way is far easier for large data sets. If we plot the cumulative
proportions for the ages of the 1000 children, we obtain Figure[I[.4] We see a nice
S-shaped curve. We also see that the three horizontal quartile lines no longer
intersect the curve at specific values, so we need a rule to determine what value
to pick. By eyeballing we can find that the first quartile is somewhere between
4 and 5. This tell us that the youngest 25% of children have ages of 5 or leseﬂ
The second quartile is somewhere between 6 an 7, so we know that 50% of the
youngest children is 7 years old or younger The third quartile is somewhere
between 8 and 9 and this tells us that the youngest 75% of the children is age

4The fourth quartile would be the value below which all values are, so that would be the
largest value in the row (the age of the last child in the row).

5Note that we could also choose to use 6, because 1 and 5 are lower than 6. Don’t worry,
the method that we show here to compute quartiles is only one way of doing it. In your life,
you might stumble upon alternative ways to determine quartiles. These are just arbitrary
agreements made by human beings. They can result in different outcomes when you have
small data sets, but usually not when you have large data sets.

SIf you don’t see that, read again the section on cumulative proportions and how they are
computed.

16



1.00-

0.75

cum.proportion

0.25 /

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
value

Figure 1.3: Cumulative proportions.

9 or younger Thus, we can call 5, 7 and 9 our three quartiles.

Alternatively, we could also use the frequency table (Table . First, if
we want to have 25% of the children that are the youngest, and we know that
we have 1000 children in total, we should have 0.25 « 1000 = 250 children in the
first group. So if were to put all the children in a row, ordered from youngest
to oldest, we want to know the age of the 250th child.

In order to find the age of this 250th child, and we look at Table we
see that 29.7 % of the children have an age of 5 or less (297 children), and 18.4
% of the children have an age of 4 or less (184 children). This tells us that
the 250th child must be 5 years old. Furthermore, if we want to find a cut-off
age for the oldest 25%, we see from the table, that 83.8% of the children (838
children) have an age of 9 or less, and 73.0% of the children (730) have an age
of 8 or less. Therefore, the age of the 750th child (when ordered from youngest
to oldest) must be 9.

What we just did for quartiles, (i.e. 0.25, 0.50, 0.75) we can do for any
proportion between 0 and 1. We then no longer call them quartiles, but quan-
tiles. A quantile is the value below which a given proportion of observations in a
group of observations fall. From this table it is easy to see that a proportion of
0.606 of the children have an age of 7 or less. Thus, the 0.606 quantile is 7. One
often also sees percentiles. Percentiles are very much like quantiles, except that
they refer to percentages rather than proportions. Thus, the 20th percentile is
the same as the 0.20 quantile. And the 0.81 quantile is the same as the 81st
percentile.

The reason that quartiles, quantiles and percentiles are important is that
they are very short ways of saying something about a distribution. Remember
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that the best way to represent a distribution is either a frequency table or a
frequency plot. However, since they can take up quite a lot of space sometimes,
one needs other ways to briefly summarize a distribution. Saying that ”the
third quartile is 454” is a condensed way of saying that ”75% of the values is
either 454 or lower”. In the next sections, we look at other ways of summarizing
information about distributions.

1.6.1 Exercises

Table 1.14: Freqgency table for x, with proportions and cumulative proportions.
x frequency proportion cum.proportion

0 6 0.030 0.030
1 25 0.125 0.155
2 %) 0.275 0.430
3 44 0.220 0.650
4 36 0.180 0.830
5 20 0.100 0.930
6 9 0.045 0.975
7 4 0.020 0.995
8 1 0.005 1.000

1. Look at Table Determine the 10th quantile for variable x.

2. Determine the 95th percentile.
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. Determine the first quartile.

Determine the second quartile.

. Determine the 50th percentile.

Determine the third quantile.

Determine the 0.75 quantile.

quartile.

13

. Suppose we have the values 6,5,4,8,6,5,6,4,5,6,7,8. Determine the third

Suppose we have the values 4,4,4,8,6,4,6,4,5,6,7,8. Determine the third

quartile.

From Figure determine the 30th, 40th and 90th percentiles.

Suppose yesterday you did an IQ test, together with 999 other students.
Today you hear that you scored 100 points. They tell you that the 8th
percentile was a score of 80, and the 9th percentile was a score of 100.

What does that tell you about your performance yesterday?

1.6.2 Answers

1.

2.

1

6
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7.4

8. ordered series: 445 556 666 788, last value of third quart: 6
9. orderd series: 444 445 666 788, last value of third quart: 6
10. 2,2 and 7

11. Nine percent of my fellow students scored the same or lower than I did on
the exam, so 91 percent did better. I did not do so well.

1.7 Measures of central tendency

The mean, the median and the mode are three different measures that say
something about the central tendency of a distribution. If you have a series of
values: around which value do they tend they tend to cluster?

1.7.1 The mean

Suppose we have the values 1, 2 and 3, then we compute the mean (or average)
by first adding these numbers and then divide them by the number of values we
have. In this case we have three values, so the mean is equal to (1+2+3)/3 = 2.
In statistical formulas, the mean is indicated by a bar above the variable. So if
our values of variable y are 1, 2 and 3, then we denote the mean by § (pronounced
as y-bar). For taking the sum of a set of values, statistical formulas show a ¥
(pronounced as sigma). So we often see the following formula for the mean of a
set of n values for variable y:

iy
n

y= (1.1)
In words, we take every value for y from 1 to n and sum them, and the result
is divided by n.
If we take another example, suppose we have variable y with the values 6,
-3, and 21, then the mean of y, 7, equals:
Yyl 6+(—3)+21 24
yi _pityatys  6+(=3)+ _u_ (12)
n n 3 3

g:
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1.7.2 The median

The mean is only one measure of central tendency: if the mean is 100, it says
that the values tend to cluster around this value. A different measure of central
tendency is the median. The median is nothing but the middle value of an
ordered series. Suppose we have the values 45, 567, and 23. Then what value
lies in the middle? Let’s first order them from small to large to get a better
look, then we get 23, 45 and 567. Then the value in the middle is of course 45.

Suppose we have the values 45, 45, 45, 65, and 23. What is the middle
value? We first order them again and see what value is in the middle: 23, 45,
45, 45 and 65. Obviously now 45 is the median. You can also see that half of
the values is equal or smaller than this value, and half of the values is equal or
larger than this value. The median therefore is the same as the second quartile.

What if we have two values in the middle? Suppose we have the values 46,
56, 45 and 34. If we order them we get 34, 45, 46 and 56. Now there are two
values in the middle: 45 and 46. In that case, we take the mean of these two
middle values, so the median is 45.5.

When do you use a median and when do you use a mean? For numeric
variables that have a more or less symmetric distribution (i.e., a frequency plot
that is more or less symmetric), the mean is best used. For numeric variables
that do not have a symmetric distribution, it is usually more informative to
use the median. An example of such a situation is income. Figure shows
a typical distribution of yearly income. The distribution is highly asymmetric,
it is severely skewed to the right. The bulk of the values are between 20,000
and 40,000, with only a very few extreme values on the high end. Even though
there are only a few people with a very high income, the few high values have
a huge effect on the mean.

The mean of the distribution turns out to be 23604. The largest value in the
distribution is an income of 75051. Imagine what would happen to the mean
and the median if we would change only this one value. Which would be most
affected, do you think: the mean or the median?

Well, if we would change this value into 85051, you see an immediate impact
on the mean: the mean is then 23614. This means that the mean is very sensitive
to extreme values. One single change in a data set can have a huge effect on
the mean. The median on the other hand is much more stable. The median
remains unaffected by slight changes in the extremes. This because it only looks
at the middle value. The middle value is unaffected by a change in the extreme
values, as long as the order of the values remains the same.

This might be even made more clear by the following example in Table
Suppose we have the values 4, 5, and 8. Obviously, the median is 5. Instead of
8, we could pick 80, or 800, or 8000. Regardless, the middle value of this series
remains 5. In contrast, the mean would be very much affected by having either
an 8, a 80, a 800 or an 8000 in the series. In sum: the median is a more stable
measure of central tendency than the mean.
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Figure 1.6: Distribution of yearly income.

Table 1.15: Four series of values and their respective medians and means.
X1 X2 X3 median mean

4 ) 8 ) 5.7
4 ) 80 ) 29.7
4 5 800 5  269.7
4 5 8000 5 2669.7

1.7.3 The mode

A third measure of central tendency is the mode. The mode is defined as the
value that we see most frequently in a series of values. For example, if we have
the series 4, 7, 5, 5, 6, 6, 6, 4, then the value observed most often is 6 (three
times). Modes are easily inferred from frequency tables: the value with the
largest frequency is the mode. They are also easily inferred from frequency
plots: the value on the horizontal axis for which we see the highest count (on
the vertical axis).

The mode can also be determined for categorical variables. If we have the
observed values 'Dutch’, ’Danish’, 'Dutch’, and ’Chinese’, the mode is "Dutch’
because that is the value that is observed most often.

If we look back at the distribution in Figure [I.6] we see that the peak of
the distribution is around the value of 19,000. However, whether this is the
mode, we cannot say. Because income is a more or less continuous variable,
every value observed in the Figure occurs only once: there is no value of income
with a frequency more than 1. So technically, there is no mode. However, if
we split the values into 20 bins, like we did for the histogram in Figure we
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Figure 1.7: Distribution of systolic bloodpressure.

see that the fifth bin has the highest frequency. In this bin there are values
between 17000 and 21000, so our mode could be around there. If we really
want a specific value, we could decide to taken the average value in the fifth
bin. There are many other statistical tricks to find a value for the mode, where
technically there is none. The point is that for the mode, we're looking for the
value or the range of values that are most frequent. Graphically, it is the value
under the peak of the distribution. Similar to the median, the mode is also
quite stable: it is not much affected by extreme values and is therefore to be
preferred over the mean in the case of assymetric distributions.

1.7.4 Exercises
1. If we have values 56, 78, 23 and 45, what is the mean?
2. If we have values 56, 78, 23 and 45, what is the median?

3. If we have values 56, 23, 78, 23 and 45, what is the mode?

4. Figure[L.7]shows a distribution of systolic bloodpressure measures in older
men. What would be more or less the mode of these values?

5. Figure [L.5 shows a distribution of values. What would be more or less the
median of these values?

6. Figure shows a distribution of number of bicycles for 100 households.
If you could choose only one statistic to describe this distribution, what
would you choose to report: the mean, the mode or the median? Motivate
your answer.

23



50-

40-

30-

count

20-

10-

0 1 2 3 4 5
bicycles

Figure 1.8: Distribution of systolic bloodpressure.

1.7.5 Answers
1. 50.5

2. 50.5
3. 23
4. 140
5. 3

6. The median. Because the distribution is very skew and in that case the
mean would be relatively high, because it is influenced by a few households
with very many bicycles. The mode would not say very much other than
that 0 bicycles is the most common observation. But saying that half the
households have at least 1 bicycle would be more informative than that.

1.8 Relationship between measures of tendency
and measurement level

There is a close relationship between measures of tendency and measurement
level. For numeric variables, all three measures of tendency are meaningful.
Suppose you have the numeric variable age measured in years, with the values
56, 68, 68, 99 and 100. Then it is meaningful to say that the average age is 78.2
years, that the median age is 68 years, and that the mode is 68 years.
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For ordinal variables, it is quite different. Suppose you have 5 T-shirts, with
the following sizes: M, S, M, L, XL. Then what is the average size? There are
no numeric values here to put in the algebraic formula. But we can determine
the median: if we order the values from small to large we get the set S, M, M,
L, XL and we see that the middle value is M. So M is our median in this case.
E] The other meaningful of tendency for ordinal variables is the mode.

For categorical variables, both the mean and the median are pointless to
report. Suppose we have the nominal variable Study Programme with observed
values ”Medicine”, ”Engineering”, ”Engineering”, ”Mathematics”, and ”Biol-
ogy”. It would be impossible to derive a numerical mean, nor would it be
possible to determine the middle value to determine the median, as there is
no logical or natural order. |§| It is meaningful though to report a mode. It
would be meaningful to state that the study programme mentioned most often
in the news is ”Psychology”, or that the most popular study program in India is
”Engineering”. Thus, for categorical variables, both dichotomous and nominal
variables, only the mode is a meaningful measure of central tendency.

As stated earlier, the appearance of a variable in a data matrix can be
quite misleading. Categorical variables and ordinal variables can often look like
numeric variables, which makes it very tempting to compute means and medians
where they are completely meaningless. Take a look at Table It is entirely
possible to compute the average University, Size, or Programme, but it would
be utterly senseless to report these values.

It is entirely possible to compute the median University, Size, or Programme,
but it is only meaningful to report the median for the variable Size, as Size is
an ordinal value. Reporting that the median size is equal to 2 is saying that
about half of the study programs is of medium size or small, and about half of
the study programs is of medium size or large.

It is entirely possible to compute the mode for the variables University, Size,
or Programme, and it is always meaningful to report them. It is meaningful to
say that in your data there is no University that is observed more than others.
It is meaningful to report that most study programmes are of medium size, and
that most study programmes are study programme number 2 (don’t forget to
look up and write down which study programme that actually is!).

1.9 Measures of variation

Above we have seen that we can summarize a distribution of numeric variable
by a measure of central tendency. Here we discuss how we can summarize a
distribution of a numeric variable by a measure that describes its variation.
Suppose we measure the height of 3 children, and their heights (in cms) are
120, 120 and 120. There is no variation in height: all heights are the same.

"However, suppose that our collection of T-shirts had the following sizes: S, M, L, L. Then
there would be no single middle value in we would have to average the M and L values, which
would be impossible!

8Unless you see one? But then it would not be a categorical value but an ordinal variable.
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Table 1.16: Study programs and their relative sizes (1=small, 2=medium,
3=large) for six different universities.
University Size Programme
1

DD U= W N
DN W NN W
ok W W NN

There are no differences. Then the average height is 120, the median height is
120, and the mode is 120.

Now suppose their heights are . Now there are differences: one child is taller
than the other two, who have the same height. There is some variation now.
We know how to quantify the mean, which is 125, we know how to quantify the
median, which is 120, and we know how to quantify the mode, which is also
120. But how do we quantify the variation? Is there a lot of variation, or just
a little, and how do we measure it?

1.9.1 Range and interquartile distance

One thing you could think of is measuring the distance or difference between
the lowest value and the highest value. This we call the range. The lowest
value is 120, and the highest value is 135, so the range of the data is equal to
135 — 120 = 15. As another example, suppose we have the values 20, 20, 21,
20, 19, 20 and 454. Then the range is equal to 454 — 19 = 435. That’s a large
range, for a series of values that for the most part hardly differ from another.

Instead of measuring the distance from the lowest to the highest value, we
could also measure the distance between the first and the third quartile: how
much does the first quartile deviate from the third quartile? This distance or
deviation is called the interquartile distance. Suppose that we have a large
number of systolic bloodpressure measurements, where 25% are 120 or lower,
and 75% are 147 or lower, then the interquartile distance is equal to 147 —120 =
27.

Thus, we can measure variation using the range or the interquartile distance.
A third measure for variation is wariance, and variance is based on the sum of
squares.

1.9.2 Sum of squares

What we call a sum of squares is actually a sum of squared deviations. But
deviations from what? We could for instance be interested in how much the
values 120, 120, 135 vary around the mean of these values. The mean of these
three values equals 125. The first value differs 120 — 125 = —5, the second value
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also differs 120 — 125 = —5, and the third value differs 135 — 125 = 10.

Always when we look at deviations from the mean, some deviations are
positive and some deviations will be negative (except when there is no variation).
If we want to measure variation, it should not matter whether deviations are
positive or negative: any deviation should add to the total variation in a positive
way. Moreover, if we would add up all deviations from the mean, we would
always end up with 0. So that is why we should better make all deviations
positive, and this can be done by taking the square of the deviations. So for our
three values 120, 120 and 135, we get the deviations -5, -5 and +10, and if we
square these deviations, we get 25, 25 and 100. If we add these three squares,
we obtain the 150.

In most cases, the sum of squares (SS) refers to the sum of squared deviations
from the mean. In brief, suppose you have n values of a variable y, you first take
the mean of those values (this is g), you subtract this mean from each of these
n values (y — %), then you take the squares of these deviations ((y — #)?), and
then add them toghether (take the sum of these squared deviations, ¥(y — )?).
In formula form, this process looks like:

SS =% (yi - 9)° (1.3)

As an example, suppose you have the values 10, 11 and 12, then the mean

is 11. Then the deviations from the mean are -1, 0 and +1. If you square them

you get (—1)2 =1, 02 = 0 and (+1)? = 1, and if you add these three values,
you get SS =1+ 0+ 1= 2. In formula form:

S8 = -9+ -9+ (¥ -9)° (1.4)
= (10-11)2+ (11 - 11>+ (12—-11)2 = (-1)2 + 0> + 12 =2

Now let’s use some values that are more different from eachother, but with
the same mean. Suppose you have the values 9, 11 and 13. The average value
is still 11, but the deviations from the mean are larger. The deviations from 11
are -2, 0 and +2. Taking the squares, you get (—2)? =4, 02 = 0 and (+2)? = 4
and if you add them you get SS =4+0+4 =8.

SS = (-9 + 2= 9+ —9)° (1.5)
(91124 (11 —11)2 + (13 - 11)> = (=2)2 + 0% + 22 =8

Thus, the more values differ from eachother, the larger the deviations from

the mean. And the larger the deviations from the mean, the larger the sum of

squares. The sum of squares is therefore a nice measure of how much values
differ from eachother.

1.9.3 Variance and standard deviation

The sum of squares can be seen as some kind of total variation: all deviations
from a certain value are added up. This means that the more data values you
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have, the larger the sums of squares. Oftentimes, you are not interested in the
total variation, but you’re interesed in the average variation. Suppose we have
the values 10, 11 and 24. The mean is then 45/3 = 15. We have two values that
are smaller than the average and one value that is larger than the average, so
two negative deviations and one positive deviation. Squaring them makes them
all positive. The squared deviations are 25, 16, and 81. The third value has a
huge squared deviation (81) compared to the other two values. If we take the
average squared deviation, we get (25 4+ 16 + 81)/3 =~ 40.67. So the average
squared deviation is equal to 40.7. This value we call the variance. So the
variance of a bunch of values is nothing but the SS divided by the number of
values, n. The variance is the average squared deviation from the mean. The
symbol used for the variance is usually o2 (pronounced as ”sigma squared”).

2 _ 55 _Xii—9)
n n

o (1.6)

As an example, suppose you have the values 10, 11 and 12, then the average
value is 11. Then the deviations are -1, 0 and 1. If you square them you get
(=1)2 = 1, 02 = 0 and 12 = 1, and if you add these three values, you get
SS =1+0+1= 2. If you divide this by 3, you get the variance: % Put
differently, if the squared deviations are 1, 0 and 1, then the average squared
deviation (i.e., the variance) is 143+ = 2.

As another example, suppose you have the values 8, 10, 10 and 12, then
the average value is 10. Then the deviations from 10 are -2, 0, 0 and +2.
Taking the squares, you get 4, 0, 0 and 4 and if you add them you get SS = 8.
To get the variance, you divide this by 4: 8/4 = 2. Put differently, if the
squared deviations are 4, 0, 0 and 4, then the average squared deviation (i.e.,
the variance) is 2H0044 — 9,

Often we also see another measure of variation: the standard deviation. The
standard deviation is the squared root of the variance and is therefore denoted

Y= /E?(y;* ) (1.7)

The standard deviation is often used to indicate how deviant a particular
value is from the rest of the values. Take for instance an IQ score of 105. Is that
a high IQ score or a low 1Q score? Well, if someone tells you that the average
person has an 1Q score of 100, you know that a score of 105 is above avarage.
However, still you do not know whether it is much higher than average, or just
slightly higher than average. Suppose I tell you that the standard deviation of
IQ scores is 15, then you know that a score of 105 is a third of standard deviation
above the mean. Therefore, in order to know how deviant a particular value is
relative to a the rest of the values, one needs both a measure of central tendency
and a measure of variation. In psychological testing, IQ testing for instance, one
usually uses the mean and the standard deviation to express someone’s score
as the number of standard deviations above or below the average score. This
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process of counting the number of standard deviations is called standardization.
If we go back to the IQ score of 105, and if we want to standardize the score
in terms of standard deviations from the mean, we saw that a score of 105 was
a third of a standard deviation above the mean, so +%. As another example,
suppose the mean is 100 and we observe an 1Q score of 80, we see that we
are 80 — 100 = 20 points below the average of 100. This is equal to 20/15 =
5/4 standard deviations below the average, so our standardized measure equals
—5/4.

1.9.4 Exercises

1.
2.
3.

Suppose we have the values 9, 6, 5, and 66. What is the range?
Suppose we have the values -9, 6, -5, and 66. What is the range?

Suppose we have the values 9, 6, 5, and 4. What is the sum of squared
deviations from 07

Suppose we have the values 9, 6, 5, and 4. What is the sum of squared
deviations from the mean?

. Suppose we have the values -7, 6, -5, and 6. What is the sum of squared

deviations from the mean?

. Suppose we have the values -7, 6, -5, and 6. What is the variance?

Suppose we have the values 77, 76, and 78. What is the standard devia-
tion?

. Suppose we have the values 197, 197, and 197. What is the standard

deviation?

Answers:

-~ W N

Smallest value is 5, largest value is 66. The range is 66 — 5 = 61.
Smallest value is -9, largest value is 66. The range is 66 — (—9) = 75.
92 + 6% + 5% + 42 = 81 + 36 + 25 + 16 = 158

The mean is (9+ 6 + 5+ 4)/4 = 6. So we have (9 —6)2 + (6 —6)2 + (5 —
6)2+(4—6)2=9+0+1+4=14.

The mean is (=746 —5+6)/4 = 0. So we have (—=7)? +62 + (—5)2+62 =
49 4 36 + 25 4 36 = 146.

. The mean is 0. So the sums of squares equals (—7)2 + 6% + (—5)%? + 62 =

49 + 36 4 25 + 36 = 146. Then the variance is 146/4 = 36.5.

The average is (77 + 76 + 78)/3 = 77. The sum of squares is then (—1)2 +
02 + 12 = 2. The variance is then 2/3 = 0.67. The standard deviation is
the root of the variance, so v/0.67 = 0.82.
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Figure 1.9: A histogram of wages with bin size 1000.

8. All values are the same: there is no variation. Therefore the variance is
0, and therefore the standard deviation is v/0 = 0.

1.10 Density plots

Earlier in this chapter we saw that when we have a certain number of values for
a numeric variable, frequency tables and frequency plots fully describe all values
of the variable that are observed. A histogram is a helpful tool to visualize the
distribution of a variable when there so many different values that a frequency
table would be too long and a frequency plot would become too cluttered.

A histogram can then be used to give a quick graphical overview of the
distribution. The binwidth is usually chosen rather arbitrarily. Figure[I.9]shows
a histogram of one million values of a numeric variable, say yearly wage for an
administrative clerk. Figure shows a histogram for the exact same data,
but now using a much smaller bin size. You see that when you have a lot of
values, a million in this case, you can choose a very small bin size, and in some
cases this can result in a very clear shape of the distribution.

The shape of the distribution that we discern in Figure [[.I0] can be repre-
sented by a density plot. Density plots are an elegant representation of how the
frequency of certain values are distributed across a continuum. They are par-
ticularly suited for large amounts of non-discrete (continuous) values, typically
more than 1000. Figure shows a density plot of the one million wages.
They more or less ’'smooth’ the histogram: drawing a smooth line connecting
the dots of the histogram in Figure while looking through your eyelashes.
On the vertical axis, we no longer see 'count’ or 'frequency’, but 'density’. The
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Figure 1.10: A histogram of wages with bin size 10.

quantity density is defined such that the area under the curve equals 1. Density
plots are particularly suited for large data sets, where one is no longer interested
in the particular counts, but more interested in relative frequencies: how often
are certain values observed, relative to other values. From this density plot, it
is very clear that, relatively speaking, there are more values between around
30,000 than around 27,500 or 32,500.

1.11 The normal distribution

Sometimes distributions of observed variables bear close resemblance to theo-
retical distributions. For instance, Figure [[.11] bears close resemblance to the
theoretical normal distribution with mean 30,000 and standard deviation 1000.
This theoretical shape can be described with the mathematical function

f(z) = e s (1.8)
V2710002 '
which you are allowed to forget immediately. It is only to illustrate that
distributions observed in the wild (emipirical distributions) sometimes resemble
mathematical functions (theoretical distributions).

The density function of that distribution is plotted in Figure [[.12} Because
of its bell-shaped form, the normal distribution is sometimes informally called
"the bell curve’.

The densities in Figures and look so similar, they are practically
indistinguishable.
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Figure 1.11: A histogram of wages with bin size 10.
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Figure 1.12: The theoretical normal distribution with mean 30,000 and standard
deviation 1000.
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Mathematicians have discovered many interesting things about the normal
distribution. If the distribution of a variable closely resembles the normal distri-
bution, you can infer many things. One thing we know about the normal distri-
bution is that the mean, mode and median are always the same. Another thing
we know from theory is that the inflection pointsﬂ are one standard deviation
away from the mean. Figure shows the two inflection points. From theory
we also know that if a variable has a normal distribution, 68% of the observed
values lies between these two inflection points. We also know that 5% of the ob-
served values lie more than 1.96 standard deviations away from the mean (2.5%
on both sides, see Figure . Theorists have constructed tables that make
it easy to see what proportion of values lies more than 1,1.1,1.2...,3.8,3.9,...
standard deviations away from the mean. These tables are easy to find online
or in books, and these are fully integrated into statistical software like SPSS
and R. Because all these percentages are known for the number of standard
deviations, it is easier to talk about the standard normal distribution.

In such tables, you find information only about the standard normal dis-
tribution. The standard normal distribution is a normal distribution where all
values have been standardized (see Section. Standardized means that the
values have an average of 0 and a standard deviation of 1. Such standardized
values are obtained if you subtract the mean score from each value, and divide
the result by the standard deviation. A standardized value is often denoted as a
Z-score. Thus in formula form, a value z is standardized by using the following
equation:

(1.9)

Table 1.17: Standardizing scores.

X mean X_minus_mean Z
7.2 10.4 -3.2  -0.7
8.8 10.4 -1.5 -0.3

17.8 10.4 74 1.6
10.4 10.4 -0.0 -0.0
10.6 10.4 0.3 0.1
18.6 10.4 82 1.7
12.3 10.4 1.9 04
3.7 10.4 -6.7 -1.4
6.6 10.4 -3.8 -0.8
7.8 10.4 -2.6 -0.5

Table shows an example set of z-values that are standardized. The
average of the x-values turns out to be 10.38, and the standard deviation 4.77.
By subtracting the mean, we ensure that the average Z-score becomes 0, and

9The inflection point is where concave turns into convex, and vice versa. Mathematically,
the inflection point can be found by equating the second derivative of a function to 0.
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Figure 1.13: The standard normal distribution.

by subsequently dividing by the standard deviation, we make sure that the
standard deviation of the Z-scores becomes 1.

This standardization makes it much easier to look up certain facts about
the normal distribution. For instance, if we go back to the normally distributed
temperature values, we see that the average is 30000, and the standard deviation
is 1000. Thus, if we take all wages, subtract 30000 and divide by 1000, we get
standardized wages with average 0 and standard deviation 1. The result is
shown in Figure [[.13] We know that the inflection points lie at one standard
deviation below and above the mean. The mean is 30000, and the standard
deviation equals 1000, so the inflection points are at 30000 — 1000 = 29000 and
30000 + 1000 = 31000. Thus we know that 68% of the wages are between 29000
and 31000.

How do we know that 68% of the observations lie between the two inflection
points? Similar to proportions and cumulative proportions, we can plot the
cumulative normal distribution. Figure [[.14] shows the cumulative proportions
curve for the normal distribution. Note that we no longer see dots because the
variable z is continuous.

We know that the two inflection points lie one standard deviation below and
above the mean. Thus, if we look at a z-values of 1, we see that the cumulative
probability equals about 0.8413447. This means that 84.1344746 % of the z-
values are lower than 1. If we look at a z-values of -1, we see that the cumulative
probability equals about 0.1586553. This means that 15.8655254 % of the z-
values are lower than -1. Therefore, if we want to know what percentage of the
z-values lie between -1 and 1, we can calculate this by subtracting 0.1586553
from 0.8413447, which equals 0.6826895, which corresponds to slightly over 68%.
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Figure 1.14: The cumulative standard normal distribution.

All quantiles for the standard normal distribution can be looked up onlinﬂ
or in books. Table [[.I§] gives a short list of quantiles. From this table, you
see that 1% of the z-values is lower than -2.33, and that 25% of the z-values is
lower than -0.67. We also see that half of all the z-values is lower than 0.00 and
that 10% of the z-values is larger than 1.28, and that the 1% largest values are
higher than 2.33.

Table 1.18: Some quantiles for the standard normal distribution.

cum.proportion Z
0.01 -2.33
0.10 -1.28
0.25 -0.67
0.50  0.00
0.75  0.67
0.90 1.28
0.99 233

Thus, if we return to our temperatures with mean 30000 and standard de-
viation 1000, we know from Table that 99% of the temperatures are below
30000 + 2.33 times the standard deviation = 30000 + 2.33 % 1000=32330.

Returning back to the IQQ example of Section Suppose we have 1Q
scores that are normally distributed with a mean of 100 and a standard deviation
of 15. What IQ score would be the 90th percentile? From Table we see
that the 90th percentile is a Z-value of 1.28. Thus,the 90th percentile for our IQ

1

Osee for example ....
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scores lies 1.28 standard deviations above the mean (above because the Z-value
is positive. The mean is 100 so we have to look at 1.28 standard deviations
above that. The standard deviation equals 15, so we have to look at an IQ score
of 100 + 1.28 x 15, which equals 119.2. This tells us that 90% of the IQ scores
are equal to or lower than 119.2.

As a last example, suppose we have a personality test that measures ex-
traversion. If we know that test scores are normally distributed with a mean of
18 and a standard deviation of 2, what would be the 0.10 quantile? From Table
[[-I8] we see that the 0.10 quantile is a Z-value of -1.28. This tells us that the
0.10 quantile for the personality scores lies at 1.28 standard deviations below
the mean. The mean is 18, so the 0.10 quantile for the personality scores lies at
1.28 standard deviations below 18. The standard deviation is 2, so this amounts
to 18 — 1.28 x 2 = 15.44. This tells us that 10% of the scores on this test are
15.44 or lower.

Such handy tables are also available for other theoretical distributions. The-
oretical distributions are at the core of many data analysis techniques, includ-
ing linear models. In this book, apart from the normal distribution, we will
also encounter other theoretical distributions: the ¢-distribution (chapter [3| on
page , the F-distribution (chapter@ on page , the chi-square distribution
(chapter 15| on page and the Poisson distribution (chapter [L5{on page .

1.12 Visualizing numeric variables: the boxplot

We started this chapter with variables that can be stored in a data matrix. With
a variable with a large number of values on a large number of units of analysis,
it is hard to get a an intuitive feel for the data. Making a frequency table is one
way of summarizing a variable, computing meaurures of central tendency and
variation is another way. Visualization is probably the best way of getting a
quick and dirty feel for the information contained in a large data matrix. Earlier
in this chapter we came across frequency plots, histograms, and density plots to
visualize the distribution of a single variable. A fourth plot for a single variable
that we discuss in this book is the bozplot.

A boxplot gives a quick overview of the distribution of a numeric variable in
terms of its quartiles. Figure m gives an example of a boxplot of (part of ) the
wage data. The white box represents the interquartile range. The top of the
white box equals the third quartile, and the bottom of the white box equals the
first quartile. Therefore, we know that half of the workers have a wage between
29,400 and 30,800 The horizontal black lines within the white box represents
the second quartile (the median), so half of the workers earn less 30,100.

A boxplot also shows whiskers: two vertical lines sprouting from the white
box. There are several ways to draw these two whiskers. One way is to draw
the the top whisker to the largest value (the maximum) and the bottom whisker
to the smallest value (the minimum). This is the default way that SPSS uses.
Another way is to have the upper whisker extend from the third quartile to
the value equal to 1.5 times the interquartile range, and the lower whisker (the
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vertical line on top of the box) extends from the first quartile to the value equal
to -1.5 times the interquartile range (the interquartile range is of course the
height of the white box). The dots are outlying values, or simply called outliers.
This is displayed in Figure There you see first and third quartiles of 29,400
and 30,800, respectively, so an interquartile range (IQR) of 30800 — 29400 =
1400. Multiplying this IQR by 1.5 we get 1.5 x 1400 = 2100. The whiskers
therefore extend to 29400 — 2100 = 27300 and 30800 + 2100 = 32900.

Thus, the boxplot is a quick way of visualizing in what range the middle
half of the values are (the range in the white box), where most of the values are
(the range of the white box plus the whiskers), and where the extreme values
are (indvidually plotted as dots). Note that the white box always contains 50%
of the values. The whiskers are only extensions of the of the box by a factor of
1.5. In many cases you see that they contain most of the values, but sometimes
they miss a lot of values. You will see that when you notice a lot of outliers.

1.13 Visualizing categorical variables

The histogram, the density plot and the boxplot can be used for numeric vari-
ables, but also for ordinal variables that you'd like to treat numerically. For
categorical variables and ordinal variables that can’t be treated numerically, we
need other types of plots.

For example, suppose we are in a lecture hall with 456 students and we
count the number of Dutch, German, Belgian, Indian, Chinese and Indonesian
students. We could summarize the results in a frequency table (see Figure7
but a bar chart shows the distribution in a much more dramatic way, see Figure
L. 10l

Table 1.19: A frequency table of nationalities.

Chinese 12

Dutch 141
German 278
Indian 12

Indonesian 13

Sometimes, counts of values of a categorical variable are displayed as a pie
chart, see Figure [1.17] Pie charts are however best avoided. First, because
compared to bar charts, they show no information about the actual counts; you
only observe relative sizes of the counts. Second, it is very hard to see from a
pie chart what the exact proportions are. For example, from the bar chart in
Figure [1.16] it is easily seen that the ratio German students to Dutch students
is about 2 to 1. Research shows that this ratio cannot be read with the same
precision from the pie chart in Figure In sum, pie charts are best replaced
by bar charts.
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Figure 1.15: A boxplot of the wages earned by a sample of 150 administrative
clerks
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Figure 1.16: A bar chart of the observed nationalities in a lecture hall.
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Figure 1.17: A bar chart of nationalities.
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Figure 1.18: Opinions on the climate in Iceland.

Ordinal variables are usually best visualized using bar charts. Figure [[.1§]
shows the variation of the answers to a Likert questionnaire item, where Nairobi
inhabitants are asked ”"To what degree do you agree with the statement that
the climate in Iceland is agreeable?”. With ordinal variables, make sure that
the labels are are in the natural order.

1.14 Visualizing co-varying variables

1.14.1 Categorical by categorical: crosstable

Variables are properties that vary: from person to person, or from location to
location, or from time to time, of from object to object. Sometimes when you
have two variables, you see that they co-vary: when one variable changes, the
other variable changes too. For example, suppose I have 20 pencils. These
pencils may vary in colour: twelve of them are red, and eight of them are blue.
Therefore, colour is a variable with values "red” and ”blue”. The twenty pencils
also vary in length: four are unused and therefore still long, and sixteen of them
have been used many times so that they are short. Therefore, length is also a
variable, with values ”long” and ”short”. Note that these variables have been
measured using the same pencils. In theory I could have long blue pencils, long
red pencils, short blue pencils and short red pencils. Let’s look at the pencils
that I have: for each combination of lenght and colour, I count the number of
pencils. The result I put in Table [T.20]

Such a table is called a crosstable. For every combination of two variables, I
see the number of objects (units of analysis) that have that combination. From

40



Table 1.20: Crosstabulation of colour and length for twenty pencils.
blue red
long 0 4
short 8 8

the table we see that there is not a single pencil that is both red and long (count
is 0). At the same time you also see that all long pencils are blue. A crosstable
is therefore a nice way to show how two variables co-vary. From this particular
table for instance, you can easily see that once you know that a pencil is long,
you automatically know it is blue.

Crosstables are nice visualization of how two categorical variables co-vary.
But what if one of the two variables is not a categorical variable?

1.14.2 Categorical by numerical: boxplot

Suppose instead of determining length by values ”short” and ”long”, I could
measure the exact length of the pencils in centimeters. I put the results in
Table We see that the table is much larger than Table We also see
quite a few cells with zeros. In most cases, for every particular combination
of length and colour we only see a count of 1 pencil. In general, you see that
when one of the variables is numeric, the crosstable becomes very large and in
addition it becomes sparse, that is, with many zeros. With such a large and
sparse table, it is hard to get a quick impression of how two variables co-vary.

Table 1.21: Crosstabulation of colour and length for twenty pencils.

blue red

2 1 0
2.7 0 1
3.3 0 1
3.4 1 0
3.5 1 0
3.6 0 1
4.1 1 1
4.4 1 1
4.5 1 1
4.7 1 0
5.2 0 1
5.7 0 1
5.8 1 0
9 0 4

The alternative for two variables where one is categorical and the other one
is numeric, is to create a boxplot. Figure [1.19 shows a boxplot of the pencil
data. A boxplot gives a quick overview of the distribution of the pencils: one
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Figure 1.19: A boxplot of the pencil data.

distribution of the blue pencils, and one distribution of the red pencils. Let’s
first have a look at the blue pencils on the left side of the plot. The white
box represents the interquartile range, so that we know that half of the blue
pencils have a height between 3.5 and 4.5. The horizontal black lines within the
white box represents the median, so half of the blue pencils is shorter than 4.3.
The upper whisker (the vertical line on top of the box) extends from the third
quartile to the value equal to 1.5 times the interquartile range, and the lower
whisker (the vertical line on top of the box) extends from the first quartile to
the value equal to -1.5 times the interquartile range.

From a boxplot like this it is easy to spot differences in the distribution of a
quantitative measure for different levels of a qualitative measure. From Figure
we easily spot that the blue pencils (varying between 2 and 6 cm) tend to
be shorter than the red pencils (varying between 4 and 9 cm). Thus, in these
pencils, length and colour tend to co-vary: blue pencils are often short and red
pencils are often long.

1.14.3 Numeric by numeric: scatterplot

Suppose I also measure the weight of my pencils in grams. Table shows the
crosstabulation of length and weight. This is a very sparse table (i.e., with lots
of zeros), which makes it very hard to see any systematic co-variation in weight
and length. Figure shows a boxplot of weight and length. Also this plot
seems a bit strange, because for every observed weight value under 4 grams,
there is only one observation, so that only the median can be plotted.
Therefore, in cases where we have two numeric variables, we generally use
a scatterplot. Figure shows a scatterplot of weight by length. Now, the
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Table 1.22: Crosstabulation of length (rows) and weight (columns) for twenty
pencils.

33 34 35 36 37 4

2 1 0 0 0 0 0
2.7 0 1 0 0 0 0
3.3 0 1 0 0 0 0
3.4 0 1 0 0 0 0
3.5 0 0 1 0 0 0
3.6 0 0 1 0 0 0
4.1 0 0 2 0 0 0
4.4 0 0 2 0 0 0
4.5 0 0 2 0 0 0
4.7 0 0 0 1 0 0
5.2 0 0 0 1 0 0
5.7 0 0 0 0 10
5.8 0 0 0 0 10
9 0 0 0 0 0 4

relationship between height and length is easily understood: it appears there
is a linear relationship between weight. For every increase in weight, there is
also an increase in length. The relationship is called linear because we could
summarize the relationship by drawing a straight line. This line is shown in
Figure [[.22]

You see that by visualizing two variables, important patterns may emerge
that you can easily overlook when only looking at the values. Crosstables,
boxplots and scatterplots are powerful tools to find regularities but also oddities
in your data that you’d otherwise miss. Some such patterns can be summarized
by straight lines, as we see in Figure[1.22] The remainder of this book focuses
on how we can use straight lines to summarize data, but also how to make
predictions for data that we have not seen yet.

1.15 Overview of the book

Chapter [2] will look at how we can use a straight line to summarize the rela-
tionship between two numeric variables. A straight line that summarizes your
data is a simple case of an linear model. In Chapters [3] and [4] we will discuss
how you can draw conclusions about data that you have not seen. For example,
in the previous section we described the relationship between weight and height
of twenty pencils. The question that you may have is whether this linear rela-
tionship also holds for all pencils of the same make, that is, whether the same
linear model holds for both the observed twenty pencils and the total collection
of pencils.

In Chapter [5| we describe how we can use straight lines (linear models)
to summarize relationships between more than two numeric variables, and in
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Figure 1.21: A scatterplot of length and weight.
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Figure 1.22: A scatterplot of length and weight, with a straight line that sum-
marizes the relationship.

Chapter [6] we will show how we can use straight lines to summarize relationships
with independent variables that we want to treat as categorical. Chapter[§shows
how you can make elaborate statements about differences between groups of
observations, in the case one of the variables is a categorical variable.

Chapter [7| focuses on moderation: how one variable can affect the effect that
a second variable has on the outcome on a third variable.

Chapter [9] discusses when it is appropriate to use linear models to summarize
your data, and when it is not. It shows methods that enable you to decide
whether to trust a linear model or not. Chapter [10] then discussses alternative
methods that you can use when linear models are not appropriate.

Chapters |11 and [L12|show how to deal with variables that are measured more
than once in the same research unit (the same participant, the same pencil, the
same school, etc.). For example, you may measure the weight of a pencil before
and after you have made a drawing with it. Models that we use for such data are
called linear mixed models. Similar to linear models, linear mixed models are
not always appropriate. Therefore, Chapter [I3]discusses alternative methods to
study variables that are repeatedly measured in the same research unit.

The book ends with Chapters [[4) and [I5] that discuss generalized linear mod-
els. These are models where the dependent variable is not numeric and contin-
uous. Chapter discusses a method that is appropriate when the dependent
variable has only two values, say "yes” and "no”, or "pass” and ”fail”. Chap-
ter discusses a method that can be used when the dependent variable is a
count variable and therefore discrete, for example the number of children in a
classroom, or the number of harvested zucchini from one plant.
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Chapter 2

Linear modelling:
introduction

2.1 Dependent and independent variables

In the previous chapter we discussed the distinction between numeric, ordinal
and categorical variables. In linear modelling, there is also another distinction
between variables: dependent and independent variables. Dependency of a vari-
able is not really a property of a variable but it is the result of a choice of the
data analyst. Let’s first think about relationships between two variables. Deter-
mining whether a variable is to be treated as independent or not, is often either
a case of logic or a case of theory. When studying the relationship between the
height of a mother and that of her child, the more logical it would be to see the
height of the child as a function of the height of the mother This because we
assume that the genes are transferred from the mother to the child. The mother
comes first, and the height of the child is partly the result of the mother’s genes
that were transmitted during fertilisation. That which is the result is usually
taken as the dependent variable. The theoretical cause or antecedent is usually
taken as the independent variable.

The dependent variable is often called the response variable. An independent
variable is often called a predictor variable or simply predictor. Independent
variables are also often called explanatory variables.

The dependent variable is usually the most important variable. It is the
variable that we’d like to understand better, or perhaps predict better. The
independent variable is usually an explanatory variable: it explains why some
people have high values for the dependent variable and other people have low
values. For instance, we’d like to know why some people are healthier than
others. Health may then be our dependent variable. An explanatory variable
might be age (older people tend to be less healthy), or perhaps occupation
(being a dive instructor induces more health problems than being a university
teacher).
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Sometimes we’re interested to see whether we can predict longevity: age at
death is then our dependent variable and our independent (predictor) variables
might then be food pattern and genetic make-up.

Thus, we often see four types of relations:

e Variable A affects/influences another variable B.

e Variable A causes variable B.

e Variable A explains variable B.

e Variable A predicts variable B.

In all these four cases, Variable A is the independent variable and Variable
B is the dependent variable.

Note that in general, dependent variables can be either numeric, ordinal, or
categorical. Also independent variables can be numeric, ordinal, or categorical.

2.1.1 Exercises

Below, variables are printed in bold. For each research statement, identify
which variable is the dependent variable, and which variable is the independent
variable.

1.
2.

© »® N e o W

10.
11.
12.
13.
14.
15.

The effect of income on health

Stock value is affected by inflation

Size is influenced by weight

Shoe size is predicted by sex

The less you drink the more thirsty you become
The more calories you eat, the more you weigh
Weight is affected by food intake

Weight is affected by exercise

Food intake is predicted by time of year
There is an effect of exercise on heart rate
Inflation leads to higher wages

Unprotected sex leads to pregnancy
HIV-infection is caused by unprotected sex
The effect of alcohol intake on driving performance

Sunshine causes growth
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16. Growth causes sunshine
Answers:

1. income independent, health dependent.

2. Stock value dependent, inflation independent

3. Size dependent, weight independent

4. Shoe size dependent, sex independent

5. drink independent, thirsty dependent

6. calories independent, weigh dependent

7. Weight dependent, food intake independent

8. Weight dependent, exercise independent

9. Food intake dependent, time of year independent
10. exercise independent, heart rate dependent
11. Inflation independent, wages dependent
12. Unprotected sex independent, pregnancy dependent
13. HIV-infection dependent, unprotected sex independent
14. alcohol intake independent, driving performance dependent
15. Sunshine independent, growth dependent

16. Growth independent, sunshine dependent

2.2 Linear equations

From secondary education you might remember linear equations. Suppose you
have two quantities, x and y, and there is a straight line that describes best
their relationship. An example is given in Figure We see that for every
value of x, there is only one value of y. Moreover, the larger the value of x, the
larger the value of y. If we look more closely, we see that for each increase of 1
unit in z, there is an increase of 2 units in y. For instance, if z = 1, we see a
y value of 2, and if z = 2 we see a y-value of 4. So if we move from = = 1 to
x = 2 (a step of one on the z-axis), we move from 2 to 4 on the y-axis, which
is an increase of 2 units. This increase of 2 units for every step of 1 unit in x
is the same for all values of = and y. For instance, if we move from 9 to 10
on the z-axis, we go from 18 to 20 on the y-axis: an increase of 2 units. This
constant increase is typical of linear relationships. The increase in y for every
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Figure 2.1: Straight line with intercept 0 and slope 2.

unit increase in x is called the slope of a straight line. In this figure, the slope
is equal to 2.

The slope is one important characteristic of a straight line. The second
important property of a straight line is the intercept. The intercept is the value
of y, if x = 0. In Figure we see that if x = 0, y is 0, too. Therefore the
intercept of this straight line is 0.

With the intercept and the slope, we completely describe this straight line:
no other information is necessary. Such a straight line describes a linear rela-
tionship between x and y. The linear relationship can be formalized using a
linear equation. The general form of a linear equation for two variables x and
y is the following;:

y = intercept + slope X x (2.1)
For the linear relationship between  and y in Figure[2.I] the linear equation

is therefore
y=0+2z (2.2)

which can be simplified to

y=2x (2.3)

With this equation, we can find the y-value for all values of x. For instance,
if we want to know the y-value for £ = 3.14, then using the linear equation we
know that y = 2 x 3.14 = 6.28. If we want to know the y value for x = 49876.6,
we use the equation to obtain y = 2 x 49876.6 = 99753.2. In short, the linear
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Figure 2.2: Straight line with intercept -2 and slope 0.5.

equation is very helpful to quickly say what y-value is on the basis of the z-
value, even if we don’t have a graph of the relationship or if the graph does not
extent to certain z-values.

In the linear equation, we call y the dependent variable, and x the indepen-
dent variable. This because the equation helps us determine our value of y on
the basis of what we know about the value of . When we graph the line that
the equation represents, such as in Figure the common way is to put the
dependent variable on the vertical axis, and the independent variable on the
horizontal axis.

Figure shows a different linear relationship between x and y. First we
look at the slope: we see that for every unit increase in = (from 1 to 2, or
from 4 to 5) we see an increase of 0.5 in y. Therefore the slope is equal to 0.5.
Second, we look at the intercept: we see that if x = 0, y has the value -2. So
the intercept is -2. Again, we can describe the linear relationship by a linear
equation, which is now:

y=—-2+0.5z (2.4)
Linear relationships can also be negative, see Figure|2.3] There, we see that
if we move from 0 to 1, we see a decrease of 2 in y (we move from y=-2 to y=-4),

so that is our slope value. Further, if x = 0, we see a y-value of -2, and that is
our intercept. The linear equation is therefore:

y=-2-2z (2.5)
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Figure 2.3: Straight line with intercept -2 and slope -2.

2.2.1 Exercises

1. For Figures and give the linear equations for the relationship
between x and y.

2. Try to sketch the straight line for the equation y =1 — 2z

2.2.2 Answers

The equations are

1.
y=3-—1z (2.6)

2.
y=15—05z (2.7)

3.
y=—-2+0.332 (2.8)

4. The straight line for y = 1 — 2z is presented in Figure

2.3 Linear regression

In the previous section, we saw perfect linear relationships between quantities
x and y: for each z-value there was only one y-value, and the values are all
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Figure 2.4: Straight line example.

Figure 2.5: Straight line example.
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Figure 2.7: Straight line with based on y=1-2x.
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Figure 2.8: Data on holiday spending.

described by a straight line. Such relationships we hope to see in physics, but
mostly see only in mathematics.

In social sciences we hardly ever see such perfectly linear relationships be-
tween quantities (variables). For instance, let us plot the relationship between
yearly income and the amount of Euros spent on holidays. Yearly income is
measured in thousands of Euros (kEuros), and money yearly spent on holidays
is measured in Euros. Let us regard money spent on holidays as our depen-
dent variable and yearly income as our independent variable (we assume money
needs to be saved before it can be spent). We therefore plot yearly income on
the z-axis (horizontal axis) and holiday spendings on the y-axis (vertical axis).
Suppose we find the following data from 100 women between 30 and 40 years
of age, plotted in Figure 2.8

In the scatterplot, we see that one woman has a yearly income of 100,000
Euros, and that she spends almost 1100 Euros per year on holidays. We also
see a couple of women who earn less, between 10,000 and 20,000 Euros a year,
and they spend between 200 and 300 Euros per year on holiday.

The data obviously do not form a straight line. However, we tend to think
that the relationship between yearly income and holiday spending is more or
less linear: there is a general linear trend such that that for every increase of
10,000 Euros in yearly income, there is an increase of about 100 Euros.

Lets plot such a straight line that represents that general trend, with a slope
of 100 straight through the data points. The result is seen in Figure We
see that the line with a slope of 100 is a nice approximation of the relationship
between yearly income and holiday spendings. We also see that the intercept of
the line is 100.
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Figure 2.9: Data on holiday spending with an added straight line.

Given the intercept and slope, the linear equation for the straight line ap-
proximating the relationship is

YearlyIncome = 100 + 100 x HolidaySpendings (2.9)

In summary, data on two variables may not show a perfect linear relationship,
but in many cases, a perfect straight line can be a very reasonable approximation
of the data. Another word for a reasonable approximation of the data is a
model. Finding such a straight line to approximate the data points is called
linear regression. In this chapter we will see what method we can use to find
a straight line. In linear regression we describe the behaviour of the dependent
variable (the y-variable on the vertical axis) on the basis of the independent
variable (the z-value on the horizontal axis) using a linear equation. We say
that we regress variable y on variable x.

2.4 Residuals

Even though a straight line can be a good approximation of a data set consisting
of two variables, it is hardly ever perfect: there are always discrepencies between
what the straight line describes and what the data actually tell us.

For instance, in Figure we see a woman, Sandra Schmidt, who makes
69 kEuros a year and who spends 809 Euros on holidays. According to the
linear equation that describes the straight line, a woman that earns 68.5849512
kEuros a year would spend 100+ 100%68.5849512 = 786 Euros on holidays. The
discrepency between the actual amount spent and the amount prescribed by the
linear equation equals 809 — 786 = 23 Euros. This difference is rather small and
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Figure 2.10: Data on variables x and y with an added straight line.

the same holds for all the other women in this data set. Such discrepencies
between the actual amount spent and the amount as prescribed or predicted
by the straight line are called residuals or errors. The residual (or error) is the
difference between a certain data point and what the linear equation predicts.

Let us look at another fictitious data set where the residuals (errors) are a
bit larger. Figure shows the relationship between variables x and y. The
dots are the actual data points and the blue straight line is an approximation
of the actual relationship. The residuals are also visualized: sometimes the
observed y-value is greater than the predicted y-value (dots above the line) and
sometimes the oberved y-value is smaller than the predicted y-value (dots below
the line). Let’s denote the predicted y-value (the value of y predicted by the
blue line) as § (pronounced as y-hat), then we can define a residual or error as
the discrepency between the observed y and y:

e=y—1 (2.10)

where e stands for the error (residual).

If we compute residual e for every y-value in the data set, we can plot them
using a histogram, as displayed in Figure 2.11] We see that the residuals are
on average 0, and that the histogram has the shape of a normal distribution,
more or less. Such normally-shaped distributions of residuals we see often in
research. Here, the residuals show a normal distribution with mean 0 and
variance of 13336 (a standard deviation of 115).
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Figure 2.11: Histogram of the residuals (errors).

2.5 Least squares regression lines

You may ask yourself how to draw a straight line through the data points: How
do you decide the exact slope and the exact intercept? And what if you don’t
want to draw the data points and the straight line by hand? That can be quite
cumbersome if you have more than 2000 data points to plot!

First, because we are lazy, we always use a computer to draw the data points
and the regression line. Second, since we could draw many different straight lines
through a scatter of points, we need a criterion to determine a nice combination
of intercept and slope. With such a criterion we can then let the computer
determine the straight line with its equation for us.

The criterion that we use in this chapter is called Least Squares, or Ordinary
Least Squares (OLS). To explain the Least Squares principle, look again at
Figure [2.10] where we see both small and large residuals. About half of them
are positive (above the blue line) and half of them are negative (below the blue
line).

The most reasonable idea is to draw a straight line that is more or less in
the middle of the y-values, in other words, with about half of residuals positive
and about half of them negative. Or perhaps we could say that on average, the
residuals should be 0. A third way of saying the same thing is that the sum of
the residuals should be equal to 0.

However, the criterion that all residuals should sum to 0 is not sufficient.
In Figure we see a straight line with a slope of 0 where all residuals sum
to 0. However, this regression line does not make intuitive sense: it does not
describe the structure in the data very well. Moreover, we see that the residuals
are much larger than in Figure
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Figure 2.12: Data on variables x and y with an added straight line. The sum of
the residuals equals 0.

We therefore need a second criterion to find a nice straight line. We want
the residuals to sum to 0, but also want the residuals to be as small as possible:
the descrepencies between what the linear equation predicts (the g-values) and
the actual y-values should be as small as possible.

So now we have two criteria: we want the sum of the residuals to be 0 (half
of them negative, half of them positive), and we want the residuals to be as
small as possible. We can achieve both of these when we use as our criterion the
idea that the sum of the squared residuals be as small as possible. Recall from
Chapter 1 that the sum of the squared deviations from the mean is actually
the variance. So if the sum of the squared residuals is as small as possible,
we know that the variance of the residuals is as small as possible. Thus, as
our criterion we can use the regression line for which the squared differences
between predicted and observed y-values are as small as possible.

Figure shows three different regression lines for the same data set. Fig-
ure shows the respective distributions of the residuals. For the first line, we
see that the residuals sum to 0, for the residuals are on average 0 (the red ver-
tical line). However, we see quite large residuals. The residuals for the second
line are smaller: we see very small positive residuals, but the negative residuals
are still quite large. We also see that the residuals do not sum to 0. For the
third line, we see both criteria optimized: the sum of the residuals is zero and
the residuals are all very small. We see that for regression line 3, the sum of
squared residuals is at its minimum value.

In summary, when we want to have a straight line that describes our data
best, we’d like a line such that the residuals are on average 0 (i.e, sum to 0),
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lines, and the respective sums of squared residuals (SSR).
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and where we see the smallest residuals possible. We reach these criteria when
we use the line in such a way that we have the lowest value for the sum of the
squared residuals possible. This line is therefore called the least squares or OLS
regression line. It turns out that this optimal regression slope can be found by a
relatively simple computation using matrix algebra. In daily life, we do not do
this by hand but let computers compute it for us, with software like for instance
SPSS or R.

2.5.1 Exercises

Table 2.1: Home prices.
Area  Price PredictedPrice Residual SquaredResidual

56.00 165.00
101.00 180.00
67.00 115.00

109.00 164.00
115.00 175.00
34.00 135.00

1. In Table you find a small data set on the price of homes with de-
pendent variable price in kEuros and independent variable area in square
meters. The least squares regression equation turns out to be price =
out.pricecoef[l]+ out.pricecoef[2] x area. Add a third column with the
expected prices based on the regression equation (. Put the difference
between the observed price and the expected price in the fourth column
(e). Then compute the squared residuals and put those in the fifth col-
umn (e?). Take the sum of the squared residuals: How large is sum of the
squared residuals?

2. See website https://gallery.shinyapps.io/simple_regression/| try
to find the Least Squares regression line for the given data set by changing
both intercept and slope. How large is the sum of the squared residuals
for that optimal regression line?

3. Do this exercice with one or more of your fellow students. Look at the
data set plotted in Figure 2:15] Try to find the regression line with the
lowest sum of squared residuals possible.

2.5.2 Answers

1. The predicted prices, the residuals and the squared residuals are displayed
in Table The sum of the squared residuals equals 2397.4189795.
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Figure 2.15: Plot of housing data.

Table 2.2: Home prices.
Area  Price PredictedPrice Residual SquaredResidual

56.00 165.00 140.74 24.26 588.34
101.00 180.00 167.91 12.09 146.18
67.00 115.00 147.38 -32.38 1048.76
109.00  164.00 172.74 -8.74 76.37
115.00 175.00 176.36 -1.36 1.85
34.00 135.00 127.46 7.54 56.80

3. The lowest sum of squared residuals is 97. This is the sum that you get
with intercept 21.4 and slope -1.2.

2.6 Pearson correlation

For any set of two quantitative variables, we can determine the least squares
regression line. However, it depends on the data set how well that regression
line describes the data. Figure shows two different data sets on variables
x and y. Both plots also show the least squares regression line, and they both
turn out to be exactly the same: y = 100 + 10z.

We see that the regression line describes data set A very well (left panel):
the observed dots are very close to the line, which means that the residuals
are very small. The regression line does a worse job for data set B (right
panel) since there are quite large discrepencies between the observed y-values
and the predicted y-values. Put differently, the regression equation can be used
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Figure 2.16: Plot of housing data.

to predict y-values in data set A very well, almost without error, whereas the
regression line cannot be used to predict y-values in data set B very precisely.
The regression line is also the least squares regression line for data set B, so any
improvement by choosing another slope or intercept is not possible.

Francis Galton was the first to think about how to quantify this difference in
the ability of a regression line to predict the dependent variable. Karl Pearson
later worked on this measure so that it became to be called Pearson’s correlation
coefficient. It is a standardized measure, so that it can be used to compare
different data sets.

In order to get to Pearson’s correlation coefficient, you first need to stan-
dardize both the independent variable, x, and the dependent variable, y. You
standardize scores by taking their values, subtract the mean from them, and
divide by the standard deviation (see Chapter 1). So, in order to obtain a
standardized x-value we compute Z,,

Zy = (2.11)

and in order to obtain a standardized y-value we compute Z,,

z,=4"Y (2.12)

Oy

Let’s do this both for data set A and data set B, and plot the standardized
scores, see Figure If we then plot the least squares regression lines for
the standardized values, we obtain different equations. For both data sets, the
intercept is 0 because by standardizing the scores, the means become 0. But
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Figure 2.17: Plot of housing data.

the slopes are different: in data set A, the slope is 0.997 and in data set B, the
slope is 0.699.

Z, =0+ 0.997Z, = 0.997Z, (2.13)
Z, =0+0.699Z, = 0.699Z, (2.14)

These two slopes, the slope for the regression of standardized y-values on
standardized x-values, are the correlation coefficients for data sets A and B,
respectively. For obvious reasons, the correlation is sometimes also referred to
as the standardized slope coefficient.

Correlation stands for the co-relation between two variables. It tells you
how strongly one variable can be predicted from the other. The correlation is
bi-directional: the correlation between y and z is the same as the correlation
between x and y. For instance in Figure if we would have put the Z,-
variable on the Z,-axis, and the Z,-variable on the Z,-axis, the slopes would
be exactly the same. This is true because the variances of the y and x-variables
are equal after standardization (both variances equal to 1).

Since a slope can be negative, a correlation can be negative too. Further-
more, a correlation is always between -1 and 1. Look at Figure the
correlation between x and y is 0.997. The dots are almost on a straight line. If
the dots would all be exactly on the straight line, the correlation would be 1.

Figure [2.1§ shows a number of scatterplots of z and y with different corre-
lations. Note that if dots are very close to the regression line, the correlation
can still be close to 0. If the slope is 0 (bottom-left panel), then one variable
cannot be predicted from the other variable, hence the correlation is 0, too.
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Figure 2.18: Various plots showing different correlations between variables x
and y.

In summary, the correlation coefficient indicates how well one variable can
be predicted from the other variable. It is the slope of the regression line if both
variables are standardized. If prediction is not possible (when the regression
slope is 0), the correlation is 0, too. If the prediction is perfect, without errors
(no residuals) and with a slope unequal to 0, then the correlation is either -1 or
+1, depending on the sign of the slope.

2.7 Covariance

The correlation is a standardized measure for how much two variables co-relate.
There exists also an unstandardized measure for how much two variables co-
relate: the covariance. The correlation is the slope when two variables have
each variance 1. When you multiply the correlation by a number indicating
the variances of the two variables, you get the covariance. This number is the
product of the two respective standard deviations.

The covariance between variables 2 and y, Cov(x,y) can be computed as:

Cov(z,y) = Cor(x,y) X 0,0y (2.15)

For example, if the variance of x equals 49 and the variance of y equals
25, then the respective standard deviations are 7 and 5. If the correlation
between x and y equals 0.5, then the covariance between x and y is equal to
0.5x7x5=17.5.

Similar to correlation, the covariance of two variables indicates by how much
they co-vary. For instance, if the variance of x is 3 and the variance of y is
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5, then a covariance of 2 indicates that = and y co-vary: if z increases by a
certain amount, y also increases. If you want to know how many standard
deviations y increases if x increases with one standard deviation, you can turn
the covariance into a correlation by dividing the covariance by the respective
standard deviations.

Cor(w,y) = C0®Y) 25 (2.16)

Oz0y B \/g\/g

Similar to correlations and slopes, covariances can also be negative.

2.7.1 Exercises

1. The correlation between brain size and intelligence in 9-year old children
equals 0.30. Suppose the variance in brain size equals 45 and the variance
in intelligence 225. Compute the covariance.

2. The covariance between intelligence and extraversion equals 1. The vari-
ance of intelligence is 225 and the variance of extraversion is 9. What is
the correlation?

3. Suppose the correlation between intelligence and extraversion is 0.10.
What does this mean?

4. Suppose the correlation between intelligence and extraversion is -0.05.
What does this mean?

5. Suppose the correlation between intelligence and extraversion is 0.30.
What is the regression slope if the variance of intelligence is 225 and the
variance of extraversion is 97

2.7.2 Answers

1.
Cov(z,y) = Cor(z,y) X 0,0, = 0.30 x V45 x V225 =30  (2.17)

2, o
Cor(w,y) = C0@®Y) 1 0.02 (2.18)

0e0y V2259

3. If you increase intelligence by 1 standard deviation, then extraversion
increases with a tenth of a standard deviation.

4. If you increase intelligence by 1 standard deviation, then extraversion
increases with 0.05 standard deviations.

5. The correlation is 0.30, so if you increase intelligence by one standard
deviation (which is v/225 = 15), extraversion increases by 0.30 standard
deviations (which equals 0.30 x v/9 = 0.90). Therefore, if you increase
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Figure 2.19: Imaginary data set on age and conservatism scores in 102 men.

intelligence by 15 points, you increase extraversion by 0.90 points. Thus if
you increase intelligence by 1 point, you increase extraversion by 0.90/15 =
0.06 points. The slope for the regression of extraversion on intelligence is
therefore 0.06.

2.8 Regression using SPSS

Figure shows an imaginary data set on age and conservatism scores on a
7-point scale in 102 men. The blue line is the least squares regression line. This
line can be found with SPSS using the following UNIANOVA syntax:

UNIANOVA conserv WITH age
/PRINT parameter.

In the syntax we first indicate the dependent variable (the one that we want
to explain, which is in this case conserv), and then we indicate that we want
to explain this variable with the independent variable age. In the next line we
indicate that we want to see the intercept and slope parameters in the output.

SPSS will then show two tables. The first table will be discussed in later
chapters. For now, we only look for the table with the Parameter Estimates.
Figure[2.8|shows that table. It shows that the dependent variable is indeed con-
serv, and that there are two parameters in our regression model: an intercept
and a slope parameter for the variable age. In the column with B we find the
values for these parameters. The intercept has the value 4.904 (when rounded
to 3 decimals) and the slope has the value -0.021. Thus, with this output, the
linear equation for the regression line can be filled in:
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conserv = 4.904 — 0.021 x age + e (2.19)

With this equation we can predict values for conservatism for ages that are
not even in the data set displayed in[2.19] For instance, that plot does not show
a man of age 70, but on the basis of the linear equation, the best bet would be
that such a man would have a conservatism score of 4.904 — 0.021 x 70 = 3.434.

Parameter Estimates

Dependent Variable: conserv

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 4.904 .402 12.206 .000 4.107 5.702
age -.021 .010 -2.171 .032 -.040 -.002

Figure 2.20: SPSS output of a simple regression.

2.9 Linear models

By performing a regression analysis of y on z, we try to predict the y-value from
a given z-value on the basis of a linear equation. We try to find an intercept
and a slope for that linear equation such that our prediction is 'best’. We define
'best’ as the linear equation for wich we see the lowest possible value for the
sum of the squared residuals (least squares principle).

Thus, the predicted value of y (§) can be computed by the linear equation

@ = bo + b1z (220)

In reality, the predicted values of y always deviate from the observed values
of y. So, there is always an error e that is the difference between ¢ and y. Thus
we have for the observed values of y

y=ygte=byt+hz+te (2.21)

Typically, we assume that the residuals e have a normal distribution with a
mean of 0 and a variance of that is often unknown but that we denote by o2.
Such a normal distribution is denoted by N(u,o?). Taking the linear equation
and the normally distributed residuals together, we have a linear model for the
two variables z and y.

y=by+bixte (2.22)
e~ N(0,02) (2.23)
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The linear model that we see here is generally known as the simple regression
model: a linear model for one dependent variable, an intercept, only one slope for
one (hence ’simple’) independent variable, and normally distributed residuals.
In the remainder of this book, we will see a great variety of linear models: with
one or more independent variables, with numeric or with categorical independent
variables, and with numeric or with categorical dependent variables. All these
models can be seen as extensions of this basic linear regression model. They
all aim to predict as best as possible one dependent variable from one or more
independent variables.

69



70



Chapter 3

Inference I: random
samples, standard errors
and confidence intervals

In Chapter [2] on simple regression we saw how a linear equation can describe
a data set: the linear equation describes the behaviour of one variable, the
dependent variable, on the basis of one other variable, the independent variable.
Sometimes we are indeed interested in the relationship between two variables
in one given data set. For instance, a teacher wants to know whether her exam
gradings in her class of last year predict how well her students do in a second
course a year later.

But very often, researchers are not interested in the relationships between
variables in one data set, but interested in the relationship between variables in
general, not limited to only the observed data. For example, a researcher would
like to know what the relationship is between the temperature in a brewery
and the volume of beer that goes into the beer bottles. In order to study the
effect of temperature on volume, the researcher measures the volume of beer in
a limited collection of 200 bottles at 20 degrees Celsius and determines from log
files the temperature in the factory during production for each measured bottle.
The linear equation might be volume = 31.72 — 0.088 x temp + e, see Figure
But the question is what the equation would be if the researcher had used
information about all bottles produced in the same factory.

In other words, we may know about the linear relationship between tem-
perature and volume in a sample of bottles, but we might really be interested
to know what the relationship would look like had we been able to measure the
volume in all bottles.
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Figure 3.1: The relationship between temperature and volume in a sample of
200 bottles.

3.1 Population data and sample data

In the beer bottle example above, the volume of beer was measured in a total
of 200 bottles. Let’s do a thought experiment. Suppose we could have access to
volume data about all bottles of beer on all days where the factory was oper-
ating, including information about the temperature for each day of production.
Suppose that the total number of bottles produced is 80,000 bottles. When we
plot the volume of each bottle against the temperature of the factory we get the
scatter plot in Figure|3.2

In our thought experiment, we could determine the regression equation using
all bottles that were produced: all 80,000 of them. We then find the blue
regression line displayed in Figure[3.2] Its equation is Volume = 29.98+0.001 x
temp.

In the data example above, data was only collected on 200 bottles. These
bottles were randomly selectecﬂ there were many more bottles but we could
measure only a limited number of them. This explains why the regression equa-
tion based on the sample differed from the regression equation based on all
bottles: we only see part of the data.

Here we see a discrepency between the regression equation based on the
sample, and the regresssion equation based on the population. Here, the popu-
lation is the collection of all bottles produced in the factory. The sample is the
collection of 200 randomly selected bottles. Here we have a slope of 0.001 in
the population, and we see a slope of -0.088 in the sample. Also the intercepts

IRandom selection means that each of the 80,000 bottles had an equal probability to end
up in this sample of 200 bottles.
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Figure 3.2: The relationship between temperature and volume in all 80,000
bottles.

differ. To distinguish between the coefficients of the population and coefficients
of the sample, the population coefficient is often denoted by the Greek letter 5
and the sample coefficient by the Roman letter b.

Population : Volume 29.98 + 0.001 x temp
Sample : Volume = 31.72 —0.088 x temp

The discrepency between the two equations is simply the result of chance:
had we selected another sample of 200 bottles, we probably would have found a
different sample equation with a different slope and a different intercept. The
intercept and slope based on sample data, are the result of chance and therefore
vary from sample to sample. The population intercept and slope (the true ones)
are fixed, but unknown. If we want to know something about the population
intercept and slope, we only have the sample equation to go on. Our best guess
for the population equation is the sample equation, but how certain can we be
about how close the sample intercept and slope are to the population intercept
and slope?

3.2 Random sampling and the standard error
In order to know how close the intercept and slope in a sample are to their

values in the population, we do another thought experiment. Let’s see what
happens if we take more than one random sample of 200 bottlees.
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We put the 200 bottles that we selected earlier back into the population and
we again blindly pick a new collection of 200 bottles. We then measure for each
bottle the volume of beer it contains and we determine the temperature in the
factory on the day of its production. We then apply a regression analysis and
determine the intercept and the slope. Next, we put these bottles back into the
population and draw a next random sample of 200 bottles.

You can probably imagine that if we repeat this procedure of randomly
picking 200 bottles from a large population of 80,000, each time we find a
different intercept and a different slope. Let’s carry out this procedure 100 times
by a computer. Table [3.I] shows the first 10 regression equations, each based
on a random sample of 200 bottles. If we then plot the histograms of all 100
sample intercepts and sample slopes we get Figure We see a large variation
in the intercepts, and a smaller variation in the slopes (i.e., all values very close
to another). The distributions that we get for the intercept and the slope are
called sampling distributions. A sampling distribution is the distribution that
we get when we repeatedly draw random samples from the same population and
we determine a parameter (for instance the intercept). So in Figure we see
the sampling distribution for the intercept and the sampling distribution for the
slope.

Table 3.1: Ten different sample equations based on ten different random samples
from the population of bottles.
sample equation

1 volume = 29.08 + 0.05 * temperature + e
2 volume = 29.43 + 0.03 * temperature + e
3 volume = 26.41 + 0.18 * temperature + e
4  volume = 32.57 — 0.13 * temperature + e
5 volume = 30.67 — 0.03 * temperature + e
6 volume = 27.86 4+ 0.11 * temperature + e
7 volume = 32.37 — 0.12 * temperature + e
8 volume = 25.85 + 0.21 * temperature + e
9  volume = 29.98 + 0.00 * temperature + e
10 volume = 31.15 — 0.06 * temperature + e

For now, let’s focus on the slope; this because we are mostly interested in the
linear relationship between volume and temperature. However, everything that
follows also applies to the intercept. In Figure [3.4] we see the histogram of the
slopes if we carry out the random sampling 1000 times. We see that on average
the sample slope is around 0.001, which is the population slope (the slope if
we analyze all bottles). But there is variation around that mean of 0.001: the
standard deviation of all 1000 sample slopes turns out to be 0.084.

The standard deviation of the sample slopes is called the standard error. Had
the population slope been 110 or -40, the sample slopes would cluster around
110 or -40, but the standard deviation of the sample slopes, the standard error,
would be the same.
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The standard error for a sample slope represents the uncertainty about the
population slope. If the standard error is large, it means that if we would draw
many different random samples from the same population data, we would get
very different sample slopes. If the standard error is small, it means that if we
would draw many different random samples from the same population data, we
would get sample slopes that are very close to one another, and very close to
the population slopeE|

3.2.1 Standard error and sample size

The standard error for a sample slope depends on many things, but the most
important factor is the sample size: how many bottles there are in each random
sample. The larger the sample size, the smaller the standard error, the more
certain we are about the population slope. In the above example, the sample
size is 200 bottles.

Imagine that you draw only 2 bottles from the population of 80,000 bottles.
Then there is quite some probability that by sheer luck you find one bottle
with a low temperature and a small volume, and another bottle with a high
temperature and a large volume. This would yield a sample slope that is quite
large and positive. But there is an equally high probability that you get one
bottle with a low temperature with a large volume, and another bottle with a
high temperature and a small volume. Then based on these two other bottles,
the sample slope will be large and negative. In case of a sample size of only 2,
you see that there will be quite a lot of variation in the sample slope if we draw
various random samples. This large variation in sample slopes is then captured
by the standard error, that will be large. With only 2 bottles per sample, the
uncertainty about the population slope will then also be large. The left panel
of Figure [3.6] shows the distribution of the sample slope where the sample size
is 2. You see that for quite a number of samples, the slope is larger than 10,
even if the population slope is 0.001.

Now imagine that your sample size is 20. Then the probability that the 20
bottles will result in a large variation of slopes will be smaller: it would be very
unlikely that all 20 bottles have either a high volume and a high temperature,
or a low volume and a low temperature. If there happen to be a few of such
bottles in the sample, the other bottles will average these effects out. Take a
look at Table[3.2] There we see measurements on a random sample of 20 bottles.
The first bottle shows a relatively low volume and a relatively low temperature
measure. The second bottle shows the opposite: a relatively large volume and
a relatively high temeperature. This is also depicted in Figure [3.5] Had our
sample size been only 2, then on the basis of these two bottles we would have
found a highly positive slope coefficient (a high correlation). However, since our
sample size is 20, there are many other bottles in our sample, including bottles
that have relatively high volumes but relatively low temperatures measures, and

2Because sample slopes cluster aournd the population slope, the sample slope is very close
to the population slope when the standard error is small.
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vice versa: bottles with relatively low volumes and relatively high volumes, see
Figure Combined with all the other bottles, we would not find a very strong
positive slope coefficient, because in the population of 80,000 bottles there is
no such strong slope. The fact that we found one with the two bottles was just
sheer coincidence. With large numbers of observations, you are less prone to
chance observations. With large sample sizes, your results from a regression
analysis become less dependent on chance, become more stable, and therefore
more reliable.

Table 3.2: A random sample of 20 bottles with their beer volumes and their
logged temperature.

bottle volume temperature

1 28.0 18
2 32.0 21
3 29.2 20
4 30.3 21
5 30.2 20
6 31.3 19
7 28.9 19
8 28.6 20
9 30.0 19
10 28.5 20
11 304 21
12 31.7 19
13 31.5 20
14 30.4 19
15 27.9 20
16 29.5 18
17 29.9 19
18 30.7 19
19 30.9 18
20 28.8 18

Because of this averaging effect, the slope based on 20 bottles will then be
closer to the population slope. The standard error therefore decreases with
increasing sample size. With a sample size of 20, most slopes are between -0.6
and 0.6.

In Figure [3.6] we see the distributions of the sample slope where the sample
size is either 2 (left panel) or 20 (right panel). We see quite a lot of variation
in sample slopes with sample size equal to 2, and considerably less variation in
sample slopes if sample size is 20. This shows that the larger the sample size,
the smaller the standard error, the larger the certainty about the population
slope.
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Figure 3.6: Distribution of the sample slope when sample size is 2 (left panel)
and when sample size is 20 (right panel).
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3.2.2 From sample slope to population slope

In the previous section we saw that if we have a small standard error, we can be
relatively certain that our sample slope is close to the population slope. We did
a thought experiment where we knew everything about the population intercept
and slope, and we drew many samples from this population. In reality, we don’t
know anything about the population: we only have one sample of data. So
suppose we draw a sample of 200 from an unknown population of bottles, and
we find a slope of 1, we have to look at the standard error to know how close
that sample slope is to the population slope.

For example, suppose we find a sample slope of 1 and the standard error is
equal to 0.1. Then we know that the population slope is more likely to be in
the neighbourhood of values like 0.9, 1.0, or 1.1 than in the neighbourhood of
10 or -10.

Now suppose we find a sample slope of 1 and the standard error is equal to
10. Then we know that the sample slope is more likely to be somewhere in the
neighbourhood of values like -9, 1 or 11, than around values in the neighbour-
hood of -100 or +100. However, values like -9, 1 and 11 are quite far apart,
so actually we have no idea what the population slope is; we don’t even know
whether the population slope is positive or negative! The standard error is
simply too large.

As we have seen, the standard error depends very much on sample size.
Apart from sample size, the standard error for a slope also depends on the
variance of the independent variable, the variance of the dependent variable,
and the correlations between the independent variable and other independent
variables in the equation (in case of multiple regression and other linear models,
see later chapters). We will not bore you with the complicated formula for the
standard error for regression coefficients El Instead, we look at the standard
error that SPSS or other computer packages compute for us.

3.3 t-distributions

Above we saw that if there is a large collection of data points (population) with
a particular slope that describes the relationship between two variables, and
if you then take random samples out of this collection, each time you find a
different value for the slope in the sample, the sample slope. We saw that the
standard deviation of the distribution of all such slopes is called the standard
error. The standard error gives us information about how certain we can be
that the slope in the sample is close to the slope in the population. The smaller
the standard error, the more certain we can be that the population slope has a
value in the neighbourhood of the value for the sample slope.

When we look at the distribution of the sample slope, for instance in Figure
we notice that the distribution looks very much like a normal distribution.

3See https://www3.nd.edu/ rwilliam/stats1/x91.pdf for the formula. In this pdf, TV’
means independent variable

79



0.4-

0.3-
> Distribution
20.2- — normal
(]
© —t

0.1-

0.0-

5.0 25 00 25 50

Figure 3.7: Difference in the shapes of a normal distribution and a t-distribution

Well, actually it isn’t quite a normal distribution. In reality it has the shape
of a t-distribution. Figure shows the difference between a t-distribution (in
red) and a normal distribution (in blue). In this figure, the means are equal
(0) and the areas under the curve are equal (1), but the shapes are clearly
different. Compared to the t-distribution, the normal distribution has more
observed values close to the mean (the distribution is more peaked). The t-
distribution has relatively more observations in the tails of the distribution
(heavy tails).

Actually, the shape of the distribution of sample slopes depends on the size
of the samples, the sample size. In Figure [3.8] we see what the distribution of
sample slopes would look like if all samples would be of size 4 (the red line)
and what the distribution would look like if sample size would be 200 (the
blue line). If we compare the blue lines in Figures and we see that the
shape of the t-distribution for a sample size of 200 looks extremely close to the
normal distribution. Remember: we are talking here only about the shape of
the distribution[]

In summary, when we draw many samples from a population, the standard
deviation of the sample slopes (the standard error) will be smaller for a large
sample size than for a small sample size. In addition, the shape of the distribu-
tion of sample slopes is that of a t-distribution. The shape of the ¢-distribution
also depends on sample size. The larger the sample size, the more the shape of
the ¢-distribution looks like a normal distribution. Thus, for large sample sizes,
the distribution of sample slopes shows very little variance with a shape closely

4The variance (i-e., the square of the standard error) will be smaller for larger samples
sizes.
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Figure 3.8: The shape of the distribution of sample slopes depends on sample
size.

resembling a normal distribution.

3.4 'T-statistics

Above we saw that sample slopes have a t-distribution, and that if sample size
is large, say larger than 200, the ¢-distribution looks very much like a normal
distribution. From the normal distribution, we know that if we standardize the
scores by computing Z-scores, that is, if we subtract the mean and then divide
by the standard deviation, Z = ”;i , then 2.5% of the Z-values is smaller than
-1.96 and 2.5% of the z-values is larger than +1.96.

Therefore, if for large sample sizes the ¢-distribution is practically indistin-
guishable from the normal distribution, we know that if we standardize the
sample slope values, we get a similar result. Instead of looking at the actual
slope value, we can compute a standardized slope. Let’s call that standardized

result 7. Then we get:

S

b—

se

T= (3.1)
In words: we take a particular sample slope b and we subtract the mean
from all sample slopes. The result we divide by the standard deviation of the
sample slopes, which is callled the standard error se.
But what is the mean sample slope? Since the sample slopes cluster around
the population slope 3, the average of all possible samples slopes is equal to (.
Thus we have:
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Figure 3.9: The standard normal distribution and the probability of a Z-score
lower than -1.06

b—p

se

T = (3.2)

Let’s go back to the example of the beer bottles. In our first random sample
of 200 bottles, we found a sample slope of -0.088. We also happened to know
the population slope, which was 0.001. From our computer experiment, we saw
that the standard deviation of the sample slopes with sample size 200 was equal
to 0.084. Thus, if we fill in the formula for the standardized slope T, we get for
this particular sample

—0.088 — 0.001
0.084 -

Notice that we distinguish between a variable ¢ that has a t-distribution, and
a T-statistic that is based on a computation.

Now, what can we say about this T-value? Since with a sample size of 200
the distribution of sample slopes closely resembles a normal distribution, we can
use normal tables published online or in computer packages to see how likely a
value of T' = —1.06 actually is. In normal tables we find that a Z-value of —1.06
is not that strange: in the standard normal distribution, 14.457% of the values
is smaller than —1.06. The area is shown in Figure 3.9

When would we say that a certain T-value would cause concern? Well,
perhaps we could say that if the T-value were 3 standard deviations away from
the population value, either 3 standard deviations above the population value
or 3 standard deviations below the population value. From the normal tables,
we know that that happens only 0.27% of the time.

T = ~1.06 (3.3)
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Alternatively, we could say that we would perhaps also be worried if the
sample slope were 2 standard deviations away from the population slope, corre-
sponding to T-value of 2 or -2. We know that the probabilty that that happens
is around 5%, small enough perhaps to raise concern about our knowledge about
the population slope.

In this section, when discussing T-statistics, we assumed we knew the pop-
ulation slope S, that is, the slope of the linear equation based on all 80,000
bottles. In reality, we never know the population slope: the whole reason to
look at the sample slope is to have an idea about the population slope. Let’s
look at some hypothetical population slopes.

3.5 Hypothetical population slopes

Since we don’t know the actual value of the population slope 8, we could ask
the personnel in the beer factory what they think is a likely value for the slope.
Suppose Mark says he believes that a slope of 2 could be true. Well, let’s find
out whether that is a reasonable guess. Now we assume that the population
slope [ is 2, and we compute the T-statistic for our sample slope:

~ —0.088 —2
T 0.084

From the normal distribution, we know that such a T-value is very unlikely:
the probability of finding a sample slope -24.8 standard deviations away form
a population slope of 2 is less than 0.00000000000000000000000000000000001.
Because we know that such a T-value of -24.8 is unlikely, we know that a sample
slope of -0.0879535 is unlikely if the population slope is equal to 2. Therefore,
we feel 2 is not a realistic value for the population slope.

Now let’s ask Martha. She thinks a reasonable value for the population slope
is 0, as she doesn’t believe there is a linear relationship between temperature
and volume. She feels that the fact that we found a sample slope that was not
0 was a pure coincidence. Based on that hypothesis, we compute 7' again and
find:

=248 (3.4)

—0.088 -0
— =—-1.04 .
0.084 046 (3:5)

In other words, if we believe Martha, our sample slope is only about 1
standard deviation away from her hypothesized value. That’s not a very bad
idea, since from the normal distribution we know that the probability of finding a
value more than 1.05 standard deviations away from the mean (above or below)
is 29.54% (you can see that more or less from Figure[3.9). In other words, if the
population slope is truly 0, then our sample slope of —0.088 is quite a reasonable
finding. If we reverse this line of reasoning: if our sample slope is —0.088, with
a standard error of 0.084, then a population slope of 0 is quite a reasonable
guess! It is reasonable, since the difference between the sample slope and the
hypothesised value is only —1.046 standard errors.

T =
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Figure 3.10: The standard normal distribution.

So when do we no longer feel that a value for the population slope is reason-
able? Perhaps if the probability of finding a sample slope of at least a certain
size given a hypothesised population slope is so small that we no longer believe
that the hypothesised value is reasonable. We might for example choose a small
probability like 1%. We know from the normal distribution that 1% of the val-
ues lie at least 2.58 standard deviations above and below the mean. This is
shown in Figure So if our sample slope is more than 2.58 standard errors
away from the hypothesised population slope, then that population slope is not
a reasonable guess. In other words, if the distance between the sample slope
and the hypothesised population slope is more than 2.58 standard errors, then
the hypothesised population slope is no longer reasonable.

This implies that any value closer than 2.58 standard errors from the sample
slope is a collection of reasonable values for the population slope.

Thus, in our example of the 200 bottles with a sample slope of —0.088 and
a standard error of 0.084, the interval from —0.088 — 2.58 x 0.084 to —0.088 +
2.58 x 0.084 contains reasonable values for the population mean. If we do the
calculation, we get the interval from —0.3 to 0.13. This is plotted in Figure[3.11
If we would have to guess the value for the population slope, our guess would
be that it would lie somewhere between between -0.30 and 0.13, if we feel that
1% is a small enough probability.

In data analysis, such an interval that contains reasonable values for the pop-
ulation value, if we only know the sample value, is called a confidence interval.
Here we’ve chosen to use 2.58 standard errrors as our cut-off point, because we
felt that 1% would be a small enough probability to dismiss the real population
value as a reasonable candidate. Such a confidence interval based on this 1%
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Figure 3.11: The standard normal distribution.

cut-off point is called a 99% confidence interval.

One often also sees 95% confidence intervals, particularly in social and be-
havioural sciences. Because with the normal distribution, 5% of the observations
lie more than 1.96 standard deviations away from the mean, the 95% confidence
interval is constructed by subtracting/addding 1.96 standard errors from/to the
sample value. Thus, in the case of our bottle sample, the 95% confidence interval
for the population slope is from —0.088 —1.96%0.084 to —0.088 +1.96 % 0.084, so
reasonable values for the population slope are those values between —0.25 and
0.08. Luckily, this corresponds to the truth, because we happen to know that
the population slope is equal to 0.001. In real life, we don’t know the population
slope and of course it might happen that the true population value is not within
the 95% confidence interval. If you want to make the probability of this being
the case smaller, then you can use a 99%, a 99.9% or an even larger confidence
interval.

3.6 Confidence intervals for smaller sample sizes

In the previous section we used the normal distribution to come up with 95%
and 99% confidence intervals for the slope coefficient. These were constructed
using 1.96 and 2.58 times the standard error, respectively. However, these num-
bers 1.96 and 2.58 can only be used when the sample size is large enough to
say that the distribution of the sample slope is very close to a normal distri-
bution. Earlier, we saw that the distribution of the sample slope is actually a
t-distribution, that doesn’t look normal at all for small sample sizes. Therefore,
for small sample sizes, we need to know the cut-off points that correspond to
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Figure 3.12: Two t-distributions when sample size is 4 or 200, with correspond-
ing 95 percent intervals.

5% and 1% probabilities for the ¢-distribution.

Figure [3.12| shows the case for the situation where the population slope is 0
and the sample size is 4. Suppose the standard error is equal to 1. Then this
figure shows that roughly 95% of the sample slopes lie between + 4.30 standard
errors below and above the mean (the red lines). In the same figure we also see
that if sample size is 200, 95% of the sample means lie between + 1.97 standard
errors below and above the mean (the blue line). This is almost the same as
for the normal distribution, where 95% of the observations lie between + 1.96
standard deviations below and above the mean.

Because for every sample size, the middle region where 95% of the observa-
tions lie is different, there are tables available where these values can be found.
However, these tables are built-in in every statistical package, so it is far easier
to let SPSS construct the 95% confidence intervals for us.

But let us look at a few regularities. For several probabilities, the correspond-
ing quantiles are presented in Table [3.3]for the standard normal distribution and
several t-distributions.

The shape of the t-distribution is indicated by its degrees of freedom. The
shape of the distribution of sample slopes when sample size is 200, is a t-
distribution with 198 degrees of freedom. The shape of the distribution of
sample slopes when sample size is 4, is a t-distribution with 2 degrees of free-
dom. In general, the shape of the distribution of sample slopes for sample size
n, is a t-distribution with n — 2 degrees of freedom. The higher the degrees of
freedom, the more the corresponding t-distribution looks like a normal distri-
bution. We will come back to degrees of freedom and the n — 2 rule in the next
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Table 3.3: Quantiles for the standard normal and several t-distributions.
probs norm  t198  t100 t50 t10 t2
0.0005 -3.29 -3.34 -3.39 -3.50 -4.59 -31.60
0.0010 -3.09 -3.13 -3.17 -3.26 -4.14 -22.33
0.0050 -2.58 -2.60 -2.63 -2.68 -3.17 -9.92
0.0100 -2.33 -235 -236 -240 -2.76 -6.96
0.0250 -196 -1.97 -1.98 -2.01 -2.23 -4.30
0.0500 -1.64 -1.65 -1.66 -1.68 -1.81 -2.92
0.1000 -1.28 -1.29 -1.29 -1.30 -1.37 -1.89
0.9000 1.28 1.29 1.29 1.30  1.37 1.89
0.9500 1.64 1.65 1.66 1.68 1.81 2.92
09750 196 197 198 2.01 223 4.30
0.9900 233 235 236 240 276 6.96
0.9950 2,58 2.60 2.63 268 3.17 9.92
0.9990 3.09 3.13 3.17 3.26 4.14 2233
0.9995 3.29 334 339 350 4.59 31.60

section.

Table shows for instance the cut-off points for 2.5% and 97.5% for the
standard normal distribution (the 0.025 and 0.975 quantiles, respectively) and
the t-distribution with 198 degrees of freedom: 1.96 and 1.97 standard devi-
ations (standard errors) respectively. For the t-distribution with 100 degrees
of freedom, the cut-off point is 1.98 standard errors. This would be the ap-
propriate t-distribution for a sample size of 102. But for smaller sample sizes,
the increase in number of standard errors goes up quickly: with 50 degrees of
freedom (sample size 52), the cutoff is 2.01, for 10 degrees of freedom it is 2.23
and for 2 degrees of freedom it becomes even 4.30 standard errors. Thus, if we
have a sample size of 4, we construct a 95% confidence interval of 4.30 standard
errors below the sample slope and 4.30 standard errors above the sample slope.

If you want to have the 99% confidence interval, you look at the cut-off
points for 0.005 and 0.995 which are -2.58 and +2.58, respectively, for the normal
distribution, but -9.92 and +9.92 for a ¢-distribution with 2 degrees of freedom.
Suppose we sample 4 bottles and find a sample slope of 5 with a standard error
of 4, then the 99% confidence for the slope is from 5 —9.92 x 4 to 5 + 9.92 x 4,
so from -34.68 to 44.68, which is of course a huge interval. On the other hand,
a sample of only 4 bottles is of course very small. It makes intuitive sense that
if you have only 4 bottles to go on, you are very uncertain about the population
slope: it could be anything!

In short, we can look up the cut-off points for 95%, 99% and other intervals
from tables online, in books, or in statistical packages. Generally, the smaller
the sample size, the lower the degrees of freedom, the larger the number of
standard errors you need to construct your confidence intervals.
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3.6.1 Exercises

1. Suppose we randomly pick 102 students from the University of Twente and
determine the linear equation between age in years (independent variable)
and height in cms (dependent variable). Suppose we find a slope coefficient
of 0.010, with a standard error of 0.009.

Construct the 95% confidence interval for the slope in the entire pop-
ulation in UT students using table

What can we say about values within this constructed confidence
interval?

Suppose a professor believes the true slope is equal to 0: is that a
reasonable belief given the finding of a sample slope of 0.0107 Motivate
your answer using the 95% confidence interval.

2. Suppose we randomly pick 52 adult inhabitants of Tuvalu and determine
the linear equation between age in years (independent variable) and height
in cms (dependent variable).

Suppose we find an intercept of 168, with a standard error of 0.07.
Construct the 99% confidence interval for the intercept in the entire pop-
ulation of adult inhabitants of Tuvalu using Table [3.3]

What can we say about values within this constructed confidence
interval?

Suppose a Swedish diplomat stationed in Tuvalu believes the popu-
lation intercept is equal to 169 cm: is that a reasonable belief given the
finding of a sample intercept of 1687 Motivate your answer using the 99%
confidence interval.

Answers:

1. Sample size is 102, so degrees of freedom for the sample slope is 100. For
a 95% interval, 2.5% of the observations should be on the left, and 2.5%
of the observations should be on the right. The cut-off quantiles should
therefore be 0.025 and 0.975. These cut-off values for the ¢-distribution
with 100 degrees of freedom are -1.98 and 1.98. Therefore the 95% interval
ranges from 0.010 — 1.98 x 0.009 to 0.010 + 1.98 x 0.009, so from -0.008 to
0.028.

These values are all reasonable values for the slope in the population
of University of Twente students.

Yes, the value of 0 lies within the range from -0.008 to 0.028, so 0 is
a reasonable value for the population slope.

2. Sample size is 52, so degrees of freedom for the sample slope is 50. For
a 99% interval, 0.5% of the observations should be on the left, and 0.5%
of the observations should be on the right. The cut-off quantiles should
therefore be 0.005 and 0.995. The 99% cut-off values for the ¢-distribution
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with 100 degrees of freedom are therefore -2.68 and 2.68. Thus, the 99%
interval ranges from 168 —2.68 x 0.07 to 168+2.68 x 0.07, so from 167.8124
to 168.1876.

These values are all reasonable values for the slope in the population
of all adult inhabitants of Tuvalu.

No, the value of 169 does not lie within the range from 167.8124 to
168.1876, so 169 is not a reasonable value for the population intercept.

3.7 Degrees of freedom

What does the term, ”degrees of freedom” mean? It refers to the number of
independent pieces of information in a sample of data.

Suppose that we have a sample with four values: 4, 2, 6, 8. There are four
separate pieces of information here. There is no particular connection between
these values. They are free to take any values, in principle. We could say that
there are four degrees of freedom associated with this sample of data.

Now, suppose that I tell you that three of the values in the sample are 4, 2,
and 6; and I also tell you that the sample average is 5. You can immediately
deduce that the fourth value has to be 8. For any other value, the average would
not be 5.

Once I tell you that the sample average is 5, I am effectively introducing a
constraint. The value of the unknown fourth sample value is implicitly being
determined from the other three values plus the constraint. That is, once the
constraint is introduced, there are only three logically independent pieces of
information in the sample. That is to say, there are only three ”degrees of
freedom”, once the sample average is revealed.

Let’s carry this example to regression analysis. Suppose I have four obser-
vations of variables  and y, where the values for x are 1, 2, 3 and 4. Each
value of y is one piece of information. These y-values could be anything, so we
say that we have 4 degrees of freedom. Now suppose I use a linear equation for
these data points, and suppose I only use an intercept. Let the intercept be 5
so that we have y = 5+ e. Now the first bit of information for x = 1, y could be
anything, say 2. The second and third bits of information for x = 2 and z = 4
could also be anything, say 6 and 2. Figure [3.13]shows these bits of information
as dots in a scatterplot. Since we know that the intercept is equal to 5, with no
slope (slope=0), we can also draw the regression line.

Before we continue, you must know that if we talk about degrees of freedom
in regression analysis, we generally talk about residual degrees of freedom. We
therefore look at residuals. If we compute the residuals, we have residuals -3, 1
and -3 for these data points. When we sum them we get -3. Since we know that
all residuals should sum to 0 in a regression analysis (see previous chapter), we
can derive the fourth residual to be +5, since only then the residuals sum to 0.
Therefore, the y-value for the fourth data point (for = 3) has to be 10, since
then the residual is equal to 10 — 5 = 5.
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Figure 3.13: Distribution of the sample mean when sample size is 4 or 200

In short, when we do a regression analysis with only an intercept, the degrees
of freedom is equal to the number of data points (combinations of x and y) minus
1, or in short notation: n — 1, where n stans for sample size.

Now let’s look at the situation where we do a regression analysis with both
an intercept and a slope: suppose the intercept is equal to 3 and the slope is
equal to 1: y = 3+ 1lx + e. Then suppose we have the same x-values as the
example above: 1, 2 and 4. When we give these x-values corresponding y-values,
2, 6, and 3, we get the plot in Figure [3.14

The black line is the regression line that should be appropriate for these data
set of four points. The blue line is the regression line based on only the three
visible data points. Now the question is, is it possible for a fourth data point
with = 3, to think of a y-value such that the regression line based on these
four data points is equal to y = 3+ 17 In other words, can we choose a y-value
such that the blue line exactly overlaps with the black line?

Figure [3.15] shows a number of possibilities for the value of y if z = 3. It can
be seen, that it is impossible to pick a value for y such that we get a regression
equation y = 3 + 1z. The blue line for instance comes closest to the black line.
This is the regression line when y = 11. However, it does not exactly overlap the
black line. If you lower values for y such as 9.5 (green line) or 8 (red line), the
regression lines still not overlap, nor for a higher value of y such as 12 (purple
line).

So, with 4 data points, we can never freely choose 3 residuals in order to
satisfy the constraint that a particular regression equation holds. We have less
then 3 degrees of freedom because it is impossible to think of a fitting fourth
value. It turns out, that in this case we can only choose 2 residuals freely, and
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Figure 3.15: Different regression lines for different values of y if x=3.
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the remaining residuals are then already determined. To prove this requires
matrix algebra, but the gist of it is that if you have a regression equation with
both an intercept and a slope, the degrees of freedom is equal to the number of
data points (sample size) minus 2: n — 2.

Generally, these degrees of freedom based on the number of residuals that
could be freely chosen, given the constraints of the model, are termed residual
degrees of freedom. When using regression models, one usually only reports
these residual degrees of freedom. Later on in this book, we will see instances
where one also should use model degrees of freedom. For now, it suffices to know
what is meant by residual degrees of freedom.
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Chapter 4

Inference II: hypothesis
testing, p-values and beyond

4.1 The null-hypothesis

Often, data analysis is about finding an answer to the question whether there
is a relationship between two variables. In most cases, the question pertains
to the population: is there a relationship between variable y and variable x in
the population? In many cases, one looks for a linear relationship between two
variables.

One common method to answer this question is to analyse a sample of data,
apply a linear model, and look at the slope. However, one then knows the slope
in the sample, but not the slope in the population. We have seen that the slope
in the sample can be very different from the slope in the population. Suppose
we find a slope of 1: does that mean there is a slope in the population or that
there is no slope in the population?

In inferential data analysis, one often works with two hypotheses: the null-
hypothesis and the alternative hypothesis. The null-hypothesis states that the
population slope is equal to 0 and the alternative hypothesis states that there
is a slope that is different from 0. Remember that if the population slope is
equal to 0, that is saying that there is no linear relationship between = and y
(that is, you cannot predict one variable on the basis of the other variable).
Therefore, the null-hypothesis states there is no linear relationship between =
and y in the population. If there is a slope, whether positive or negative, is the
same as saying there is a linear relationship, so the alternative hypothesis states
that there is a linear relationship between x and y in the population.

The null-hypothesis is often denoted as Hy and the alternative hypothesis is
often denoted as H 4. In formula form, we have

Hy: 6slope =0 (41)
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Figure 4.1: Distribution of the sample slope.

Hy 6slope 7é 0 (4'2)

The population slope, Bope, is either 0 or it is not. Our data analysis is
then aimed at determining which of these two hypotheses is true. Key is that
we do a thought experiment on the null-hypothesis: we wonder what would
happen if the population slope would be really 0. In our imagination we draw
many samples of a certain size, say 40 data points, and then determine the
slope for each sample. Earlier we learned that the many sample slopes would
form a histogram in the shape of a ¢-distribution with n — 2 = 38 degrees of
freedom. For example, suppose we would draw 1000 samples of size 40, then
the histogram of the 1000 slopes would be like depicted in Figure

From this histogram we see that all observed sample slopes are well between
-0.8 and 0.8. This gives us the information we need. Of course, we have only one
sample of data, and we don’t know anything about the population data. But
we do know that if the population slope is equal to 0, then it is very unlikely to
find a sample slope of say 1 or -1. Thus, if we happen to find a sample slope of
say -1, we know that this finding is very unlikely if we hold the null-hypothesis
to be true. In other words, if the population slope is equal to 0, it would be
quite improbable to find a sample slope of -1 or smaller. Therefore, we regard
the null-hypothesis to be false, since it does not provide a good explanation
of why we found a sample slope of -1. In that case, we say that we reject the
null-hypothesis.
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4.2 The p-value

The p-value is a probability. It represents the probability of observing certain
events, given that the null-hypothesis is true.

In the previous section we saw that if the population slope is 0, and we drew
1000 samples of size 40, we did not observe a sample slope of -1 or smaller. In
other words, the frequency of observing a slope of -1 or smaller was 0. If we
would draw more samples, we theoretically could observe a sample slope of -1,
but the probability that that happens for any new sample we can estimate at
less than 1 in a 1000, so less than 0.001.

This estimate of the p-value was based on 1000 randomly drawn samples
of size 40 and then looking at the frequency of certain values in that data set.
But there is a short-cut, for we know that the distribution of sample slopes
has a t-distribution if we standardize the sample slopes. Therefore we do not
have to take 1000 samples and estimate probabilities, but we can look at the
t-distribution directly, using tables online or in statistical packages.

Figure shows the t-distribution that is the theoretical distribution cor-
responding to the histogram in Figure If the standard error is equal to
0.19, and the hypothetical population slope is 0, then the T-statistic associ-
ated with a slope of -1 is equal to 7(;1;0 = —5.26. With this value, we can
look up in the tables, how often such a value of -5.26 or smaller occurs in a
t-distribution with 38 degrees of freedom (see Chapter [3). In the tables we
find that the probability that this occurs is 0.00000294. So, the fact that the
T-statistic has a t-distribution gives us the opportunity to exactly determine
certain probabilities, including the p-value.

Now let’s suppose we have only one sample of 40 bottles, and we find a slope
of 0.1 with a standard error of 0.19. Then this value of 0.1 is (0.1—0)/0.19 = 0.53
standard errors away from 0. Thus, the T-statistic is 0.53. We then look at the
t-distribution with 38 degrees of freedom, and see that such a T-value of 0.53
is not very strange: it lies well within the middle 95% of the ¢-distribution (see
Figure .

Let’s determine the p-value again for this slope of 0.1: we determine the
probability that we obtain such a T-value of 0.53 or larger. Figure [£.3] shows
the area under the curve for values of T' that are larger than 0.53. This area
under the curve can be seen as a probability. The total area under the curve of
the t-distribution amounts to 1. If we know the area of the shaded part of the
total area, we can compute the probability of finding T-values larger than 0.53.

In tables online, in books, or available in statistical packages, we can look
up how large this area is. It turns out to be 0.3. So, if the population slope is
equal to 0 and we draw an infinite number of samples of size 40 and compute
the sample slopes, then 30% of them will be larger than our sample slope of 0.1.
The proportion of the shaded area is what we call a one-sided p-value. We call
it one-sided, because we only look at one side of the t-distribution: we only look
at values that are larger than our T-value of 0.53.

We conclude that a slope value of 0.1 is not that strange to find if the
population slope is 0. By the same token, it would also have been probable to
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Figure 4.2: The histogram of 1000 sample slopes and its corresponding theoret-
ical t-distribution with 38 degrees of freedom. The vertical line represents the
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Figure 4.3: Probability of a T-value larger than 0.53.
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Figure 4.4: Probability of finding a T-value smaller than -0.53.

find a slope of -0.1, corresponding to a T-value of -0.53. Since the ¢-distribution
is symmetrical, the probability of finding a T-value of less than -0.53 is depicted
in Figure [£-4] and of course this probability is also 0.3.

Remember that the null-hypothesis is that the population slope is 0, and the
alternative hypothesis is that the population slope is not 0. We should therefore
conclude that if we find a very large positive or negative slope, large in the
sense of the number of standard errors away from 0, that the null-hypothesis is
unlikely to be true. Therefore, if we find a slope of 0.1 or -0.1, then we should
determine the probability of finding a T-value that is larger than 0.53 or smaller
than -0.53. This probability is depicted in Figure and is equal to twice the
one-side p-value, 2 x 0.2995977 = 0.5991953.

This probability is called the two-sided p-value. This is the one that should
always be used, since the alternative hypothesis is also two-sided: the population
slope can be positive or negative. The question now is: is a sample slope of 0.1
enough evidence to reject the null-hypothesis? To determine that, we determine
how many standard errors away from 0 the sample slope is and we look up in
tables how often that happens. Thus in our case, we found a slope that is
0.53 standard errors away from 0 and the tables told us that the probability of
finding a slope that is at least 0.53 standard deviations away from 0 (positive
or negative) is equal to 0.5991953. We find this probability rather large, so we
decide that we do not reject the null-hypothesis.
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Figure 4.5: The vertical line represents a T-value of 0.53. The shaded area
represents the two-sided p-value: the probability of obtaining a T-value smaller
than -0.53 or larger than 0.53.

4.3 Hypothesis testing

In the previous section, we found a one-sided p-value of 0.00000294 for a sample
slope of -1 and more or less concluded that this probability was rather small.
The two-sided p-value would be twice this value, so 0.00000588, which is still
very small. Next we determined the p-value associated with a slope of 0.1 and
found a p-value of 0.60. This probability we found was rather large, and we
decided not to reject the null-hypothesis. In other words, the probability was so
large that we thought that the hypothesis that the population slope is 0 should
not be rejected based on our findings.

When should we think the p-value is small enough to conclude that the
null-hypothesis can be rejected? When can we conclude that the hypothesis
that the population slope is 0 is not supported by our sample data? This was
a question posed to the founding father of statistical hypothesis testing, Sir
Ronald Fischer. In his book Statistical Methods for Research Workers (1925),
Fisher proposed a probability of 5%. He advocated 5% as a standard level for
concluding that there is evidence against the null-hypothesis. However, he did
not see it as an absolute rule: ”If P is between .1 and .9 there is certainly no
reason to suspect the hypothesis tested. If it is below .02 it is strongly indicated
that the hypothesis fails to account for the whole of the facts. We shall not often
be astray if we draw a conventional line at .05...”. So Fisher saw the p-value
as an informal index to be used as a measure of discrepancy between the data
and the null-hypothesis: The null-hypothesis is never proved, but is possibly
disproved.
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Later, Jerzy Neyman and Egon Pearson saw the p-value as an instrument
in decision making: is the null-hypothesis true, or is the alternative hypothesis
true? You either reject the null-hypothesis or you don’t, there is nothing in
between. A slightly milder view is that you either decide that there is enough
empirical evidence to reject the null-hypothesis, or there is not enough em-
pirical evidence to reject the null-hypothesis (not necessarily accepting Hy as
true!). This view to data-analysis is rather popular in the social and behavioural
sciences, but also in particle physics. In order to make such black-and-white de-
cisions, you decide before-hand, that is, before collecting data, what level of
significance you choose for your p-value to decide whether to reject the null-
hypothesis. For example, as your significance level, you might want to choose
1%. Let’s call this chosen significance level o. Then you collect your data, you
apply your linear model to the data, and find that the p-value associated with
the slope equals p. If this p is smaller than or equal to « you reject the null-
hypothesis, and if p is larger than « then you do not reject the null-hypothesis.
A slope with a p < « is said to be significant, and a slope with a p > « is
said to be non-significant. If the slope is significant, then one should reject the
null-hypothesis and say there is a slope in the population different from zero. If
the slope is not significant, then one should not reject the null-hypothesis and
say there is no slope in the population (i.e., the slope is 0). Alternatively, one
could say there is no empirical evidence for the existence of a slope (this leaves
the possibility that there is a slope in the population but that our method of
research failed to find one).

4.3.1 Exercises

1. Suppose you test the null-hypothesis that in a linear equation describing
the relationship between the mass of a planet and its volume, the slope
equals 0:

mass = By + frvolume + € (4.3)

State the null-hypothesis.

2. You set your significance level to 1%, so a = 0.01. Next, you measure 52
planets and you find a sample slope of b; = 6, with a standard error of
2.24. Determine the T-statistic with which you test the null-hypothesis.

3. Determine the two-sided p-value on the basis of Table
4. What does this p-value represent?

5. Do you reject or do you not reject the null-hypothesis? What does this
mean?

6. A car manufacturer wants to build safe cars. One of the engineers conducts
collision experiments: cars with a certain velocity are directed towards a
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parked car. Both the velocity and the deepness of the dent in the parked
car is measured. She expects to see that high velocity creates deeper dents
and she applies a regression model.

deepness = By + Prvelocity + € (4.4)

State the null-hypothesis.

7. The engineer sets her significance level to 5%, so @ = 0.05. Next, she
measures 4 cars with speeds between 90 mph and 92 mph and she finds
a sample slope of b = 2, with a standard error of 1.5. Determine the
T-statistic with which you test the null-hypothesis.

8. For her T-statistic with 2 degrees of freedom, she finds a two-sided p-value
of 0.3140057. Is the effect of velocity on deepness of the dent significant?

9. Should the engineer reject or not reject the null-hypothesis? What does
this mean?

10. Could you think of possible reasons why the engineer does not find an
effect of velocity on the deepness of the dent?

4.3.2 Answers
1.
HQ : ,@1 =0 (45)
2. T =89—-9268

2.24

3. Degrees of freedom is 52 — 2 = 50. From the table for a t-distribution
with 50 degrees of freedom, we see that a T-value of 2.68 is the 0.995th
quantile. Thus, half a percent of the T-values are larger than 2.68. Because
of symmetry, half a percent of the T-values is smaller than -2.68. So in
total, 1% of the T-values are at least 2.68 away from the mean (both
directions). Therefore, the two-sided p-value is 0.01.

4. This is the probability that, given that the null-hypothesis is true, we find
a sample slope of 6 or larger or a sample slope of -6 or smaller.

5. Our p-value of 0.01 is equal to our a and we therefore reject the null-
hypothesis. This means that we conclude that the slope coefficient in all
planets in the universe is not 0. There is a relationship between the volume
of a planet and its mass.

HO : ﬁl =0 (46)
7.T=(2-0)/1.5=2/1.5=1.33
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8. The p-value 0.3140057 is larger than her «, so the effect of velocity is not
significant.

9. The effect is not significant so she should not reject the null-hypothesis.
This means that the conclusion is that there is no relationship between the
velocity of the incoming car and the deepness of the dent in the receiving
car.

10. First of all, there were only 4 cars tested. A small sample size results
in a relatively large standard error, so a relatively small T-statistic. The
higher the T-value the lower the p-value. Second, there was hardly any
variation in the speed of the incoming car: if you want to find an effect,
there should be cars with both high and low velocities, otherwise you won’t
see any differences in the dents.

4.4 Type I and Type II errors in decision mak-
ing

Since data-analysis is about probabilities, there is always a chance that you
make the wrong decision: you can wrongfully reject the null-hypothesis, or
you can wrongfully fail to reject the null-hypothesis. Pearson and Neyman
distinguished between two kinds of error: one could reject the null-hypothesis
while it is actually true (error of the first kind, or type I error) and one could
accept the null-hypothesis while it is not true (error of the second kind, or type
IT error). Table gives an overview.

Table 4.1: Four different scenarios for hypothesis tests.
Test conclusion

do not reject Hy reject Hy
Hy true OK Type I Error

H 4 true Type II Error OK

Truth

To illustrate the difference between type I and type II errors, let’s recall
the famous fable by Aesop about the boy who cried wolf. The tale concerns a
shepherd boy who repeatedly tricks other people into thinking a wolf is attacking
his flock of sheep. The first time he cries " There is a wolf!” | the men working in
an adjoining field come to help him. But when they repeatedly find there is no
wolf to be seen, they realise they are being fooled by the boy. One day, when
a wolf does appear and the boy again calls for help, the men believe that it is
another false alarm and the sheep are eaten by the wolf.

In this fable, we can think of the null-hypothesis as the hypothesis that there
is no wolf. The alternative hypothesis is that there is a wolf. Now, when the boy
cries wolf the first time, there is in fact no wolf. The men from the adjoining
field make a type I error: they think there is a wolf while there isn’t. Later,
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when they are fed up with the annoying shepherd boy, they don’t react when
the boy cries "There is a wolf!”. Now they make a type II error: they think
there is no wolf, while there actually is a wolf. See Table for the overview.

Men in the field

Think there is no wolf Think there is a wolf

There is no wolf OK waste of time and energy

Truth There is a wolf devoured sheep OK

Table 4.2: Four different scenarios for wolves and men working in the field.

Let’s return to regression analysis. Suppose you want to determine the slope
for the effect of age on height in children. Let the slope now stand for the slope:
either there is no slope (no wolf, Hy) or there is a slope (wolf, H4). The null-
hypothesis is that the slope is 0 in the population of all children (a slope of 0
means there is no slope) and the alternative hypothesis that the slope is not 0,
so there is a slope. You might study a sample of children and you might find
a certain slope. You might decide that if the p-value is lower than a critical
value you conclude that the null-hypothesis is not true. Suppose you think a
probability of 10% is small enough to reject the null-hypothesis as true. In
other words, if p < 0.10 then we no longer think 0 is a reasonable value for the
population slope. In this case, we have fixed our « or type I error rate to be
« = 0.10. This means that if we study a random sample of children, we look at
the slope and find a p-value of 0.11, then we do not reject the null-hypothesis.
If we find a p-value of 0.10, then we reject the null-hypothesis.

Note that the probability of a type I error is the same as our « for the
significance level. Suppose we set our a = 0.05. Then for any p-value equal or
smaller than 0.05, we reject the null-hypothesis. Suppose the null-hypothesis is
true, how often do we then find a p-value smaller than 0.057 We find a p-value
smaller than 0.05 if we find a T-value that is above a certain threshold. For
instance, for the ¢-distribution with 198 degrees of freedom, the critical value is
+1.97, because only in 5% of the cases we find a T-value of £1.97 or more if the
null-hypothesis is true! Thus, if the null-hypothesis is true, we see a T-value of
at least 41.97 in 5% of the cases. Therefore, we see a signficicant p-value in 5%
of the cases if the null-hypothesis is true. This is exactly the definition of a Type
I error: the probability that we reject the null-hypothesis (finding a significant
p-value), given that the null-hypothesis is true. So we call our a-value the type
I error rate.

Suppose 100 researchers are studying a particular slope. Unbeknownst to
them, the population slope is exactly 0. They each draw a random sample from
the population and test whether their sample slope is significantly different from
0. Suppose they all use different sample sizes, but they all use the same « of
0.05. Then we can expect that about 5 researchers will reject the null-hypothesis
(finding a p-value less than or smaller than 0.05) and about 95 will not reject
the null-hypothesis (finding a p-value of more than 0.05).

Fixing the type I error rate should always be done before data collection.

102



How willing are you to take a risk of a type I error? You are free to make a
choice about «, as long as you report it.

If a represents the probability of making a type I error, then we can use 3
to represent the probability of not rejecting the null-hypothesis while it is not
true (type II error, thinking there is no wolf while there is). However, setting
the B value prior to data collection is a bit trickier than choosing your a. It
is not possible to compute the probability that we find a non-significant effect
(p > «), given that the alternative hypothesis is true, because the alternative
hypothesis is only saying that the slope is not equal to 0. In order to compute
B, we need to think first of a reasonable size of the slope that we expect. For
example, suppose we believe that a slope of 1 is quite reasonable, given what
we know about growth in children. Let that be our alternative hypothesis:

H()ZBl:O
HAZﬁlzl

Next, we determine the distribution of sample slopes under the assumption
that the population slope is 1. We know that this distribution has a mean of 1
and a standard deviation equal to the standard error. We also know it has the
shape of a t-distribution, see Chapter[3] Let sample size be equal to 102 and the
standard error 2. If we standardize the slopes by dividing by the standard error,
we get the two t-distributions in Figure [4.6} one distribution of T-values if the
population slope is 0 (centered around T=0), and one distribution of T-values
if the population slope is 1 (centered around T' = 1/2 = 0.5.

Let’s fix a to 10%. The shaded areas represent the area where p < «: for all
values of T smaller than —1.6859545 and larger than 1.6859545, we reject the
null-hypothesis. The probability that this happens, if the null-hypothesis is true,
is equal to o which is 0.10 in this example. The probability that this happens
if the alternative hypothesis is true (i.e., population slope is 1), is depicted in
Figure [£.7]

The shaded area in Figure [£.7] turns out to be 0.1415543. This represents
the probability that we find a significant effect, if the population slope is 1. This
is actually the complememEI of the probability to find a non-significant effect,
if the population slope is 1, which is defined as 8. Therefore, the shaded area
in Figure [£.7] represents 1 — 3: the probability of finding a significant p-value, if
the population slope is 1. In this example, 1 — 3 is equal to 0.1415543, so 5 is
equal to its complement, 1 — 0.1415543 = 0.8584457.

In sum, in this example with an « of 0.10 and assuming a population slope
of 1, we find that the probability of a type II error is 0.86: if there is a slope of
1, then we have a 86% chance of wrongly concluding that the slope is 0.

Type I and II error rates a and 3 are closely related. If we feel that a
significance level of & = 0.10 is too high, we could choose a level of 0.01. This
ensures that we are less likely to reject the null-hypothesis when it is true. The

IExplaination complement.....
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Figure 4.6: Different t-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve
in red). Blue area depicts the probability that we find a p-value value smaller
than 0.10 if the population slope is 0 (alpha).
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Figure 4.7: Different t-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve in
red). Shaded area depicts the probability that we find a p-value value smaller
than 0.10 if the population slope is 1 (1-beta).
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critical value for our T-statistic is then equal to +2.6258905, see Figure In
Figure we see that if we change «, we also get a different value for 1 — 3, in
this case 0.0196567.

Table [1.3] gives an overview of how a and 3 are related to type I and type
IT error rates. If a p-value for a statistical test is equal to or smaller than a
pre-chosen significance level «, the probability of a type I error equals «. The
probability of a type II error rate is equal to 3.

Statistical outcome

P>« p <L«
Hy 1—-« «a

Hy B 1-3

Truth

Table 4.3: The probabilities of a statistical outcome under the null-hypothesis
and the alternative hypothesis.

Thus, if we use smaller values for a;, we get smaller values for 1— 3, so we get
larger values for 5. This means that if we lower the probability of rejecting the
null-hypothesis given that it is true (type I error) by choosing a lower value for «,
we inadvertently increase the probability of failing to reject the null-hypothesis
given that it is not true (type II error).

Think again about the problem of the sheep and the wolf. Instead of the
boy, the men could choose to put a very nervous person on watch, someone
very scared of wolves. With the faintest hint of a wolf’s presence, the man will
call out ”Wolf!”. However, this will lead to many false alarms (type I errors),
but the men will be very sure that when there actually is a wolf, they will be
warned. Alternatively, they could choose to put a man on watch that is very
laid back, very relaxed, but perhaps prone to nod off. This will lower the risk of
false alarms immensely (no more type I errors) but it will dramatically increase
the risk of a type II error!

One should therefore always strike a balance between the two types of errors.
One should consider how bad it is to think that the slope is not 0 while it is,
and how bad it is to think that the slope is 0, while it is not. If you feel that
the first mistake is worse than the second one, then make sure « is really small,
and if you feel that the second mistake is worse, then make a not too small.
Another option, and a better one, to avoid type II errors, is to increase sample
size, as we will see in the next section.

4.4.1 Exercises

1. When we talk about decision making in data analysis, what do we mean
by 57

2. What do we mean by 1 — 87

3. What doe we mean by a7
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Figure 4.8: Different t-distributions of the sample slope if the population slope
equals 0 (left curve), and if the population slope equals 1 (right curve). Grey
area depicts the probability that we find a p-value value smaller than 0.01 if the
population slope is 0.
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Figure 4.9: Different t-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve
in red). Red area depicts the probability that we find a p-value value smaller
than 0.01 if the population slope is 1: 1-beta=.
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4. What do we mean by making a type I error?
5. What do we mean by making a type II error?

6. What do we mean by 1 — a?
Answers:

1. The type Il error rate, or the probability of not rejecting the null-hypothesis
while the null-hypothesis is not true.

2. The probability of finding a significant effect if the alternative hypothesis
is true.

3. The type I error rate, or the probability of rejecting while the null-hypothesis
is true

4. Wrongly concluding that the null-hypothesis is not true.
5. Wrongly concluding that the null-hypothesis is true.

6. The probability of not rejecting the null-hypothesis while the null-hypothesis
is true.

4.5 Statistical power

Null-hypothesis testing only involves the null-hypothesis: we look at the sample
slope, compute the T-statistic and then see how often such a T-value and larger
values occur given that the population slope is 0. Then we look at the p-value
and if that p-value is smaller than or equal to «, we reject the null-hypothesis.
Therefore, null-hypothesis testing does not involve testing the alternative hy-
pothesis. We can decide what value we choose for our «, but not our 5. The
is dependent on what the actual population slope is, and we simply don’t know
that.

As stated in the previous section, we can compute § only if we have a more
specific idea of an alternative value for the population slope. We saw that we
needed to think of a reasonable value for the population slope that we might be
interested in. Suppose we have the intuition that a slope of 1 could well be the
case. Then, we would like to find a p-value of less than « if indeed the slope were
1. We hope that the probability that this happens is very high: the conditional
probability that we find a T-value large enough to reject the null-hypothesis,
given that the population slope is 1. This probability is actually the complement
of 8, 1 — f3: the probability that we reject the null-hypothesis, given that the
alternative hypothesis is true. This 1 — 3 is often called the statistical power of
a null-hypothesis test. When we think again about the boy who cried wolf: the
power is the probability that the men think there is a wolf if there is indeed a
wolf. The power of a test should always be high: if there is a population slope
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Figure 4.10: Different t-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve
in red). Now for a larger sample size. Shaded area depicts the probability that
we find a p-value value smaller than 0.01 if the population slope is 1.

that is not 0, then of course you would like to detect it by finding a significant
T-value!

In order to get a large value for 1 — 3, we should have large T-values in our
data-analysis. There are two ways in which we can increase the value of the
T-statistic. Since with null-hypothesis testing T = (b — 0)/se = b/se, we can
get large values for T if 1) we have a small standard error, se, or 2) if we have
a large value for b.

Let’s first look at the first option: a small standard error. We get a small
standard error if we have a large sample size, see Section [3.2.1] If we go back to
the example of the previous section where we had a sample size of 102 children
and our alternative hypothesis was that the population slope was 1, we found
that the t-distribution for the alternative hypothesis was centered around 0.5,
because the standard error was 2. Suppose that we would increase sample size
to 1200 children, then our standard error might be 0.2. Then our ¢-distribution
for the alternative hypothesis is centerd at 5. This is shown in Figure

We see from the shaded area that if the population slope is really 1, there is
a very high chance that the T-value for the sample slope will be larger than 2.58,
the cutoff point for an « of 0.01 and 1198 degrees of freedom. The probability
of rejecting the null-hypothesis while it is not true, is therefore very large. This
is our 1 — 8 and we call this the power of the null-hypothesis test. We see that
with increasing sample size, the power to find a significant T-value increases
too.
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Now let us look at the second option, a large value of b. Sample slope b
depends of course on the population slope 8. The power becomes larger when
the population slope is further away from zero. If the population slope were
10, and we only had a sample of 102 children (resulting in a standard error of
2), the t-distribution for the alternative hypothesis that the population slope is
centered around B/se = 10/2 = 5, resulting in the same plot as in Figure m
with a large value for 1 — 8. Unfortunately, the population slope is beyond our
control: the population slope is a given fact that we cannot change. The only
thing we can change most of the times is sample size.

In sum: the statistical power of a test is the probability that the null-
hypothesis is rejected, given that it is not true. This probability is equal to
1 — B. The statistical power of a test increases with sample size, and depends
on the actual population slope. The further away the population slope is from 0
(positive or negative), the larger the statistical power. Earlier we also saw that
1 — 8 decreases with increasing «: the smaller «, the lower the power.

4.5.1 Exercises

1. Prior to an experiment with 100 participants, a researcher fixes a to 0.05.
She expects to find a slope of at least 2. She then computes the power of
the test and finds 0.50. What does this mean?

2. She would like to increase the power of her test, but is unable to increase
sample size due to financial constraints. What can she do?

Answers:

1. A power of 0.50 means that if the alternative hypothesis is true (i.e. the
slope is 2), then the probability of finding a significant p-value (p < 0.05)
is 0.50.

2. She can’t change sample size, nor can she change the population slope.
She can only change her a. The lower the a, the lower the power. She
could therefore use a higher a, for instance 0.10. However, this of course
raises the probability of a type I error.

4.6 Power analysis

Because of these relationships between statistical power, a;, sample size and the
actual population slope, we can compute the statistical power for any combina-
tion of «, sample size and hypothetical population slope.

If you really care about the quality of your research, you carry out a power
analysis prior to collecting data. With such an analysis you can find out how
large your sample size should be. You can find many tools online that can help
you with that.

Suppose you want to minimize the probability of a type I error, so you choose
an « = 0.01. Next, you think of what kind of population slope you would like

109



to find, if it indeed has that value. You could perhaps base this expectation
on earlier research. Suppose that you feel that if the population slope is 0.15,
you would really like to find a significant T-value so that you can reject the
null-hypothesis. Next, you have to specify how badly you want to reject the
null-hypothesis if indeed the population slope is 0.15. If the population slope
is really 0.15, then you would like to have a high probability to find a T-value
large enough to reject the null-hypothesis. This is of course the power of the
test, 1 — 5. Let’s say you want to have a power of 0.90. Now you have enough
information to calculate how large your sample size should be.

Let’s look at G*powerﬂ an application that can be downloaded from the web.
If we start the app, we can ask for the sample size required for a slope of 0.15, an
a of 0.01, a power (1 — f3) of 0.90. Let the standard deviation of our dependent
variable (y=height) be 3 and the standard deviation of our independent variable
(x=age) be 2. Then we get the input as displayed in Figure Note that
you should use two-sided p-values, so tails=two. From the output we see that
the required sample size is 1477 children.

4.6.1 Exercises

1. You want to predict height by age in children. Use G*power to find out
how large sample size should be if you want to find a slope of 0.15 with
a type I error rate of 0.01, and a power of 80%. Suppose the standard
deviation of height is about 3 and the standard deviation of age is about
2.

2. A teacher friend says you can use her children, all having the age of 9. The
standard deviation for age in a classroom of 9-year-olds is about 0.5, and
their heights have a standard deviation of about 1. How many children of
age 9 would you need in order to get your power of 80%?

3. A hockey friend says you can use children from his hockey club. They
have ages between 5 and 15, and the standard deviation is about 2. The
standard deviation of their heights is about 0.5. How many hockey club
children would you need for your power of 80%7?

4. Explain why you need so many children from age 9, and fewer children
with ages between 5 and 15. Sketch a scatterplot, if that helps you.

Answers:
1. 1160 children.
2. 2068 children.

3. 25 children.

2http://www.gpower.hhu.de/
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Central and noncentral distributions Protocol of power analyses

critical t = 2.5792

0.3
0.2
0.1 a
2
05 T T T T T T T T T T T T T T T T T T T
- 2 -1 (] 1 2 3 4 5 6
Test family Statistical test
t tests o] Linear bivariate regression: One group, size of slope [
Type of power analysis
A priori: Compute required sample size - given a, power, and effect size [
Input parameters Output parameters
Tail(s) Two < Noncentrality parameter & 3.8625370
Determine Slope H1 0.15 Critical t 25791666
a err prob 0.01 Df 1475
Power (1-B err prob) 0.9 Total sample size 1477
Slope HO 0 Actual power 0.9001422
Std dev 0_x 2
Std dev oy 3
X-Y plot for a range of values Calculate

Figure 4.11: G*power output for a simple regression analysis.

4. See Figure[4.12] In order to see a relationship between variation in variable
x and variable y, there should at least be variation in one of them. So if
you want to see an effect, make sure you see a lot of variation in one the
two variables, for instance use a sample with a large spread in age.

4.7 Criticism on null-hypothesis testing and p-
values

The practice of null-hypothesis significance testing (NHST) is widespread. How-
ever, from the beginning it has received much criticism. One of the first to
critize the approach was the inventor of the p-value, Sir Ronald Fisher him-
self. Fisher explicitly contrasted the use of the p-value for statistical inference
in science with the Pearson-Neyman approach, which he termed ” Acceptance
Procedures”. Whereas in the Pearson-Neyman approach the only relevance of
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Figure 4.12: Tllustration of exercise: the relation between age and height in
children.

the p-value is whether it is smaller or larger than the fixed significance level
a, Fisher emphasized that the exact p-value should be reported to indicate the
strength of evidence against the null-hypothesis. He emphasized that no single
p-value can refute a hypothesis, since chance always allows for type I and type
IT errors. Conclusions can and will be revised with further experimentation;
science requires more than one study to reach solid conclusions. Decision pro-
cedures with clear-cut decisions based on one study only hamper science and
lead to tunnel-vision.

Apart from these science-theoretical considerations of the NHST, there are
also practical reasons why pure NHST should be avoided. In at least a num-
ber of research fields, the p-value has become more than just the criterion for
finding an effect or not: it has become the criterion of whether the research is
publishable or not. Editors and reviewers of scientific journals have increasingly
interpreted a study with a significant effect to be more interesting than a study
with a non-significant effect. For that reason, in scientific journals you will find
mostly studies reported with a significant effect. This has led to the file-drawer
problem: the literature reports significant effects for a particular phenomenon,
but there can be many unpublished studies with non-significant effects for the
same phenomenon. Theses unpublished studies remain unseen in file-drawers
(or these days on hard-drives). So based on the literature there might seem to
exist a particular phenomenon, but if you would put all the results together,
including the unpublished studies, the effect might disappear completely.

Remember that if the null-hypothesis is true and everyone uses an « of 0.05,
then out of 100 studies of the same phenomenon, only 5 studies will be significant
and are likely to be published. The remaining 95 studies with insignificant effects
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are more likely to remain invisible.

As a result of this bias in publication, scientists who want to publish their
results are tempted to fiddle around a bit more with their data in order to get
a significant result. Or if they obtain a p-value of 0.07, they decide to increase
their sample size, and perhaps stop as soon as the p-value is 0.05 or less. This
horrible malpractice is called p-hacking and is extremely harmful to science.
As we saw earlier, if you want to find an effect and not miss it, you should
carry out a power analysis before you collect the data and make sure that your
sample size is large enough to obtain the power you want to have. Increasing
sample size after you have found a non-significant increases your type I error
rate dramatically: if you stop collecting data until you find a significant p-value,
the type I error rate is equal to 1!

There have been wide discussions the last few years about the use and in-
terpretation of p-values. In a formal statement, the American Statistical As-
sociation published six principles that should be well understood by anyone,
including you, who uses them.

The six principles are:

1. P-values can indicate how incompatible the data are with a specified sta-
tistical model (usually the null-hypothesis).

2. P-values do not measure the probability that the studied hypothesis is
true, or the probability that the data were produced by random chance
alone. Instead, they measure how likely it is to find a sample slope of at
least the size that you found, given that the population slope is 0.

3. Scientific conclusions and business or policy decisions should not be based
only on whether a p-value passes a specific threshold. For instance, also
look at the size of the effect: is the slope large enough to make policy
changes worth the effort? Have other studies found effects of similar sizes?

4. Proper inference requires full reporting and transparency. Always report
your sample slope, the standard error, the T-statistic, the degrees of free-
dom, and the p-value. Only report about null-hypotheses that your study
was designed to test.

5. A p-value or statistical significance does not measure the size of an effect
or the importance of a result. (See principle 1)

6. By itself, a p-value does not provide a good measure of evidence regarding
a model or hypothesis. At least as important is the design of the study.

These six principles are further explained in the statement onlineﬂ The bot-
tom line is, p-values have worth but only when used and interpreted in a proper
way, although some disagree. The philosopher of science William Rozeboom
once called NHST surely the most bone-headedly misguided procedure ever in-
stitutionalized in the rote training of science students. The scientific journal

3https://amstat.tandfonline.com/doi/abs/10.1080,/00031305.2016.1154108
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Basic and Applied Social Psychology even banned NHST altogether: T-values
and p-values are not allowed if you want to publish your research in that journal.

Most researchers now realize that reporting confidence intervals is often a
lot more meaningful than reporting whether a p-value is significant or not. A p-
value only says something about evidence against the hypothesis that the slope
is 0. In contrast, a confidence interval gives a whole range of reasonable values
for the population slope. If 0 lies within the confidence interval, then 0 is a
reasonable value; if it is not, then 0 is not a reasonable value so that we can
reject the null-hypothesis.

Using confidence intervals also counters one fundamental problem of null-
hypotheses: nobody believes in them! Remember that the null-hypothesis states
that a particular effect (a slope) is exactly 0: not 0.0000001, not -0.000201, but
exactly 0.000000000000000000000.

Sometimes a null-hypothesis doesn’t make sense at all. Suppose we are
interested to know what the relationship is between age and height in children.
Nobody believes that the effect of age on height is 0. Why then test this
hypothesis? More interesting would be to know how large the population slope
is. A confidence interval would then be much more informative than a simple
rejection of the null-hypothesis.

In some cases, a null-hypothesis can be slightly more meaningful: suppose
you are interested in the effect of cognitive behavioural therapy on depression.
You hope that the number of therapy sessions has a negative effect on the
severity of the depression, but it is entirely possible that the effect is very close to
nonexisting. Of course you can only look at a sample of patients and determine
the sample slope. But think now about the population slope: think about all
patients in the world with depression that theoretically could partake in the
research. Some of them have 0 sessions, some have 1 session, and so on. Now
imagine that there are 1 million of such people. How likely is it that in the
population, the slope for the regression is exactly 0?7 Not 0.00000001, not -
0.0000000002, but exactly 0.0000000000. Of course, this is extremely unlikely.
The really interesting question in such research is whether there is a meaningful
effect of therapy. For instance, an effect of at least half a point decrease on the
Hamilton depression scale for 5 sessions. Also in this case, a confidence interval
for the effect of therapy on depression would be more helpful than a simple p-
value. A confidence interval of -2.30 to -0.01 says that a small population effect
of -0.01 might be there, but that an effect of -0.0001 or 0.0000 is rather unlikely.
The p-value less than « only tells you only that a value of exactly 0.0000 is not
realistic.

So, instead of asking research questions like ”Is there a linear relationship
between x and y?” you might ask: "How large is the linear effect of x on y?”
Instead of a question like ”Is there an effect of the intervention?” it might be
more interesting to ask: "How large is the effect of the intervention?”

Summarizing, remember the following principles when doing your own re-
search or evaluating the research done by others:

e Inference about a population slope or intercept can be made on the basis
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of sample data, but only in probabilistic terms. This means that a simple
statement like ”the value of the population slope is definitely not zero”
cannot be made. Only statements like ” A population slope of 0 is not very
likely given the sample data” can be made.

e Science is cumulative. No study is definitive. Effects should be replicated
by independent researchers.

e Always report your regression slope or intercept, with the standard error
and the sample size. Based on these, the T-statistics can be computed
with the degrees of freedom. Then if several other researchers have done
the same type of research, the results can be combined in a so-called meta-
analysis, so that a stronger statement about the population can be made,
based on a larger total sample size. The standard error and sample size
moreover allow for the construction of confidence intervals. But better is
to report confidence intervals yourself.

4.7.1 Exercise

Why is it that the type I error rate becomes 1 if you keep increasing your sample
size until the p-value is smaller than «?

4.8 Relationship between p-values and confidence
intervals

In previous sections we stated that if the value 0 lies within a confidence interval,
it is a reasonable value for the population slope. If 0 is not within the interval,
0 is not a reasonable value for the population slope, so we have to reject the
null-hypothesis. Here we will elaborate a little on this theme.

Both the confidence interval and the p-value are based on the same t-
distribution. Suppose we set our « to 0.05, and our sample size is 102. This
means that if we find a p-value p < 0.05 we reject the null-hypothesis that the
slope is 0. The p-value depends on how many standard deviations our sample
slope deviates from 0. We calculate this by computing a standardized slope. For
example, for a sample slope of 1 and a standard error of 0.5, our standardized
slope is T = (1—0)/0.5 = 2. In other words, our sample slope of 1 is 2 standard
errors away from 0. From t¢-tables, we know that with 100 degrees of freedom,
the 2.5th and 97.5th percentiles are -1.98 and 1.98, respectively (see Table .
Therefore, the p-value depends on the size of the T-statistic. If it is equal to
-1.98 or 1.98, the p-value is exactly 0.05. If the T-statistic is smaller than -1.98
or larger than 1.98, the p-value is smaller than 0.05.

The values -1.98 and 1.98 are also used for the construction of the 95%
confidence interval. The lower bound lies at 1.98 times the standard error below
the sample slope, and the upper bound lies at 1.98 times above the sample slope.
Therefore, if 0 lies more than 1.98 standard erros away from the mean, it lies
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00 25 5.0 75 10.0

Figure 4.13: Regression of y on x, with the population line in black and the
sample line in blue.

outside the confidence interval. But if 0 lies more than 1.98 standard erros
away from the mean, this implies that the sample slope lies more than -1.98
standard erros away from 0, which corresponds to a T-statistic of more than
+1.98. Thus, if 0 is not within the 95% confidence interval, we know that the
p-value is smaller than 0.05.

Using the same reasoning as above, we also know that if 0 is not within the
99% confidence interval, we know that the p-value is smaller than 0.01, and if 0
is not within the 99.9% confidence interval, we know that the p-value is smaller
than 0.001, etcetera.

A 95% confidence interval can therefore also be seen as the range of possible
values for the null-hypothesis that cannot be rejected with an « of 5%. By the
same token, a 99% confidence interval can be seen as the range of possible values
for the null-hypothesis that cannot be rejected with an « of 1%, etcetera.

4.9 Inference using SPSS

Figure |4.13| shows an example of a regression analysis on 102 datapoints. The
dependent variable is y and the independent variable is . The black line rep-
resents the linear equation in the population, whereas the blue line represents
the sample equation:

Population: y =0+02xz+e€ (4.7)
Sample: y =0.154+0.18 xx+e (4.8)
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The syntax that we can use for these sampe data is

UNIANOVA y WITH x
/DESIGN=x
/PRINT=PARAMETER
/CRITERIA=ALPHA(.01).

Note that we have set the significance level a to 0.01 with the statement
CRITERIA=ALPHA(0.01). Figure [£.14] shows the SPSS output. Look at the Pa-
rameter Estimates table. It shows the intercept, with a standard error of 0.111.
The t-value in the output is the T-statistic for the null-hypothesis, and is equal
to (B —0)/SE =0.15/0.111 = 1.355. We had 102 data points, so the degrees
of freedom is equal to 102 — 2 = 100. E| From online tables it is known that
with 100 degrees of freedom, 0.089 of ¢-values are larger than 1.355 and 0.089 of
t-values are smaller than -1.355. SPSS knows this and automatically calculates
the two-sided p-value. Therefore, the two-sided p-value for a T-statistic of 1.355
with 100 degrees of freedom is equal to 2 x 0.089 = 0.178. Since p > 0.01, we
cannot reject the null-hypothesis that the intercept in the population data is
equal to 0. SPSS also shows the 99% confidence interval that runs from -0.141 to
0.441. All these values in this interval are reasonable values for the population
intercept.

Let’s now turn to the output for the effect of x. The table shows a slope
of 0.18 with a standard error of 0.019. Therefore, the T-value for the null-
hypothesis equals (0.18 — 0)/0.02 = 9.515. With 100 degrees of freedom, a
proportion of 0 of the ¢-values is larger than 9.515 and 0 of the t-values is
smaller than -9.515. Therefore, the associated p-value is 0. Since p < 0.01, we
reject the null-hypothesis that the population slope is 0. The 99% confidence
interval for the population slope is from 0.13 to 0.23.

4.9.1 Exercises

1. Suppose you want to predict the personality trait aggressiveness on the
basis of yearly income in Euros. The variable that measures aggressiveness
is aggr and the variable that measures income is yearincome. Give the
linear equation for the relationship between these two variables in the
population.

2. You want to know whether there is a relationship between income and
aggressiveness. State the null-hypothesis in terms of the linear equation
you gave.

3. Suppose you want to test this null-hypothesis using a type I error rate of
0.05. Provide the SPSS syntax that is needed to perform this test.

4Note that this is not shown in the Parameter Estimates table, but in the Tests of Between-
Subjects Effects table in the row for Error (error is another word for residual). In that row
we see the error degrees of freedom (df) of 100.
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Tests of Between-Subjects Effects

Dependent Variable: 'y

Type Ill Sum of
Source Squares df Mean Square F Sig.
Corrected Model 23.8772 1 23.877 90.526 .000
Intercept .485 1 .485 1.837 .178
X 23.877 1 23.877 90.526 .000
Error 26.376 100 .264
Total 170.479 102
Corrected Total 50.252 101

a. R Squared = .475 (Adjusted R Squared = .470)

Parameter Estimates

Dependent Variable: 'y

99% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept .150 111 1.355 .178 -.141 441
X .180 .019 9.515 .000 .130 .230

Figure 4.14: Output for a simple regression analysis.

4. Suppose someone else has done the analysis for you using a different soft-
ware package and gives you the output in Figure|4.14] See if you can find
the 95% confidence interval for the effect of yearly income on aggressive-

ness.

##
##
##t
#Hit
##
##
##
##t
#it
##
##
##
## ———
#i#t
#Hit
##

Call:

Min

(Intercept)
yearincome

Signif. codes: O

lm(formula = aggr ~

Residuals:

1Q Median

Coefficients:

yearincome)

3Q

Max

-3.847 -1.215 -0.142 0.898 4.050

Estimate Std. Error t value Pr(>|t])

-0.1382
-0.1557

! %

0.3224
0.0653

*x !
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0.001

Uk !

-0.43
-2.38

0.01

0.669
0.019

l*l

0.05

*

1 1

0.1

Residual standard error: 1.69 on 100 degrees of freedom
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## Multiple R-squared: 0.0537,Adjusted R-squared: 0.0443
## F-statistic: 5.68 on 1 and 100 DF, p-value: 0.019

## 2.5 % 97.5 %
## (Intercept) -0.778 0.501
##t 2.5 % 97.5 %

## yearincome -0.285 -0.026

5. On the basis of this confidence interval, is there a significant effect of
income on aggressiveness? Explain your answer.

6. See if you can find the T-statistic and its p-value for the effect of yearly
income on aggressiveness.

7. What does this p-value represent?

8. On the basis of the T-statistic and its p-value, is there a significant effect
of income on aggressiveness? Explain your answer.

Answers:
1.
aggr = Bo + B1 X yearincome + € (4.9)
2.
HO : 51 =0 (410)

3. UNIANOVA aggr WITH yearincome
/DESIGN=yearincome
/PRINT=PARAMETER
/CRITERIA=ALPHA(.05).

4. -0.285, -0.026

5. The 95% confidence interval for the slope does not contain 0, so we can
reject the null-hypothesis. We therefore call the effect of income on ag-
gressiveness significant.

6. The T-statistic equals -2.383, and its associated p-value equals -2.383.

7. This p-value represents the probability to find a slope of -0.156 or smaller,
or a slope of 0.156 or larger, if in reality there is no effect relationship
between aggressiveness and yearly income.

8. The p-value associated with the ¢-value for the slope is smaller than 0.05.
Therefore, we can reject the null-hypothesis. We call the effect of income
on aggressiveness significant.
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Chapter 5

Multiple regression

5.1 Explained and unexplained variance

In the previous chapter we have seen relationships between two variables: one
dependent variable and one independent variable. The dependent variable we
usually denote as y, and the indepedent variable we denote by x. The relation-
ship was modelled by a linear equation: an equation with an intercept by and a
slope parameter by:

y=bo+biz (5.1)

Further, we argued that in most cases, the relationship between = and y
cannot be completely described by a straight line. Not all of the variation in
y can be explained by the variation in x. Therefore, we have residuals e: the
difference between the y-values that are predicted by the straight line, (denoted
by ), and the observed y-value:

Therefore, the relationship between x and y is denoted by a regression equa-
tion, where the relationship is approached by a linear equation, plus a residual
part e:

y=by+biz+e (5.3)

The linear equation only gives us only the expected y-value, §:

y=bo+biz (5.4)

We’ve also seen that the residual e is assumed to have a normal distribution,
with mean 0 and variance o2:

e ~ N(0,0?) (5.5)
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Remember that linear models are used to explain (or predict) the variation
in y: why are there both high values of y and some low values? Where does the
variance in y come from? Well, the linear model tells us that the variation is
in part explained by the variation in z. If b; is positive, we predict a relatively
high value for y for a high value of z, and we predict a relatively low value for
y if we have a low value for z. If by is negative, it is of course in the opposite
direction. Thus, the variance in y is in part explained by the variance in z, and
the rest of the variance can only be explained by the residuals e.

Var(y) = Var(g) + Var(e) = Var(by + bix) + o> (5.6)

Because the residuals do not explain anything (we don’t know where these
residuals come from), we say that the ezplained variance of y is only that part
of the variance that is explained by independent variable z:: Var(by+bix). The
unezxplained variance of y is the variance of the residuals, 02. The explained
variance is often denoted by a ratio: the explained variance divided by the total
variance of y:

Var(bg + b1x) Var(by + b1x)
VCLT'ea:plained - Var(y) = V(M’(bo T blx) T o2 (57)

From this equation we see that if the variance of the residuals is large, then
the explained variance is small. If the variance of the residuals is small, the
variance explained is large.

5.2 More than one predictor

In regression analysis, and in linear models in general, we try to make the
explained variance as large as possible. In other words, we try to minimize the
residual variance, o2.

One way to do that is to use a second independent variable. If not all of the
variance in y is explained by x, then why not try an extra independent variable?

Let’s use an example with data on the weight of books, the size of books
(area), and the volume of books. Let’s try first to predict the weight of a book,
weight, on the basis of the volume of the book, volume. Suppose we find the
following regression equation and a value for o2:

weight = 107.7 4+ 0.71 x volume + ¢ (5.8)
e ~ N(0,15362) (5.9)

In the data set, we see that the variance of the weight, Var(weight) is equal
to 0. Since we also know the variance of the residuals, we can solve for the
variance explained by volume:

Var(weight) =0 = Var(107.7 4+ 0.7 x volume) + 15362
Var(107.7 + 0.7 X volume) = 0 — 15362 = —15362
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So the proportion of explained variance is equal to % = —oo. This is

quite a high proportion: nearly all of the variation in the number of houses per
city is explained by how many inhabitants a city has.

But let’s see if we can explain even more variance if we add an extra inde-
pendent variable. Suppose we know the area of each book. We expect that
books with a large area weigh more. Our linear equation might look like this:

weight = 22.4 4+ 0.71 x volume + 0.5 X area + ¢ (5.10)
e~ N(0,6031) (5.11)

How much of the variance in weight does this equation explain? The pro-
portion of explained variance is equal to % = —o0. So the proportion of
explained variance has increased!

Note that the variance of the residuals has decreased; this is the main reason
why the proportion of explained variance has increased. By adding the extra
independent variable, we can explain some of the variance that without this
variable could not be explained! In summary, by adding independent variables
to a regression equation, we can explain more of the variance of the dependent
variable. A regression analysis with more than one independent variable we call
multiple regression. Regression with only one indendent variable is often called
stmple regression.

5.3 R-squared

With regression analysis, we try to explain variance of the dependent variable.
With multiple regression, we use more than one independent variable to try
to explain this variance. In regression analysis, we use the term R-squared to
refer to the proportion of explained variance, usually with the symbol R?. The
unexplained variance is of course the variance of the residuals, Var(e), usually
denoted as o2. So suppose the variance of dependent variable y equals 100,
and the residual variance in a regression equation equals say 80, then R? or the
proportion of explained variance is (100 — 80)/100 = 0.20.

R2 = agwplained/o'j = (1 - ainezplained)/o'; = (1 - 0'3)/0'12/ (512)

This is the defintion of R-squared at the population level, where we know the
exact values of the variances. However, regression analysis is most often based
on a random sample of the population, and we don’t know the values exactly,
we can only try to estimate them.

For 05 we take as an adjusted estimate the variance of y in our sample data,
Var(y), which is calculated by

- _ Sy -9)°
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where n is sample size. We divide by n — 1 and not by n, because we want
to estimate the variance of y in the population data.

For 02 we take as an adjusted estimate the variance of the residuals e in our
sample data, Var(e), which is calculated by

- Ye?
02 =

" (5.14)

Here we do not have to subtract the mean of the residuals, because this is 0
by definition.
So our estimate for R? in the population is then

S(y—-5)° _ ne?

2 _ n—1 n—1
R = S(y—9)?
n—1
Sy —§)? — Ze? E
_ Zy-gt-xe | SSE (5.15)
Sy —g)? SST

where SST refers to the total sum of squares.

As we saw previously, in a regression analysis, the intercept and slope param-
eters are found by minimizing the sum of squares of the residuals, SSE. Since
the variance of the residuals is based on this sum of squares, in any regression
analysis, the variance of the residuals is always as small as possible. The val-
ues of the parameters for which the SSE (and by consequence the variance) is
smallest, are the least squares regression parameters. And if the variance of the
residuals is always minimized in a regression analysis, the explained variance is
always maximized!

Because in any least squares regression analysis based on a sample of data,
the explained variance is always maximized, we may overestimate the variance
explained in the population data. Therefore very often in regression analysis
we use an adjusted R-squared that takes this possible overestimation (inflation)
into account. The adjustment is based on the number of independent variables
and sample size.

The formula is

2 9y n—1
Riyy=1-(1-R )n—p—l

where n is sample size and p is the number of independent variables. For
example, if R? equals 0.10 and we have a sample size of 100 and 2 independent
variables, the adjusted R? is equal to 1 — (1 — 0.10)1&897§i1 =1- (0.90)% =
0.08. Thus the estimated proportion of variance explained at population level
equals 0.08. Remember that the adjusted R-squared is never larger than the

unadjusted R-squared.
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5.4 Multicollinearity

In general, if you add independent variables to a regression equation, the pro-
portion explained variance, R2, increases. Suppose you have the following three
regression equations:

weight = by + by X volume + e (5.16)
weight = by + by X area+ e (5.17)
weight = by + by X volume + by X area + e (5.18)

If we carry out these three analyses, we obtain an R? of 0.803 if we only
use volume as predictor, and an R? of 0.127 if we only use area as predictor.
So perhaps you’d think that if we take both volume and area as predictors in
the model, we would get an R? of 0.803 + 0.127 = 0.929. However, if we carry
out the multiple regression with volume and area, we obtain an R? of 0.928,
which is slightly less! This is not a rounding error, but the result of the fact
that there is a correlation between the volume of a book and the area of a book.
Here it is a tiny correlation of round(cor(allbacksarea, allbacksvolume), 3), but
nevertheless it affects the proportion of variance explained when you use both
these variables.

Let’s look at what happens when indendent variables are strongly correlated.
Table shows measurements on a breed of seals (only measurements on the
first 6 seals are shown). Often, the age of an animal is gaged from its weight: we
assume that heavier seals are older than lighter seals. If we carry out a simple
regression analysis, we get the following equation:

Table 5.1: Part of Cape Fur Seal Data.

age weight  heart
33.00 2750 127.70
10.00  24.30  93.20
10.00  22.00 84.50
10.00 1850  85.40
12.00  28.00 182.00
18.00  23.80 130.00

Table 5.2: Regression table for predicting age from height.
Estimate Std. Error t value Pr(>t|)

(Intercept) 11.4419 4.6974 2.44 0.0215
weight 0.8169 0.0716 11.41 0.0000
age = 11.4 4 0.82 x weight + e (5.19)
e ~ N(0,200) (5.20)
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USE regression table instead of formula

From the data we calculate the variance of age, and we find that it is
1090.855. The variance of the residuals is 200, so that the proportion of ex-
plained variance is (1090.855 — 200),/1090.855 = 0.817.

Since we also have data on the weight of the heart alone, we could try to
predict the age from the weight of the heart. Then we get:

Table 5.3: Regression table for predicting age from heart
Estimate Std. Error t value Pr(>t|)

(Intercept) 11.4419 4.6974 2.44 0.0215
weight 0.8169 0.0716 11.41 0.0000
age = 20.6 + 0.11 X heart +e (5.21)
e ~ N(0,307) (5.22)

USE regression table instead of formula

Here the variance of the residuals is 307, so the proportion of explained
variance is (1090.855 — 370)/1090.855 = 0.661.

Now let’s see what happens if we include both total weight and weight of
the heart into the linear model. This results in the following model equation:

age = 10.3 4+ 0.99 x weight — 0.03 x heart + e (5.23)
e ~ N(0,204) (5.24)

Table 5.4: Regression table for predicting age from heart and weight
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.4419 4.6974 2.44 0.0215
weight 0.8169 0.0716 11.41 0.0000

USE regression table instead of formula

Here we see that the regression parameter for total weight has increased from
0.82 to 0.99. At the same time, the regression parameter for the weight of the
heart has decreased, has even become negative, from 0.11 to -0.03. From this
equation we see that there is a strong relationship between the total weight and
the age of a seal, but on top of that, for every unit increase in the weight of the
heart, there is a very small decrease in the expected age. In fact, we find that
the effect of heart is no longer significant, so we could say that on top of the
effect of total weight, there is no remaining relationship between the weight of
the heart and age. In other words, once we can use the total weight of a seal,
there is no more information coming from the weight of the heart.
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This is because the total weight of a seal and the weight of its heart are
strongly correlated: heavy seals have generally heavy hearts. Here the corre-
lation turns out to be 0.959, almost perfect! If you know the weight of seal,
you practically know the weight of the heart. This is logical of course, since the
total weight is a composite of all the weights of all the parts of the animal: the
total weight variable includes the weight of the heart.

Here we have seen, that if we use multiple regression, we should be aware
of how strongly the independent variables are correlated. Heavily correlated
predictor variables do not add extra predictive power. Worse: they can cause
problems in estimating regression parameters because it becomes hard to tell
which variable is more important: if they are strongly correlated (positive or
negative), than they measure almost the same thing!

When two predictor variabels are perfectly correlated, either 1 or -1, esti-
mation is no longer possible, the software stops and you get a warning. We call
such a situation multiple collinearity. But also if the correlation is close to 1 or
-1, you should be very careful interpeting the regression parameters. You will
then see there are very wide confidence intervals (very large standard errors).
If this happens, try to find out what variables are highly correlated, and select
the variable that makes most sense.

In our seal data, there is a very high correlation between the variables heart
and weight that results in estimation problems and very large standard errors
(wide confidence intervals), so a lot of uncertaintly. The standard errors were
about 3 times as large with the multiple regression than with simple regressions.
It makes therefore more sense to use only the total weight variable, since when
seals get older, all their organs and limbs get larger, not just their heart.

5.5 Multiple regression and inference

In an earlier chapter on inference, we saw that if we want to say something about
the population slope on the basis of the sample slope, we can use t-distribtutions.
The sahpe of the t-distribtution depends on the degrees freedom and we saw
that these depend on sample size. For simple regression (one intercept and one
slope), we saw that the number of degrees of freedom, the residual degrees of
freedom, was equal to sample size minus 2 (n — 2).

In the more general case of multiple regression, with the number of indepen-
dent variables equal to K and including an intercept, the degrees of freedom for
the t-distribution of sample slopes is equal to n — K — 1. One could also say,
the degrees of freedom is equal to sample size minus the number of parameters
(coefficients) in your model.

For example, suppose you have 200 data points and 4 independent variables.
Then you have 4 slope parameters and 1 intercept parameter in your model,

so 5 parameters in total. The (residual) degrees of freedom is in that case
n—>5=195.
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5.6 Multiple regression in SPSS

Let’s use the book data and run the multiple regression in SPSS. The syntax
looks very similar to simple regression, except that we now specify two indepen-
dent variables, volume and area, instead of one.

UNIANOVA weight WITH volume area
/DESIGN = volume area
/PRINT = PARAMETER R-Squared.

Tests of Between-Subjects Effects

Dependent Variable: weight

Type Il Sum of
Source Squares df Mean Square F Sig.
Corrected Model 939460.712 2 | 469730.354 77.885 .000
Intercept 888.274 1 888.274 147 .708
volume 811143.719 1 811143.719 134.495 .000
area 127328.290 1 | 127328.290 21.112 .001
Error 72372.626 12 6031.052
Total 8502500.00 15
Corrected Total 1011833.33 14

a. R Squared = .928 (Adjusted R Squared =.917)

Parameter Estimates

Dependent Variable: weight

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 22.413 58.402 .384 .708 -104.835 149.661
volume .708 .061 11.597 .000 .575 .841
area .468 .102 4.595 .001 .246 .691

Figure 5.1: SPSS output of a linear model (multiple regression) for predicting
the weight of books.

Figure shows the output. There we see an intercept, a slope parameter
for volume and a slope parameter for area. These numbers tell us that the
expected or predicted weight of a book that has a volume of 0 and an area of
0 is 22.413. For every unit increase in volume, the predicted weight increases
by 0.708, and for every unit increase in area, the predicted weight increases by
0.468.

So the linear model looks like:

wetght = 22.413 4 0.708 x volume + 0.468 X area + e (5.25)

Thus, the predicted weight of a book that has a volume of 10 and an area
of 5, the expected weight is equal to 22.413 + 0.708 x 10 + 0.468 x 5 = 31.833.
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In the output, there is also another table, and there we see the R-squared
and the Adjusted R-squared. In Figure [5.1| we see that the R squared is equal
to 0.928. As seen earlier, this value can be computed from the sums of squares:
(SST — SSE)/SST. From the table we see that the SST is 8502500 (corrected
total sum of squares)ﬂ and the SSE is 72372.626. If we do the math, we see
that we get (1011833 — 72372.626)/1011833 = 0.928.

5.7 Simpson’s paradox

With muliple regression, you may uncover very surprising relationships between
two variables, that can never be found using simple regression. Here’s an exam-
ple from Paul van der Lakerﬂ who simulated a data set on the topic of Human
Resources (HR).

Assume you run a company of 1000 employees and you have asked all of
them to fill out a Big Five personality survey. Per individual, you therefore
have a score depicting his/her personality characteristic Neuroticism, which can
run from 0 (not at all neurotic) to 7 (very neurotic). Now you are interested
in the extent to which this Neuroticism of employees relates to their salary
(measured in Euros per year).

We carry out a simple regression, with salary as our dependent variable and
Neuroticism as our independent variable. We then find the following regression
equation:

salary = 44857 4+ 4912 x Neuroticism + e (5.26)

Figure [5.2) shows the data and the regression line. From this visualizations
it would look like Neuroticism relates significantly and positively to their yearly
salary: the more neurotic people earn more salary than less neurotic people.

Now we run a multiple regression analysis. We assume that one very im-
portant cause of how much people earn is their educational background. If we
include both Education and Neuroticism as independent variables and run the
analysis, we obtain the following regression equation:

salary = 50249 — 3176 x Neuroticism + 20979 x Education + e (5.27)

Note that we now find a negative slope parameter for the effect of Neuroti-
cism! This implies there is a relationship in the data where neurotic employees
earn less than their less neurotic colleagues! How can we reconcile this seeming
paradox: which result should we trust: the one from the simple regression, or
the one from the multiple regression?

In SPSS, the total sum of squares reports the sum of the squared deviations from 0,
whereas the corrected total sum of squares reports the squared deviations from the mean of
the dependent variable, g

2https://paulvanderlaken.com/2017/09/27 /simpsons-paradox-two-hr-examples-with-r-
code/
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Figure 5.2: Simulated HR data set.

The answer is: neither. Or perhaps: both! Both analyses give us different
information.

Let’s look at the last equation more closely. Suppose we make a prediction for
a person with a low educational background (Education=0). Then the equation
tells us that the expected salary of a person with neuroticism score of 0 is around
50249, and of a person with a neuroticism score of 7 is around 28019. So for
employees with low education, the more neurotic employees earn less! If we
do the same exercise for average ecudation and high education employees, we
find exactly the same pattern: for each unit increase in neuroticism, the yearly
salary drops by 3176 Euros.

It is true that in this company, the more neurotic persons generally earn a
higher salary. But if we take into account educational background, the relation-
ship flips around. This can be seen from Figure looking only at the peo-
ple with a low educational background (Education=0), then the more neurotic
people earn less than they less neurotic colleagues with a similar educational
background. And the same is true for people with an average education (Educa-
tion=1) and a high education (Education=3). Only when you put all employees
together in one group, you see a positive relationship between Neuroticism and
salary.

Simpson’s paradox tells us that we should always be careful when interpret-
ing positive and negative correlations between two variables: what might be
true at the total group level, might not be true at the level of smaller sub-
groups. Multiple linear regression helps us investigate correlations more deeply
and uncover exciting relationships between multiple variables.
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Figure 5.3: Same HR data, now with markers for different education levels.

5.8 Exercises

Two neighbours, Elsa and John, are chopping trees in the forest for their re-
spective fireplaces. They pick their trees to chop down, based on the expected
volume of wood they can get from that tree. However, Elsa and John disagree
on what is the most important aspect of trees for selection. Elsa believes that
the tallest tree will give the biggest volume of wood for the fireplace, but John
believes that the tree with the largest girth gives the most volume of wood.
Luckily there is a data set with three variables: Volume, Girth and Height.

1. What would the SPSS syntax look like to run a multiple regression, if you

want to find out which predictor is most important for the volume of wood
that comes from a tree?

UNIANOVA ....... WITH ........
/DESIGN = ........
/PRINT = PARAMETER R-Squared.

2. Suppose you find the output in Table[5.5} what would your linear equation
look like?

...... =it (5.28)

3. On the basis of the output, what would be the predicted volume for a tree
with a height of 10 and a girth of 57
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Table 5.5: Regression table for predicting volume from height and girth.

10.

11.

Estimate Std. Error t value Pr(>t|)

(Intercept)  -57.9877 8.6382 -6.71 0.0000
Girth 4.7082 0.2643 17.82 0.0000
Height 0.3393 0.1302 2.61 0.0145

On the basis of the output, what would be the predicted volume for a tree
with a height of 5 and a girth of 107

For each unit increase of height, how much does the volume increase? Give
the approximate 95% confidence interval for this increase.

For each unit increase of girth, how much does the volume increase? Give
the approximate 95% confidence interval for this increase.

On the basis of the SPSS output, do you think Lisa is right in saying that
height is an important predictor of volume? Explain your answer.

On the basis of the SPSS output, do you think John is right in saying that
girth is an important predictor of volume? Explain your answer.

On the basis of the plots in Figures [5.4] and which do you think is
the most reliable predictor for Volume: Height or Girth? Explain your
answer.

How large is the proportion of variance explained in volume, by girth and
height?

How would you summarize this multiple regression analysis in a research
report?
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Figure 5.4: A scatterplot for the relationship between height and volume of a
tree.
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Figure 5.5: A scatterplot for the relationship between girth and volume of a
tree.
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Chapter 6

Categorical predictor
variables

6.1 Dummy coding

As we have seen in Chapter 1, there are largely two different types of variables:
numeric variables and categorical variables. Numeric variables say something
about how much of an attribute is in an object: for instance height (measured
by inches) or heat (measured in degrees Kelvin). Categorical variables say some-
thing about the quality of an attribute: for instance colour (red, green, yellow)
or seating (aisle seat, window seat). We have also seen a third type of variable:
ordinal variables. They are somewhat in the middle between numeric variables
and categorical variables: they are about quantitative differences between ob-
jects (e.g., size) but the values are sharp disjoint categories (small, medium,
large).

In the chapters on simple and multiple regression we have seen that both the
dependent and the independent variables were all numeric. The linear model
used in regression analysis always involves a numeric dependent variable. How-
ever, in such analyses it is possible to use categorical independent variables. In
this chapter we explain how to do that and how to interpret the results.

The basic trick that we need is dummy coding. Dummy coding involves
making one or more new variables, that reflect the different categories of a cate-
gorical variable. First we focus on categorical variables with only two categories
(dichotomous variables). Later in this chapter, we will explain what to do with
categorical variables with more than two categories (nominal variables).

Imagine we study bus companies and there are two different seatings in buses:
aisle seats and window seats. Suppose we ask 5 people who have travelled from
Amsterdam to Paris during the last 12 months, whether they had an aisle seat
or a window seat, and how much they payed for the trip. Suppose we have the
variables, person, seat and price. Table shows the anonymized data.

With dummy coding, we make a new variable that only has values 0 and
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Table 6.1: Bus trips to Paris.
person  seat price
001 aisle 57.00
002 aisle 59.00
003 window  68.00
004 window  60.00
005 aisle 61.00

1, and that conveys the same information as the seat variable. The resulting
variable is called a dummy variable. Let’s call this dummy variable window
and give it the value 1 for all persons that travelled in a window seat. We
give the value 0 for all persons that travelled in an aisle seat. We can also call
the new variable window a boolean variable with TRUE and FALSE, since in
computer science, TRUE is coded by a 1 and FALSE by a 0. Another name
that is sometimes used is an indicator variable. Whatever you want to call it,
the data matrix including the new variable is displayed in Table [6.2]

Table 6.2: Bus trips to Paris.

person seat window  price
001 aisle 0.00 57.00
002 aisle 0.00 59.00
003 window 1.00 68.00
004 window 1.00 60.00
005 aisle 0.00 61.00

What we have done now is coding the old categorical variable seat into
a variable window with values 0 and 1 that looks numeric. Let’s see what
happens if we use a linear model for the variables price (dependent variable)
and window (independent variable). The linear model is:

price = by + biwindow + e (6.1)
e ~ N(0,02) (6.2)

Let’s use the bus trip data and determine the least squares regression line.
We find the following linear equation:

price = 59 + 5 x window (6.3)

If the variable window has the value 1, then the expected or predicted price
of the bus ticket is, according to this equation, 59 +5 x 1 = 64. What does this
mean? Well, all prices paid by persons with a window seat were coded as a 1
on the window variable. Therefore the expected price of a window seat equals
64. By the same token, the expected price of an aisle seat (window = 0) is
59 45 x 0 = 59.
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Figure 6.1: Relation between dummy variable window and price.

You see that by coding a categorical variable into a numeric dummy variable,
we can describe the ’linear’ relationship between the type of seat and the price
of the ticket. Figure shows the relationship between the numeric variable
window and the numeric variable price.

Note that the blue regression line goes straight through the mean of the
prices for window seats (window=1) and the mean of the prices for aisle seats
(window=0). In other words, the dummy variable actually models the group
means of window and aisle seats.

Figure shows the same regression line but now for the original variable
seat. Although the analysis was based on the dummy variable window, it is
more readable for others to show the original categorical variable seat.

6.2 Using regression to describe group means

In the previous section we saw that if we replace a categorical variable with
a numeric dummy variable with values 0 and 1, we can use a linear model
to describe the relationship between a categorical independent variable and a
numeric dependent variable. We also saw that if we take the least squares
regression line, this line goes straight through the averages, the group means.
The line goes straight through the group means because then the sum of the
squared residuals is then at its smallest value (the least squares principle). Let’s
look at the bus trip data again and compute the residuals and the squared
residuals, see Table

If we take the sum of the squared residuals we obtain 40. Now if we use
a slightly different slope, so that we no longer go straight through the average
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Figure 6.2: Relation between type of seat and price.
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Figure 6.3: Relation between type of seat and price, with the regression line
being not quite the least squares .
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Table 6.3: Bus trips to Paris.

person  seat window  price e e_squared
001 aisle 0.00 57.00 -2.00 4.00
002 aisle 0.00 59.00 0.00 0.00
003 window 1.00 68.00 4.00 16.00
004 window 1.00 60.00 -4.00 16.00
005 aisle 0.00 61.00 2.00 4.00

Table 6.4: Bus trips to Paris.

person seat window  price wrongpredict e e_squared
001 aisle 0.00 57.00 59.10 -2.10 4.41
002 aisle 0.00 59.00 59.10 -0.10 0.01
003 window 1.00 68.00 63.90 4.10 16.81
004 window 1.00 60.00 63.90 -3.90 15.21
005 aisle 0.00 61.00 59.10 1.90 3.61

prices for aisle and window seats (see Figure and we compute the predicted
values, the residuals and the squared residuals (see Table , we obtain a
higher sum: 40.05.

Only the least squares regression line goes through the average seat prices of
aisle and window seats. Thus, we can use the least squares regression equation
to describe group means for categorical variables.

Conversely, when you know the group means, it is very easy to draw the
regression line: the intercept is then the mean for the category coded as 0, and
the slope is equal to the mean of the category coded as 1 minus the mean of the
category coded as 0 (i.e. the intercept). Check F igureto verify this yourself.
But we can also show this for a new data set.

We look at results from an experiment to compare yields (as measured by
dried weight of plants) obtained under a control and two different treatment con-
ditions. Let’s plot the data first, where we only compare the two experimental
conditions (see Figure [6.4).

With treatment 1, the average yield turns out to be 4.661, and with treat-
ment 2, the average yield is 5.526. Suppose we make a new dummy variable
treatment2 that is 0 for treatment 1, and 1 for treatment 2. Then we have
the linear equation:

we/i-;ht = by + b1 X treatment2 (6.4)

If we fill in the dummy variable and the expected weights (the means!), then
we have the linear equations:

4.661 = by+b x0=1bg (65)
5526 = by+by x1=by+b; (66)
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Figure 6.4: Data on yield under two experimental conditions: treatment 1 and
treatment 2.

So from this, we know that intercept by = 4.661, and if we fill that in for the
second equation above, we get the slope:

b1 = 5.526 — by = 5.526 — 4.661 = 0.865. (6.7)

Thus, we get the linear equation

weight = 4.661 + 0.865 x treatment (6.8)

Since this regression line goes straight through the average yield for each
treatment, we know that this is the least square regression equation. We could
have obtained the exact same result with a regression analysis using SPSS. But
this was not necessary: because we knew the group means, we could find the
intercept and the slope ourselves by doing the math.

The interesting thing about a dummy variable is that the slope of the re-
gression line is exactly equal to the differences between the two averages. If we
look at Equation[6.8] we see that the slope coefficient is 0.865 and this is exactly
equal to the difference in mean weight for treatment 1 and treatment 2. Thus,
the slope coefficient for a dummy variable indicates how much the average of
the treatment that is coded as 1 differs from the treatment that is coded as 0.
Here the slope is positive so that we know that the treatment coded as 1 (trt2),
leads to a higher average yield than the treatment coded as 0 (trt1). This makes
it possible to test null-hypotheses about differences in group means.
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6.3 Testing hypotheses about differences in group
means

In the previous section we saw that the slope in a dummy regression is equal to
the difference in group means. Suppose researchers are interested in the effects
of different treatments on yield. They’d like to know what the difference is in
yield between treatments 1 and 2, using a sample of 30 data points. Based on
this sample, they’d like to generalize to the population of all yields based on
treatments 1 and 2. They adopt a type I error rate of a = 0.05.

Table 6.5: Yield by treatment.
Estimate Std. Error t value Pr(>t|)
(Intercept) 4.6610 0.2032  22.94 0.0000
grouptrt2 0.8650 0.2874 3.01 0.0075

The researchers analyze the data and they find the results as displayed in
Table [6.5] The 95% confidence interval for the slope is from 0.26 to 1.47. This
means that reasonable values for the population difference between the two
treatments on yield lie within this interval. All these values are positive, so we
reasonably believe that treatment 2 leads to a higher yield. We know that it
is treatment 2 that leads to a higher yield, because the slope in the regression
equation has been coded as ’grouptr2’. Thus, a dummy variable has been com-
puted, grouptrt2, where trt2 has been coded as 1 (and trt1 consequently coded
as 0). In the next section, we will see how to do that in SPSS.

The 95% confidence interval for the slope does not contain 0, so we can
therefore reject the null-hypothesis that there is no difference in group means
at an « of 5%. The exact p-value can be read from Table [6.5 and is equal to
0.008.

Thus, based on this regression analysis the researchers can write in a report
that there is a significant difference between the yield after treatment 1 and the
yield after treatment 2, p = 0.01. Treatment 2 leads to a yield of about 0.87
(SE=0.29) more than treatment 1 (95% CI: 0.26, 1.47).

6.4 Regression analysis using a dummy variable
in SPSS

In SPSS there are two ways in which you can use a linear model with a cat-
egorical independent variable. The first and easiest way is to tell SPSS that
your variable, for example your variable group, is to be treated plainly as a
categorical variable, and you do that by the keyword BY. For instance, for the
data set on treatment 1 and 2 and yield, you get the following syntax:

UNIANOVA weight BY group
/DESIGN group
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/PRINT parameter.

All variables after the BY keyword are automatically turned into dummy
variables. Actually, SPSS creates two dummy variables, one that codes 1 for
all yields that come from treatment 1 and 0 from all other yields (dummy
variable [group=trtl]), and another dummy variable that codes 1 for all
yields that come from treatment 2 and 0 for all other yields (dummy variable
[group=trt2]). We see that in Figure Now, as we already saw from the
bus company example, in order to model two group means, one dummy variable
is already sufficient. We don’t need two dummy variables for that. Therefore,
one of the two is redundant and SPSS automatically chooses the second dummy
variable to be redundant. That leaves us with one dummy variable, the first
one called [group=trt1].

The output then looks like as displayed in Figure [6.5] Here, we see an
intercept of 5.526 , a slope of —0.865 for dummy variable [group=trtl] and a
slope of 0 for dummy variable [group=trt2]. We have to read the SPSS output
table like this: If group = trtl, then the expected weight equals the intercept
(5.526) + 1 times the slope for being in the first treatment group, plus 0 times
the slope for being in the second treatment group:

weight = 5.536 + 1 x —0.865 + 0 x 0 = 5.536 — 0.865 = 4.671 (6.9)

If group = trt2, then the expected weight equals the intercept (5.526) + 0
times the slope for being in the first treatment group, plus 1 times the slope for
being in the second treatment group:

weight = 5.536 + 0 x —0.865 + 1 x 0 = 5.536 (6.10)

Because the slope for the second dummy variable is automatically fixed to 0,
the trt2 group is automatically chosen as the reference category. The reference
category is the category that is used for comparison. In the linear model, the
intercept equals 5.536 and that is the expected yield for the reference category
(treatment group 2). The slope parameter for the [group=trt2] dummy vari-
able equals -0.865 and this is the difference in yield for the treatment 1 group
compared to the reference group. Therefore, the expected yield is the treatment
1 group is 0.865 less than in the treatment 2 group (the slope parameter is
negative).

Sometimes, the automatic choice of the reference category by software is
something you don’t want. Suppose that you’d like to compare two treatments:
the old treatment 1, and a new treatment 2 that avoids all the insectides that
are so bad for bees and bumblebees. Here, the most interesting question is
how the new treatment differs from the old one. So you’d like to use the old
treatment as the reference category (coded as 0) to which you want to compare
the yield of the new treatment.

In order to choose your own way of dummy coding, and thereby choosing
your own reference category, you can use the syntax below to create a new
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Parameter Estimates

Dependent Variable: weight

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 5.526 .203 27.195 .000 5.099 5.953
[group=trt1] -.865 .287 -3.010 .008 -1.469 -.261
[group=trt2] 02

a. This parameter is set to zero because it is redundant.
Figure 6.5: SPSS output of a regression analysis of weight on treatment.

variable, the dummy variable treatment2. All yields associated with trt2 are
coded as a 1, and all others are coded as a 0.

RECODE group ('trt2'=1) (ELSE=0) INTO treatment2.
EXECUTE.

Then you use a slightly altered syntax. First, you now use the new variable
treatment2. Second, you use the keyword WITH instead of BY, to indicate
that you want to treat the variable as any numeric variable.

UNIANOVA weight WITH treatment2
/DESIGN treatment2
/PRINT parameter.

With the keyword BY, SPSS treats the variable as a categorical variable and
subsequently chooses its own reference category. With the keyword WITH, you
treat the new variable treatment2 as a numerical variable and hence SPSS sees
no need to make dummy variables. The result is the output in Figure

Parameter Estimates

Dependent Variable: weight

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 4.661 .203 22.938 .000 4.234 5.088
treatment2 .865 .287 3.010 .008 .261 1.469

Figure 6.6: SPSS output of a regression analysis of weight on treatment.

Because you now use your own dummy variable and use it as any numerical
variable, the output looks a lot simpler (compare it with Figure . You see
an intercept of 4.661 and a slope of 0.865 for the treatment2 variable. Thus, if
this treatment2 variable has value 0, the expected weight equals the intercept
4.661, and if this treatment2 variable has value 1, the expected weight equals
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the sum of the intercept and the slope, 4.661 + 0.865 = 5.526. Notice that by
using a different reference category (now trtl), the sign of the slope has changed.
The intercept has also changed, as the intercept is now the expected weight for
the other treatment group.

In general, we advise to use the BY keyword to indicate you’d like to have
an automatically coded dummy variable. If however the output is very hard to
interpret, think of the best way to code your own dummy variable. For experi-
mental designs, it makes sense to code control conditions as 0, and experimental
conditions as 1. For surveys, if you want to compare how a social minority scores
relative to a social majority, it makes sense to code the minority group as 1 and
the social majority as 0. In eduational studies, it makes sense to code an old
teaching method as 0 and a new method as 1.

6.4.1 Exercise

1. Look at the output in Figure It describes the comparison between
average height in males and females. The variable sex was used. In the
syntax, the BY keyword was used. Based on this output: what is the
average height in females? And what is the average height in males?

Parameter Estimates

Dependent Variable: height

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 182.400 1.233 | 147.946 .000 179.910 184.890
[sex=female] | -12.067 1.906 -6.332 .000 -15.915 -8.218
[sex=male] 02

a. This parameter is set to zero because it is redundant.

Figure 6.7: SPSS output of a regression analysis of height on sex.

2. Look at the output in Figure [6.8] It describes the comparison between
average height in Ethiopeans and Japanese people. A variable ethnicity
was used that equals 1 for Ethiopeans and 0 for Japanese people. The
analysis was run using the BY keyword, treating the ethnicity variable
as a categorical variable. Based on this output: what is the average height
in the Japanese in this data set? And what is the average height in the
Ethiopeans?

3. A study looks into the effects of drinking milk during childhood on adult
height. A number of adults are categorized into those that that have been
drinking less than 1 liter of milk per month during childhood (coded as
milk=0) and into those that have been drinking at least 1 liter of milk per
month during childhood (coded as milk=1). A regression analysis treating
the milk variable as numeric (using the WITH keyword) yields the output

in Figure

144



Parameter Estimates

Dependent Variable: height

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 167.167 1.517 | 110.191 .000 164.103 170.230
[ethnicity=.00] 15.233 1.990 7.656 .000 11.215 19.251
[ethnicity=1.00] 02

a. This parameter is set to zero because it is redundant.

Figure 6.8: SPSS output of a regression analysis of height on ethnicity.

Parameter Estimates

Dependent Variable: height

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 169.278 1.806 93.710 .000 165.630 172.926
milk 10.482 2.369 4.425 .000 5.698 15.267

Figure 6.9: SPSS output of a regression analysis of height on milk.

What is the average height in adults who drank less than 1 liter of milk
per month during childhood? And what is the average height in people
who drank at 1 liter of milk or more per month?

. A study looks into the effect of vitamin B2 (riboflavin) on the frequency
of migraine attacks. It compares 100 patients who take a pill containing
50 mg of riboflavin per day for a month and 100 patients who take a pill
containing 0 mg of riboflavin per day for a month. Suppose you want to
code a dummy variable called riboflavin in order to perform a regression
analysis. Which patients would you code as 1, and which patients as 07
Motivate your answer.

Answers:

1. The intercept equals 182.4. For sex=female, there is an extra effect of -
12.067. For sex=male, the extra effect is fixed to 0. Therefore, the average
height in females in this data set is 182.4-12.067=170.333 and the average
height in males equals 182.4.

. The intercept is 167.167. If ethnicity=0, then there is an extra height
of 15.233. Since the Japanese are coded as 0, the average height in the
Japanese people in the data set equals 167.167 + 15.233 = 182.4. The
average height in the Ethiopeans in this data set equals 167.167.

. The intercept equals 169.278 and the slope of milk is 10.482. That means
that people who score 0 on milk, have an average height of 169.278 +
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Table 6.6: Height across three different countries.
ID  Country height

001 A 120
002 A 160
003 B 121
004 B 125
005 C 140

10.482 x 0 = 169.278. The ones that score 0 on the milk variable drank
less than 1 liter of milk per month. The ones that score 1 on the milk
variable drank at least 1 liter of milk per month, and their average is
169.278 + 10.482 x 1 = 179.76.

4. If you're interested in the effect of riboflavin, you'd like to compare the
people who took 50 mg to those who took 0 mg. How much more or less
frequent are the migraine attacks in people who took riboflavin relative
to those that did not take extra riboflavin? Then the natural reference
cateogory is the group with 0 mg riboflavin. If you then analyze the
output, the effect of riboflavin is then the increase or decrease in migraine
frequency in people who took riboflavin. Thus, you code the people with
0 mg as 0 and those with 50 mg as 1.

6.5 Dummy coding for more than two groups

In the previous sections we saw how to code a categorical variable with 2 cate-
gories (a dichotomous variable) into 1 dummy variable. In this section, we see
how to code a categorical variable with 3 categories into 2 dummy variables,
and to code a categorical variable with 4 categories into 3 dummy variables,
etcetera. That is, how to code nominal variables into sets of dummy variables.

Take for instance the variable Country, where in your data set, there are
three different values for this variable, for instance, Norway, Sweden and Fin-
land, or Zimbabwe, Congo and South-Africa. Let’s call these countries A, B
and C. Table shows a data example.

We can code this Country variable with three categories into two dummy
variables in the following way. First, we create a variable countryA. This is a
dummy variable, or indicator variable, that indicates whether a person comes
from country A or not. Those that do are coded 1, and those that do not are
coded 0. Next, we create a dummy variable countryB that indicates whether
or not people come from country B. Again, those that do are coded 1 and those
that do not are coded 0. The resulting variables are displayed in Table 6.7

Note that we have now for every value of Country (A, B, or C) a unique
combination of the variables country A and countryB. All those from country
A have a 1 for countryA and a 0 for countryB; all those from country B have
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Table 6.7: Height across three different countries with dummy variables.
ID  Country height countryA countryB

001 A 120 1 0
002 A 160 1 0
003 B 121 0 1
004 B 125 0 1
005 C 140 0 0

Table 6.8: Favourite colours named by ten children.
ID  Colour

001 purple
002 green
003 red
004 blue
005 red
006 pink
007 pink
008 green
009 blue
010 red

a 0 for countryA and a 1 for countryB, and all those from country C have
a 0 for countryA and a 0 for countryB. Therefore a third dummy variable
countryC is not necessary (i.e., is redundant).

Remember that with two categories, you only need one dummy variable,
where one category gets 1s and another category gets Os. In this way both
categories are uniquely identified. Here with three categories we also have unique
codes for every category. Similarly, if you have 4 categories, you can code this
with 3 dummy variables. In general, when you have a variable with K categories,
you can code them with K — 1 dummy variables.

6.5.1 Exercise

Table shows data on the favourite colours named by 10 children. The only
colours mentioned are blue, pink, purple, red and green.

How many dummy variables do you need in order to uniquely identify each
colour? Construct the dummy variables by hand and add them to the table.
Don’t forget the variable names. You can start with any colour you’d like.
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Table 6.9: Favourite colours named by ten children, with dummy variable cod-

ing.
ID  Colour purple green red blue
001 purple 1 0 0 0
002 green 0 1 0 0
003 red 0 0 1 0
004 blue 0 0 0 1
005 red 0 0 1 0
006 pink 0 0 0 0
007 pink 0 0 0 0
008 green 0 1 0 0
009 blue 0 0 0 1
010 red 0 0 1 0

6.5.2 Answer

You have 5 different colours, so you need 5 — 1 = 4 dummy variables. Table
shows one possible solution.

6.6 Analyzing categorical predictor variables in
SPSS

Suppose we have data on height based on a sample of thirty people (N =
30) that come from three different countries. We want to know whether the
average height is different for each country, or whether the average height is the
same across countries (null-hypothesis). Since we know that applying a linear
model to a categorical independent variable is the same as modelling group
means, we can test the null-hypothesis that all group means are equal in the
population. Let p14 be the mean height in the population of country A, up be
the mean height in the population of country B, and pc be the mean height
in the population of country C. Then we can specify the null-hypothsis using
symbols in the following way:

Hy:pa=pp=puc (6.11)

If all group means are equal in the population, then all population slopes
would be 0. We want to test this null-hypothesis with a linear model in SPSS.
Now there are two ways of doing this. The first option is that you can use
dummy coding first, and then treat these dummy variables just as any numeric
variables. The second option is that you let SPSS do the dummy coding for
you, by indicating that you want to treat the original variable as a categorical
variable. Let’s start with the first option and then discuss the second option.
Afterwards we will compare these two options.
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6.6.1 Treating dummy variables as numeric

First we create two new dummy variables, and then perform a linear model
analysis using these. Note that we actually perform a multiple regression with
two dummy variables. We use the keyword WITH to indicate that we want to
treat the dummy variables as numeric variables.

RECODE Country ('A'=1) ('B'=0) ('C'=0) INTO CountryA.
RECODE Country ('A'=0) ('B'=1) ('C'=0) INTO CountryB.
EXECUTE.

UNIANOVA height WITH CountryA CountryB

/ design = CountryA CountryB

/ print = parameter.

= Univariate Analysis of Variance

Tests of Between-Subjects Effects
Dependent Variable: height

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 8RB0.067* 2 440.033 9.763 001
Intercept 297217.600 1 297217.600 | 6594.523 000
CountryA 2B.800 1 28.B00 639 431
CountryB 510.050 1 510.050 11.317 002
Error 1216.900 27 45.070
Total 920497.000 30
Corrected Total 2096.967 29

a. R squared = .420 (Adjusted R 5quared = .377)

Parameter Estimates

Dependent Variable: height

95% Confidence Interval
Parameter B std. Error T Sig. Lower Bound | Upper Bound
Intercept 172.400 2.123 81.207 .000 168.044 176.756
CountryA -2.400 3.002 -.799 431 -8.560 3.760
CountryB 10.100 3.002 3.364 002 3.940 16.260

Figure 6.10: Output of a multiple regression analysis on two dummy variables,
using the keyword WITH.

In the Parameter Estimates table in Figure we see the effects (the
'slopes’) of the two dummy variables. All observations with a 1 for variable
CountryA get an extra predicted height of -2.4, and all observations with a 1
for variable CountryB get an extra predicted height of 10.1. So the expected
height in country A equals 172.4 — 2.4 = 174.8, and the expected height in
country B equals 172.4 + 10.1 = 182.5. Observations in country C have a 0 for
both variables CountryA and CountryB, so the expected height in country
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C equals the intercept 172.4.

In the Tests of Between-Subjects Effects table, we see other stuff going on.
This is not regression output, but output based on a so-called Analysis Of VAri-
ance, or ANOVA for short. This table is usually called an ANOVA table. First
note that the significance levels (the p-values) for the two effects are exactly the
same as those from the regression table. Second, note that the reported values
of F are the square of the ¢ values in the regression table: —.7992 = .619 and
3.364% = 11.317.

ANOVA is a particular way of presenting a linear model. The F-statistic is
constructed on the basis of Sums of Squares (SS, see Chapter . For instance,
take a look at the row for the effect of CountryA. The sum of squares is equal
to 28.80. This sum of squares is equal to the squared difference in average height
in country A from the total average height, times the number of observations in
country A E If you divide this sum by the degrees of freedom for this dummy
effect (which is 1), your get the Mean Square (MS): 28.8/1 = 28.80.

SSCountryA _ 28.80
dfCountryA 1

MSCountryA = = 28.80 (612)

Now look at the row for Error. The sum of squares equals 1216.90. This is ex-
actly the sum of the squared residuals that is minimized using the Least Squares
principle (see Chapter [2)). Dividing this sum by the corresponding residual de-
grees of freedom you get the Mean Squared Error (MSE): 1216.90/27 = 45.07.

SSerror 121690

de’I”T‘O’I” 27

You obtain the F-statistic by dividing the CountryA Mean Square by the
Mean Squared Error:

MSCT‘T'OT‘ =

= 45.07 (6.13)

MSCountryA - 28.80
MSerror  45.07

It is not a coincidence that this F-value is exactly equal to the square of
the corresponding t-value (save some rounding errors): F = t?. Remember
that the t-value is equal to the B parameter divided by the standard error:
t = —2.40/3.00 = —.80 = +/0.64. To obtain the regression coefficient we min-
imize the sum of squared residuals. So both the F-statistic and the t-statistic
come from computing sums of squares and are thus based on the same general
logic of the linear model.

F=

= 0.64 (6.14)

Since ANOVA is a special way of presenting the linear model, we believe that
it is not necessary to understand ANOVA fully: if you understand the linear

ISuppose the average height across the three different countries equals 170 cms, and the
average height in country A equals 171.7, then the squared difference in mean height equals
(171.1 — 170)2 = 1.72 = 2.88. If there are 10 people in the group from country A, then the
Sum of Squares equals 2.88 x 10 = 28.80
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model, that is good enough. Just remember that sometimes you see ANOVAs
reported in the literature. Be aware that what the researchers are actually doing
is running a linear model, or more specifically, their software runs a linear model
and then presents the results as an analysis of variance table, similar to what
SPSS is doing.

Returning back to our null-hypothesis that all group means are equal in
the population: if the group means are equal in the population, then the slope
parameters for countryA and countryB should consequently be 0 in the pop-
ulation. Looking at the 95% confidence intervals, we see that 0 is a reasonable
value for the difference between country C (the reference category) and country
A, but 0 is not a reasonable value for the difference between country C and
country B. But how can we rigourously test the null-hypothesis that all three
group means are the same? Now we have two p-values, one for the difference
between country A and country C (p = 0.431) and one of the difference between
country B and country C (p = 0.002), but we actually need one p-value for the
null-hypothesis of three equal means. Let’s see if we can get one p-value if we
try the second way to perform this analysis.

6.6.2 Treating the original variable as a categorical vari-
able

In the second approach, we let SPSS do the dummy variable coding automati-
cally. In that case we use the original variable Country with its three categories
directly, and change the WITH keyword into BY in the following way:

UNIANOVA height BY Country
/ design = Country
/ print = parameter.

All variables named after BY are treated as categorical variables and au-
tomatically coded into dummy variables. The output is given in Figure [6.11
The Parameter Estimates table now looks slightly different: the intercept is the
same as in Table[6.10} but the dummy effects are presented in a slightly different
way, and there is an extra row for country C where a regression coefficient B
of 0 is reported, with no standard error, no T-statistic, and no p-value. The
values for the other effects are exactly the same in with the previous analysis.
This means we can interpret these [country=A] and [country=B] effects as the
effects of dummy variables: all observations start from an intercept of 172.40
and depending on whether the observations are from country A or country B,
you get an extra predicted height of -2.4 or 10.1, respectively. Observations from
country C get an extra height of 0, so in effect nothing extra. (SPSS creates an
extra dummmy variable for country C, but because this is not necessary, the
effect is fixed to 0).

Also the Tests of Between-Subjects Effects table looks slightly different: in-
stead of two separate effects for two dummy variables, we now see one row for
the original variable Country. And in the column df (degrees of freedom): in-
stead of 1 degree of freedom for a specific dichotomous country variable, we
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Tests of Between-Subjects Effects
Dependent Variable: height

Type Il 3um
Source of Sguares df Mean Square F Sig.
Corrected Model 880.067* 2 440.033 9.763 001
Intercept 918400.033 1 | 918400.033 | 20377.024 .000
country B80.067 2 440.033 9.763 001
Error 1216.900 27 45.070
Total 920497.000 30
Corrected Total 2096.967 29

a. R Squared = .420 (Adjusted R Squared = .377)

Parameter Estimates
Dependent Variable: height

95% Confidence Interval
Parameter B 5td. Error T Sig. Lower Bound | Upper Bound
Intercept 172.400 2.123 81.207 .000 168.044 176.756
[country=A] -2.400 3.002 -.799 431 -B8.560 3.760
[country=B] 10.100 3.002 3.364 .0o2 3.940 16.260
[country=C] 0*

a. This parameter is set to zero because it is redundant.

Figure 6.11: Output of a regression analysis on the original variable, using the
keyword BY.

see 2 degrees of freedom for the nominal Country variable. So this suggests
that the effects of the two dummy variables are now combined into one effect,
with one particular F-value, and one p-value that is also different from those
of the two separate dummy variables. This is actually the p-value test for the
null-hypothesis that all 3 means are equal:

Hy:pa=pp = puc (6.15)

This hypothesis test is very different from the ¢-tests in the Parameter Esti-
mates table. The t-test for the [country=A] effect specifically tests whether the
average height in country A is different from the average height in country C
(the reference country). The t-test for the [country=B] effect specifically tests
whether the average height in country B is different from the average height in
country C (the reference country). Since these hypotheses do not refer to our
original research question regarding overall differences across all three countries,
we do not report these t-tests, but we report the overall F-test from the Tests
of Between-Subjects Effects table.

In general, the rule is that if you have a specific research question that
addresses a particular null-hypothesis, you only report the statistical results
regarding that null-hypothesis. All other p-values that your software happens
to show in its output should be ignored. We will come back to this issue in
Chapter
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6.7 F-test for comparing multiple group means

Here we slightly elaborate on the F-test for testing null-hypotheses about group
means. Remember that the T-statistic was based on the slope divided by its
standard error. Above we saw that the F-statistic is based on the ratio of mean
squared errors, that are in turn based on sums of squares.

If we go back to Chapter [3| on the inference about population slopes, we
remember that given that the population slope is 0, and if one draws many
random samples, the distribution of T-statistics shows a t-distribution with a
certain degrees of freedom that depends on sample size. Similarly for inference
about population group means, given a null-hypothesis that K group means
are equal in the population, and if one draws many random samples from this
population, the F-statistic shows an F-distribution with a model degrees of
freedom of K — 2 and an error degrees of freedom that depends on the sample
size, N — 2.

Figure [6.12] shows the F-distribution with 2 model degrees of freedom and
156 residual degrees of freedom. As an be seen, F-values are always positive.
This is so because they are based on sums of squares, and squares are always
positives. The larger the F-value, the less likely it is to be the result of sampling
error. Thus, if the F-value is very large, it is not likely that the population means
are equal.

When is an F-value large enough to think that the null-hypothesis is not
true? Similar to T-statistics, we can choose our own level of significance, say
a = 0.05, and reject the null-hypothesis when the F-value is beyond the critical
value for the a-level. For this particular F-distribution, the critical F-value for
a = 0.05 is 3.05. This number can be looked up in tables or is available in
software packages like SPSS. Thus, if we find an F-value equal to or larger than
3.05, we reject the null-hypothesis. If the F-value is less than 3.05, we do not
reject the null-hypothesis.

6.8 Reporting ANOVA

In all cases where you have a categorical predictor variable with more than
two categories, and where the null-hypothesis is about the equality of all group
means, you have to use the BY syntax in SPSS and using the original nominal
variable. You then always report the corresponding F-statistic from the Tests
of Between-Subjects Effects table.

For this particular example, you report the results of the analysis of variance
in the following way:

“The null-hypothesis that all 3 population means are equal was
tested with a linear model (analysis of variance). The results showed
that the null-hypothesis can be rejected: the means in the popula-
tion are not equal, F'(2,27) = 9.76, MSE = 45.07,p = 0.001.”
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Figure 6.12: The F-distribution with 2 model degrees of freedom and 156 error
degrees of freedom. The shaded area is the upper 5 percent of the distribution.
The critical F-value for alpha=0.05 is depicted by the vertical line (3.05).

Always check the degrees of freedom for your F-statistic carefully. The first
number refers to the number of dummy variables that are tested at once: this is
the number of categories minus 1 (K — 1). This is also called the model degrees
of freedom. The second number refers to the error degrees of freedom: this
is the number of observations minus the number of effects in your model. In
this model you have 30 data points and you have three effects (parameters): one
intercept, one effect for [Country=A], and one effect for [Country=B]. The effect
for [Country=C] is not really an effect because it is redundant and therefore
fixed to 0. So your residual (error) degrees of freedom is 30 — 3 = 27. Note that
this residual degrees of freedom is equal to that of the t-statistic for multiple
regression.

6.9 Relationship between F'- and T-distributions

We'’ve also stated that the ¢-distribution and the F-distribution have much in
common. Here we will illustrate this. Suppose that we test the null-hypothesis
that a certain population slope is 0. We perform a regression analysis and obtain
a T-statistic of -2.40. Suppose our sample size was 42, so that our residual
degrees of freedom equals 42 — 2 = 40. Figure [6.13] shows the theoretical ¢-
distribution with 40 degrees of freedom. It also shows our value of -2.40. The
shaded area represents the values for T' that would be significant at an o = 0.05.

Now look closely at Figure [6.13] The density says something about the
probability of drawing certain values. Imagine that you randomly pick numbers
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Figure 6.13: The vertical line represents a T-value of -2.40. The shaded area
represents the extreme 5 percent of the possible T-values

from this T-distribution. The density plot tells you that values around zero
are more probable than values around 2 or -2, and that values around 2 or -2
are more probable than values around 3 or -3. Imagine that you pick a million
values for T', randomly from this T-distribution. Then imagine that you take
the square of each value (thus, suppose as the first 3 randomly drawn T-values
you get -3.12, 0.14, and -1.6, you then square these numbers to get the numbers
9.73, 0.02, and 2.79). If you then make a density plot of these one million
squared numbers, you get the density plot in Figure It turns out that this
density is an F-distribution with 1 model degrees of freedom and 40 residuals
degrees of freedom.

If we also square the observed test statistic T-value of -2.40, we obtain an
F-value of 5.76. From online tables, we know that, with 1 model degrees of
freedom and 40 residual degrees of freedom, the proportion of F-values larger
than 5.76 equals 0.02. The proportion of T-values, with 40 (residual) degrees of
freedom, larger than 2.40 or smaller than -2.40 is also 0.02. Thus, the two-sided
p-value associated with a certain T-value, is equal to the p-value associated with
an F-value that is the square of the T-value.

This means that if you see a T-statistic of say -2.40 reported with a residuals
degrees of freedom of 40, t(40) = —2.40, you can equally report this as an
F(1,40) = 5.76. Similarly, if you see a reported F-value of F(1,67) = 49, you
could without problems turn this into a ¢(67) = 7. Note however that this
only the case if the model degrees of freedom of the F-statistic is equal to 1.
This means you cannot do this if you are comparing more than two groups
means. Next time you look at UNIANOVA output, watch the t¢-statistics and
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Figure 6.14: The F-distribution with 1 model degrees of freedom and 40 error
degrees of freedom. The shaded area is the upper 5 percent of the distribution.
The vertical line represents the the square of -2.40: 5.76

F-statistics carefully and check whether the F-statistic is the square of the T-
statistic. Check for instance Figure [6.10| again, and see whether the F-values
associated with the intercept, the countryA effect and the countryB effect
reported in the top table are the indeed the square of the respective T-values
reported in the bottom table.

6.9.1 Exercises

1. In Table[6.10]you see an Analysis of Variance table. It reports the results of
a test of the null-hypothesis that the average yield based on three different
treatments are the same: the control condition, treatment 1 and treament
2. See if you can plug in the missing values, based on Equations [6.12[]6.13
and

Table 6.10: Analysis of Variance table.
df SS MS F p
group 2 3.77 7 ? 0.0159
Residuals 27 10.49 7 - -

2. Choose as your type I error rate an « of 0.01. Can you reject the null-
hypothesis?

3. Write down your result of your hypothesis testing.
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4. The F-distribution and the t-distribution are closely related. Is there a
way in which you could write down the same result in terms of T-statistics?
If so, please do. If not, explain why this is not possible.

6.9.2 Answers

1. Table shows the missing Mean Squares for Group and Error (Resid-
ual), as well as the F-statistic which is the ratio of the two the Mean

Squares.
Table 6.11: Analysis of Variance table.
Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.77 1.88 4.85  0.0159
Residuals 27 10.49 0.39

2. The p-value associated with the F-value for the Group effect is larger than
«. Therefore, we cannot reject our null-hypothesis of equal group means.

3. “The null-hypothesis that all 3 population means are equal was
tested with a linear model (analysis of variance) at an « of 0.01.
The results showed that the null-hypothesis cannot be rejected,
F(2,27) =4.85, MSE = 10.49,p = 0.02.”

4. Yes, the two distributions are related, but the F-statistic is only the square
of the T-statistic if the model degrees of freedom equals 1. Here we have 3
groups and therefore 2 model degrees of freedom. Therefore, we can only
use the F-statistic to describe our results.
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Chapter 7

Moderation: testing
interaction effects

7.1 Interaction with one numeric and one di-
chotomous variable

Suppose there is a linear relationship between age (in years) and vocabulary
(the number of words one knows): the older you get, the more words you know.
Suppose we have the following linear regression equation for this relationship:

vocab = 205 + 500 x age (7.1)

So according to this equation, the expected number of words for a newborn
baby (age=0) equals 205. This may sound silly, but suppose this model is a
very good model for vocabulary size in children between 2 and 5 years of age.
Then this equation tells us that the expected increase in vocabulary size is 500
words per year.

This model is meant for everybody in the Netherlands. But suppose that
one researcher expects that the increase in words is much faster in children from
high SES families than in children from low SES families. First he believes that
vocabulary will be larger in higher SES children than in low SES children. In
other words, he expects an effect of SES, over and above the effect of age:

vocab = by + by x age + by x SES (7.2)
This main effect of SES is yet unknown and denoted by bs. Note that this
linear equation is an example of multiple regression.

Let’s use some numerical example. Suppose age is coded in years, and SES
is dummy coded, with a 1 for high SES and a 0 for low SES. Let by, the effect
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Figure 7.1: Two regression lines: one for low SES children and one for high SES
children.

of SES over and above age, be 10. Then we can write out the linear equation
for low SES and high SES separately.

lowSES : vocab = 200 + 500 x age + 10 x 0
= 200+ 500 x age
highSES : vocab = 200+ 500 x age + 10 x 1

= (200 + 10) + 500 x age
= 210+ 500 x age

/N N /N /N /S
N NN N
N O Ul kW
—_ L T =

Figure [7-T] depicts the two regression lines for the high and low SES children
separately. So we see that the effect of SES involves a change in the intercept:
the intercept equals 200 for low SES children and the intercept for high SES
children equals 210. The difference in intercept is indicated by the coefficient
for SES. Note that the two regression lines are parallel: for every age, the
difference between the two lines is equal to 10. For every age therefore, the
predicted number of words is 10 words more for high SES children than for low
SES children.

So far, this ordinary multiple regression. But suppose that such a model
does not describe the data that we actually have, or does not make the right
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predictions based on on our theories. Suppose our researcher also expects that
the yearly increase in vocabulary is a bit lower than 500 words in low SES fami-
lies, and a little bit higher than 500 words in high SES families. In other words,
he believes that SES might moderate (affect or change) the slope coefficient for
age. Let’s call the slope coefficent in this case b;. In the above equation this
slope parameter is equal to 500, but let’s now let itself have a linear relationship
with SES:

In words: the slope coefficient for the regression of vocabulary on age, is
itself linearly related to SES: we predict the slope on the basis of SES. We
model that by including a slope bs, but also an intercept a. Now we have two
linear equations for the relationship between vocabulary, age and SES:

—

vocab = by + by X age + by x SES (7.9)
bl = a-+ bg X SES (710)

We can rewrite this by plugging the second equation into the first one (sub-
stitution):
vocab = by + (a + by x SES) x age + by x SES (7.11)

Multiplying this out gets us:

vocab = by + a x age + by x SES x age + by x SES (7.12)

If we rearrange the terms a bit, we get:

vocab = bo + a X age + by x SES + b3 x SES X age (7.13)

Now this very much looks like a regression equation with one intercept and
three slope coefficients: one for age (a), one for SES (b2) and one for SESx age
(b3).

We might want to change the label a into b; to get a more familiar looking
form:

vocab = by + by x age + by x SES + by x SES x age (7.14)

So the first slope coefficient is the increase in vocabulary for every year that
age increases (by), the second slope coefficient is the increase in vocabulary for
an increase of 1 on the SES variable (b2), and the third slope coefficient is the
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increase in vocabulary for every increase of 1 on the product of age and SES
(b3).
So what does this mean exactly?

Suppose we find the following solution for the regression equation:

vocab = by + by x age + by x SES + by x SES x age (7.15)
vocab = 200 + 450 x age + 125 x SES + 100 x SES x age (7.16)
vocab = 650 x age + 125 x SES + 100 x SES x age (7.17)

If we code low SES children as SES=0, and high SES children as SES=1,
we can write the above equation into two regression equations, one for low SES
children (SES=0) and one for high SES chilrden (SES=1):

lowSES : vocab = 200+ 450 x age (7.18)
highSES : vocab = 200+ 450 x age + 125 + 100 x age  (7.19)

= (200 + 125) + (450 + 100) x age
= 325+ 550 x age

So for low SES children, the intercept is 200 and the regression slope for
age is 450, so they learn 450 words per year. For high SES children, we see
the same intercept of 200, with an extra 125 (this is the main effect of SES).
So effectively their intercept is now 325. For the regression slope, we now have
450 x age + 100 x age which is of course equal to 550 x age. So we see that the
high SES group has both a different intercept, and a different slope: the increase
in vocabulary is 550 per year: somewhat steeper than in low SES children. So
yes, the researcher was right: vocabulary increase per year is faster in high SES
children than in low SES children.

These two different regression lines are depicted in Figure [7.2} It can be
clearly seen that the lines have two different intercepts and two different slopes.
That they have two different slopes can be seen from the fact that the lines are
not parallel. One has a slope of 450 words per year and the other has a slope of
550 words per year. This difference in slope of 100 is exactly the size of the slope
coefficient pertaining to the product SES X age, bs. Thus, the interpretation of
the regression coefficient for a product of two variables is that it represents the
difference in slope.

The observation that the slope coefficient is different for different groups
is called an interaction effect, or interaction for short. Other words for this
phenomenon are modification and moderation. In this case, SES is called the
modifier variable: it modifies the relationship between age on vocabulary. Note
however that you could also interpret age as the modifier variable: the effect of
SES is larger for older children than for younger children. In the plot you see
that the difference between vocabulary for high and low SES children of age 6
is larger than it is for children of age 2.
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Figure 7.2: Two regression lines for the relationship between Age and Vocab-
ulary Size, one for low SES children (SES=0) and one for high SES children
(SES=1).
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7.2 Testing for interaction effects with a dummy
variable in SPSS

So, what do you have to do if you want to know if there is an interaction effect
between age and dummy variable SES on vocabulary size? First we can compute
a new variable manually: the product SES x age:

COMPUTE SESage = SES * age .
EXECUTE.

This means that for every child in your data set, we take the age of the child
(say 4), take the SES value, say 1, and multiply these numbers: 4 x 1 = 4.

So now you have three variables that we can use in a multiple regression
analysis:

UNIANOVA vocab WITH age SES SESage
/ design=age SES SESage.

But there is also a faster way of analyzing interaction effects in SPSS. The
following syntax is exactly equivalent, but does not require the computation of
the interaction variable SESage by hand:

UNIANOVA vocab WITH age SES
/ design = age SES agex*SES
/ print = parameter.

With this design specification of age*SES, SPSS computes the product
automatically for you and runs the analysis. Of course we would then find
again the values from Equation

7.3 Testing for interaction effects with a cate-
gorical variable in SPSS

Let’s look at some example output for another data set where we have a cat-
egorical variable that is not dummy-coded yet. A researcher is interested in
childrens’ height. She has data on children between the ages of 4 and 8, with
measures on their height in centimeters. She wants to know whether children
growing up in the city grow just as fast as in the countryside. Part of the data
are shown in Table [.1]

The general regression of height on age might look like as shown in Figure
This regression line for the entire sample of children has a slope of around 6
cm per year. Now the researcher wants to know whether this slope is the same
for children in the cities and in the countryside, in other words, do children grow
as fast in the city as in the countryside? We might expect that location (city vs
countryside) moderates the effect of age on height. We use the following SPSS
syntax to study this location X age effect, by having SPSS automatically create
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Table 7.1: Height of children in centimeters as a function of age and location.
child location age height

001 city ) 120
002 country 14 160
003 city 4 121
004 city 6 125
005 country 9 140
180~
160~
£
o
E 140
=)
[}
I
120-
100~
6 9 12

Age in years

Figure 7.3: The effect of age on height.
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dummy variables for location (through the BY keyword). In the DESIGN
subcommmand we specify that we want a main effect of age, a main effect of
location, and an interaction efffect of age by location.

UNIANOVA height WITH age BY location
/design age location age*location
/PRINT=PARAMETER.

In Figure we find the corresponding SPSS output. In the Parameter
Estimates table, we see the effect of the numeric age variable, which has a slope
of 4.25. For every increase of 1 in age, there is a corresponding expected increase
of 4.3 centimeters in height. Next, we see that SPSS created a dummy variable
[location=city]. For every observation (child) for which the variable location
has the value city, this dummy variable has a value 1. In that case, the expected
increase in height is -3.84. In other words: for every child living in the city, the
expected height is 3.84 centimeters less then children living in the countryside.

Next, SPSS created a dummy variable [location=country], but the effect
of that dummy variable is fixed to zero because of redundancy.

Next, SPSS created the product of the two variables [location=city] and
age and estimated its effect. Results showed that this interaction effect was
0.368.

Lastly, SPSS created the product of the two variables [location=country]
and age, but because of redundancy, this effect was fixed to zero.

These results could be read as the following regression equation, using the
dummy variable city instead of the wordy [location=country] variable:

he/ig\ht = 100.5+ 4.3 x age — 3.8 x city + 0.4 X city * age (7.20)

If we fill in 1s for the city dummy variable, we get the equation for city
children:

height = 100.5+ 4.3 x age — 3.8 + 0.4 x age
= 96.74+4.7 X age (7.21)

If we fill in Os for the city dummy variable, we get the equation for countryside
children:

height = 100.5 + 4.3 x age

So, we know that the slope for countryside children is 0.368 less steep than
for city children. In this particular random sample of children, the children in
the city grow 4.626 centimeters per year (on average), but children in the coun-
tryside grow 4.626 — 0.368 = 4.258 centimeters per year (on average). Is this
value of 0.368 possible if the value in the entire population of children equals
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Tests of Between-Subjects Effects

Dependent Variable: height

Type lll Sum of
Source Squares df Mean Square F Sig.
Corrected Model 1487.283°2 3 495.761 17.616 .004
Intercept 8083.593 1 8083.593 | 287.228 .000
age 845.053 1 845.053 30.027 .003
location 3.079 1 3.079 .109 .754
location * age 1.450 1 1.450 .052 .829
Error 140.717 5 28.143
Total 154509.000 9
Corrected Total 1628.000 8

a. R Squared = .914 (Adjusted R Squared = .862)

Parameter Estimates

Dependent Variable: height

95% Confidence Interval

Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 100.500 9.925 10.126 .000 74.987 126.013
age 4.258 1.460 2.916 .033 .504 8.011
[location=city] -3.848 11.633 -.331 .754 -33.751 26.055
[location=country] 02
PR,

gggauon city] .368 1.621 227 829 -3.799 4.535
[location=country] a

* age 0

a. This parameter is set to zero because it is redundant.

Figure 7.4: Output with main effects of age and location_.dummy, and an inter-
action effect.

07 In other words, is the value of 0.368 significantly different from 07 No, the
effect of 0.368 is not significant, ¢(5) = —0.23,p > 0.05. We therefore do not
reject the null-hypothesis and conclude that there is no evidence that children
in the city grow at a different pace than children in the countryside.

Summarizing, in this section we discussed the situation that regression slopes
might be different in two groups: the regression slope might be steeper in one
group than in another group. So suppose that we had a numerical predictor =
for a numerical dependent variable variable y, we said that a particular dummy
variable z moderated the effect of z on y. This moderation was quantified by
an interaction effect.

So suppose we have the following linear equation:

y=bg+ b X+ by x dummy + b3 X x X dummy + e

Then, we call by the intercept, b; the main effect of x, b the main effect of
the dummy variable, and bs the interaction effect of x and the dummy.
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7.3.1 Exercises

We have the following regression equation, with y as dependent variable, x as a
numeric predictor variable, and a dummy variable dummy.

© ® N e o e w

10.

y=5.3+3.6xz+38xdummy+8.2x x x dummy + e (7.22)

Write down the regression equation in the case the dummy variable equals
0.

Write down the regression equation in the case the dummy variable equals
1.

What is the intercept if the dummy variable equals 07

What is the intercept if the dummy variable equals 17

What is the slope if the dummy variable equals 07

What is the slope if the dummy variable equals 17

How large is the difference in intercepts between the two groups?
Where can we find this value in the equation?

How large is the difference in slopes between the two groups?

Where can we find this value in the equation?

We have the following regression equation, with y as dependent variable, x
as a numeric predictor variable, and a dummy variable dummy.

-~ W

© N>

y=—414+12x2—6.5xdummy — 1.3 x z x dummy + e (7.23)

Write down the regression equation in the case the dummy variable equals
0.

Write down the regression equation in the case the dummy variable equals
1.

What is the intercept if the dummy variable equals 07

What is the intercept if the dummy variable equals 17

What is the slope if the dummy variable equals 07

What is the slope if the dummy variable equals 17

How large is the difference in intercepts between the two groups?

Where can we find this value in the equation?

168



9. How large is the difference in slopes between the two groups?

10. Where can we find this value in the equation?

Suppose we find the following linear equation:

mathscore = 16.3 + 5.5 x age — 0.8 x sex — 1.2 x age X sex (7.24)
1. What is the main effect of age on mathscore?
2. What is the main effect of the sex on mathscore?
3. How large is the interaction effect of age and sex on mathscore?

4. What is the predicted mathscore for a girl of age 12, if sex is coded 1 for
boys?

5. What is the predicted mathscore for a boy of age 22, if sex is coded 1 for
boys?

7.3.2 Answers
1.

7.4 Interaction between two dichotomous vari-
ables

In the previous section we discussed the situation that regression slopes might be
different in two groups. Now we discuss the situation that we have two dummy
variables, and that we’re interested whether there is an interaction effect. In
other words, does one dummy variable moderate the effect of the other dummy
variable?

Suppose in country A, men are on average taller than women. In order to
study this effect, we analyze data from a random sample of inhabitants, and we
come up with the following regression equation:

height = 165 + 10 x sex

In this equation, sex is coded 0 for females, and 1 for males. So, the predicted
height for a female from country A equals 165 and the predicted height for a
male equals 165 + 10 x 1 = 175.
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Suppose we also study height in country B. Again with a random sample of
inhabitants, we find the following regression equation:

height = 175 + 15 x sex

In this equation, the predicted height for a female from country B equals 175
and the predicted height for a male equals 175 + 15 x 1 = 190.

So it seems that in general, the people in the random sample from country
B are taller than the people in the random sample from country A: both men
and women show taller averages in country B. But we also see another difference
between the two countries: the average difference between men and women is 10
cm in country A, but 15 ¢m in country B. So we can say that in these samples,
the effect of sex on height is a little bit different in both countries. Now of
course this difference could be a coincidence, a random result from sampling, or
it could be a real thing in the populations. Suppose we’d like to know whether
the effect of sex on height is different in the two countries at population level.
We'd like to know whether country is a moderator of the effect of age on height.
So we use the following regression equation:

h&g\ht = by + b1 X sex + by X country + by X sex X country

and perform a regression analysis.

The easiest option, as we have seen earlier, is to let SPSS do the dummy
coding. Simply use the BY keyword to indicate that both country and sex are
categorical variables. Additionally, include the multiplication in the DESIGN
subcommand to indicate that you want to model an interaction effect:

UNIANOVA height BY sex country
/ DESIGN = sex country sex*country
/ PRINT = parameter.

In Figure[7.4) we see the relevant output. Table[7.2] what variables SPSS has
created automatically. Note that the column with the [country=A] * [sex=.00]
variable is exactly the multiplication of the values from the [country=A] col-
umn with the correspnding values in the [sex=.00] column. Therefore, for the
[country=A] * [sex=.00] variable, only those persons get a value of 1 that are
both from country A and are female (sex=0).

We see that the intercept is 190. Then we see that the people from country
A get an extra -15 cm, and that for those with sex equal to 0 get an additional
-15 cm. Now that’s interesting. Note that the variable sex was already a dummy
variable: males were coded 1 and females were coded 0. Now, with our syntax
using the BY keyword, SPSS created a new dummy variable called [sex=.00].
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Parameter Estimates

Dependent Variable: height
95% Confidence Interval

Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 190.000 1.369 138.756 .000 187.097 192.903
country=, -15. . -7. . -19. -10.

try=A 15.000 1.936 7.746 000 19.105 10.895
[country=B] 0? . . . . .
sex=. -15. . -7. . -19. -10.

00 15.000 1.936 7.746 000 19.105 10.895
[sex=1.00] 0?

AT *

{ggﬂzf%]/\] 5.000 2.739 1.826 .087 -.806 10.806
[country=A] * a
[sex=1.00] 0
[country=B] * a
[sex=.00] 0
[country=B] * a
[sex=1.00] 0

a. This parameter is set to zero because it is redundant.

Figure 7.5: Output with main effects of country and sex, and an interaction
effect.

Table 7.2: Height of males and females in two countries A and B. Original
variables sex and country, and the automatically created variables by the SPSS
UNIANOVA syntax that are displayed in the output.

ID sex country height [country=A] [sex=.00] [country=A] * [sex=.00]
01 1 A 120 1 0 0
02 0 A 160 1 1 1
03 0 B 121 0 1 0
04 1 B 125 0 0 0
05 1 A 140 1 0 0

Now, all those who have a 0 for sex are coded 1 for the [sex=.00] variable!
Thus effectively, we now have a dummy variable for being female.

On top of that, those who come from country A and have sex=0 (females),
have an extra -5 cm. Thus, the expected height from women from country A
equals 190 — 15 — 15 — 5 = 155 cm.

In order to get a proper overview of the meaning of the overview, it’s best to
write out a linear equation. If we ignore all the dummy variables for which the
effects (slopes) are fixed to 0, and if we give more sensible names to the variables
names [country=A] (countryA), [sex=.00] (female), and [country=A]*[sex=.00]
(female*countryA), then we get the equation:

he/ig\ht =190 — 15 female — 15countryA + 5 female x countryA (7.25)

The expected height of a male (sex = 1) from country A is then 190+0—15+
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Figure 7.6: Average heights for males and females in countries A and B.

0 = 175. The expected height of a female from country B is 190—15+04+0 = 175,
and the expected height of a male from country B is 190 + 0+ 0 + 0 = 190.

The difference of the differences (the interaction effect) equals -5. We see
that women from country A (for only those have a 1 for this variable!), have
an extra height of -5 cm compared to all other persons. Interpretation of this
interaction effect of -5 is best seen in a graph showing the means of the four
groups, see Figure [7.6] The mean height difference between country A and
country B is 5 centimeters smaller in females.

The data could also be represented in a different way, see Figure [7.7} There
we see that the mean height difference between males and females is 5 cen-
timeters smaller in country A than in country B. Thus, there are two ways of
describing the data: either you look at the effect of country and see sex as a
modifier variable, or you look at the effect of sex, and see country as a modifier.
Both are describing the same interaction effect: the extra -5 cms for females
from country A.

Earlier we saw that linear models with dummy variables described group
means. Here the linear model described the group means of a small data sample.
Whether there is an interaction effect at the population level, at the level of all
females and males from both countries, we can see from SPSS output. The
relevant null-hypothesis is that there is no interaction effect. This means that
the coeflicient for the interaction effect is equal to 0 in the population:

HO : Bsew*count'ry =0 (726)

If the effect that we find in the data sample is significant at your pre-set level
of significance (i.e. p < ), you reject the null-hypothesis and conclude that the
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Figure 7.7: Average weights for males and females in countries A and B.

difference between males and females in height is different in these two countries.
Or, equivalently, you conclude that the difference in height between the two
countries is different for males and females. If the effect is not significant, you
do not reject the null-hypothesis.

From now on, we recommend using the BY syntax for categorical variables
(and ordinal variables that you’d like to treat categorical rather than numeri-
cal). Only when you find the output hard to interpret, make your own dummy
variables and use the WITH keyword.

7.4.1 More than two groups

What happens when we have a categorical variable with more than two levels?
Suppose we want to do the same study on height but now included data from
country C. In Figure we see the average heights that we observe in the
sample data.

Now we see a clear difference in the countries: the males are on average larger
than the females, but this is only true for countries A and B. In country C the
females are on average larger than the males. However, remember that this is
based on a sample data. We’d like to know whether male-female differences in
average height vary from country to country also in the population data. We
therefore do an inferential data analysis using a linear model, including a sex
by country interaction effect. Our null-hypothesis is

Hy : K femaleA — HmaleA = M femaleB — MmaleB = M femaleC — HmaleC (727)
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Figure 7.8: Average weights for males and females in countries A, B and C.

With the next syntax you can run a regression analysis with a main effect of
sex, a main effect of country and an interaction effect of sex by country in the
following way.

UNIANOVA height BY country sex
/ design = sex country sex*country
/ print = parameter.

The SPSS output is in Figure In the Parameter Estimates table we
see that 3 dummy variables have been computed for country automatically by
SPSS. One for being in country A, and one for being in country B and one for
country C. The effect for country C was fixed to 0 because it was redundant
(with K categories, you only need K — 1 dummy variables, see Chapter @
Therefore country C is here used as the so-called reference category.

Furthermore, we see that SPSS created 6 dummy variables for the interaction
effect, one for each combination of sex (male and female) and country (A, B and
C). Again, because of redundancy, only two of these are not fixed to 0. (Why
this is so, will be explained later.) Again, if we ignore the redundant effects,
and rename the variables we obtain the following equation:

he/ig\ht = 1714 2.8 x female + 4 x CountryA + 19 x CountryB
— 12.8 x CountryA x female — 17.8 x CountryB x female

All observations done in country C for variables CountryA and CountryB are
coded as 0. So let’s do the math to get the predicted heights for each subgroup.
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Table 7.3: Expected heights for males and females in three countries.

Sex Country equation height
Female A 1738+28x0+4x1+19x0—-128x1x0—-17.8x0x0 165
Male A 1738+28x144x14+19x0—-128x1x1—-17.8x0x1 175
Female B 1738428x0+4x0+19x1—-128x0x0—-178 x1x0 175
Male B 1738+28x14+4x04+19x1-128x0x1—-178x1x1 190
Female C 1738428 x04+4x04+19x0—-128x0x0—-178x0x0 173.8
Male C 1738428x1+4x0+19x0—-128x0x1—-178x0x1 171

Females are coded as 0 and males as 1, so a Female from country C gets the
predicted value 171. Let’s do the computations for all subgroups:

Note that we now have very different values for the regression parameters
than in the analysis with only countries A and B (see Figure , but never-
theless we end up with the same expected heights in Countries A and B. The
difference in the parameter values stems from the fact that we have now treated
country C as the reference category (coefficient fixed to 0), whereas in the pre-
vious two country analysis, we treated country B as the reference category.

Let’s test the hypothesis of equal differences in heights between males and
females across the three countries. In the output we see that the Country=A by
female interaction effect is significant at 0.05: there is an extra height of -12.8
cms seen in females from country A, over and above the main effects of being
female in general and being from country A. In other words, the effect of being
female is smaller in country A than it is in Country C (the reference country).
We also see this in the predicted means: male-female difference in country C is
-2.8 (males shorter), but in country A it is +10 (males larger).

In the output we also see that the CountryB by female interaction effect is
significant at 0.05: the effect of being female is -17.8 ¢cm in country B compared
to Country C (the reference category). From the means we see that the male-
female difference is 15 in country B, which is 17.8 cm more than the -2.8 in
country C. So both these interaction effects are significant. Similarly to the pre-
vious chapter, we now have two coefficients to test one hypothesis, so again we
should do an ANOVA F-test to test the hypothesis that male-female differences
are the same across all three countries, or, equivalently, that country differences
in height are the same in males and females.

Therefore, we should look at the Analysis of Variance (ANOVA) table (Tests
of Between-Subjects Effects). There we see that for the country*sex interaction
effect we have an F-value of 13.141. With 2 model degrees of freedom (number
of interaction dummy variables) and 24 error degrees of freedom, the proba-
bility of getting an F-value of at least 13.141, given that the null-hypothesis
is true, equals less than 0.001. Therefore we conclude that in the populations
of countries A, B and C, the difference in height between males and females
is significantly different, F'(2,24) = 13.141, MSE = 210.70,p < 0.001. Al-
ternatively, but equivalently, we may conclude that the differences in height
across the three countries, are significantly different for males than for females,
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F(2,24) = 13.141, MSE = 210.70,p < 0.001[]

7.4.2 Exercises

From a sample of data on height, country (country A and country B), and
weight, we get the following linear equation:

w@ht =40+ 30 x CountryA + 0.4 x height + 0.1 x CountryA x height
1. What is the expected weight for an individual from country A with a

height of 1.57

2. What is the expected weight for an individual from country B with a
height of 1.07

3. How large is the slope coefficient of height for the sample data from coun-
try A7

4. How large is slope coefficient of height for the sample data from country B?

7.4.3 Answers
1.

weight =40 +30 x 1+ 0.4 x 1.5+ 0.1 x 1 x 1.5 = 70.75

weight =40 +30 x 0+ 0.4 x 1.0+ 0.1 x 0 x 1.0 = 40.4

3.04+01=0.5
4. 04

7.5 The number of non-redundant parameters
in a linear model
Let’s go back to the example of heights for males and females in three countries.

If we’re interested in averages, there are 6 of them. These are displayed in
Figure but we also display them in Table

INote that we never report p = 0.000. A p-value is always greater than 0, no matter how
small. Therefore, for very small values, we report p < 0.001.
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In Chapter [6] we saw that we can model two means using one single dummy
variable. Thus, a variable sex with values ‘'male’ and ’female’ can be coded with
a dummy variable female with values 0’ and ’1’, respectively. Similarly, we
saw that a variable country with three different values, ’A’, 'B’ and ’C’, can
be coded with 2 dummy variables. In general, any categorical variable with K
categories can be coded with K — 1 dummy variables.

First let’s start with a model with only main effects of country and sex. The
syntax for such a model is as follows.

UNIANOVA height BY country sex
/ design = sex country
/ print = parameter.

Note that the syntax only leaves out the multiplication in the DESIGN
subcommand. When we run this model, we get the output displayed in Figure

Table [7.4] presents the expected means based on this model with only main
effects. When we compare these expected means with the observed means in
Table we see a clear discrepency: our model makes predictions that do not
match the observations in our sample data. This does not have to be a problem
of course: our sample data are merely what they are, sample data. In reality we
might be more interested in the population means. Our model might actually
be a good reflection of what is true at the population level.

Figure [7.11] shows the expected means based on main effects only. The
actual observed means are represented in colour and the arrows represent the
differences between the observed and the expected means for each subgroup. If
you observe closely, you see that for each country separately, the deviation for
the males is exactly opposite the deviation for the females.

Table 7.4: Observed and predicted average height and the differences.

country  sex expected observed difference
A Female 166.30 165.00 1.30
A Male 173.70 175.00 -1.30
B Female 178.80 175.00 3.80
B Male 186.20 190.00 -3.80
C Female 168.70 173.80 -5.10
C Male 176.10 171.00 5.10

You see the same happening in the males and females in country B, and
in the males and females in country C. Per country, the differences between
observed and expected add up to 0. Interestingly, you see the same happening
if you look horizontally: if you look only at the males, you see that the deviations
for each country add up to 0, and the same happens when you look only at the
females.

Table plots these deviations for each combination of sex and country.
Now look again at the output of the model with the interaction effect in Table
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The interaction effect are exactly the same numbers, save a plus or minus
sign. This gives a clear interpretation to the interaction effects: they are the
deviations from the main effects.

7.6 Interaction between two numeric variables

Suppose we have data on current market value of housing properties. Suppose
we also have data on 200 individuals, including their gross yearly income and
the number of years spent in the national educational system. We’d like to see
what the relationship is between income and education on the one hand, and
the value of the house they live in on the other hand. Do richer people live
in more valuable homes? Do people with more educational years live in more
valuable homes?

Let’s carry out a multiple regression analysis and find out. We use the syntax

UNIANOVA value WITH income educatin
/DESIGN income educatin
/PRINT parameter.

and find the output in Figure
Based on this output, the linear equation for the relation between income
and home market value is

value = 24482 + 319income + 979education (7.28)

If education equals 20, we get the equation

value = 24482 + 319income + 979 20 = 44062 + 319income (7.29)

If education equals 12, we get the equation

value = 244821 + 319income + 979 x 12 = 36230 + 319income (7.30)

We see that for different values of education, the intercepts are different,
but the slopes are equal. We can see the two regression lines in Figure [7.12
Somehow it does not seem to be a good model. For high income, we see relatively
large differences between different levels of education. For low income we see
small differences for educational years. Thus we could say that these sample
data seem to suggest that the effect of educational years on the home market
value is larger for high income people than for for low income people.

We could also look at it from a different angle. In Figure[7.12]we see that the
relationships between income and value is much steeper for people with many
educational years (the light blue dots), than for people with few educational
years (the dark dots).
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Both observations seem to suggest a moderation effect. One could say that
eduation moderates the relation between income and value, or one could say
that income moderates the relation between eduational years and value. We
can therefore try a linear model that includes an interaction effect of income
and education on home market value.

The syntax is

UNIANOVA value WITH income education
/DESIGN income educatin income*education
/PRINT parameter.

and the output is in Figure [7.0]
Based on this output, the linear equation for the relation between income
and home market value is

value = 40014 — 0.4income — Seducation + 20income x education (7.31)

If education equals 20, we get the equation

value = 40014 — 0.4income — .8 x 20 + 20income x 20 = 39998 + 399.6income
(7.32)
If education equals 12, we get the equation

value = 40014 — 0.4income — .8 x 12 + 20income x 12 = 40003.4 + 239.6income
(7.33)

Now we see that for different values of eduation, both the intercept and the
slope are different. In Figure these two regression lines are plotted. These
nonparallel lines seem to describe the data much better than the parallel lines
in Figure [7.6]

From the output, we also see that the interaction effect has a very small
p-value. We can therefore reject the null-hypothesis that the effect of income
on home market value is the same for all levels of education. More precisely,
we can reject the null-hypothesis that the slope of the regression line for value
on income is the same for all levels of education. It seems that for people with
many years of education, there is a stronger relationship between income and
home market value than for people with fewer years of education.
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Tests of Between-Subjects Effects

Dependent Variable: height

Type Il Sum of
Source Squares df Mean Square F Sig.
Corrected Model 1712.1672 5 342.433 21.358 .000
Intercept 918400.033 1 | 918400.033 57280.667 .000
sex 410.700 1 410.700 25.615 .000
country 880.067 2 440.033 27.445 .000
country * sex 421.400 2 210.700 13.141 .000
Error 384.800 24 16.033
Total 920497.000 30
Corrected Total 2096.967 29

a. R Squared = .816 (Adjusted R Squared = .778)

Parameter Estimates

Dependent Variable: height

95% Confidence Interval

Parameter B Std. Error t Sig. Lower Bound | Upper Bound

Intercept 171.000 1.791 95.492 .000 167.304 174.696

[sex=.00] 2.800 2.532 1.106 .280 -2.427 8.027

[sex=1.00] 0? . . . . .

country=A 4.000 2.532 1.579 127 -1.227 9.227
y

country= . . . . . .

[ B] 19.000 2.532 7.503 000 13.773 24.227

[country=C] 0?

[country=A] *

[sex=.00] -12.800 3.581 -3.574 .002 -20.192 -5.408

[country=A] * a

[sex=1.00] 0

[country=B] *

[sex=.00] -17.800 3.581 -4.970 .000 -25.192 -10.408

[country=B] * a

[sex=1.00] 0

[country=C] * a

[sex=.00] 0

[country=C] * a

[sex=1.00] 0

a. This parameter is set to zero because it is redundant.

Figure 7.9: Main effects of country (A, B, and C) and sex (0,1) and the country
by sex interaction effects.
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Parameter Estimates

Dependent Variable: height
95% Confidence Interval

Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 176.100 2.033 86.607 .000 171.920 180.280
[sex=.00] -7.400 2.033 -3.639 .001 -11.580 -3.220
[sex=1.00] 0? . . . . .
[country=A] -2.400 2.490 -.964 .344 -7.519 2.719
[country=B] 10.100 2.490 4.056 .000 4.981 15.219
[country=C] 02

a. This parameter is set to zero because it is redundant.

Figure 7.10: Output with main effects of country and sex, and an interaction

effect.
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Figure 7.12: Sample data on gross yearly income, number of educational years
and home market value.

Parameter Estimates

Dependent Variable: value

95% Confidence Interval
Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 24477.223 542.147 45.149 .000 23408.066 25546.379
income 319.181 3.219 99.158 .000 312.833 325.529
educatin 979.177 32.930 29.735 .000 914.237 1044.117

Figure 7.13: Main effects of income and educational years on home market value.

Parameter Estimates

Dependent Variable: value

95% Confidence Interval

Parameter B Std. Error t Sig. Lower Bound | Upper Bound
Intercept 40013.865 11.858 | 3374.542 000 | 39990.480 | 40037.250

income -.384 221 -1.734 .084 -.820 .053
educatin -.802 743 -1.080 .282 -2.266 .663
) N )

income * educatin 20.023 .014 | 1458.971 .000 19.996 20.050

Figure 7.14: Main effects of income and educational years on home market value.
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Figure 7.15: Sample data on gross yearly income, number of educational years
and home market value.
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Chapter 8

Planned and post hoc
comparisons

8.1 Planned comparisons

Suppose you have height data from three countries: Greece, Italy, and Norway.
You might wish to know whether in these populations there is a difference in
average height. If that is all you want to know, you can perform the SPSS
UNIANOVA analysis described above. In that case, the null-hypothesis is

Hy : HGreece = UItaly = HNorway

However, suppose your most important hypothesis is really much more spe-
cific: you only want to know whether the average height in Italy is different
from the average height in Greece. The corresponding hypothesis would then
be:

Hy: HGreece = HItaly

In such cases, where the alternative hypothesis is more specific than simply stat-
ing "there are differences among the groups”, then you should perform planned
comparisons. Here you would like to make a comparison between the average
heights of Greece and Italy. You could also say you'd like to contrast the average
height of Greece with that of Italy.

We then have to define this contrast in such a way that SPSS knows what
we want. We could define our contrast in a similar vein as the null-hypothesis.
Let’s call the contrast ~;.

Y1 * HGreece = HItaly
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Figure 8.1: Data on height in three countries.

This contrast could also be written such that there is zero on the right-hand
side of the equation, like this:

Y1 ' UGreece — Mitaly = 0

This is the preferred way of specifying contrasts: having a zero on the right-
hand side. And how about Norway? How do we add Norway into this contrast?
Well, notice that you could also write the contrast like this:

Y1t (1) X UGreece T (71) X WItaly T (0) X UNorway = 0

So we could code this specific contrast with the numbers preceding the group
means: A 1 for Italy, a -1 for Greece and a 0 for Norway. For SPSS therefore, to
specify a contrast, we only need this coding. This can be done in the following
way. Suppose you have data on height, summarized in the boxplot in Figure
Note that in this SPSS data set, the country variable is coded 1 for Greece,
2 for Ttaly and 3 for Norway. Then we could use the following syntax to ask for
the specific comparison (or contrast) of the first and the second group, that is,
Greece and Italy, respectively. So group 1 (=Greece) gets a 1, group 2 (=Italy)
gets a -1, and group 3 (=Norway) gets a 0, so our coded contrast looks like
(1,-1,0).

UNIANOVA height BY country
/DESIGN=country
/CONTRAST (country)=SPECIAL(1 -1 0).

In Figure we see the output. We see first that the general null-hypothesis
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Between-Subjects Factors

Value Label N
country  1.00 | Greece 50
2.00 | naly 50

3.00 | Norway 50
Tests of Between-Subjects Effects
Dependent Variable: _height
[Type 1l Sum of

Source Squares df Mean Square F Sig
Corrected Model 181.382° 2 90.691 6.142 003
Intercept 4097387.37 1 | 4097387.37 | 277508.194 .000
country 181.382 2 90.691 6.142 .003
Error 2170.444 147 14.765
Total 4099739.20 150
Corrected Total 2351.826 149

a. R Squared =077 (Adjusted R Squared = .065)

Contrast Results (K Matrix)

Dependent
Variable
country Special Contrast height
L1 Contrast Estimate 1.008
Hypothesized Value 0
Difference (Estimate - Hypothesized) 1.008
Std. Error 769
Sig. 192
95% Confidence  Lower Bound 511
Interval for
Difference Upper Bound 2.527
Test Results
Dependent Variable: _height
Sum of
Source Squares df Mean Square F Sig
Contrast 25.406 T 25406 | 1.721 192
Error 2170.444 147 14.765

Figure 8.2: Output of the contrast analysis on height data from three countries.

that all three countries have the same average height is rejected, F(2,147) =
6.14, MSE = 14.77,p = 0.003. This test has 2 degrees of freedom, one for
each of the two dummy variables that are needed to test this model. The error
degrees of freedom equals 147: that is the number of data points (150) minus
the number of parameters in the model: one for the intercept and two for the
dummy variables, so 150 — 3 = 147.

Next, we see the results for our specific null-hypothesis (the contrast): that
the means for Greece and Italy are equal, irrespective of Norway. We see a Con-
trast Estimate of 1.008 and a significance level of p = 0.19. So the contrast is
positive: what does this mean? Well, let’s put the 1.008 into our contrast above:

Tt (1) X PGreece + (_1) X PTtaly + (O) X WNorway = 1.008

which can be simplified to

Y1 * HGreece — MItaly = 1.008

So the 1.008 indicates that the average height in Italy is 1.008 cm shorter than
in Greece, at least in our sample. The relatively high p-value indicates that the
population means are however not different: we do not reject the null-hypothesis
that the average heights are the same.

We also see an F-test for this contrast, F'(1,147) = 1.721, MSE = 14.76,p =
0.19. Since the first degrees of freedom number is a 1, we know that F is the
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same as a squared t, t?, So, an equivalent presentation of the contrast effect
would be ¢(147) = 2.96,p = 0.19

Now perhaps you realize, why didn’t we do a t-test in the first place? We
might have taken the Greece and Italy data separately, used a dummy variable
and then run an ordinary linear model. Well, let’s see what would happen then.

First we let SPSS select only the Greece and Italy data with the SELECT
IF syntax, and next run an UNTANOVA, using the BY keyword for country to
indicate that we treat it as a categorical variable. We also let the selection be
preceded by a TEMPORARY commmand, to indicate that the selection only
applies to the analysis that follows.

TEMPORARY .

SELECT IF (country<3).
UNIANOVA height BY country
/DESIGN=country

/PRINT = PARAMETER.

In the output in Figure [B:3] we see that now only the data from Greece
and Italy are compared. From the Parameter Estimates table, we see that
country 2 is the reference category, which is Italy. We also see that the average
height in Greece is 1.008 cm taller than Italy. This effect is not significant,
t(98) = 1.371,p = 0.17. We use 98 degrees of freedom because we have 100
people and loose 2 degrees of freedom, one for the intercept and once for the
regression coefficient for country=1. Note that this number is also indicated in
the Tests of Between-Subjects Effects table, as the df of the Error.

So what is different from the contrast effect? First of all, we see that the
p-value is different: the p-value for the contrast effect analysis is somewhat
larger than the one for the ’ordinary’ ¢t-test. Second, we see that the t-statistic
is different: In the contrast analysis the t-value was 2.96 and in the ordinary
analysis it was 1.371. So part of the reason that the p-value is different for the
contrast is that the t-value is higher. Third, we see that the degrees of freedom
has changed from 147 to 98. Well, we know that the significance level of a
t-value depends on its size, the higher the ¢t-value the lower the p-value, and we
know that significance also depends on the degrees of freedom: the more degrees
of freedom, the lower the p-value.

So why has the t-value changed? Well, we know that the ¢-value is nothing
but the regression coefficient divided by its standard error, t = B/SE. If we
compare the two outputs, we see that the effect of B is the same, the regression
coefficient is equal to 1.008, and the contrast estimate in the Contrast Results
(K-Matrix) is 1.008. So the sizes are the same.

So the only difference between the two analyses can be the standard error.
It turns out the standard error is computed in different ways: in the first con-
trast analysis, this SE is computed on the basis of all the data, including the
Norway data (150 people). We can see that from the degrees of freedom, the
number of people minus 3. Why three? Because we also compute the variance
of the Norway data, for which we have to estimate the mean (variance is the
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= Univariate Analysis of Variance

Between-Subjects Factors

Value Label N
country  1.00 | Greece 50
2.00 | raly 50

Tests of Between-Subjects Effects

Dependent Variable: height

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 25.406° 1 25.406 1.880 173
Intercept 2707809.07 1 | 2707809.07 | 200384.457 .000
country 25.406 1 25.406 1.880 173
Error 1324.281 98 13.513
Total 2709158.76 100
Corrected Total 1349.687 99

a. R Squared = .019 (Adjusted R 3quared = .009)

Parameter Estimates

Dependent Variable: height

95% Confidence Interval
Parameter B std. Error 1 Sig. Lower Bound | Upper Bound
Intercept 164.050 520 | 315.562 .000 163.019 165.082
[country=1.00] 1.008 735 1.371 173 -.451 2.467
[country=2.00] 0? .

a. This parameter is set to zero because it is redundant.

Figure 8.3: Output of an analysis after selecting only the data from Greece and
Italy.

average squared difference from the mean). In the second analysis, we only used
the data from 100 Greeks and Italians. The Norway data was not used at all,
that’s why the degrees of freedom is different and also the standard error for
our t-statistic.

Thus in summary: if we have a very specific hypothesis about the difference
in means among two groups, it’s better to use a contrast analysis, rather than
a simple analysis regarding only those two groups. The reason for this is that
more information is used, even from groups for which we have no specific hy-
pothesis.

Note that here we saw a higher p-value for the contrast analysis, but still, in
general it is wiser to use as much data as possible, so we prefer a contrast anal-
ysis over a simple analysis excluding other groups.

The above example of comparing only the means of two groups, at the same
time making use of the data in other groups, is called a simple contrast. Now
let’s look at a complex contrast. Suppose your hypothesis is that average height
is different in Northern-European countries than in Southern-European coun-
tries, then you would like to know whether Italy and Greece taken together
differ regarding the average height from Norway. So we’d like to compare the
average height in Norway to the average height in Greece and Italy together.
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We could write that null-hypothesis as follows:

. HGreece + Nltaly

Hy 5

= UNorway (81)

In other words, the mean height in Norway is equal to the average mean
height in the two other countries. If we want to test this hypothesis, we have
to define a contrast. So we get the zero on the right-hand side in the following
way:

. HGreece + ,LLItaly

Y2 - 9 — UNorway = 0 (82)

This in turn we can write as

o

Y2 ! 0-5NGreece + 0-5,ultaly - ]-ﬂNorway == (83)

% — l)ﬂ We use the

N

In SPSS, we can code this in the following way (
following syntax:

UNIANOVA height BY country
/DESIGN=country
/CONTRAST (country)=SPECIAL(0.5 0.5 -1).

Now let’s compare this analysis where we use a dummy variable NrthrnEr,
where we code 1s for Norwegians and Os for Greeks and Italians. We then run
an ordinary linear model on the data using this dummy that is a quantitative
predictor of height:

UNIANOVA height WITH NrthrnEr
/PRINT=PARAMETER
/DESIGN=NrthrnEr.

From the contrast analysis we obtain F'(1,147) = 10.56, MSE = 14.77,p =
0.001, which is equivalent to ¢(147) = 3.25, p = 0.001. From the dummy variable
analysis, we obtain ¢(148) = 3.24,p = 0.001. So in this case, the results are very
close: the degrees of freedom is larger for the dummy variable analysis, but the
t-value is lower. All in all, we gain nothing much, and that is because in the
dummy analysis we also use all of the data: we put the Greeks and Italians
in one group (N=100), and the Norwegians in another group (N=50). The
degrees of freedom therefore differs cause we only need to estimate 2 means in
the dummy analysis, instead of 3 in the contrast analysis.

In general: if you run a model where you compare various groups, AND you
have very specific hypotheses that you’d like to test, it is generally advised to run

INote that for the SPSS variable country variable, the first group is Greece, the second is
Italy and the third is Norway. The contrast code should reflect the same order.
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a contrast analysis, including a small number of them, and then report only the
tests and p-values of those contrasts. Do not then also report the p-values of the
parameters of your model. Actually, your contrasts are a respecification of your
model: either report the contrasts or the parameters, but not both, since they
contain the same information. If you report too many p-values, the probability
that you make a Type I error (concluding that you have a significant difference
while there is really no difference) becomes too large. That is also the reason why
you should report not more contrasts than the number of your parameters for
your variable. For example, if you compare 5 groups, you will have 4 parameters
for these groups. In that case specify no more than 4 contrasts. SPSS has a
number of prespecified sets of contrasts, like Helmert, Deviation, Difference,
etcetera. Check out the SPSS manual for more details. If you want something
more specific, use the SPECIAL option as indicated above.

8.2 Testing more than one contrast

In some cases you have a number of research hypotheses about group differences.
For instance, you might have the a priori hypothesis that people in Northern
countries are taller than in Southern countries, and another a priori hypothesis
that people in Western countries are taller than in Eastern countries. So, a
priori you have the hypothesis that the mean height in Norway is different from
the mean heights in Greece and Italy combined. Second, you expect that the
mean height in Italy is higher than in Greece.

You could test these two hypotheses at once in SPSS by specifying a K
matrix, like so:

UNIANOVA height BY country

/DESIGN=country

/CONTRAST (country)=SPECIAL(-0.5 -0.5 1
1 -1 0).

Remember that the countries were coded like 1=Greece, 2=Italy, and 3=
Norway. So the first null-hypothesis that is tested is that Norway has the same
mean as the average of Greece and Italy. The second null-hypothesis is that
Greece and Italy have the same mean.

This set of contrasts is said to be orthogonal: whether or not we find a
significant result for the first contrast has nothing to do with whether we find
a significant result for the second contrast. Why this is the case can be seen
from the K matrix: if we take the first elements of the first and second row
and multiply them we get —0.5 x 1 = —0.5. If we take the second elements
of the first and second row and multiply them we get —0.5 x —1 = 0.5. If we
take the third elements of the first and second row and multiply them we get
1 x 0 =0. If we add these numbers we get —0.5 4+ 0.5 + 0 = 0. Here we get a
total of 0, which indicates that the contrasts are orthogonal, implying that the
statistical results for contrast 1 and 2 are independent of eachother. If the sum
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is unequal to 0, the contrasts are said to be dependent. Here’s an example of a
non-orthogonal set of contrasts:

UNIANOVA height BY country

/DESIGN=country

/CONTRAST (country)=SPECIAL( 1 o -1
i -1 0.

Here the sum of the products equals 1 x 1+0x —1+—1x0 = 1. This means
that the set of statistical results is not independent of each other, so if the null-
hypothesis if the first contrast is significant, this yields some information about
the probablity of obtaining a significant result for the second contrast. This you
do not want, of course. So generally you would want to use independent sets of
contrast. However, research questions are always more important: if you have
good theoretical reason to specify a set of non-orthogonal contrast, just go for
it (Stevens, ).

As stated earlier, SPSS has a number of pre-specified sets of contrasts. One
of them is the Helmert set of contrasts. In Helmert contrasts, the first group is
contrasted with the average of all later groups, the second group is compared to
the average of the later groups (ignoring group 1), the third group is compared
with the average of the later groups (ignoring groups 1 and 2), etcetera. For a
five country analysis, the syntax would be like

UNIANOVA height BY country
/DESIGN=country

/CONTRAST (country)=SPECIAL (1 -0.25 -0.25 -0.25 -0.25
01-0.33 -0.33 -0.33
001-0.5-0.5
0001-1).

and this is equivalent to the syntax

UNIANOVA height BY country
/DESIGN=country
/CONTRAST (country)=HELMERT.

This set of 4 contrasts is also completely orthogonal: all pairs of contrasts
are orthogonal.

8.3 Post-hoc comparisons

In some cases, you compare 3 or more groups, and you find some interesting
differences. For instance, in the above example, when you look at the boxplot
of the differences between Greece, Italy and Norway, you might wonder whether
there is a real difference in Italy and Greece. Or perhaps there is a difference
between Norway and Italy, or even between Norway and Greece. There might
be all kinds of interesting things to find out from these data.
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In this case note, we now formulate these hypotheses after looking at the
differences in our data. In this case, suppose that there was no specific hy-
pothesis before collecting our data, and we merely wanted to find out whether
there are differences between mean heights across these countries. So, our null-
hypothesis before looking at the data was that there were no differences in mean
height across Greek, Italian and Norwegian populations. To test this, we per-
form a regular linear model analysis, with height as the dependent variable and
a categorical variable country as independent variable. We want SPSS to make
dummy variables automatically, so we use the following syntax using BY:

UNIANOVA height BY country
/PRINT=PARAMETER
/DESIGN=country.

Tests of Between-Subjects Effects

Dependent Variable: height

Type Ill Sum of
Source Squares df Mean Square F Sig.
Corrected Model 181.382° 2 90.691 6.142 .003
Intercept 4097387.37 1 | 4097387.37 277508.194 .000
country 181.382 2 90.691 6.142 .003
Error 2170.444 147 14.765
Total 4099739.20 150
Corrected Total 2351.826 149

a. R Squared = .077 (Adjusted R Squared = .065)

Figure 8.4: Output of an regular linear model.

From the output in Figure[8.4 we use the F-test to test the overall hypothesis
about equality of means, and report a significant difference between the three
means, F(2,147) = 6.14, MSE = 14.77,p < 0.05. Now given that we have
this rejection of the null-hypothesis, we might be very interested where this
significance comes from: is it that Norway is very different from the other two
countries? Perhaps there are no differences between Greece and Italy? Perhaps
there is only a real difference between Norway and Italy, but no real difference
between Greece and Italy. And so on, and so forth. Note that here you could
make 3 pair-wise simple comparisons: Greece vs Italy, Greece vs Norway and
Italy vs Norway. You or anyone else intested in your research would like to
know if these pair-wise differences are significant. In that case you can report
so-called post hoc pairwise comparisons.

Note that we do not perform planned comparisons using contrasts here.
Planned comparisons are very powerful tools that are only allowed for hypothe-
ses that are specificied a priori, that is, before doing any analysis, and preferably
before any data collection. Post hoc comparisons are done after the fact: af-
ter testing the research hypothesis and after having looked at the data (seeing
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means or boxplots!), you can test extra hypotheses that are of secondary inter-
est. First we will show you how to do it, and second we will explain why we do
it like that.

UNIANOVA height BY country
/PRINT=PARAMETER
/DESIGN=country
/POSTHOC=country (BONFERRONI) .

So we state that we wish to see posthoc comparisons for the variable country.
In parentheses we indicate Bonferroni, which we will explain later.

Bonferroni

Vean 95% Confidence Interval
() country _(9) country | Difference (1) | sStd. Error | _Sig Lower Bound | Upper Bound
Greece taly 1.0081 76850 575 8530 2.8692

Norway -1.6591 76850 097 -3.5202 .2020
taly Greece -1.0081 76850 575 -2.8692 8530
Norway -2.6672" 76850 002 -4.5283 -.8061
Norway  Greece 1.6591 76850 097 2020 35202
ltaly 2.6672" 76850 002 .8061 4.5283

Based on observed means.
The error term is Mean Square(Error) = 14.765.

*. The mean difference is significant at the 0

Figure 8.5: Output of post hoc comparisons.

From Figure [8.5| we see that there are 6 comparisons, but by closer inspec-
tion we see that all three possible comparisons are reported twice. We see a
significant difference between Italy and Norway, p < 0.002, and that the other
two comparisons are not significant. So average height in Greece is not different
from the average height in Italy, p > 0.575, nor from that in Norway, p > 0.097.
Now note the difference from the Planned comparisons analysis. There we found
a p-value of 0.19 for the hypothesis that Greece has the same average height
as Italy. This contrast had a somewhat higher p-value than a simple dummy
analysis for Greece and Italy, ignoring the Norwegian data, p = 0.17. And now
we see a much higher p-value of 0.58. The reason is that a correction has been
applied to the p-values. This correction is needed because otherwise we too
easily conclude that there are true differences between Greece and Italy.

Remember that the probability of a Type I error is very often chosen to be
5%. If we have one null-hypothesis that we want to test, the probability that we
incorrectly conclude that there is a difference in means (but there is really no
difference at population level!) is 5%. But suppose we have 10 hypotheses that
we wish to test. Then what is the probability of finding at least 1 signficant
result while there is no difference? Well, it could be that our first hypothesis is
falsely rejected, or our second, or our third, or perhaps even both our second
and fourth hypothesis, and so on and so forth. With 10 hypotheses to test,
there will be a high probablity that at least 1 will be falsely rejected. If each
hypothesis has a probability of a Type I error of 5%, the probability that none
of the hypotheses is falsely rejected equals 0.951° = 0.60 (if we assume that
all probablities are independent). So the probability that at least one is falsely
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rejected is the complement of that, so 0.40. If we carry out such research with 10
hypotheses, each using a significance level of 5%, we actually have a probability
of 40% of making at least one Type I error! That is awful, we don’t want that.
That’s why in research, with a lot of hypotheses to be tested, we generally adjust
the p-value in order to be more careful rejecting null-hypotheses. Theoretically,
the p-value of our posthoc comparison of Greece and Italy should be equal to
0.19, corresponding to the simple dummy variable analysis ignoring Norway,
but we report 0.575, because we also test two other hypotheses here. Actually,
the p-value of the simple analysis of 0.19 is multiplied by the total number of
tests, which is 3.

8.4 Fishing expeditions

The practice of testing a lot of hypotheses is often described as a fishing expedi-
tion. Just set out with large nets, throw them out, and catch whatever you can.
In some extreme cases, in genetics for example, researchers test thousands or
even millions of hypotheses on the basis of only one data set. Imagine that you
collect height data on 70 countries and you want to know what countries differ
from what other countries. The total number of pairs of countries equals 70 over
2, which is equal to 2415. So with 2415 p-values, what is the a priori probablity
of a significant result? If in reality there ARE no differences in means, and a
fixed significance level of 0.05, 5% of the p-values will be significant! So with
such a data set, there will be at least 0.05 x 2415 = 121 significant p-values.
At least, because there might be some true ones too. So in that scenario, it is
impossible to know which p-values are too be trusted: many of them will involve
false rejections.

For this reason, always be very specific about the null-hypothesis that you
want to test with your data. If you have a very specific hypothesis about the
differences in means, following a specific pattern, then always use a planned
contrasts analysis. If after your analysis, there are some secondary hypotheses
that you’d like to check (but for which you had no specific expectation) then
report posthoc tests. The Bonferroni post hoc test is a good choice, as it is
very conservative: it is very unlikely that you will falsely reject a hypothesis.
Alternatively, there are some other post hoc tests, for further reading see the
SPSS manual.

In general do a contrast analysis (planned comparisons) if:

e the overall test for the equality of all means is significant

e the comparisons are chosen before looking at the results (means, plots,
statistical tests): they should be planned ahead!

e the number of planned contrasts should not exceed the degrees of freedom,
that is, the number of groups minus 1.

Otherwise, do posthoc analyses, or better still, perform as few tests as pos-
siblel Only do posthoc tests if you are in an exploratory mood (you’re not
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having a specific hypothesis but you would like to get some new ideas for future
research) or when your supervisor asks for them.

8.5 Exercises

You compare 4 groups. You’d like to know whether the averages observed in
groups 1 and 2 differ from the averages observed in groups 3 and 4.

e State the null hypothesis

e Define the contrast

e Provide the SPSS syntax for this contrast
answers:

e Hy: W - % =0

e (0.50.5-0.5-0.5)

e UNIANOVA height BY group
/DESIGN=country
/CONTRAST (country)=SPECIAL(0.5 0.5 -0.5 -0.5).

You compare 5 groups. You'd like to know whether the average observed in
group 1 differs from the averages observed in groups 3, 4 and 5.

e State the null hypothesis

e Define the contrast

e Provide the SPSS syntax for this contrast
answers:

o Hy: k- H3+lg4+lts -0

e (10-0.33 -0.33 -0.33)

e UNIANOVA height BY group
/DESIGN=group
/CONTRAST (group)=SPECIAL((1 0 -0.33 -0.33 -0.33)).

A student has run the following SPSS syntax:
UNIANOVA score BY school

/DESIGN=school
/CONTRAST (school)=SPECIAL((0 0 1 -0.5 -0.5)).
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What null-hypothesis is tested using this syntax?
answer: The hypothesis that the average score in school 3 is the same as the
mean average score in schools 4 and 5 or Hy : ug = %2“5

A student has tested the research hypothesis that height is different in the
Benelux countries: The Netherlands, Belgium and Luxemburg, and finds a sig-
nificant result. His supervisor asks then where the differences come from: is
it that height is different in the Netherlands, or is it perhaps Luxemburg that
deviates from the other two countries? She would like to have more specific in-
formation where the differences are between these three countries. What would
you advise this student to do?

answer: the supervisor does not seem to have any clearcut hypthesis about
height differences in the Benelux countries. You therefore advise to carry a
number of posthoc tests, that take into account the increase in the probability
of a Type I error by adjusting p-values.

A student has tested the research hypothesis that height is different in the
Benelux countries: The Netherlands, Belgium and Luxemburg, and finds a sig-
nificant result. His supervisor then says that the student is not finished yet. She
would like to know whether the theory is correct that the larger the country, the
taller the people. She would therefore like to know whether the average height
in small country Luxemburg is different from the height averages in Belgium
and The Netherlands.

answer: the supervisor has a clearcut hypothesis about height differences in
the Benelux countries. You therefore advise to carry out a planned comparison
(a contrast analysis), that specifically tests the null hypothesis that the average
in Luxemburg is the same as the mean average of Belgium and the Netherlands
together.
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Chapter 9

Assumptions of linear
models

9.1 Introduction

Linear models are models. A model describes the relationship between two or
more variables. A good model gives a valid summary of what the relationship
between the variables looks like. Let’s look at a very simple example of two
variables: height and weight. In a sample of 100 children from a distant country,
we find 100 combinations of height in cms and weight in kilograms that are
depicted in the scatterplot in Figure [9.1

We’d like to find a linear model for these data, so we determine the least
squares regression line. We also determine the standard deviation of the resid-
uals so that we have the following statistical model:

weight = —104.828 + 1.038 * height + e (9.1)
e~ N(0,0 = 4.043)

This model, defined above, is depicted in Figure The blue line is the
regression line, and the dots are the result of simulating (inventing) independent
normal residuals with standard deviation . The figure shows how the data would
like like if we don’t have access to the data. The actual data might have arisen
from this model. The data is only different from the simulated data because of
the randomness of the residuals.

A model should be a good model for two reasons. First, a good model is a
summary of the data. Instead of describing all 100 data points on the children,
we could summarize these data with the linear equation of the regression line
and the standard deviation of the residuals. The second reason is that you
would like to infer something about the relationship between height and weight
in all children from that distant country. It turns out that the standard error,
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Figure 9.2: Data set on height and weight in 100 children and the least squares
regression line.
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Figure 9.3: Histogram of the residuals after regressing weight on height.

and hence the confidence intervals and hypothesis testing, are only valid if the
model describes the data well. This means that if the model is not a good
description of your sample data, then you draw the wrong conclusions about
the population.

For a linear model to be a good model, there are four conditions that need
to be fullfilled. First, the relationship between the variables can be described by
a linear equation (linearity), second, the residuals are independent of eachother
(independence), third, the residuals have equal variance (equal variance), and
the distribution of the residuals is normal (normality). If these conditions (often
called assumptions) are not met, the inference with the computed standard error
is invalid. That is, if the assumptions are not met, the standard error should
not be trusted, or should be computed using alternative methods.

Below we will discuss these four assumptions in turn briefly. For each as-
sumption, we will show that the assumptions can be checked by looking at the
residuals. We will see that if the residuals do not look right, one or more of the
assumptions are violated. But what does it mean that the residuals look right?

WEell, the linear model says that the residuals have a normal distribution. So
for the height and weight data, let’s compute the residuals for all 100 children
and plot the distribution with a histogram, see Figure|9.3] The histogram shows
a bell-shaped distribution with one peak and more or less symmetric. The
symmetry is not perfect, bu you can well imagine that if we had measured more
children, the distribution would more and more resemble a normal distribution.

Another thing the model implies is that the residuals are random: they are
random draws from a normal distribution. This, if we would plot the residuals,
we should see no systematic pattern in the residuals. The scatterplot in Figure
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Figure 9.4: Residual plot after regressing weight on height.

[0-4 plots the residuals in the order in which they appear in the data set. The
figure seems to suggest a random scatter of dots, without any kind of system
or logic. We could also plot the residuals as a function of their predictor value.
Figure (9.5 shows there is no systematic relationship between the height of a
child and the residual.

When it looks like this, it shows that the residuals are randomly chosen and
independent of height. Taken together Figures and [9.5] suggest that the
assumptions of the linear model are met.

Let’s have a look at the same kinds of residual plots when each of the as-
sumptions of the linear model is not violated.

9.2 Independence

The assumption of independence is about the way in which observations are
similar and dissimilar from each other. Take for instance the following regression
equation for children’s height predicted by their age:

height = 100 + 5 x age + e (9.3)

This regression equation predicts that a child of age 5 has a height of 125 and
a child of age 10 has a height of 150. In fact, all children of age 5 have the same
predicted height of 125 and all children of age 10 have the same predicted height
of 150. Of course, in reality, children of the same age will have very different
heights: they differ. According to the above regression equation, children are
similar in height because they have the same height, but they differ because of
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Figure 9.5: Residuals as a function of height.

the random term e that has a normal distribution: predictor age makes them
similar, residual e makes them dissimilar. Now, if this is all there is, then this is
a good model. But let’s suppose that we’re studying height in an international
group of 50 Ethiopian children and 50 Vietnamese children. Their heights are
plotted in Figure

From this graph, we see that heights are similar because of age: older children
are taller than younger children. But we see that children are also similar
because of their national background: Ethiopean children are systematically
taller than Vietnamese children, irrespective of age. So here we see that a
simple regression of height on age is not a good model. We see that when we
estimate the simple regression on age and look at the residuals in Figure [09.7]

As our model predicts random residuals, we expect a random scatter of
residuals. However, what we see here is a systematic order in the residuals:
they tend to be positive for the first 50 children and negative for the last 50
children. These turn out to be the Ethiopean and the Vietnamese children, re-
spectively. This systematic order in the residuals is a violation of independence:
the residuals should be random, and they are not. The residuals are dependent
on country: positive for Ethiopeans, negative for Vietnamese children. Thus,
there is more than just age that makes children similar. Thus, the model is not
a good model: if there is more than just age that makes children more alike,
then that should be incorporated into our model.

If we use multiple regression, including both age and country, and we do the
analysis, then we get the following regression equation:

height = 102.641 + 5.017 x age — 1.712 x country (9.4)
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Figure 9.7: Residual plot after regressing height on age.
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Figure 9.8: Residual plot after regressing height on age and country.

When we now plot the residuals we get a nice random scatter, see Figure
9.5

Another typical example of non random scatter of residuals is shown in
Figure[9.9] They come from an analysis of reaction times, done on 10 students
where we also measured their IQ. Each student was measured on 10 trials. We
predicted reaction time on the basis of student’s IQ using a simple regression
analysis. The residuals are clearly not random, and if we look more closely, we
see some clustering if we give different colours for the data from the different
students, see Figure

We see that residuals that are close together come from the same student.
So, reaction time are not only similar because of 1Q, but also because they
come from the same student: clearly something other than IQ explains why
reaction times are different across individuals. The residuals in this analysis
are not independent given 1Q, they are dependent on the student. This may
be because of a number of factors: dexterity, left-handedness, practice, age,
motivation, tiredness or any combination of such factors. You may or may not
have information about these factors. If you do, you can add them to your
model and see if they explain variance and check if the residuals become more
randomly distributed. But if you don’t have any extra information, or if do you
but the residuals remain clustered, you might consider linear mixed models,
discussed in Chapter [I1]

The assumption of independence is the most important assumption in linear
models. Just a small amount of dependence among the observations causes your
actual standard error to be much larger than reported by your software. For
example, you may think that a confidence interval is j0.1, 0.2;, so you reject the
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Figure 9.9: Residual plot after regressing reaction time on IQ.
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Figure 9.10: Residual plot after regressing reaction time on IQ, with separate
colours for each student.
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Figure 9.11: Least squares regression line for fear of snakes on height in 100
children.

null-hypothesis, but in reality the standard error is much larger, with a much
wider interval, say j-0.1, 0.4; so that you in reality you are not allowed to reject
the null-hypothesis. The reason that this happens is can be explained when
we look again at Figure Objectively, there are 100 observations, and this
is fed into the software: IN = 100. This sample size is then used to compute
the standard error (see Chapter [3). However, because the reaction times from
the same student are so much alike, effectively the number of observations is
much smaller. The reaction times from one student are in fact so much alike,
you could almost say that there are only 10 different reaction times, one for
each student, with only slight deviations within each student. Therefore, the
real number of observations is somewhere between 10 and 100, and therefore
the reported standard error is underestimated when there is dependence in your
residuals (standard errors are inversely related to sample size, see Chapter [3)).

9.3 Linearity

The assumption of linearity is often also referred to as the assumption of additiv-
ity. Contrary to intuition, the assumption is not that the relationship between
variables should be linear. The assumption is that there is linearity or additivity
in the parameters. That is, the effects of the variables in the model should add
up.

Suppose we gather data on height and fear of snakes in 100 children from a
different distant country. Figure plots these two variables, together with
the least squares regression line.
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Figure 9.12: Residual plot after regressing fear of snakes on height.

Figure [9.12 shows regularity in the residuals: the positive residuals seem to
be smaller than the negative residuals. This is also reflected in the histogram in
Figure that does not look symmetric at all. What might be the problem?

Take another look at the data in Figure We see that for small heights,
the data points are all below the regression line, and the same pattern we see
for large heights. For average heights, we see on the contrary all data points
above the regression line. Somehow the data points do not suggest a completely
linear relationship, but a curved one.

This problem of model misfit could be solved by not only using height as
the predictor variable, but also the square of height, that is, height?. For each
observed height we compute the square. This new variable, let’s call it height2
we add to our regression model. The least squares regression equation then
becomes:

fear = —2000 + 100 x height — 0.56 x height2 (9.5)

If we then plot the data and the regression line, we get Figure There
we see that the regression line goes straight through the points. Note that the
regression line when plotted agains height is non-linear, but equation [0.5 itself
is linear, that is, there are only two effects added up, one from variable height
and one from variable height2. We also see from the histogram (Figure
and the residuals plot (Figure that the residuals are randomly drawn from
a normal distribution and are not related to the square of height. Thus, our
additive model (our linear model) with effects of height and height squared
result in a nice model with random normally scattered residuals.
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Figure 9.13: Histogram of the residuals after regressing fear of snakes on height.
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Figure 9.14: Observed and predicted fear based on a linear model with fear and
fear squared
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Figure 9.16: Residuals plot of the fear of snakes data with height squared in-
troduced into the linear model.
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Figure 9.17: Least squares regression line for reaction time on age in 100 adults.

In sum, the relationship between two variables need not be linear in order for
a linear model to be appropriate. A transformation of an independent variable,
such as taking a square, can result in normally randomly scattered residuals.
The linearity assumption is that the effects of the effects of a number of variables
(transformed or untransformed) add up and lead to model with normally and
independently randomly scattered residuals.

9.4 Equal variances

Suppose we measure reaction times in both young and older adults. Older
persons tend to have longer reaction times than young adults. Figure[9.17]shows
a data set on 100 persons. Figure[9.18 shows the residuals as a function of age,
and shows something remarkable: it seems that the residuals are much more
varied for older people than for young people. There is more variance at older
ages than at younger ages. This is violation of the equal variance assumption.
Remember that a linear model goes with a normal distribution for the residuals
with a certain variance. In a linear model, there is only mention of one variance
of the residuals, not several!

The equal variance assumption is an important one: if the data show that
the variance is different for different subgroups of individuals in the data set,
then the standard errors of the regression coefficients cannot be trusted.

We often see an equal variance violation in reaction times. An often used
strategy of getting rid of such a problem is to work not with the reaction time,
but the logarithm of the reaction time. Figure [9.19] shows the data with the
computed logarithms of reaction time, and Figure shows the residuals plot.
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Figure 9.18: Residual plot after regressing reaction time on age.

You can see that the log-transformation of the reaction times resulted in a much
better model.

Note that the assumption is not about the variance in the sample data, but
about the population data. It might well be that there are slight differences
in the sample data of the older people than in the sample data of the younger
people. These could well be due to chance. The important thing to know is
that the assumption of equal variance is that in the population of older adults,
the variation in reaction times is the same as the variation in reaction times in
the population of younger adults.

The equal variance assumption is often referred to as the homogeneity of
variance assumption. It is the assumption that variance is homogeneous (of
equal size) across all levels and subgroups of the independent variables in the
population. The computation of the standard error is highly dependent on
the size of the variance of the residuals. If the size of this variance differs
across levels and subgroups of the data, the standard error also varies and the
confidence intervals cannot be easily determined. This in turn has effect on the
computation of p-values, and therefore inference. Having no homogeneity of
variance therefore leads to wrong inference, with inflated or deflated type I and
type II error rates.

The inflation or deflation of type I and type II error rates are limited in the
case that group sizes are more or less equal. For example, suppose you have an
age variable with about an equal number of older persons and younger persons,
but unequal variances of the residuals, you should no worry too much about the
precision of your p-values and your confidence intervals. However, if you have
more than 1.5 times more elderly in your sample than youngsters (or vice versa),
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Figure 9.19: Least squares regression line for log reaction time on age in 100
adults.
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Figure 9.20: Residual plot after regressing log reaction time on age.
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Figure 9.21: Histogram of the residuals after a regression of reaction time on
age.

with unequal variances of the residuals, you should worry. Briefly: if the greater
error variance is associated with the greater group size, then the p-value reported
by UNTANOVA is too small, and if the greater error variance is associated with
the smaller group size, then the p-value reported by UNIANOVA is too large.
If the p-value is around your pre-chosen a-level and you're unsure whether to
reject or not to reject your null-hypothesis, look for more robust methods of
computing standard errors.

9.5 Residuals normally distributed

As we've already seen, the assumption of the linear model is that the residuals
are normally distributed. Let’s look at the reaction time data again and see
what the histogram of the residuals look like if we use reaction time as our
dependent variable. Figure [9.21] shows that in that case the distribution is not
symmetric: it is clearly skewed.

After the logarithmic transformation of the reaction times, we get the his-
togram in Figure [9.22] which looks more symmetric.

Remember that if your sample size is of limited size, a distibution will never
look completely normal, even if it is sampled from a normal distribution. It
should however be likely to be sampled from a population of data that seems
normal. That means that the histogram should not be too skewed, or too
peaked, or have two peaks far apart. Only if you have a lot of observation, say
1000, you can reasonably say something about the shape of the distribution.

If you have categorical independent variables in your linear model, it is best
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Figure 9.22: Histogram of the residuals after a regression of log reaction time
on age.

to look at the various subgroups separately and look at the histogram of the
residuals: the residuals e are defined as residuals given the rest of the linear
model. For instance, if there is a model for height and country is the only
predictor in the model, all individuals from the same country are given the same
expected height based on the model. They only differ from eachother because of
the normally distributed random residuals. Therefore look at the residuals for all
individuals from one particular country to see whether the residuals are indeed
normally distributed. Then do this for all countries separately. Think about it:
the residuals might look non-normal from country A, and non-nornormal from
country B, but put together, they might look very normal! This is illustrated
in Figure [9.23] Therefore, when checking for the assumption of normality, do
this for every subgroup separately.

9.6 General approach to testing assumptions

It is generally advised to always check the residuals. All four assumptions
mentioned above can be checked by looking at the residuals. We advise to do
this with three types of plots.

The first is the histogram of the residuals: this shows whether the residuals
are more or less normally distributed. The histogram should show a more or
less symmetric distribution. If the plot does not look assymetric at all, try to
find a transformation of the dependent variable that makes the residuals more
normal. An example of this is to log-transform reaction times.

The second type of plot that you should look at is a plot where the residuals
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Figure 9.23: Two distributions might be very non-normal, but when taken
together, might look normal nevertheless. Normality should therefore always
be checked for each subgroup separately.

are on the y-axis and the observation is on the z-axis. Such a plot can reveal
systematic clustering of residuals, which is a violation of independence. Usually
there is an ordering in your data matrix: for instance, first observations are at
the top, last observations at the bottom, observations from one company are
grouped together, or observations that were made by one observer. By plotting
the residuals in the order in which they appear in the data set can reveal patterns
that conflict with the assumption of independence, and that helps you to solve
the problem.

The third type of plot that you should study is a one where the residuals are
on the vertical axis and the predictor variable (or one of the predictor variables)
is on the horizontal axis. Any systematic pattern in such a plot suggests that
the residuals are not random, but are dependent on the predictor value (if there
is a pattern, they can be predicted, and if things can be predicted they are
not random). In this plot, you can also spot violations of the equal variance
assumption.

9.7 Checking assumptions in SPSS

In this section we show the general syntax for making residual plots in SPSS.
We will look at how to make the three types of plots of the residuals to check
the four assumpions.

When you run a linear model with the UNTANOVA command, you can add
the subcommand SAVE RESID to indicate that you want to save the resid-
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uals that SPSS computes automatically for you. For instance, for a multiple
regression model, your syntax might look like

UNIANOVA height BY country WITH age
/DESIGN country age country*age
/PRINT=PARAMETER

/SAVE RESID.

The SPSS data matrix now contains the variable RES_1.

9.7.1 A histogram of the residuals

You can make the histogram by using the syntax

GRAPH
/HISTOGRAM=RES_1.

If you have one or more categorical predictors, make such histograms for
each subgroup with the following syntax:

SORT CASES BY country sex.
SPLIT FILE SEPARATE BY country sex.
GRAPH
/HISTOGRAM=RES_1.
SPLIT FILE OFF.

With this syntax you split the data file into subfiles. Then for each subfile
you make a histogram, after which you put the put the subfiles together again.

9.7.2 Residuals by observation number

First we have to create a new variable that indicates what observation a residual
belongs to. SPSS calls this the case number. It is actually the row number in
the data matrix. We compute the new variable obs_number with the following
syntax:

COMPUTE obs_number=$CASENUM.
EXECUTE.

Next, we plot the residual against this new variable with a scatterplot:

GRAPH
/SCATTERPLOT (BIVAR)=obs_number WITH RES_1.
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9.7.3 Residuals by independent variables

We plot the residual against independent variables with scatterplots if they are
numeric, for example:

GRAPH
/SCATTERPLOT (BIVAR)=age WITH RES_1.

We plot the residual against independent variables with boxplots if they are
categorical, for example:

EXAMINE VARIABLES=RES_1 BY country
/PLOT=BOXPLOT.

If you have two categorical independent variables, for instance if beside coun-
try, you also have sex in your linear model, it’s generally best to split the boxplot
into subgroups, for example:

EXAMINE VARIABLES=RES_1 BY country BY sex
/PLOT=BOXPLOT.
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Chapter 10

When assumptions are not
met: non-parametric
alternatives

10.1 Introduction

Linear models do not apply to every data set. As discussed in Chapter [9]
sometimes the assumptions of linear models are not met. One of the assumptions
is linearity or additivity. Additivity requires that one unit change in variable
x leads to the same amount of change in y, no matter what value z has. For
bivariate relationships this leads to a linear shape. But sometimes you can
only expect that y will change in the same direction, but you don’t believe
that this amount is the same for all values of x. This is the case for example
with an ordinal dependent variable. Suppose we wish to model the relationship
between the age of a mother and an aggression score in her 7-year-old child.
Suppose aggression is measured on a three-point ordinal scale: 'not aggressive’,
‘'sometimes aggressive’, ’often aggressive’. Since we do not know the quantitative
differences between these three levels there are many graphs we could draw for
a given data set.

Suppose we have the data set given in Table If we want to make a
scatter plot, we could arbitrarily choose the values 1, 2, and 3 for the three
categories, respectively. We would then get the plot in Figure But since
the aggression data are ordinal, we could also choose the arbitrary numeric
values 0, 2, and 3, which would yield the plot in Figure [10.2]

As you can see from the least squares regression lines in Figures and
10.2] when we change the way in which we code the ordinal variable into a
numeric one, we also see the best fitting regression line changing. This does
not mean though, that ordinal data cannot be modelled linearly. Look at the
example data in Table where aggression is measured with a 7-point scale.
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Aggression
v

30.0 305 31.0 315 32.0 325
AgeMother

Figure 10.1: Regression of the child’s aggression score (1,2,3) on the mother’s
age.

Aggression2

30.0 305 31.0 315 32.0 325
AgeMother

Figure 10.2: Regression of the child’s aggression score (0,2,3) on the mother’s
age.
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Table 10.1: Aggression in children and age of the mother.
AgeMother Aggression

32.00 Sometimes aggressive
31.00 Often aggressive
32.00 Often aggressive
30.00 Not aggressive

31.00 Sometimes aggressive
30.00 Sometimes aggressive
31.00 Not aggressive

31.00 Often aggressive
31.00 Not aggressive

30.00 Sometimes aggressive
32.00 Often aggressive
32.00 Often aggressive
31.00 Sometimes aggressive
30.00 Sometimes aggressive
31.00 Not aggressive

Plotting these data in Figure using the values 1 through 7, we see a nice
linear relationship. So even when the values 1 thru 7 are arbitrarily chosen,
a linear model can be a good model for a given data set with one or more
ordinal variables. Whether the interpretation makes sense is however up to the
researcher.

So with ordinal data, always check that your data indeed conform to a linear
model, but realize at the same time that you’re assuming a quantitative and
additive relationship between the variables that may or may not make sense. If
you believe that a quantitative analysis is meaningless then you may consider a
nonparametric analysis that we discuss in this chapter.

Another instance where we favour a nonparametric analysis over a linear
model one, is when the assumption of normally distributed residuals is not
tenable. For instance, look again at Figure where we regressed aggression
in the child on the age of its mother. Figure [I0.4] shows a histogram of the
residuals. Because of the limited number of possible values in the dependent
variable (1, 2 and 3), the number of possible values for the residuals is also
very restricted, which leads to a very discrete distribution. The histogram looks
therefore far removed from a continuous symmetric, bell-shaped distribution, a
violation of the normality assumption.

Everytime we see a distribution of residuals that is either very skew, or has
very few different values, we should consider a nonparametric analysis. Note
that the shape of the distribution of the residuals is directly related to what scale
values we choose for the ordinal categories. By changing the values we change
the regression line, and that directly affects the relative sizes of the residuals.

First, we will discuss a nonparametric alternative for two numeric variables.
We will start with Spearman’s rho, or Spearmams rank-order correlation coef-
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Figure 10.3: Regression of the child’s aggression 1 thru 7 Likert score on the
mother’s age.
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Figure 10.4: Histogram of the residuals of the regression of a child’s aggression
score on the mother’s age.
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Table 10.2: Aggression in children on a 7-point Likert scale and age of the
mother.

AgeMother Aggression
35.0
32.0
35.2
36.0
32.9
29.9
32.3
32.2
34.2
30.5
31.6
30.5
31.7
314
37.5

N W WN WN RN FEWIEOD =D

ficient r,. Next we will discuss an alternative to r,, Kendall’s T'. After that we
will discuss the combination of numeric and categorical variables, when com-
paring groups.

10.2 Spearman’s rho

Suppose we have 10 students and we ask their teachers to rate them on their
performance. One teachers rates them on geography and the other teacher rates
them on history. We only ask them to give rankings: indicate the brightest
student with a 1 and the dullest student with a 10. Then we might have the
data set in Table [0.3

Table 10.3: Student rankings on geography and history.
student rank.geography rank.history

1 5 4
2 4 5
3 6 7
4 7 8
5 8 6
6 9 9
7 10 10
8 2 3
9 1 1
10 3 2
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Now we acknowledge the ordinal nature of the data by only having rankings:
a person with rank 1 is brighter than a person with rank 2, but we do not how
large the difference in brightness really is. Now we want to establish whether
there is a relationship between rankings on geography and the rankings on
history: is it true that the higher the ranking on geography, the higher the
ranking on history?

By eyeballing the data, we see that the brightest student in geography is
also the brightest student in history (rank 1). We also see that the dullest
student in history is the dullest student in geography (rank 10). Furthermore,
we see relatively small differences between the rankings on the two subjects: high
rankings on geography seem to go together with high rankings on history. Let’s
look at these differences between rankings more closely by computing them, see

Table [[0.4]

Table 10.4: Student rankings on geography and history.
student rank.geography rank.history difference
5 4 -1

O © 00 IO Uik Wi =
[
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=

N = WO OO o Ut

—_

-1

So theoretically the difference could be as large as 9, but here we see a biggest
difference of -2. The average difference is the sum of these differences, divided
by 10, so we get 0. This is because we plus and minus values. If we would take
the square of the differences, we would get positive values, see Table

Table 10.5: Student rankings on geography and history.
rank.geography rank.history difference squared.difference

) 4 -1 1
4 5 1 1
6 7 1 1
7 8 1 1
8 6 -2 4
9 9 0 0
10 10 0 0
2 3 1 1
1 1 0 0
3 2 -1 1
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Now we can compute the average squared difference, which is equal to 10/10
= 1. Generally, the smaller this value, the closer the rankings of the two teachers
are together, and the more correlation there is between the two subjects.

A clever mathematician like Spearman has shown that is even better to use
a somewhat different measure for a correlation between ranks. He showed that
it is wiser to compute the following statistic:

Sy d (10.1)

=l

because then you get a value between -1 and 1, just like a Pearson correlation.
So in this case the sum of the squared difference is equal to 10, N is the number
of students, so we get:

6 x 10

- -1 =0.94 10.2
10° — 10 60/990 = 0.9 (10.2)

re=1—
This is called the Spearman rank-order correlation coefficient r,. It can be
used for any two variables of which at least one is ordinal. The trick is to convert
the scale values into ranks, and then apply the formula above. For instance,
if we have the variable Grade with the following values (C, B, D, A, F), we
convert them into rankings by saying the A is the highest value (1), B is the
second highest value (2), C is the third highest value (3), D is the fourth highest
value (4) and F is the fifth highest value (5). So tranformed into rankings we
get (3, 2, 4, 1, 5). Similarly, we could turn numeric variables into rankings.
Table shows how the variables grade, shoe size and height are transformed
into their respective ranked versions.

Table 10.6: Ordinal and numeric variables and their ranked transformations.

student grade rank.grade shoesize rank.shoesize height rank.height

1 A 1 6 1 1.70 1
2 D 4 8 3 1.82 2
3 C 3 9 4 1.92 4
4 B 2 7 2 1.88 3

When we let SPSS compute r, for us, it automatically ranks the data for
us. Suppose we have two variables grade and height and we want to compute
79, then we use the syntax:

NONPAR CORR
/VARIABLES=grade height
/PRINT=SPEARMAN .

In the output you will see a correlation matrix very similar the one for a
Pearson correlation. Spearman’s rho is equal to the ro mentioned above. You
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will also see whether the correlation is significantly different from 0, indicated
by a p-value. If the p-value is very small, you may conclude that on the basis
of these data, the correlation in the population is not equal to 0, ergo, in the
population there is a relationship between shoe size and aggression. Note that
you can use this p-value if you want to test the hypothesis that the slope for
the regression of height on grade is zero in the population (or, equivalently, for
the regression of grade on height).

Below we discuss an alternative measure for a correlation for ordinal data,
the Kendall rank-order correlation coefficient 7.

10.3 Kendall rank-order correlation coefficient
T

If you want to know if there is a relationship between two variables, of which at
least one is ordinal, you can either use Spearman’s r; or Kendall’'s T'. However, if
you have three variables, and you want to know whether there is a relationship
between variables A and B, over and above the effect of variable C, you can
use an extension of Kendall’s T. Note that this is very similar to the idea of
multiple regression: a coefficient for variable x; in multiple regression with two
predictors is the effect of x1 on y over and above the effect of zo on y. The
logic of Kendall’s T is also based on rank orderings, but it involves a different
computation. Let’s look at the student data again with the teachers’ rankings
of ten students on two subjects in Table [10.4]

Table 10.7: Student rankings on geography and history, now ordered according
to the ranking for geography.
student rank.geography rank.history

9 1 1
8 2 3
10 3 2
2 4 )
1 ) 4
3 6 7
4 7 8
5 8 6
6 9 9
7 10 10

From this table we see that the history teacher disagrees with the geography
teacher that student 8 is brighter than student 10. She also disagrees with her
colleague that student 1 is brighter than student 2. If we do this for all possible
pairs of students, we can count the number of times that they agree and we
can count the number of times they disagree. The total number of possible
pairs is equal to (120) = 90/2 = 45. This is a rather tedious job to do, but it
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can be made simpler if we reshuffle the data a bit. We put the students in a
new order, such that the brightest student in geography comes first, and the
dullest last. This also changes the order in the variable history. We then get
the data in Table [I0.7} If we look at the column with the ranks for history,
we can count the number of times a higher rank precedes a lower rank. This
happens four times. Since the students are ordered according to the ranking of
the geography teacher, any higher rank that precedes a lower rank is necessarily
a disagreement between the two teachers. Thus, we find that the two teachers
disagree 41 times and therefore agree 45 — 8 = 37 times. Then we can compute
Kendall’s T" as follows:

agreements — disagreements 4 —4

T = =0.82 (10.3)

totalnumbero fpairs 45

This T statistic varies between -1 and 1 and can therefore be seen as a non-
parametric analog of a Pearson correlation. Here, the teachers more often agree
than disagree, and therefore the correlation is positive. A negative correlation
means that the teachers more often disagree than agree on the relative bright-
ness of their students. The computations are quite tedious for larger sample
sizes so we're very lucky that SPSS can do this job for us, with the following
syntax:

NONPAR CORR
/VARIABLES=grade aggression
/PRINT=KENDALL .

As said, the advantage of Kendall’s T' over Spearman’s rg is that Kendall’s
T can be extended to cover the case that you wish to establish the strength
of the relationships of two variables A and B, over and above the relationship
with C. Unfortunately there is no easy way to do this in SPSS. See http://www-
01.ibm.com/support/docview. wss?uid=swg21474822 for how to do this. More
on this can be read in Siegel & Castellan (1988).

Now that we have discussed relationships between ordinal and numeric vari-
ables, let’s have look at the case where we also have categorical variables.

10.4 Kruskall-Wallis test for group comparisons

Suppose we have three groups of students that go on a field trip together:
mathematicians, psychologists and engineers. Each can pick a rain coat, with
five possible sizes: ’extra small’, 'small’, 'medium’, ’large’ or ’extra large’. We
want to know if preferred size is different in the three populations, so that
teachers can be better prepared in the future. Now we have information about
size, but this knowledge is not numeric: we do not know the difference in size
between ‘'medium’ and ’large’, only that ’large’ is larger than 'medium.” We have
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Table 10.8: Fieldtrip data.

student group size rank
001 math extra small 1
002 math extra large 6
003 psych medium 4
004 psych small 2.5
005 engineer large 5
006 math small 2.5

ordinal data, so computing a mean is impossible here. Even we would assign
values like 1= "extra small’, 2=’small’, 3= 'medium’, etcetera, the mean would
be rather meaningless as these values are arbitrary. So instead of focussing on
means, we can focus on medians: the middle value. For instance, the median
value for our sample of mathematicians could be 'medium’, for our sample of
psychologists 'small’, and for our sample of engineers 'large.” Our question might
then be whether the median values in the three populations are really different.

This can be assessed using the Kruskall-Wallis test. Similar to Spearman’s
rs and Kendall’s T', the data are transformed into ranks. This is done for all
data at once, so for all students together.

For example, if we had the data in Table[10.4] we could transform the variable
size into ranks, from smallest to largest. Student 1 has size ’extra small’ so he
or she gets the rank 1. Next, both student 4 and student 6 have size ’small’; so
they should get ranks 2 and 3. However, because there is no reason to prefer
one student over the other, we give them both the mean of ranks 2 and 3, so
they both get the rank 2.5. Next in line is student 3 with size 'medium’ and
(s)he gets rank 4. Next in line is student 5 with size ’large’ (rank 5) and last in
line is student 2 with size ’extra large’ (rank 6).

Next, we could compute the average rank per group. The group with the
smallest sizes would have the lowest average rank, etcetera. Under the null-
hypothesis, if the distribution of size were the same in all three groups, the
average ranks would be about the same. If the average rank is very different
across groups, this is an indication that size is not distributed equally among the
three groups. In order to have a proper statistical test, a rather complex formula
is used to compute the so-called KW -statistic, see Castellan & Siegel (1988).
The distribution of this KW -statistic under the null-hypothesis is known, so we
know what extreme values are, and consequently can compute p-values. This
tedious computation is done by SPSS using the following syntax.

NPTESTS
/INDEPENDENT TEST (size) GROUP (group) KRUSKAL_WALLIS(COMPARE=NONE) .

The output gives you a significance level (p-value) of the test that size is
distributed equally among psychology students, engineering students and math-

ematics students. If the p-value is smaller than your pre-set a-level, you may
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conclude that in the population, students in psychology, mathematics and en-
gineering have different preferences regarding the size of their rain coat on field
trips.
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Chapter 11

Linear mixed modelling:
introduction

11.1 Fixed effects and random effects

In the simplest form of linear modelling, we have one dependent numeric vari-
able, one intercept and one or more independent variables. Let’s look at a simple
regression equation where dependent variable y is predicted by an intercept by
and a linear effect of independent variable x; with regression slope parameter
b1, and an error term e, where we assume that the error term e comes from a
normal distribution.

y="bo+biz1+e (11.1)
e~ N(0,0?) (11.2)

Using this model, we know that for a person with a value of 5 for =1, we
expect y to be equal to by + b1 X 5. As another example, if y is someone’s 1Q
score, x1 is someone’s brain size in cubic milliliters, by is equal to 70, and by is
equal to 0.1, we expect on the basis of this model that a person with a brain
size of 1500 cubic millimeters has an IQ score of 70+0.01 x 1500, which equals 85.

Now, for any model the predicted values usually are not the same as the ob-
served values. If the model predicts on the basis of my brain size that my 1Q
is 140, my true IQ might be in fact 130. This discrepancy is termed the resid-
ual: the observed y, minus the predicted y, or g, so in this case the residual is
y—1y =130 — 140 = —-10.

Here we have the model for the relationship between IQ and brain size.

I1Q =704 0.1 x Brainsize + e (11.3)
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e~ N(0,0?) (11.4)

Note that in this model, the values of 70 and 0.1 are fized, that is, we use
the same intercept and the same slope for everyone. You use these values for
any person, for Henry, Jake, Lizz, and Margaret. We therefore call these effects
of intercept and slope fized effects, as they are all the same for all research
units. In contrast, we call the e term, the random error term or the residual in
the regression, a random effect. This is because the error term is different for
every research unit. We don’t know the specific values of these random errors
or residuals for every person, but nevertheless, we assume that they come from
a distribution, in this case a normal distribution with mean 0 and an unknown
variance. This unknown variance is given the symbol o2

Here are a few more examples.

1. Suppose we study a number of schools, and for every school we use a simple
linear regression equation to predict the number of students (dependent
variable) on the basis of the number of teachers (independent variable).
For every research unit (in this case: school), the intercept and the re-
gression slope are the same (fixed effects), but the residuals are different
(random effect).

2. Suppose we study a number of students, and for every student we use a
simple linear regression equation to predict the math test score on the basis
of the number of hours of study the student puts in. Here, the research
unit is student, and for every student, the intercept and the regression
slope are the same (fixed effects), but the residuals are different (random
effect).

3. Suppose we study reaction times, and for every measure of reaction time
— a trial — we use a simple linear regression equation to predict reaction
time in milliseconds on the basis of the characteristics of the stimulus.
Here, the research unit is trial, and for every trial, the intercept and the
regression slope are the same (fixed effects), but the residuals are different
(random effect).

Now, what happens when we have a lot of data on students, but the students
come from different schools? Suppose we want to predict average grade for every
student, on the basis of the number of hours of study the student puts in. We
again could use a simple linear regression equation.

y = by + bihourswork + e (11.5)
e~ N(0,0%) (11.6)
That would be fine if all schools would be all very similar. But suppose

that some schools have a lot of high scoring students, and some schools have a
lot of low scoring students? Then school itself would also be a very important
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predictor, apart from the number of hours of study. One thing we could there-
fore do is to include school as a categorical predictor. We would then have to
code this school variable into a number of dummy variables. The first dummy
variable called schooll would indicate whether students are in the first school
(schooll=1) or not (schooll=0). The second dummy variable school2 would in-
dicate whether students are in the second school (school2=1) or not (school2=0),
etcetera. You can then add these dummy variables to the regression equation
like this:

y = b + bihourswork + baschooll + byschool2 + byschool3 + ... + e
e~ N(0,0?)

In the output we would find a large number of effects, one for each dummy
variable. For example, if the students came from 100 different schools, I would
get 99 fixed effects for the 99 dummy variables. However, one could wonder
whether this is very useful. As stated earlier, fixed effects are called fixed be-
cause they are the same for every unit of research, in this case every student.
But working with 99 dummy variables, where students mostly score 0, this
seems very much over the top. In fact, we're not even interested in these 99
effects. We're interested in the relationship between test score and hours of
work, meanwhile taking into account that there are test score differences across
schools. The dummy variables are only there to account for differences across
schools; the prediction for one school is a little bit higher or lower than for an-
other school, depending on how well students generally perform in each school.

We could therefore try an alternative model, where we treat the school effect
as random: we assume that every school has a different average test score, and
that these averages are normally distributed. We call these average test score
deviations school effects:

y = by + bihourswork + schoolef fect + e (11.7)
schoolef fect ~ N(0,02) (11.8)
e~ N(0,02) (11.9)

So in this equation, the intercept is fixed, that is, the intercept is the same
for all observed test scores. The regression coefficient b; for the effect of hours
of work is also fixed. But the schooleffect is random, since it is different for
every school. The residual e is also random, being different for every student.
It could also be written like this:

y = (bo + schoolef fect) + byhourswork + e (11.10)
schoolef fect ~ N(0,02) (11.11)
e~ N(0,02) (11.12)
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This representation emphasizes that for every school, the intercept is a little
bit different: for school A the intercept might be by + 2, and for school B the
intercept might be by — 3.

So, this equation states that every observed test score is 1) partly influenced
by an intercept that is random, with a certain average by and variance o2, that
is dependent on which school students are in, 2) partly influenced by the number
of hours of work, an effect that is the same no matter what school a student is
in (fixed), and 3) partly influenced by unknown factors, indicated by a random
residual e coming from a normal distribution with variance o2.

To put it more formally: test score y;;, that is, the test score from student j
in school ¢, is the sum of an effect of the school by + schoolef fect; (the average
test score in school ), plus an effect of hours of work, by x hourswork, and
an unknown residual e;; (a specific residual for the test score for studuent j in
school ).

yij = bo + schoolef fect; + bihourswork + e;; (11.13)
schoolef fect; ~ N(0,0?) (11.14)
eij ~ N(0,02) (11.15)

So in addition to the assumption of residuals that have a normal distribu-
tion with mean 0 and variance o2, we also have an assumption that the school
averages are normally distributed, in this case with mean by and variance o2.
Let’s go back to the example of reaction times. Suppose in an experiment
we measure reaction time in a large number of trials. We want to know whether
the size of the stimulus (large/small) has an effect on reaction time. Let’s also
suppose that we carry out this experiment with 20 participants, where every
participant is measured during 100 trials: 50 large stimuli and 50 small stimuli
in random order. Now probably, some participants show generally very fast
responses, and some participants show generally very slow responses. In other
words, the average reaction time for the 100 trials may vary from participant to
participant. This means that we can use participant as an important predictor
of reaction times. To take this into account we can use the following equation:

Yij = bo + speed; + bysize + e;; (11.16)
speed; ~ N(0,0?) (11.17)
eij ~ N(0,02), (11.18)

where y;;, is the reaction time j from participant i, (by + speed;) is a ran-
dom effect representing the average speed for each participant i (where b is the
overall average across all participants), by is the fixed effect of the size of the
stimulus, and unknown residual e;; is a specific residual for the reaction time
for trial j of participant 7.
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The reason for introducing random effects is that when your observed data
are clustered, for instance student scores clustered within schools, or trial re-
sponse times are clustered within participants, you violate the assumption of
independence: two reaction times from the same person are more similar than
two reaction times from different persons. Two test scores from students from
the same school may be more similar than two scores from students in different
schools (see Chapter E[) When this is the case, when data are clustered, it
is very important to take this into account. When the assumption of indepen-
dence is violated, you are making wrong inference if you only use a simple linear
model. With clustered data, it is therefore necessary to work with an extension
of the linear model, the so-called linear mixed model. The above models for test
scores across different schools and reaction times across different participants,
are examples of linear mized models. The term mized comes from the fact that
the models contain a mix of both fixed and random effects.

If you have clustered data, you should take this clustering into account, ei-
ther by using the grouping variable as a qualitative predictor (using a number
of dummy variables) or by using a linear mixed model. As a rule of thumb: if
you have fewer than 10 groups, consider dummy variables; if you have 10 or
more groups, consider a linear mixed model. Use a linear mixed model if the
assumption of normally distributed group differences is tenable. Use dummy
variables if you are actually interested in the size of group differences.

Below, we will start with a very simple example of linear mixed model, one
that we use for a simple pre-post intervention design.

11.2 Pre-post intervention designs

Imagine a study where we hope to show that aspirin helps reduce headache. We
ask 100 patients to rate the severity of their headache before they use aspirin
(on a scale from 1 - 100), and to rate the severity again 3 hours after taking 500
mg of aspirin. These patients are randomly selected among people who read the
NY Times and suffer from regular headaches. So here we have clustered data:
we have 100 patients, and for each patient we have two scores, one before (pre)
and one after (post) the intervention of taking aspirin. Of course headaches
differ from person to person, so we might have to take into account that some
patients have a higher average level of headache than other patients. Now,
the data could be represented in different ways, but suppose we have the data
matrix in Table ??(showing only the first 5 patients):

What we observe in that table is that the severity seems generally lower after
the intervention than before the intervention. But you may also notice that the
severity of the headache also varies across patients: some have generally high
scores (for instance patient 003), and some have generally low scores (for exam-
ple patient 001). Therefore, the headache scores seem to be clustered, violating
the assumption of independence. We can quantify this clustering by comput-
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Table 11.1: Headache measurements in NY Times readers suffering from

headaches.
patient pre post

001 55 45
002 63 50
003 66 56
004 50 37
005 63 50

ing a correlation between the pre-intervention scores and the post-intervention
scores. Here it appears that there is a strong positive correlation, indicating
that the higher the pain score before the intervention, the higher the pain score
after the intervention.

There is an alternative way of representing the same data. Let’s look at the
same data in a new format in Table[I1.2] In Chapter[I]we saw this representation
is called long format.

Table 11.2: Headache severity measures in long format.
patient measure headache

1 1 55
1 2 45
2 1 63
2 2 50
3 1 66
3 2 56
4 1 50
4 2 37
5 1 63
5 2 50

Here we acknowledge that there is really only one dependent measure: headache
severity. The other two variables indicate that this variable varies across both
patients and time point (pre intervention and post intervention). Here we might
consider applying a simple linear regression model, using heachache as the de-
pendent variable and measure (1st or 2nd) as a categorical predictor. However,
since we know that there is a correlation between the pre and post severity mea-
sures, we know that measures systematically vary across patients: some score
high on average and some score low on average. The assumption of indepen-
dence is therefore not tenable. Thus we have to run a linear mized model,
including not only the fixed effect of measure but also a random effect for each
patient. Since we are really interested in the effect of the intervention, that is,
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we want to know how large the effect of aspirin is, we use a fixed effect for the
time effect (the variable measure). For the patient effect, because there are
so many patients (100) and we’re really not interested in all of these individual
differences, we use a random effect. This means that we only assume there is
a normal distribution for all of the patient differences. So we get the following
equation:

Yij = bo + patient; + bymeasure + e;; (11.19)
patient; ~ N(0,07) (11.20)
eij ~ N(0,02) (11.21)

y;; is the jth headache severity score (first or second) for patient i, (bo +
patient;) is the average headache for patient i, measure is a dummy variable,
and by is the effect of the intervention (by how much the severity changes from
pre to post). We assume that the average pain level for each patient shows a
normal distribution with average by and variance 0127. And of course we assume
that the residuals show a normal distribution.

This analysis can be done with the following SPSS syntax, treating measure
as a categorical variable (using BY) for which SPSS will create a dummy vari-
able automatically.

MIXED headache BY measure
/FIXED=measure
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(patient) COVTYPE(VC).

The most interesting output is given in Figure[I1.2] We're mostly interested
in the fixed effect of the intervention: does aspirin reduce headache? After an
F-test, we see the linear model coefficients, with an intercept of around 49 and
a positive effect of the intervention dummy variable, around +10. We see that
the dummy variable was coded 1 for the first measure (before taking aspirin).
So, for our dependent variable headache, we see that the expected headache
severity for the observations with a 0 for the dummy variable (that is, measure
2, which is after taking aspirin), is equal to 49+ (10) x 0 = 49. Similarly, we see
that the expected headache severity for the observations with a 1 for the dummy
variable (that is, before taking aspirin), is equal to 49 + (10) x 1 =49+ 10 =
59. So, expected pain severity is 10 points higher before the intervention than
after the intervention. Whether this difference is significant is indicated by a
t-test. We see here that the average headache severity after taking an aspirin
is significantly different from the average headache severity before taking an
aspirin, £(99) = 25.46,p < 0.01. The degrees of freedom are taken from the Test
of Fixed Effects table with the F-statistics. Alternatively we can write

The average headache severity after taking aspirin is significantly
different from the average headache severity before taking aspirin,
F(1,99) = 648.28,p < 0.01
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Type Il Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 99 | 9494.826 .000
measure 1 99.000 648.284 .000
Estimates of Fixed Effects
95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 49.320000 595162 | 124.746 82.868 .000 48.142077 50.497923
[measure=1.00] 10.360000 .406890 99.000 25.461 .000 9.552642 11.167358
[measure=2.00] 0° 0

b. This parameter is set to zero because it is redundant.

Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 8.277980 1.176581
Intercept [subject  Variance

= patient] 27.143838 4.485097

Figure 11.1: Output of a MIXED analysis of the headache data.

We might therefore carefully conclude that aspirin reduces headache in the
population of NY Times readers with headache problems, where the reduction
is around 10 points on a 1...100 scale (95% CI: 9.55 — 11.17).

Now, this looks like reporting the output of a regular linear model, but of course
it isn’t. We also have some extra output, which is about the random effect of
patient. We assumed that the individual differences in headache severity in the
100 patients came from a normal distribution. How large are these individual
differences actually? This can be gleaned from the Covariance Parameters part
of the SPSS output. We there see two random effects: the one for the residuals
and the one for the patients. The intercept seems to vary with a variance of 27,
which is equivalent to a standard deviation of V/27 which is around 5.2. What
does that mean exactly? Well let’s look at the equation again and fill in the
numbers:

11.22
11.23
11.24
11.25

yij = bo + patient; + bymeasure + e;;
yij = 49 + patient; + 10measure + e;;
patient; ~ N(0,27)

(
(
(
eij ~ N(0,8) (

)
)
)
)

Since measure is coded 0 for the headache level after the intervention, we
conclude that the average pain level after taking aspirin is 49. However, not ev-
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Figure 11.2: Distribution of headache scores after taking aspirin, according to
the linear mixed model.

erybody’s pain level after taking aspirin is 49: people show variance (variation).
The pain level after aspirin varies with a variance of 27, which is equivalent to
a standard deviation of arond 5.2. Figure shows how much this variance
actually is. It depicts a normal distribution with mean of 49 and a standard
deviation of 5.2.

So after taking aspirin, most patients show headache levels between 30 and
60. More specificially, if we would take the middle 95% by using plus or minus
twice the standard deviation, we can estimate that 95% of the patients shows
levels between 49 — 2 x 5.2 = 38.6 and 49 + 2 x 5.2 = 59.4

Now let’s look at the levels before taking aspirin. The average headache leves
is equal to 49 + 10 = 59. So 95% of the patients shows headache levels between
59 — 2 x 5.2 =48.6 and 59 + 2 x 5.2 = 49.4 before taking aspirin.

Together these results can be graphically explained in the plot in Figure
In this plot you see there is variability in headache levels before taking aspirin,
and there is variation in headache levels after taking aspirin. We also see that
these distributions have the same spread (variance): in the model we assume
that the variability in headache before aspirin is equal to the variability after
aspirin. The distributions are equal, except for a horizontal shift: the distribu-
tion for heachache after aspirin is the same as the distribution before apsirin,
except for a shift to the left of about 10 points. This is of course the effect of
aspirin in the model, the b; parameter in our model above.

The fact that the two distributions before and after aspirin show the same
spread (variance) was an inherent assumption in our model: we only have one
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Figure 11.3: Distribution of headache scores before and after taking aspirin,
according to the linear mixed model.

random effect for patient in our output. If the assumption of equal variance
(homoscedasticity) is not tenable, then one should consider other linear mixed
models. But this is beyond the scope of this chapter. The assumption can
be checked by plotting the residuals, using different colours for residuals from
before taking aspirin and for residuals from after taking aspirin.

11.2.1 Exercises

Suppose an intervention study looked at the effect of therapy on depression
levels. A random sample of patients were measured before and after the therapy.
Given the following equation, based on output of the statistical software package
R. The dummy variable measure was coded 0 for before therapy and 1 for after
therapy.

Look at the output below. You see information about random effects and
you see information about fixed effects.

1. What is the intercept of the model?

2. What is the slope coefficent for the measure variable?

3. What is the variance of the residuals? What is the standard deviation?
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Type Ill Tests of Fixed Effects

4. What is the variance of the individual differences among patients? What
is the standard deviation?

5. Fill in the values in the linear mixed model below:

depression;; = ...+ patient; + ... X measure + €;; (11.26)
patient; ~ N(0,02 = ...) (11.27)
eij ~ N(0,0% =..)) (11.28)

6. What can you say about the average depression level before therapy?

7. What can you say about the average depression level after therapy?

8. How much variance in depression level before therapy does this model pre-
dict? What is the standard deviation?

9. Between what values do depression levels before therapy in the middle
95% of patients show?

241

Denominator

Source Numerator df df F Sig.
Intercept 1 129.673 257.700 .000
measure 1 99.000 31.263 .000

Estimates of Fixed Effects

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 10.570000 .658442 129.673 16.053 .000 9.267319 11.872681
measure -2.280000 407773 99.000 -5.591 .000 -3.089110 -1.470890
Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 8.313939 1.181692
Intercept [subject  Variance
= patient] 1.784949 1.030708
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10.

11.

12.

13.

14.

15.

16.

How much variance in depression level after therapy does this model pre-
dict? What is the standard deviation?

Between what values do depression levels after therapy in the middle 95%
of patients show?

Does therapy help to alleviate depression in patients? You may use an
approximation to construct a confidence interval.

A researcher has two groups of patients: one group receives medicine and
one group receives therapy. The null-hypothesis is that depression levels
after medicine are as high as depression levels after therapy. Do we analyse
these data with an ordinary linear model, or with a linear mixed model?
Explain your answer.

A researcher studies one group of students: they first get lectures from
teacher A and then they get lectures from teacher B. The null-hypothesis
is that the average teacher evaluation for teacher A is the same as the
average teacher evaluation for teacher B. Do we analyse these data with
an ordinary linear model, or with a linear mixed model? Explain your
answer.

For a study to the effect of light on mood, we have data on 100 teachers
They were asked to rate their mood on a cloudy day and asked to rate
their mood on a sunny day. We have the variable mood, the dummy
variable sunny and we want to include a random effect for teacher From
the three syntaxes below, choose the one that is most suitable for your
analysis and fill in the blanks.

MIXED ... WITH ...
/FIXED=...
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(...) COVTYPE(VC).

UNIANOVA ... WITH ...
/ design = ...
/ print = parameter.

UNIANOVA ... BY ...
/ design = ...
/ print = parameter.

A researcher wants to know whether students in green classrooms (colour
= 1) perform better than students in yellow classrooms (colour = 2). The
following data were collected (showing only a part):
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17.

18.

student | colour | performance
1 6.79
2 2 8.28
3 1 9.08
4 2 5.65
5 1 8.43
6 2 8.51
7 1 7.43
8 2 7.45
9 7.44
10 2 7.11

Would you use an ordinary linear model or a linear mixed model to analyze
these data? Explain your answer.

A researcher wants to know whether students in dark classrooms (bright-
ness = 0) perform better than students in bright classrooms (brightness
= 1). The following data were collected (showing only a part):

student | brightness | performance
1 0 8.66
1 1 5.95
2 0 6.50
2 1 9.47
3 0 9.46
3 1 8.14
4 0 8.21
4 1 4.96
5 0 7.51
5 1 6.91

Would you use an ordinary linear model or a linear mixed model to analyze
these data? Explain your answer.

A landscaper believes that people get more creative once the environment
becomes greener. She measures creativity before and after the introduc-
tion of new trees around the office building in a random sample of employ-
ees. Because creativity can also be influenced by the weather she also uses
a dummy variable sunny to correct for these effects. Whether creativity
is measured before or after the introduction of the trees is indicated by
the variable green that is coded green=1 for after the introduction and
green=0 for before the introduction. The model that she therefore runs
in SPSS is the following;:

MIXED creativity WITH green sunny
/FIXED= green sunny
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(employee) COVTYPE(VC) .
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We get the following output:

Type Il Tests of Fixed Effects

Write a short paragraph describing these results and the conclusions in

APA format.

Answers:

1. 10.57

. -2.28

. 8.31,2.88

. 1.79,1.34

depression;; = 10.57 + patient; + (—2.28) X measure + e;;

. 10.57

(11.29)

patient; ~ N (0,07 =1.79) (11.30)

eij ~ N(0,02 = 8.31)
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(11.31)

Denominator

Source Numerator df F Sig.
Intercept 1 161.896 | 9073.526 .000
green 1 98.273 109.513 .000
sunny 1 126.083 5.377 .022

Estimates of Fixed Effects

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 59.971909 .629593 161.896 95.255 .000 58.728636 61.215182
green -4.501580 .430162 98.273 | -10.465 .000 -5.355194 -3.647967
sunny -1.280658 .552300 | 126.083 -2.319 .022 -2.373637 -.187679
Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 9.238257 1.318161
Intercept [subject  Variance
= employee] 23.662234 4.073012
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10.

11.

12.

13.

14.

15.

16.

17.

18.

10.57 + -2.28 = 8.29

. 1.79, 1.34

. 1057 +2 % 1.34 =7.89,13.25

1.79, 1.34

(10.57 — 2.28) =2 x 1.34 = 5.61,10.79

For the effect of therapy (the measure variable), we see a b-value of -2.28
with a standard error of 0.408, so if we use the +/-2 rule to compute a
95% confidence interval, we get [-2.28 — 2 x 0.41,—2.28 + 2 x 0.41] =
[-3.1,—1.46]. The 95% interval does NOT contain the value 0 so we can
reject the null-hypothesis that the effect of therapy is zero. Therefore, we
conclude that therapy has an influence on depression. In this case we saw
a decrease in depression levels after therapy.

Two groups of patients are studied, and for each patient we have only one
measure. Because we only have one measure for each unit of observation
we conduct an ordinary linear model.

One group of students is studied, and for each student we have two eval-
uations: one for teacher A and one for teacher B. Because we have more
than one measure for each unit of observation, we have to use a linear
mixed model.

MIXED mood WITH sunny
/FIXED=sunny
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(teacher) COVTYPE(VC).

it seems as if each student was only measured once, there is no clustering,
so we can use an ordinary linear model.

it seems as if each student was measured twice, in both dark and bright
conditions, so we use a linear mixed model to account for clustering.

A linear mixed model was run to test the effect of green
surroundings on creativity. The analysis was corrected for the
effects of weather (sunny or not sunny) and random effects for
employees. The results showed a significant but negative effect
of the introduction of trees on creativity: creativity was on aver-
age 4.5 points lower after the introduction, ¢(98) = —10.47,p <
0.001. This effect was present over and above the effect of
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the weather which by itself had also an effect, where creativity
was 1.28 points lower on sunny days than on not cloudy days,
t(98) = —2.32,p = 0.02. We conclude that the introduction of
trees has a negative influence on creativity in the employees that
worked in the building studied in this research.
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Chapter 12

Linear mixed models for
more than two
measurements

12.1 Pre-mid-post intervention designs

In many intervention studies, one has more than two measurement moments.
Let’s go back to the example of the effect of aspirin on headache in Chapter
Suppose you’d like to know whether there is not only a short term effect
of aspirin, but also a long-term effect. Imagine that the study on headache
among NY Times readers was extended by asking patients not only to rate
their headache before aspirin and 3 hours after intake, but also 24 hours after
intake. In this case our data could look like as presented in Table

Table 12.1: Headache measures in NY Times readers.
patient pre postl post2

1 52 45 47

2 59 50 95
3 65 96 58
4 51 37 42
5 62 50 55
6 61 53 57
7 56 44 55
8 62 48 93
9 56 48 49
10 58 45 44

So for each patient we have three measures: pre, postl and post2. To see if
there is some significant clustering, it is no longer possible to study this by com-
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puting a single correlation. We could however compute 3 different correlations:
pre-postl, pre-post2, and postl-post2, but this is rather tedious, and moreover
does not give us a single measure of the extent of clustering of the data. But
there is an alternative: one could compute not a Pearson correlation, but an
intraclass correlation (ICC). To do this, we need to bring the data again into
long format, as opposed to wide format, see Chapter [1} This is done in Table

Table 12.2: Headache measures in NY Times readers in long format.
patient measure headache

1 1 52
1 2 45
1 3 47
2 1 59
2 2 50
2 3 55
3 1 65
3 2 56
3 3 58
4 1 51

Next, we can perform an analysis with MIXED in SPSS:

MIXED headache BY measure
/FIXED=measure
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(patient) COVTYPE(VC).

The output is given in Figure [12.1] There we see the fixed effects of two
automatically created dummy variables measure=1 and measure=2, and the
intercept. We also see the variances of the random effects: the variance of the
residuals and the variance of the random effects for each patient.

From this output, we can plug in the values into the equation:

headache;; = 51 + patient; + 7.5 x measurel — 2.4 x measure2 + e;;
patient; ~ N(0,28.3)
€ij ™~ ]\T(O7 85)

Based on this equation, the expected headache severity score in the pop-
ulation 24 hours after aspirin intake is 51 (the third measure is the reference
group). Dummy variable measure=1 is coded 1 for the measurements before
taking aspirin. Therefore, the expected headache score before aspirin intake is
equal to 51 + 7.5 = 58.5. Dummy variable measure=2 was coded 1 for the
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Type Ill Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 99.000 | 9162.260 .000
measure 2 198 309.580 .000
Estimates of Fixed Effects
95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 51.680000 .606686 | 136.283 85.184 .000 50.480263 52.879737
[measure=1.00] 7.490000 413362 198 18.120 .000 6.674843 8.305157
[measure=2.00] -2.360000 413362 198 -5.709 .000 -3.175157 -1.544843
[measure=3.00] 0° 0

b. This parameter is set to zero because it is redundant.

Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 8.543401 .858644
Intercept [subject  Variance

= patient] 28.263434 | 4.431211

Figure 12.1: Output of the MIXED analysis with three headache measurements:
before aspirin intake, 3 hours after intake and 24 hours after intake.

measurements 3 hours after aspirin intake. Therefore, the expected headache
score 3 hours after aspirin intake is equal to 51 — 2.4 = 48.6. In sum, in this
sample we see that the average headache level decreases directly after aspirin
intake from 58.5 to 48.6, but then increases again to 51.

There was quite some variation in individual headache levels: the variance is
equal to 28.3, so the standard deviation (its square root) is equal to about 5.3.
Therefore, if we look at roughly 95% of the sample, we see that prior to taking
aspirin, the scores vary between 58.5 — 2 x 5.3 = 47.9 and 58.5 4+ 2 x 5.3 = 69.1.
For the short-term effect of aspirin after 3 hours, we see that roughly 95% of the
scores lie between 48.6 — 2 x 5.3 = 38.0 and 48.6 + 2 x 5.3 = 59.2. The normal
distributions, predicted by this model, are depicted in Figure [12.2}

So, are these distributions significantly different, in other words, do the
means differ significantly before aspirin, 3 hrs after aspirin and 24 hrs after
aspirin? The answer is yes, because the F-test on the group means in the SPSS
output is significant. Note the degrees of freedom: 2, because we compare 3
groups of data, so we need two dummy variables. Thus we report that aspirin has
an effect on headache levels in NY Times readers, F'(2,198) = 309.58, p < 0.001.

If one has specific hypotheses regarding short-term and long-term effects, one
could perform a planned contrast analysis, comparing the first measure with the
second measure, and the first measure with the third measure. If one is just
interested in whether aspirin has an effect on headache, then the F-test should
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Figure 12.2: Distributions of the three headache levels before aspirin intake,
3 hours after intake and 24 hours after intake, according to the linear mixed
model.

suffice. If apart from this general effect one wishes to explore whether there
are significant differences between the three groups of data, without any prior
research hypothesis about this, then one could perform a post hoc analysis of
the three means. See Chapter [§] on how to perform planned comparisons and
post hoc tests.

Now recall that we mentioned an intraclass correlation, or ICC. An intraclass
correlation indicates how much clustering there is within the groups, in this
case, clustering of headache scores within NY Times readers. How much are
the three scores alike that come from the same patient? This correlation can be
computed on the basis of the SPSS output, using the following formula:

2

ICC = f”“# (12.1)

2
Upatient + O¢

Here, the variance of the patient random effects is equal to 28.3, and the
variance of the residuals e is equal to 8.5, so the intraclass correlation for the
headache severity scores is equal to

28.3
I1CC = ———F—=10.80 12.2
28.34+ 8.5 ( )

As this correlation is quite higher than 0, there seems to be quite a lot of
clustering. Therefore it’s a good thing that we used random effects for the
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individual differences in headache scores among NY Times readers. Had this
correlation been 0 or very close to 0, however, then it would not have mattered
to include these random effects. In that case, we might as well use an ordinary
linear model, using the UNIANOVA syntax for example. Note from the formula
that the correlation becomes 0 when the variance of the random effects for pa-
tients is 0.

12.1.1 Exercises

Suppose you let a sample of students do a math test in three different rooms:
one with yellow walls, one with red walls and one with blue walls. All students
do the math test three times, once in every room. The data are as follows:

student colour score

001
001
001
002
002
002
003
003
003
004
004
004
005
005
005

yellow 60
red 66
blue 60
yellow 24
red 15
blue 30
yellow 90
red 90
blue 89
yellow 10
red 20
blue 15
yellow 23
red 13
blue 18

. If you want to test the hypothesis that the colour of the walls do not affect

math test scores, and at the same time you want to take into account that
some students are generally better at math than others, what would the
SPSS syntax be?

. In the output that would result from that syntax from question 1, would

you look at a t-test or or an F-test? Explain your answer.

. How many degrees of freedom would you see for the denominator?

Suppose you see this in the output for this colour experiment. How impor-
tant are the individual difference in math performance in the population
of students? Can you quantify the amount of clustering?
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Covariance Parameters

Estimates of Covariance Parameters®

Parameter Estimate Std. Error
Residual 269.529502 | 50.050372

Intercept [subject  Variance
= student]

228.263602 | B5.18B559

a. Dependent Variable: mathscore.

12.1.2 Answers

1. MIXED score BY colour
/FIXED=colour
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(student) COVTYPE(VC).

2. F-test. There will be two dummy variable and I want to know if the ef-
fects of both of these are significantly different from 0. The t-tests give
me only information about the dummy variables separately.

3. 2, because there are 3 different colours, which can be represented by 2
dummy-variables.

4. In the table with the data you generally see that students who score high in
one room also score high in another room (for instance, students 001 and
003). Students who score low in one room also score low in another room
(for instance students 002, 004 and 005). This clustering can be quantified

B . o . . e . 298 _
using an intraclass correlation, in this case equal to 53575-5 = 0.46.

12.2 Pre-mid-post intervention design: linear ef-
fects

In the previous section, we've looked at categorical variables: measure (pre
intervention, 3 hours after, and 24 hours after), or colour (yellow, red, and
blue rooms). We can use the same type of analysis for numerical variables. In
fact, we could have used a linear effect for time in the headache example: using
time of measurement as a variable. Let’s look at the headache data again. But
now we’ve created a new variable time that is based on the variable measure:
all first measurements are coded as time=0, all second measurements after 3
hours are coded as time=3, and all third measurements after 24 hours are coded
as time=24. The data are presented in Table

Instead of using a qualitative variable intervention, with three levels, we
now use a quantitative variable, time, indicating the number of hours that have
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Table 12.3: Headache measures in NY Times readers in long format with a new
variable time.

patient measure headache time

1 1 52 0
1 2 45 3
1 3 47 24
2 1 99 0
2 2 50 3
2 3 95 24
3 1 65 0
3 2 56 3
3 3 58 24
4 1 o1 0

elapsed after aspirin intake. At point 0 hours, we measure headache severity,
and patients take an aspirin. Next we measure headache after 3 hours and 24
hours. Above, we wanted to know if there were differences in average headache
between before intake and 3hrs and 24 hrs after intake. Another question we
might ask ourselves: is there a linear reduction in headache severity after taking
aspirin?

For this we can do a linear regression type of analysis. We want to take into
account individual differences in headache severity levels among patients, so we
perform a MIXED analysis in SPSS, using the following syntax, replacing the
key word BY with WITH, and the variable measure by time:

MIXED headache WITH time
/FIXED=time
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(patient) COVTYPE(VC).

In Figure [12.2| we see the corresponding output. Based on that output, we
see that the model for our data is equivalent to

headache;; = 54 + patient; — 0.16 x time + €;; (12.3)
patient; ~ N(0,21) (12.4)
€ij ~ N(O, 31) (125)

This model predicts that at time 0, the average headache severity score
equals 54, and that for every hour after intake, the headache level drops by 0.16
points. So it predicts for example that after 10 hours, the headache has dropped
1.6 points to 52.4.

Is this a good model for the data? Probably not. Look at the variance of
the residuals: with its 31 it is now a lot bigger than in the previous analysis
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Type Il Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 147.032 7811.150 .000
time 1 199.000 26.818 .000

Estimates of Fixed Effects

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 54.791316 .619947 | 147.032 88.381 .000 53.566159 56.016473
time -.155702 .030066 | 199.000 -5.179 .000 -.214991 -.096413

Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 30.915686 3.099327
Intercept [subject  Variance

= patient] 20.806006 | 4.541038

Figure 12.3: Output of a MIXED analysis, using time as a numeric predictor of
headache level.

with the same data (see previous section). Larger variance of residuals means
that the model explains the data worse: predictions are worse, so the residuals
increase in size.

That the model is not appropriate for this data set is also obvious when we
plot the data, focusing on the relationship between time and headache levels,
see Figure

The line shown is the fitted line based on the SPSS output. It can be seen
that the prediction for time=0 is too low, for time=2 too high, and for time=24
again too low. So for this particular data set on headache, it would be better
to use a categorical predictor for the effect of time on headache, like we did in
the previous section.

As an example of a data set where a linear effect would have been appropriate,
imagine that we measured headache 2 hours and 3 hours after aspirin intake (but
not after 24 hours). Suppose these data would look like those in Figure
There we see a gradual increase of headache levels right after aspirin intake.
Here, a numeric treatment of the time variable would be more appropriate. The
SPSS output is given in Figure From the output we see that the intercept
is 59 and that the slope is -3.3. So this model predicts an hourly decrease of 3.3
points in headache level. This regression line is also depicted in Figure [12.5]
Because we are confident that this model is appropriate for our data, we can
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Figure 12.4: Headache levels before aspirin intake, 3 hours after intake and 24
hours after intake.
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Figure 12.5: Alternative headache levels before aspirin intake, 3 hours after
intake and 24 hours after intake.
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Type Il Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 133.169 9571.257 .000
time 1 199.000 596.514 .000

Estimates of Fixed Effects

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 58.972143 .602785 | 133.169 97.833 .000 57.779871 60.164414
time -3.349286 .137133 | 199.000 | -24.424 .000 -3.619706 -3.078865

Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 8.775878 .879790
Intercept [subject  Variance

= patient] 28.185942 | 4.431672

Figure 12.6: Output of a MIXED analysis, using time as a numeric predictor of
headache level.

interpret the statistical output from SPSS.

A linear mixed model was run, using a quantitive variable time
and random effects for the variable patient. We saw a significant
linear effect of time on headache level, £(199) = —24.42,p < 0.001.
The estimated effect of time based on this analysis is negative, —3.3,
so with every hour that elapses after aspirin intake, the predicted
headache score decreases with 3.3 points.

12.2.1 Exercises

Suppose you have a number of CEOs with smart watches and you have these
smart watches log skin conductance. Skin conductance is a good measure for
stress. These measurements are done at random intervals, for at most 4 times
during one day. The experiment starts at 7am and stops at 7pm. The time
variable measures how many hours have passed since 7am.
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CEO time conductance

001 2 80
001 3 65
001 10 60
001 11 60
002 4 34
002 6 25
002 9 30
002 12 30
003 3 23
003 4 15
003 5 20
003 8 20
004 0 90
004 3 70
004 4 65
004 11 65

Now you’d like to know if skin conductance in CEOs shows a general decrease
during the day. Your null-hypothesis is therefore that there is no linear effect of
time on skin conductance. Now, you have multiple measures for each CEO (re-
peated measures), and there might be individual differences in the average skin
conductance that you would like to take into account. Therefore you perform a
MIXED analysis in SPSS.

1. What would the SPSS syntax look like?

2. If you got the following output, what would your predicted skin conduc-
tance be for a CEO at 15.00 hrs?

3. Look at the data plotted: do you think a linear effect is reasonable for
this data set?
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Fixed Effects

Type Il Tests of Fixed Effects®

Numeratar Denominator
Source df df F Sig.
Intercept 1 57.524 | 242.222 000
time 1 59.000 17.981 .000

a. Dependent Variable: conductance.

Estimates of Fixed Effects®

95% Confidence Interval
Parameter Estimate Std. Error df T Sig. Lower Bound | Upper Bound
Intercept 61.738462 | 3.966881 57.524 15.563 .000 53.796487 69.680436
time -4.130769 974140 59.000 -4.240 000 -6.080020 -2.181519
a. Dependent Variable: conductance.
Covariance Parameters
Estimates of Covariance Parameters®
Parameter Estimate Std. Error
Residual 246.726901 | 45.426105
I [subject  Variance | ;34 546972 | 84.637232
a. Dependent Variable: conductance.
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4. How much clustering is there for skin conductance across CEOs?

5. Would you say these individual differences are very important to take into
account?
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6. Is there a significant effect of time of day on skin conductance in CEOs?

7. What is the effect of time of day on skin conductance in CEOs? Also give
the 95% confidence interval of this effect.

8. Write a short paragraph that describes the results in APA format.

9. Given a new data set where every student’s mood was tested at three
points in time: During Christmas holidays (time points 1), during Easter
holidays (time point 2) and at the start of the academic year, September
1 (time point 3). Look at the data plotted: do you think a linear effect is
reasonable for this data set? Explain your answer.

3000 -

2500 - [)

2000 -

mood

1500 -

1000 -

10 15 20 25 30
time point

10. Provide the syntax you would use to analyse the problem of question 9.

12.2.2 Answers

1. MIXED conductance WITH time
/FIXED=time
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(CEQ) COVTYPE(VC) .

2. 15 hrs is equal to 8 hours after 7am, so the expected skin conductance is
equal to 62 —4 x 8 = 30

3. Yes, a general linear downward trend is observed for the skin conductance.

. . . . 235 _
4. The intraclass correlation coefficient is equal to 335007 = 0-49,

5. The correlation is quite different from 0, so there is certainly some clus-
tering in the data and it is important to take these individual differences
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into account.

6. Yes, there is a signficant linear effect of time on skin conductance in CEOs,
t(59) = —4.24,p < 0.01.

7. The linear effect of time of day on skin conductance in CEOs is around
-4.13 points per hour after 7am (95 % CI: -6.08 — -2.18).

8. A linear mixed model was run with time as a quantita-
tive predictor for skin conductance, including random effects for
CEO. We found an effect of time of -4.13 points per hour which
was significantly different from 0, ¢(59) = —4.24,p < 0.001.
Therefore we conclude that time of day has an effect on skin
conductance in the entire population of CEOs.

9. The relationship is not linear: you cannot draw a straight line through
the means of the three measurements.

10. Because we have multiple measurements from the same students we should
use a MIXED analysis. Furthermore, a qualitave analysis would be more
suitable, given the nonlinear relationship between time and mood. So we
use the syntax:

MIXED mood BY time
/FIXED=time
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(student) COVTYPE(VC).

12.3 Linear mixed models and interaction ef-
fects

Suppose we carry out the aspirin and headache study not only with a random
sample of NY Times readers that suffer from regular headaches, but also with
a random sample of readers of the Wall Street Journal that suffer from regular
headaches. We’d like to know whether aspirin works, but we are also interested
to know whether the effect of aspirin is similar in the two groups of readers. Our
null-hypothesis is that the effect of aspirin in affecting headache severity is the
same in NY Times and Wall Street Journal readers that suffer from headache.

H_0: The effect of aspirin is the same for NY Times readers as for Wall Street
Journal readers.
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Suppose we have the data set in Table (we only show the first six pa-
tients), and we only look at the measurements before aspirin intake and 3 hours
after aspirin intake (pre-post design).

Table 12.4: Headache measures in NY Times and Wall Street Journal readers
in wide format.

patient group pre post
1 NYTimes 55 45
2 WallStreetJ 63 50
3 NYTimes 66 56
4  WallStreetJ 50 37
5 NYTimes 63 50
6 WallStreetJ 65 53

In this part of the data set, patients 2, 4, and 6 read the Wall Street Journal,
and patients 1, 3 and 5 read the NY Times. We assume that people only read
one of these newspapers. We measure their headache before and after the intake
of aspirin (a pre-post design). The data are now in what we call wide format:
the dependent variable headache is spread over two columns, pre and post.
In order to analyze the data with linear models, we need them in long format,

as in Table [[2.5

Table 12.5: Headache measures in NY Times and Wall Street Journal readers
in long format.

patient  group measure headache
1  NYTimes 1 55
1 NYTimes 2 45
2 WallStreetJ 1 63
2 WallStreetJ 2 50
3 NYTimes 1 66
3 NYTimes 2 56

The new variable measure now indicates whether a given measurement of
headache refers to a measurement before intake (first measurement) or after
intake (second measurement). Again we could investigate whether there is an
effect of aspirin with a linear mixed model, with measure as our qualitative
predictor, but that is not really what we want to test: we only want to know
whether the effect of aspirin (being small, large, negative or non-existent) is the
same for both groups. Remember that this hypothesis states that there is no
interaction effect of aspirin (measure) and group. The null-hypothesis is that
group is not a moderator of the effect of aspirin on headache. There may be
an effect of aspirin or there may not, and there may be an effect of newspaper
(group) or there may not, but we’re interested in the interaction of aspirin and
group membership. Is the effect of aspirin different for NY times readers than
for Wall Street Journal readers?
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In our analysis we therefore need to specify an interaction effect. Since the
data are clustered (2 measures per patient), we use a linear mized model. First
we show how to analyze these data using dummy variables, later we will show
the results using a different approach.

We recode the data into two dummy variables, one for the aspirin interven-
tion (measure), and one for group membership.

RECODE measure (1=0) (2=1) INTO post.
RECODE group ('WallStreetJ'=0) ('NYTimes'=1) INTO NYTimes.
EXECUTE.

Next we need to compute the product of these two dummies to code for the
interaction effect. Since with the above dummy coding, all post measures get a 1,
and all NYTimes readers get a 1, only the observations that are post aspirin and
that are from NYTimes readers get a 1 for the product, the interactiondummy
. That’s why it is best to name this interaction effect PostNYTimes.

COMPUTE PostNYTimes=post*NYTimes.
EXECUTE.

With these three new dummy variables we can specify the linear mixed
model.

MIXED headache WITH post NYTimes PostNYTimes
/FIXED= post NYTimes PostNYTimes
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(patient) COVTYPE(VC).

In the output in Figure[12.3] we recognize the three fixed effects for the three
dummy variables. Since we’re interested in the interaction effect, we look at the
effect of PostNYTimes. The effect is in the order of +0.6. So what does this
mean?

Remember that a reader from the Wall Street Journal gets a 0 for the group
dummy NYTimes. All headache measures before aspirin intake are given a 0
for the intervention dummy post. Since the product of 0 x 0 equals 0, all these
measures before aspirin in Wallstreet Journal readers get a 0 for the interaction
dummy PostNYTimes. Therefore, the intercept of 59.5 refers to the expected
headache severity of Wall Street Journal readers before they take their aspirin.
This is significantly different from zero, meaning that in the population of Wall
Street Journal readers, headache before aspirin intake is different from zero.

Furthermore, we see that the effect of the intervention is -10.7. So, relative
to Wall Street Journal readers prior to aspirin intake, the level of post intake
headache is 10.7 points less. So in the population of Wall Street Journal readers,
the effect of aspirin is different from 0, since the effect of -10.7 is significant.

If we look further down in the table, we see the effect of NYTimes equals
0.32. So, relative to Wall Street Journal readers, before aspirin intake (the
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Type lll Tests of Fixed Effects

Figure 12.7: Output of a MIXED analysis with three dummy variables.

reference group), NY Times readers score on average 0.32 points higher on the
headache scale before aspirin intake.

However, we're not interested in a general difference between those two
groups of readers, we're interested in the effect of aspirin and whether it is
different in the two groups of readers. In the last row we see the interaction
effect: being a reader of the NY Times AND at the same time being a measure
after aspirin intake, the expected increase in mean headache equals 0.60. So the
effect of aspirin is -10.7 in Wall Street Journal readers, as we saw above, but
the effect is —10.7 + 0.6 = —10.1 in NY Times readers. So in this sample the
effect of aspirin on headache is 0.6 smaller than in Wall Street Journal readers
(note that even while the interaction effect is positive, it is positive on a scale
where a high score means more headache).

Let’s look at it in the different way, using a table with the dummy codes,
see Table For each group of data, pre or post aspirin and New York
Times readers and Wall Street Journal readers, we note the dummy codes for
the new dummy variables. In the last column we use the output estimates
and multiply them with the respective dummy codes (1 and 0) to obtain the
expected headache level (using rounded numbers):

The exact numbers are displayed in Figure We see that the specific
effect of aspirin in NYTimes readers is 0.6 smaller than the effect of aspirin in
Wall Street Journal readers. This difference in the effect of aspirin between the
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Denominator

Source Numerator df df F Sig.
Intercept 1 123.427 4966.920 .000
post 1 98.000 341.596 .000
NYTimes 1 123.427 .072 .789
PostNYTimes 1 98.000 .541 464

Estimates of Fixed Effects

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 59.520000 .844538 123.427 70.476 .000 57.848346 61.191654
post -10.660000 576768 98.000 | -18.482 .000 [ -11.804577 -9.515423
NYTimes .320000 1.194357 123.427 .268 .789 -2.044076 2.684076
PostNYTimes .600000 .815673 98.000 .736 .464 -1.018677 2.218677
Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 8.316531 1.188076
Intercept [subject  Variance
= patient] 27.345714 | 4.539603

Page 1



Table 12.6: Expected headache levels in Wallstreet Journal and NY Times
readers, before and after aspirin intake.

measure group post NYTimes PostNYT exp mean
pre WallStreet 0 0 0

post WallStreet 1 0 0 60 + (—11) =49
pre NYtimes 0 1 0 60 4+ 0.3 =60.3
post NYtimes 1 1 1 60+ (—11)4+0.3+0.6 =49.9

60-

difference = 10 difference = 10.6

N
o
'

Measure

. Pre
. Post

Expected mean headache
N
o

NYTimes WallStreetJ
Group

Figure 12.8: Expected headache levels in NY Times readers and Wall Street
Journal readers based on a linear mixed model with an interaction effect.

groups was not significantly different from 0. The null-hypothesis that the effect
is the same in the two populations of readers cannot be rejected. We therefore
conclude that the effect that aspirin has on patients is the same for NY Times
and Wall Street Journal readers.

Note that we could have done the analysis in another way, not treating the
variables in a numeric way and using dummy variables, but by treating them as
the categorical variables that they are using the key word BY. The SPSS syntax
would then be:

MIXED headache BY measure group
/FIXED=measure group measure*group
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(patient) COVTYPE(VC).

The output is given in Figure ?7?. Here SPSS has automatically created
dummy variables, one for measure=1, one for group=1, and one for the
interaction effect, group=1 AND measure=1. Because the dummy coding is
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different, the intercept and the main effects of group and measure have changed,
but you see that the interaction effect is still 0.6, albeit now negative. We also
see that the significance level of the interaction effect is still the same. You are
always free to choose to either construct your own dummy variables and analyze
them in a quantitative way (using WITH), or to let SPSS construct the dummy
variables for you (using BY): the p-value for the interaction effect will always
be the same (this is not true for the intercept and the main effects).

Type Ill Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 98.000 | 9428.174 .000
measure 1 98.000 645.279 .000
group 1 98.000 .305 .582
measure * group 1 98.000 .541 .464

Estimates of Fixed Effects

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 48.860000 .844538 123.427 57.854 .000 47.188346 50.531654
[measure=1.00] 10.660000 .576768 98.000 18.482 .000 9.515423 11.804577
[measure=2.00] oP 0 . . . . .
[group=1.00] .920000 1.194357 123.427 770 443 -1.444076 3.284076
[group=2.00] oP 0

[measure=1.00] *

[group=1.00] -.600000 .815673 98.000 -.736 .464 -2.218677 1.018677
[measure=1.00] * b 0

[group=2.00] 0

[measure=2.00] * b 0

[group=1.00] 0

[measure=2.00] * b 0

[group=2.00] 0

b. This parameter is set to zero because it is redundant.

Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 8.316531 1.188076
Intercept [subject  Variance

= patient] 27.345714 | 4.539603

Figure 12.9: Output of a MIXED analysis treating the independent variables as
categorical variables.

Because the two analyses are equivalent (they end up with exactly the same
predictions, feel free to check!), we can safely report that we’'ve found a non-
significant group by measure interaction effect, ¢(98) = 0.74,p = 0.46. We
therefore conclude that in the populations of NY Times readers and Wall Street
Journal readers, the short-term effect of aspirin on headache is the same.
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12.3.1 Exercises

Below we see data from a study on the effects of the financial crisis on the number
of employees in specific Dutch companies. The companies are distinguised into
food and non-food related companies. The number of employees are recorded
in January 2008 and January 2011.

company | food 2008 | 2011
1 | nonfood 42 63
2 | food 104 126
3 | nonfood 76 58
4 | food 65 131

1. These data are in wide format. Rewrite the datamatrix in such a way that
we have the same data in long format. Provide column (variable) names.

2. Do we need to use a linear mixed model, or can we analyse these data
with an ordinary linear model?

3. We want to test the null-hypothesis that the effects of the financial crisis
in 2008 has the same effect on the number of employees in the food sector
as in the non-food sector. Provide the syntax that helps you test this
hypothesis.

4. Suppose the output in Figure [4 results from an analysis done by a col-
league:

She provides you with the information that food=1 means the food sector
and food=2 is the nonfood sector.

What does the model predict regarding the number of employees in 2008
in the non-food sector?

5. What does the model predict regarding the number of employees in 2011
in the non-food sector?
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Type Ill Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 998.000 | 70192.133 .000
food 1 998.000 3389.819 .000
year 1 998 1122.117 .000
food * year 1 998 .437 .509

Estimates of Fixed Effects

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 81.574000 .664366 | 1989.879 | 122.785 .000 80.271074 82.876926
[food=1.00] 39.312000 .939556 | 1989.879 41.841 .000 37.469384 41.154616
[food=2.00] o° 0 . . . } .
[year=2008.00] -22.056000 .913130 998 | -24.154 .000 | -23.847874 -20.264126
[year=2011.00] o° 0

{;%%?::2%6%%].00] .854000 | 1.291360 998 661 .509 | -1.680093 3.388093
[food=1.00] * ob 0

[year=2011.00]

[food=2.00] * ob 0

[year=2008.00]

[food=2.00] * ob 0

[year=2011.00]

b. This parameter is set to zero because it is redundant.

Estimates of Covariance Parameters

Parameter Estimate Std. Error
Residual 208.451418 9.331567
Intercept [subject  Variance

= company] 12.239802 6.996594

10.

11.

Figure 12.10: Output of a MIXED analysis done by a colleague.

. What does the model predict regarding the number of employees in 2008

in the food sector?

. What does the model predict regarding the number of employees in 2011

in the food sector?

. How large is the effect of the crisis in the food sector?

. How large is the effect of the crisis in the non-food sector

How large is the intraclass correlation (ICC)? Give the computation.

Could we have done the analysis with an ordinary linear model? Explain
your answer.
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12. Can we reject the null-hypothesis that the effects of the crisis were the
same in the food and non-food sectors? Explain your answer.

12.3.2 Answers
1. It could look like this:

company sector year NEmployees
1 nonfood 2008 42
1 nonfood 2011 63
2 food 2008 104
2 food 2011 126
3 nonfood 2008 76
3 nonfood 2011 58
4 food 2008 65
4 food 2011 131

2. The data are clustered into companies: for each company we have two
data points, so we should at least try a linear mixed model. Only if the
variance of the company random effects is extremely small, we could use
a linear model without random effects.

3. One option is to let SPSS construct the dummy variables:

MIXED employees BY year sector
/FIXED=year sector year*sector
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(company) COVTYPE(VC).

Or you do the dummy coding yourself, for example like this:

RECODE year (2008=0) (2011=1) INTO year2011.
RECODE sector ('Nonfood'=0) ('food'=1) INTO food.
EXECUTE.

COMPUTE food2011=year2011x*food.
EXECUTE.

MIXED employees WITH year2011 food food2011
/FIXED= year2011 food food2011
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(company) COVTYPE(VC).

4. the nonfood sector is food=2, so the predicted number of employees in
2008 in the nonfood sector is equal to 81.57 + 0 — 22.056 + 0 = 59.514
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5. the nonfood sector is food=2, so the predicted number of employees in
2011 in the nonfood sector is equal to 81.57+ 0+ 0+ 0 = 81.57

6. the food sector is food=1, so the predicted number of employees in 2008
in the food sector is equal to 81.57 + 39.31 — 22.056 + 0.85 = 99.674

7. the food sector is food=1, so the predicted number of employees in 2011
in the food sector is equal to 81.57 + 39.31 + 0+ 0 = 120.88

8. in the food sector the effect is a 120.88 — 99.674 = 21.206 increase in
number of employees

9. in the non-food sector the effect is a 81.57 — 59.514 = 22.056 increase in
number of employees

10. the ICC is =0.05

12
124208

11. we have clustering, with multiple data point per company, so in general
a linear mixed model is better than an ordinary linear model. However,
since the intraclass correlation is rather low, the results would be very
similar if we would use an ordinary linear model.

12. The null-hypothesis cannot be reject as the year by sector interaction effect
is not signifcantly different from 0, ¢(998) = 0.66, p = 0.51. (alternatively,
F(1,998) = 0.44,p = 0.51). Note however that the statistical results are in
terms of absolute number of employees. These data show that the average
number of employees in 2008 is larger in the food sector than in the non-
food sector. Perhaps it would be wiser to look at percentage increase in
number of employees: A change from 100 to 102 reflects a larger impact
than a change from 1000 to 1002.

12.4 Mixed designs

The design in the previous section where we had both a grouping variable and
a pre-post or repeated measures design, is often called a mized design. It is a
mixed design in the sense that there are two kinds of variables: one is a between-
individuals variable, and one variable is a within-individual variable. Here the
between-individuals variable is group: two different populations of readers. It
is called between because one individual can only be part of one group. When
we study the effect of the group effect we are essentially comparing the scores of
one group of individuals with the scores of another group of individuals, so the
comparison is between different individuals. The two groups of data are said to
be independent, as we knew that none of the readers in this data set reads both
journals.

The within-variable in this design is the aspirin intervention, indicated by the
variable measure. For each individual we have two observations: all individuals
are present in both the pre condition data as well as in the post condition
data. With this intervention variable, we are comparing the scores of a group
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of indiviudals with the scores of that same group of individuals at another time
point. The comparison of scores is within a particular individual, at timepoint
1 and at timepoint 2. So the pre and post sets of data are not independent: the
headache scores in both conditions are coming from the same individuals.

Mixed designs are often seen in psychological experiments. For instance, you
want to know how large the effect of alcohol intake is on driving performance.
You want to know whether the effect of alcohol on driving performance is the
same in a Fiat 600 as in a Porsche. Suppose you have 100 participants for your
study. There are many choices you can make regarding the design of your study.
Here we discuss 4 alternative research designs:

1. One option is to have all participants participate in all four conditions:
they all drive a Fiat with and without alcohol, and they all drive a Porsche,
with and without alcohol. In this case, both the car and the alcohol are
within-participant variables.

2. The second option is to have 50 participants drive a Porsche, with and
without alcohol, and to have the other 50 participants drive the Fiat,
with and without alcohol. In this case, the car is the between-participants
variable, and alcohol is the within-participant variable.

3. The third option is to have 50 participants without alcohol drive both
the Porsche and the Fiat, and to have the other 50 participants drive the
Porsche and the Fiat with alcohol. Now the car is the within-participant
variable, and the alcohol is the between-participants variable.

4. The fourth option is to have 25 participants drive the Porsche with alcohol,
25 other participants drive the Porsche without alcohol, 25 participants
drive the Fiat with alcohol, and the remaining 25 participants drive the
Fiat without alcohol. Now both the car variable and the alcohol variable
are between-participant variables: none of the participants is present in
more than 1 condition.

Only the second and the third design described here are mixed designs, hav-
ing at least one between-participants variable and at least one within-participant
variable.

Remember that when there is at least one within variable in your design,
you have to use a linear mixed model. If all variables are between variables, one
can use an ordinary linear model. Note that the term mized in linear mixed
model refers to the effects in the model that can be both random and fixed. The
term mized in mixed designs refers to the mix of two kinds of variables: within
variables and between variables.

Also note that the within and between distinction refers to the units of
analysis. If the unit of analysis is school, then the location of the school building
is a between-school variable. An example of a within-school variable could be
time: before a major curriculum reform and after a major curriculum reform.
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12.4.1 Exercises

1. A psychologist studies whether age affects math performance. In 2017, she
measures math performance (one score) in a group of 80-year-olds and she
measures math performance (one score) in a group of 90-year-olds.

1. In this design, is the age variable a between-participants variable or a
within-participant variable?

2. Would you analyze these data with a linear model, or with a linear
mixed model? Explain.

2. A psychologist studies whether age affects math performance. She mea-
sures math performance (one score) in a group of 7-year-olds and she
measures math performance again when the same children are 8 years
old.

1. In this design, is the age variable a between-participants variable or a
within-participant variable?

2. Would you analyze these data with a linear model, or with a linear
mixed model? Explain.

3. Look at the data table below.

ID Nationality Sex Mathscore
1 Dutch Male 67
2 Dutch Female 88
3 German Male 50
4  German Female 98

In this data set on Math performance, we see two variables, nationality
and sex. What kind of variables are these: within-participant variables or
between-participants variables? Explain.

1. Would you call this a mixed design? Explain.

2. Would you analyze this data set with a linear model or with a linear
mixed model? Explain.

4. Look at the data table below.

ID Nationality Age Mathscore

1  Dutch 3 67
1  Dutch 5 88
2  German 4 50
2  German 6 98
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In this data set on Math performance, we see two variables, nationality
and age. What kind of variables are these: within-participant variables or
between-participants variables? Explain.

1. Would you call this a mixed design? Explain.

2. Would you analyze this data set with a linear model or with a linear
mixed model? Explain.

. Look at the data table below.

ID  Subject Sex Mood
1 Psychology Male 67
1 Psychology Female 88
2 Sociology Female 50
2

Sociology Male 98

In this data set on mood in transsexuals, we see two variables, the subject
they have a Master’s degree in, and sex. What kind of variables are these:
within-participant variables or between-participants variables? Explain.
1. Would you call this a mixed design? Explain.

2. Would you analyze this data set with a linear model or with a linear
mixed model? Explain.

. Look at the data table below.

SchoollD Country Year Avarage Mathscore
1 The Netherlands 2010 67
1 The Netherlands 2011 88
1 The Netherlands 2012 50
1 The Netherlands 2013 98
2 Germany 2010 67
2 Germany 2011 88
2 Germany 2012 50
2 Germany 2013 98

In this data set on average Math performance in schools, we see two vari-
ables, country of the school and year of data collection. What kind of
variables are these: within-school variables or between-schools variables?
Explain.

1. Would you call this a mixed design? Explain.

2. Would you analyze this data set with a linear model or with a linear
mixed model? Explain.
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12.5 Answers

1. 1. The age variable is a between-participants variable: some of the par-
ticipants are 80 years old and some are 90 years old: none are both at
the same time. Age discriminates between two sets of participants, so it
is a between-participants variable. 2. Two groups of participants were
studied. Because we only have one measure for each participant, there is
no clustering, and we use an ordinary linear model.

2. 1. The age variable is a within-participants variable: children are studied
twice and scores can therefore be compared within an individual. 2. One
group of participants was studied and for each participant we have two
math scores. Because we have more than one measure for each participant,
we have to use a linear mixed model to account for clustering.

3. Each participant is either Dutch or German. This is a between-participants
variable. Each participant is either male or female, sex discriminates be-
tween separate groups of participants, so sex is a between-participants
variable. 1. This is not a mixed design as it does not have both within-
participant and between-participants independent variables. 2. Because
we only have one measure for each participant, there is no clustering, and
we use an ordinary linear model.

4. Each participant is either Dutch or German. This is a between-participants
variable. On measurement 1 participants have a different age than on
measurement 2. This is a within-participant variable. 1. This is a mixed
design as it has both a within-participant and a between-participants in-
dependent variable. 2. For each participant we have two math scores, so
we would have to use a linear mixed model to account for clustering.

5. Each participant has only one Masters degree. This is a between-participants
variable. Between the two measurements, participants change their sex.
This is a within-participant variable: we can compare people’s mood when
they are male and when they are female. 1. This is a mixed design as
it has both a within-participant and a between-participants independent
variable. 2. For each participant we have two mood scores, so we would
have to use a linear mixed model to account for clustering.

6. Each school is based in only one country and has measurements across
four years. Country is a between-schools variable and year is a within-
school variable. 1. This is a mixed design as it has both a within-school
and a between-schools independent variable. 1. For each school we have
four average math scores, so we would have to use a linear mixed model
to account for clustering.
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12.6 Mixed design with a linear effect

In an earlier section we looked at a mixed design where the between variable was
newspaper and the within variabe was measure: pre or post. It was a 2 by 2
design (2 x 2) design: 2 measures and 2 newspapers, where we were interested
in the interaction effect. We wanted to know whether newspaper moderated
the effect of aspirin on headache. We used the within variable measure in a
qualitative way by dummy coding it.

In an earlier section in this chapter we saw that we can also model linear
effects in linear mixed models, where we treated the time variable quantitatively:
Ohrs, 3hrs after aspirin intake and 24 hrs after intake. Here we will give an
example of a 3 x 20 mixed design: we have a qualitative group (between) variable
with 3 levels and a quantitative time (within) variable with 20 levels. The
example is about stress in athletes that are going to partake in the 2018 Winter
Olympics. Stress can be revealed in morning cortisol levels. In the 20 days
preceding the start of the Olympics, each athlete was measured every morning
after waking and before breakfast by letting them chew on cotton. The cortisol
level in the saliva was then measured in the lab. Our research question is
whether cortisol levels rise in athletes that prepare for the Olympics.

Three groups were studied. One group consisted of 50 athletes who were
selected to partake in the Olympics, one group consisted of 50 athletes that
were very good but were not selected to partake (Control group I) and one
group consisted of 50 non-athlete spectators that were going to watch the games
(Control group II). The null-hypothesis was that the linear change in cortisol
levels during those 20 days was the same for the three groups: the Olympeans,
Control group I and Control group II.

In Table you see part of the data, the first 6 measurements on person 1
that belongs to the group of Olympeans.

Table 12.7: Cortisol measures over time.

person  group measure  cortisol
1 Olympean 1 19
1 Olympean 2 20
1 Olympean 3 22
1  Olympean 4 23
1 Olympean 5 24
1 Olympean 6 22

When we plot the data, and use different colours for the three different
groups, we already notice that the Olympeans show generally higher cortisol
levels, but particulary at the end of the 20-day period.

So we want to know whether the linear effect of time is moderated by group.
Since for every person we have 20 measurements, the data are clustered so we
use a linear mixed model. We’re looking for a linear effect of time, so we use
the WITH keyword to indicate that we want to use the measure variable in a
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Figure 12.11: Cortisol levels over time in three groups.

quantitative way. We also use group as a predictor, but in a qualitative way, by
using the keyword BY, so that SPSS will automatically make dummy variables.
Because we're interested in an interaction effect, we include both main effects
of group and measure and their interaction under the DESIGN subcommand.
Lastly, we control for individual differences in cortisol levels by introducing a
random effect for person.

MIXED cortisol WITH measure BY group
/FIXED=measure group measurexgroup
/PRINT=DESCRIPTIVES SOLUTION
/RANDOM=intercept | SUBJECT(person) COVTYPE(VC).

The SPSS output is presented in Figure ??. There we see an intercept of
19.7, a slope of 1.0 for the effect of measure, two main effects for the group
variable (group3 is the reference group, in this case the Olympeans, see the plot
above), and two effects for the interaction effect (one for control group I and
one for control group II). Let’s fill in the linear equation based on this output:

cortisolyj = 19.7 + person; + 1 x measure + .4ContrG1 +
0.18ContrG2 — .4ContrG1 x measure — .4ContrG2 x measure + e;;
person; ~ N (0, O'Z =0.99)

eij ~ N(0,02 = 1.00)

0.986

We see a clear intraclass correlation of around 098610097 — 0.0 so it’s a
good thing we’ve included a random effect for persons. The expected means

275



Type Il Tests of Fixed Effects

Denominator
Source Numerator df df F Sig.
Intercept 1 197.391 | 49368.492 .000
measure 1 2847 54256.135 .000
group 2 197.391 1.698 .186
group * measure 2 2847 1857.202 .000

Estimates of Fixed Effects

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound | Upper Bound
Intercept 10.691068 | .155004 | 197.391 | 127.036 000 | 19.385393 | 19.096744
measure 1.008885 | .005476 2847 | 184.239 .000 .998148 1.019622
[group=1.00] 402950 | .219208 | 197.391 1.838 .068 -.029340 835241
[group=2.00] 176148 | .219208 | 197.391 .804 423 -.256142 .608439
[group=3.00] ob 0
[group=1.00] * 411896 | .007744 2847 | -53.188 .000 -.427081 -.396711
measure
[group=2.00] -.405513 | .007744 2847 | -52.364 000 | -.420698 -.390328
g on 0| o

b. This parameter is set to zero because it is redundant.

Estimates of Covariance Parameters

Parameter Estimate | Std. Error
Residual .997033 .026426
Intercept [subject  Variance

= person] .986156 .120850

Figure 12.12: Output of a MIXED analysis of cortisol levels measured over time
in three groups.

at various time points and for various groups can be made with the use of the
above equation.

It’s easier to see what linear effects we have for the three different groups.
Filling in the above equation for Control group 1, we get:

cortisol;; = 19.7 + person; + 1 X measure 4+ .4 — .4 x measure + e;;

= 20.1 + person; + 0.6 X measure + e;;

For Control group 2 we get:

cortisol;; = 19.7+ person; +1 x measure 4 0.18 — .4 x measure + e;;
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Figure 12.13: Cortisol levels over time in three groups with the group-specific
regression lines.

= 19.88 + person; + 0.6 x measure + e;;

And for the Olympeans we get:

cortisol;; = 19.7 + person; + 1 x measure + e;;
(12.6)

In these equations all intercepts are around 20. The slopes are 0.6 in both
Control groups I and II, whereas the slope is 1.0 in the group of Olympean
athletes. For illustration, these implied linear regression lines are depicted in
Figure [[2.13]

So based on the linear equation, we see that in this sample the rise in cortisol
levels is much steeper in Olympeans than in the two control groups. But is
this true for all Olympeans and the rest of the populations of high performing
athletes and spectators? Note that in the regression table we see two interaction
effects: one for groupl*measure and one for group2*measure. Here we're
interested in the overall signficance of the interaction effects. That answer we
find in the top table with the F-statistics: we see a significant group by measure
interaction effect, F'(2,28) = 18.57,p < 0.001. The null-hypothesis of the same
cortisol change in three different populations can be rejected, and we conclude
that Olympean athletes, non-Olympean athletes and spectators show a different
change in cortisol levels in the weeks preceding the games.
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Chapter 13

Non-parametric alternatives
for linear mixed models

13.1 Checking assumptions

In previous chapters we have discussed the assumptions of linear models and lin-
ear mixed models: linearity (in parameters), homoscedasticity (equal variance),
normal distribution of residuals, normal distribution of random effects (relevant
for linear mixed models only), and independence (no clustering unaccounted
for).

The problem of nonlinearity can be solved by introducing quadratic terms,
for instance by replacing a linear model Y = by + b1 X + e by another linear
model Y = by +b: X + b2X2 +e.

If we have nonindependence, then you can introduce either an extra fixed
effect or a random effect for this clustering. For example, if you see that cars
owned by low income families have much more mileage than cars owned by high
income families, you can account for this by adding a fixed effect of an income
variable as predictor. If you see that average milage is rather similar within
municipality but that average mileage can vary quite a lot across municipalities,
you can introduce a random effect for municipality (if you have data say from
30 different municipalities).

Unequal variance of residuals and nonnormal distribution of residuals are
harder to tackle. Unequal variance can be tackled sometimes by using linear
models, but with more advanced options, or by making corrections to p-values
that make inference more robust against model violations. Violations of nor-
mality are even a bigger problem. Nonnormality can sometimes be solved by
using generalized linear models (see next chapter). A combination of nonnor-
mality and unequal variance can sometimes be solved by using a transforma-
tion of the data, for instance not analyzing Y = by + b1 X + e but analyzing
log(Y)=by +b1 X +eor VY =by+ b X +e.

If these data transformations or advanced options don’t work (or if you're
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Figure 13.1: Boxplot of the imaginary speed skating data.

not acquainted with them), and your data show nonequal variance and/or non-
normally distributed residuals, there are nonparametric alternatives. Here we
discuss two: Friedman’s test and Wilcoxon’s signed rank test. We explain them
using an imaginary data set on speedskating.

Suppose we have data on 12 speedskaters that participate on the 10 kilometers
distance in three separate championships in 2017-2018: the European Cham-
pionships, the Winter Olympics and the World Championships. Your friend
expects that speedskaters will perform best at the Olympic games, so there she
expects the fastest times. So you decide to test the null-hypothesis that average
times are the same at the three occasions. In Figure we see a boxplot of
the data.

In order to test this null-hypothesis, we run a linear mixed model with
dependent variable time, and independent variable occasion. We use random
effects for the differences in speed across skaters. In Figure we see the
residuals:

From this plot we clearly see that the assumption of equal variance (ho-
mogeneity of variance) is violated: the variance of the residuals in the World-
championships condition is clearly smaller than the variance of the European
championships condition. From the histogram of the residuals in Figure we
also see that the distribution of the residuals is not bell-shaped: it is positively
skewed (skewed to the right).

Since the assumptions of homogeneity of variance and of normally distributed
residuals are Violate(ﬂ, the results from the linear mixed model cannot be

IRemember that assumptions relate to the population not samples: oftentimes your data
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trusted. In order to answer our research question, we therefore have to re-
sort to another kind of test. Here we discuss Friedman’s test, a non-parametric
test, for testing the null-hypothesis that the medians of the three groups of data
are the same. This Friedman test can be used in all situations where you have
at least 2 levels of the within variable. In other words, you can use this test
when you have data from three occasions, but also when you have data from 10
occassions or only 2. In the following section the Wilcoxon signed ranks test is
discussed. This test is often used in social and behavioural sciences. The down-
side of this test is that it can only handle data sets with 2 levels of the within
variable. In other words, it can only be used when we have data from two occas-
sions. Friedman’s test is therefore more generally applicable than Wilcoxon’s.
We therefore advise to always go with the Friedman test, but for the sake of
completeness, we will also explain the Wilcoxon test.

13.2 Friedman’s test for £ measures

Similar to many other nonparametric tests for testing the equality of medians,
Friedman’s test is based on ranks. Figure 7?7 shows the speedskating data in
wide format.

Table 13.1: The speedskating data in wide format.
athlete EuropeanChampionships Olympics WorldChampionships

1 14.35 16.42 15.79
2 17.36 18.13 14.26
3 19.01 19.95 18.37
4 27.90 17.78 15.12
5) 17.67 16.96 17.17
6 17.83 16.15 15.30
7 16.30 19.44 15.63
8 28.00 16.23 15.69
9 18.27 15.76 15.65
10 17.00 16.18 14.99
11 17.10 13.89 15.83
12 18.94 14.83 14.77

We rank all of these time measures by determining the fastest time, then the
next to fastest time, etcetera, until the slowest time. But because the data in
each row belong together (we compare individuals with themselves), we do the
ranking row-wise. For each athlete separately, we determine the fastest time
(1), the next fastest time (2), and the slowest time (3) and put the ranks in a
table.

set is too small to say anything about assumptions at the populationlevel. Residuals for a
data set of 8 persons might show very nonnormal residuals, or very different variances for two
subgroups of 4 persons each, but that might just be a coincidence, a random result because
of the small sample size. If in doubt, it is best to use nonparametric methods.
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Table 13.2: Row-wise ranks of the speedskating data.
athlete EuropeanChampionships Olympics WorldChampionships

1 1.00 3.00 2.00
2 2.00 3.00 1.00
3 2.00 3.00 1.00
4 3.00 2.00 1.00
5 3.00 1.00 2.00
6 3.00 2.00 1.00
7 2.00 3.00 1.00
8 3.00 2.00 1.00
9 3.00 2.00 1.00
10 3.00 2.00 1.00
11 3.00 1.00 2.00
12 3.00 2.00 1.00

From this table we see for example that athlete 1 had the fastest time on
the European Championships (14.35, rank 1) and the slowest at the Olympics
(16.42, rank 3).

Next we compute the sum of the ranks column-wise: the sum of the ranks
for the European Championships data is 31, for the Olympic data it’s 26 and
for the World Championships data it is 15.

From these sums we can gather that in general, these athletes showed their
best times (many rank 1s) at the World Championships, as the sum of the ranks
is lowest. We also see that in general these athletes showed their worst times
(many rank 2s and 3s) at the European Championships, as the relevant column
showed the highest sum of ranks.

In order to know whether these sums of ranks are significantly different from
eachother, we may compute an F,-value based on the following formula:

12

= [wm

zg?_lsf.] —3N(k+1) (13.1)

In this formula, N stands for the number of rows (12 athletes), k stands
for the number of columns (3 occasions), and sz stands for the squared sum of
column j (312, 262 and 152). If we fill in these numbers, we get:

12
F. = |———— 12 + 262 + 15%)| — 12 1
{12><3(3+1)X(3 +6+5)} 3x12(3+1)

12
= |2 x1862| — 144 =111
L44>< 86] 7

What can we tell from this F.-statistic? In order to say something about
significance, we have to know what values are to be expected under the null-
hypothesis that there are no differences across the three groups of data. Suppose
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we randomly mixed up the data by taking all the speedskating times and ran-
domly assigning them to the three contests and the twelve athletes, until we
have a newly filled datamatrix in Table

Table 13.3: The raw skating data in random order.
athlete EuropeanChampionships Olympics WorldChampionships

1 18.37 15.79 17.83
2 15.12 14.83 17.67
3 14.35 14.99 15.63
4 14.26 17.00 17.36
5 19.01 16.30 17.17
6 16.23 15.30 14.77
7 15.83 15.69 27.90
8 15.76 19.44 13.89
9 15.65 18.27 16.18
10 28.00 17.78 16.15
11 19.95 16.42 17.10
12 18.13 16.96 18.94

If we then compute F;. for these mixed up data, we get another value. If we
do this say 1000 times, we get the following values for F., summarized in the
histogram in Figure

So if the data is just randomly distributed over the three columns in the data
matrix, we expect no systematic differences and so the null-hypothesis is true.
So now we know what the distribution of F;. looks like when the null-hypothesis
is true. Remember that for the true data that we actually gathered, we found an
F-value of 11.17. From the histogram, we see that only very few values of 11.17
or larger are observed when the null-hypothesis is true. If we look more closely,
we find that only 0.4% of the values are larger than 11.17, so we have a p-value
of 0.004. The 95th percentile of these 1000 F,.-values is 5.167, meaning that of
the 1000 values for F,., 5% are larger than 5.167. So if we use a signficance level
of 5%, our observed value of 11.17 is larger than the critical value for F,., and
we conclude that the null-hypothesis can be rejected.

Now this p-value of 0.004 and the critical value of 5.167 are based on our
own computations. Actually there are better ways. One is to look up critical
values of F, in tables, for instance in Kendall M.G. (1970) Rank correlation
methods. (fourth edition). The p-value corresponding to this Fj.-value depends
on k, the number of groups of data (here 3 columns) and N, the number of rows
(12 individuals). If we look up that table, we find that for £ = 3 and N = 12
the critical value of F;. for a type I error rate of 0.05 equals 6.17. Our observed
F,-value of 11.17 is larger than that, therefore we can reject the null-hypothesis
that the median skating times are the same at the three different championships.
So we have to tell your friend that there are general differences in skating times
at different contests, F,. = 11.17,p < 0.05, but it is not the case that the fastest
times were observed at the Olympics.
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hypothesis is true, for 12 speedskaters.

Another way is to make an approximation of the distribution of F,.. Note
that the distribution in the histogram is very strangely shaped. The reason is
that the data set is quite limited. Suppose we have not data on 12 speedskaters,
but on 120. If we then randomly mix up data again and compute 1000 different
values for F)., we get the histogram in Figure [[3.5]

The shape becomes more regular. It also starts to resemble another distri-
bution, that of the x? (chi-square). It can be shown that the distribution of
the F). for a large number of rows in the data matrix, and at least 6 columns,
approaches the shape of the y2-distribution with k — 1 degrees of freedom. This
is shown in Figure [I3.6]

The line of the y?-distribution with 2 degrees of freedom approaches the
histogram quite well, but not perfectly. In general, for large NV and k > 5, the
approximation is good enough. In that way it gets easier to look up p-values
for certain F,-values, because the y2-distribution is well—knowrﬂ so we don’t
have to look up critical values for F. in old tables. For a significance level of
5%, the critical value of a x? with 2 degrees of freedom is 5.991. This is close to
the value in the table for F, in old books: 6.17. The part of the x2-distribution
with 2 degrees of freedom that is larger than the observed 11.17 is 0.004, so our
approximate p-value for our null-hypothesis is 0.004.

2The x2-distribution is based on the normal distribution: the y2-distribution with k degrees
of freedom is the distribution of a sum of the squares of k independent standard normal random
variables.
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chi-square distribution with 2 degrees of freedom.
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13.3 How to perform Friedman’s test in SPSS

First of all, you need data in wide format. If your data happens to be in
long format, use the CASETOVARS procedure to get the data in wide format.
CASETOVARS requires your data to be ordered, so use the SORT CASE BY
procedure before CASETOVARS. Suppose your data is in long format, as in
Table [3.4

Table 13.4: The raw skating data in long data format.
athlete occasion time

1 1.00 14.35
1 2.00 16.42
1 3.00 15.79
2 1.00 17.36
2 2.00 18.13
2 3.00 14.26

Then the following syntax turns the data into wide format:

SORT CASES BY athlete occasion.
CASESTOVARS
/ID=athlete
/INDEX=occasion
/GROUPBY=VARIABLE
/SEPARATOR = "_".

This creates the wide format data matrix in Table

Table 13.5: The raw skating data in wide data format after CASETOVARS
athlete time_1.00 time_2.00 time_3.00

1 14.35 16.42 15.79
2 17.36 18.13 14.26
3 19.01 19.95 18.37
4 27.90 17.78 15.12
5 17.67 16.96 17.17
6 17.83 16.15 15.30
7 16.30 19.44 15.63
8 28.00 16.23 15.69
9 18.27 15.76 15.65
10 17.00 16.18 14.99
11 17.10 13.89 15.83
12 18.94 14.83 14.77

Note the variable names: they start with the dependent variable time and
are then indexed by the number of the occasion, 1.00, 2.00 and 3.00, that re-
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late to European Championships, Olympic Games and World Championships,
respectively.

We can then specify that we want Friedman’s test by using the NPAR TESTS
procedure with the FRIEDMAN subcommand and indicating which variables
we want to use:

NPAR TESTS
/FRIEDMAN=time_1.00 time_2.00 time_3.00.

Ranks
Mean Rank
time_1.00: time 2.58
time_2.00: time 1.25
time_3.00: time 2.17

Test Statistics

N 12
Chi-Square 11.167
df 2
Asymp. Sig. .004

Figure 13.7: SPSS output of the Friedman test.

In the output in Figure you first see the mean ranks. Note that if
you multiply these by 12 (the number of rows), you get the sum of the ranks
per column that we also computed above. Next you see a chi-square statistic,
degrees of freedom, and an asymptotic p-value (Asymp. Sig.). Why don’t we
see an F.-statistic?

The reason is, as discussed in the previous section, that for large number
of measurements (columns) and a large number of individuals (rows), the F,
statistic tends to behave like a chi-square, x?, with k — 1 degrees of freedom.
So what we are looking at in this output is really an Fj.-value of 11.17 (exactly
the same value as we computed by hand in the previous section). In order to
approximate the p-value, this value of 11.17 is interpreted as a chi-square (x?),
which with 2 degrees of freedom has a p-value of 0.004.

This asymptotic (approximated) p-value is the correct p-value if you have a
lot of rows (large N) and at least 6 variables (k > 5). If you do not have that,
as we have here, this asymptotic p-value is only what it is: an approximation.
If you want to have the exact p-value, then do

NPAR TESTS
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/FRIEDMAN=time_1.00 time_2.00 time_3.00
/METHOD=EXACT.

and then use the p-value under exactsign., in this case 0.002, see Figure

I3.8

Ranks
Mean Rank
time_1.00: time 2.58
time_2.00: time 1.25
time_3.00: time 2.17

Test Statistics

N 12
Chi-Square 11.167
df 2
Asymp. Sig. .004
Exact Sig. .002
Point Probability .001

Figure 13.8: SPSS output of the Friedman test with the exact p-value.

Thus, a Friedman’s test of equal medians showed that speedskaters show
significantly different median times on the 10 kilometer distance at the three
types of contests, F,. = 11.17,p = 0.002.

13.4 Wilcoxon’s signed ranks test for 2 mea-
sures

Friedman’s test can be used for 2 measures, 3 measures or even 10 measures. As
stated earlier, the well-known Wilcoxon’s test can only be used for 2 measures.
For completeness, we also discuss that test here.

For each athlete, we take the difference in skating times and call it d, see Table
Next we rank these d-values, irrespective of sign, and call these ranks
ranky. From the table 7?7 we see that athlete 12 shows the smallest difference
in skating times (d= 0.06, rank = 1) and athlete 2 the largest difference.

Next we indicate for each rank whether it belongs to a positive or a negative
difference d and call that variable ranksign.

Under the null-hypothesis, we expect that some of the larger d-values are
positive and some of them negative, in a fairly equal amount. If we sum the
ranks having plus-signs and sum the ranks having minus-signs, we would expect
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Table 13.6: The raw skating data and the computations for Wilcoxon signed
ranks test

athlete Olympics WorldChampionships d rank.d ranksign
1 16.42 15.79  0.63 5.00 5.00
2 18.13 14.26  3.87 12.00 12.00
3 19.95 18.37  1.58 8.00 8.00
4 17.78 15.12  2.66 10.00 10.00
5 16.96 1717 -0.21 3.00 -3.00
6 16.15 15.30  0.85 6.00 6.00
7 19.44 15.63  3.81 11.00 11.00
8 16.23 15.69  0.54 4.00 4.00
9 15.76 15.65 0.11 2.00 2.00
10 16.18 1499  1.19 7.00 7.00
11 13.89 15.83 -1.94 9.00 -9.00
12 14.83 14.77  0.06 1.00 1.00

that these two sums are about equal, but only if the null-hypothesis is true. If
the sums are very different, then we should reject this null-hypothesis. In order
to see if the difference in sums is too large, we compute them as follows:

Tt = 5+4124+8410+6+11+4+24+7+1=66
T = 349=12

To know whether Tt is significantly larger than T~, the value of T can be
looked up in a table, for instance in Siegel & Castellan (1988). There we see
that for T, with 12 rows, the probability of obtaining a 7" of at least 66 is
0.0171. For a two-sided test (if we would have switched the columns of the two
championships, we would have gotten a T~ of 66 and a T’ of 12!), we have to
double this probability. So we end up with a p-value of 2 x 0.0171 = 0.034.

In the table we find no critical values for large sample size N, but fortu-
nately, similar to the Friedman test, we use an approximation using the normal
distribution. It can be shown that for large sample sizes, the statistic T is
approximately normally distributed with mean

N(N +1
H:g (13.2)
4
and variance:
N(N +1)(2N +1
o2 = NN+ DEN+D) (13.3)

24

If we therefore standardize the 7" by subtracting the p and then dividing
by the square root of the variance ﬂoQ) = o, we get a Z-value with mean 0
and standard deviation 1. To do that, we use the following formula:
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Tt —u Tt —N(N+1)/4
o /N(N+1)2N+1)/24

Here T is 66 and N equals 12, so if we fill in the formula we get Z = 2.118.
From the standard normal distribution we know that 5% of the observations lie
above 1.96 and below -1.96. So a value for Z larger than 1.96 or smaller than
-1.96 is enough evidence to reject the null-hypothesis. Here our Z-statistic is
larger than 1.96, therefore we reject the null-hypothesis that the median skating
times are the same at the World Championships and the Olympics. The p-value
associated with a Z-score of 2.118 is 0.034.

Z = (13.4)

13.5 How to perform Wilcoxon’s signed ranks
test in SPSS

If you want to use the Wilcoxon test, then use the following syntax:

NPAR TESTS
/WILCOXON=time_2.00 time_3.00
/METHOD=EXACT.

In the output in Figure we see a Z-statistic, an asymptotic p-value, and
two exact p-values. The reason that we see a Z-statistic is that the Wilcoxon
T+ statistic approaches a normal distribution in case we have a large number of
observations (many rows). If N > 15, the approximation is good enough so that
the statistic can be interpreted as a z-score (standardized score with a normal
distribution). That means that a z-score of 1.96 or larger or -1.96 or smaller
can be regarded as significant at the 5% significance level. Since the standard
normal distribution is only an approximation, and we have N = 12, we have
to look at the exact significance level, which is in this case 0.034. We see that
the exact p-value is in this case equal to the approximate p-value. Note that
we use a two-sided test, to allow for the fact that random sampling could lead
to a higher median for the Olympic Games or a higher median for the World
Championships. We just want to know whether the null-hypothesis that the
two medians differ can be rejected (in whatever direction) or not.

Let’s compare the output with the Friedman test, but then only use the
relevant variables in your syntax:

NPAR TESTS
/FRIEDMAN= time_2.00 time_3.00
/METHOD=EXACT.

In the output in Figure[13.10| we see that the null-hypothesis of equal medians
at the World Championships and the Olympic Games can be rejected, with a
p-value of 0.039.
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Ranks

N Mean Rank | Sum of Ranks
time_3.00: time -  Negative Ranks 22 6.00 12.00
time_2.00: time  pysitive Ranks 10P 6.60 66.00
Ties 0¢
Total 12

a. time_3.00: time < time_2.00: time
b. time_3.00: time > time_2.00: time
c.time_3.00: time = time_2.00: time

Test Statistics

time_3.00:
time - time_2.
00: time
Z -2.118"°
Asymp. Sig. (2-
tailed) -034
Exact Sig. (2-
tailed) -034
Exact Sig. (1-
tailed) -017
Point Probability .004

Note that both the Friedman and Wilcoxon tests come up with very similar
p-values. Their rationales are very similar: Friedman’s test is based on ranks
and Wilcoxon’s test is based on positive and negative differences between mea-
sures 1 and 2, so in fact ranks 1 and 2 for each row in the data matrix. Both
can therefore be used in the case you have two measures. We recommend to
use the Friedman test, since that test can be used in all situations where you
have 2 or more measures per row. Wilcoxon’s test can only be used if you have
2 measures per row.

In sum, we can report in two ways on our hypothesis regarding similar skat-

b. Based on negative ranks.

Figure 13.9: SPSS output of the Wilcoxon test.

ing times at the World Championships and at the Olympics:

1.

A Friedman test showed a significant difference between the
10km skating times at the World Championships and at the
Olympics, F,. = 5.33,p = 0.04. Athletes more often show their
fastest times at the World Championships than can be expected

due to chance.

A Wilcoxon signed ranks test showed a significant difference
between the 10km skating times at the World Championships
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Ranks

Mean Rank
time_2.00: time 1.17
time_3.00: time 1.83

Test Statistics

N 12
Chi-Square 5.333
df 1
Asymp. Sig. .021
Exact Sig. .039
Point Probability .032

Figure 13.10: SPSS output of the Friedman test for two measures.

and at the Olympics, Z = —2.12,p = 0.03. Athletes more often
show their fastest times at the World Championships than can
be expected due to chance.

How do we know that the fastest times were at the World Championships? If
we look at raw data above, that does not seem that obvious. But this conlusion
is based on the sum of ranks: we saw a sum of ranks of 26 for the Olympics
and 15 for the World Championships. So the average rank is lower at the World
Championships.

13.6 Ties

Many nonparametric tests are based on ranks. For example, if we have the data
sequence 0.1, 0.4, 0.5, 0.2, we give these values the ranks 1, 3, 4, 2, respectively.
But in may data cases, data sequences cannot be ranked unequivocally. Let’s
look at the sequence 0.1, 0.4, 0.4, 0.2. Here we have 2 values that are exactly
the same. We say then that we have ties. If we have ties in our data like the
0.4 in this case, one very often used option is to arbitrarily choose one of the
0.4 values as smaller than the other, and then average the ranks. Thus, we
rank the data into 1, 3, 4, 2 and then average the tied observations: 1, 3.5,
3.5, 2. As another example, suppose we have the sequence 23, 54, 54, 54, 19,
we turn this into ranks 2, 3, 4, 5, 1 and take the average of the ranks of the
tied observations of 54: 2, 4, 4, 4, 1. These ranks corrected for ties can then
be used to compute the test statistic, for instance Friedman’s F,. or Wilcoxon’s
Z. However, in many cases, because of these corrections, a slightly different
formula is to be used. So the formulas become a little bit different. This is all
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done in SPSS automatically. If you want to know more, see Siegel and Castellan
(1988).

13.7 Exercises

A researcher is interested in the relationship between mood and day of the week:
are people generally moodier on Monday than on Wednesday or Friday?

Below we see the data on 4 people that rated their mood from 1 (very moody)
to 10 (not moody at all) on three separate days in a week in February: Day 1
is Monday, day 2 is Wednesday and day 3 is Friday:

ID | Day | Mood
1 1 3
1 2 5
1 3 8
2 1 4
2 2 7
2 3 6
3 1 2
3 2 4
3 3 1
4 1 9
4 2 5
4 3 3

1. Put the data into wide format, and think of appropriate variable names

2. Rank these data row-wise: for each row determine the lowest mood (1),
the second lowest mood (2) and the highest mood score (3)
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3. Determine the column sums: the sum of the ranks for Monday, Wednesday
and Friday.

4. How many rows do you have (V) and how many columns of data do you
have (k)?

5. Compute F;.

6. Copy the data into SPSS and run a Friedman’s test. Should you ask for
an exact p-value? Provide the syntax.

7. Suppose you get the SPSS output in Figure . What would your conclu-
sion be regarding the research question about the relationship between
moodiness and the day of the week?

8. In this data set, for which day did we observe the personal best mood?
How many of the individuals showed their best mood on that day?

9. A linear mixed model was run on this data set. When checking model
assumptions, we saw the following graphs in Figures 7?7 and [13.14

Would you prefer to stick to the Friedman’s test for this data set, or would
you prefer to report a linear mixed model? Explain your answer.

10. Could you have performed a Wilcoxon test on these data? Why, or why
not?

13.7.1 Answers

ID | Mood_1 | Mood_2 | Mood_3

1 3 5 8

1. The raw data in wide format: 2 4 7 6
3 2 4 1

4 9 5 3
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Ranks

Mean Rank
Mood_1.00: Mood 1.75
Mood_2.00: Mood 250
Mood_3.00: Mood 1.75

Test Statistics

N
Chi-Square
df

Asymp. Sig.
Exact Sig.

Point Probability

1.500

472
.653
222

w

Figure 13.11: SPSS output of a Friedman test.

. The row-wise ranked data:

ID | Mood_1 | Mood_2 | Mood_3
1 1 2 3
2 1 3 2
3 2 3 1
4 3 2 1

. Day 1: 7, Day 2: 10 and Day3: 7.
.N=4and k=3
12
F, = |—
[4 x3(3+1)
12
= [48 X 198] —48 =1.50
. NPAR TESTS
/FRIEDMAN= Mood_1 Mood_2 Mood_3

/METHOD=Exact.
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We found no significant effect of day of the week on mood,
F,. = 1.50,p = 0.65, so the null-hypothesis of equal mood during
the week is not rejected. Note however that the sample size
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Residual

count
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Figure 13.12: Residual plot after a linear mixed model analysis.
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Figure 13.13: Residual plot after a linear mixed model analysis.
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Figure 13.14: Histogram of residuals after a linear mixed model analysis.

8.

10.

was extremely small (12 data points), so even if there is a real
relationship between mood and day of the week, there was little
chance to find evidence of that in this data set.

The highest column sum of the ranks was found for day 2, which was
Wednesday. So in this data set we saw that the four individuals generally
showed their personal highest mood score on Wednesday. Actually, 2
persons out of 4 showed their highest score (rank 3) on Wednesday (ID=2
and ID=3).

The plots suggests that the variance of the residuals is very small for
the second day, compared to the other two days. The distribution is
also hardly normal. But it is hard to tell whether the assumptions are
reasonable, since there are so few data points. It would therefore be safest
to report a Friedman test.

A Wilcoxon test can only be performed on two measures, say Monday
and Wednesday data, or Monday and Friday data. You could not test the
null-hypothesis of the same moods on three days with a Wilcoxon test.
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Chapter 14

Generalized linear models:
logistic regression

14.1 Introduction

In previous chapters we were introduced to the linear model, with its basic form

y=by+b X1 +...+b,X,, +e (14.1)
e~ N(0,02) (14.2)

Two basic assumptions of this model are the linearity in the parameters, and
the normally distributed residual e. Linearity in the parameters means that the
effects of intercept and the independent variables X7, Xs,...X,, are additive:
the assumption is that you can sum these effects to come to a predicted value
for y. So that is also true when we include interaction effects to account for
moderation effects,

Yy = bo + 01 X1 + b Xo + b3 X1 X5+ € (143)
e~ N(0,02) (14.4)
or when we use a quadratic term to account for other types of nonlinearity
in the data:
y=by+b X1 +0X1X1+e (145)
e~ N(0,02) (14.6)

In all these models, the assumption is that the effects of the parameters can
be added to one another.
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Figure 14.1: Density function of the normal distribution, with mean 0 and
variance 4 (standard deviation 2). Inflection points are positioned at residual
values of minus 1 standard deviation and plus 1 standard deviation.

The other major assumption of linear (mixed) models is the normal distri-
bution of the residuals. As we have seen in for instance the previous chapter,
sometimes the residuals are not normally distributed. Remember that with a
normal distribution N(0,0?), in principle all values between —oo and +oo are
possible, but they tend to concentrate around the value of 0, in the shape of
the bell-curve. Figure shows the normal distribution N(0,0% = 4): it is
centered around 0 and has variance 4. Note that the inflection point, that is
the point where the decrease in density tends to decelerate, is exactly at the
values -2 and 4+2. These are equal to the square root of the variance, which is
the standard deviation, +0 and —o.

A normal distribution is suitable for continuous data: for example a variable
that can take all possible values between -1 and 0. For many variables this is
not true. Think for example of temperature measures: if the thermometer gives
degrees centigrade with a precision of only 1 decimal, we can never have values
of say 10.07 or -56.789. Our data will in fact be discrete, showing rounded values
like 10.1, 10.2, 10.3, but no values in between.

Nevertheless, the normal distribution can still be used in many such cases.
Take for instance a data set where the temperature in Amsterdam in summer
was predicted on the basis of a linear model. Fig[[4.2]shows the distribution of
the residuals of that model:

The temperature measures were discrete with a precicsion of one tenth of
a degree centigrade, but the distribution seems well approximated by a normal
curve.
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Figure 14.2: Even if residuals are really discrete, the normal distribution can be
a good approximation of their distribution.

But let’s look at an example where the discreteness is more prominent. In
Figure [I4:3] we see the residuals of an analysis of exam results. Students had
to do an asssignment that had to meet 4 criteria: 1) originality, 2) language, 3)
structure, and 4) literature review. Each criterion was scored as either fulfilled
(1) or not fulfilled (0). The score for the assignment was given on the basis
of the number of criteria that were met, so the scores could be 0, 1, 2, 3 or
4. The score was predicted on the basis of the average exam score on previous
assignments using a linear model.

Figure[14.3|shows that the residuals are very discrete, and that the continous
normal distribution is a very bad approximation of the histogram. We often see
this phenomenon when our data consists of counts with a limited maximum
number.

An even more extreme case we observe when our dependent variable con-
sists of whether or not students passed the assignment: only those assignments
that fulfilled all 4 criteria are regarded as sufficient. If we score all students
with a sufficient assignment as passed (1) and all students with an insufficient
assignment as failed (0) and we predict this again by the average exam score
on previous assignments using a linear model, we get the residuals displayed in
Figure [14.4]

Here it is definitely evident that a normal approximation of the residuals
will not do. When the dependent variable has only 2 possible values, a linear
model will never work because the residuals can never have a distribution that
is even remotely looking normal.

In the coming two chapters we will discuss how generalized linear models
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Figure 14.3: Count data example where the normal distribution is not a good
approximation of the distribution of the residuals.
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Figure 14.4: Dichotomous data example where the normal distribution is not a
good approximation of the distribution of the residuals.
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Figure 14.5: Data example: Exam outcome (score) as a function of age, where
1 means pass and 0 means fail.

can be used to analyze data sets where the assumption of normally distributed
residuals is not tenable. First we discuss the case where the dependent vari-
able has only 2 possible values (dichotomous dependent variables like yes/no or
pass/fail, heads/tails, 1/0). In the next chapter, we will discuss the case where
the dependent variable consists of counts (1,2,3,4,...).

14.2 Logistic regression

Imagine that we analyze results on an exam for third grade children. These
children are usually either 6 or 7 years old, dependending on what month they
were born in. The exam is on February 1st. A researcher wants to know whether
the age of the child can explain why some children pass the test and others fail.
She computes the age of the child in months. Each child that passes the exam
gets a score 1 and all the others get a score 0. Figure plots the data.

She wants to use the following linear model:

score = by + biage + e (14.7)
e~ N(0,02) (14.8)

Figure [T4.6] shows the estimated regression line and Figure [[4.7] shows the
distribution of the residuals as a function of age.

Clearly a linear model is not appropriate. Here, the assumption that the
dependent variable, score in this case, is scattered randomly around the pre-
dicted value with a normal distribution is not reasonable. The main problem is
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Figure 14.7: Residuals as a function of age, after a linear regression analysis of
the exam data.
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that the dependent variable score can only have 2 values: 0 and 1. When we
have a dependent variable that is categorical, so not continuous, we generally
use logistic regression. In this chapter we cover the case when the dependent
variable takes binary values, like 0 and 1.

14.2.1 Bernoulli distribution

Rather than using a normal distribution, we could try a Bernoulli distributiuon.
The Bernoulli distribution is the distribution of a coin flip. For example, if the
probability of heads is 0.1, we can expect that if we flip the coin, on average
we expect to see 0.1 times heads and 0.9 times tails. Our best bet then is that
the outcome is tails. However, if we actually flip the coin, we might see heads
anyway. There is some randomness to be expected. Let y be the outcome of a
coin flip: heads or tails. If we have a Bernoulli distribution for variable y with
probability p for heads, we expect to see heads p times, but we actually observe
heads or tails.

y ~ Bern(n, p) (14.9)

The same is true for the normal distribution in the linear model case: we
expect that the observed value of y is exactly equal to its predicted value (by +
b1X), but we always observe that it is different.

y~N(p=by+bX,0?) (14.10)

In our example, the pass rate could also be conceived as the outcome of a
coin flip: pass instead of heads and fail instead of tails. So would it be an idea
to predict the probability of success on the basis of age? And then for every
predicted probability, we allow for the fact that actually the observed success
can differ. Our linear model could then look like this:

pi = bg + brage; (14.11)
score; ~ Bern(p;) (14.12)

So for each child i, we predict the probability of success, p;, on the basis
of her/his age. Next, the randomness in the data comes from the fact that a
probability is only a probability, so that the observed success of a child score;,
is like a coin toss with probability of p; for success.

For example, suppose that we have a child with an age of 80 months, and
we have by = —3.8 and b; = 0.05. Then the predicted probability p; is equal to
—3.8+0.05 x 80 = 0.20. The best bet for such a child would be that it fails the
exam. But 0.20 is only a probability, so by chance the child could pass the exam.
This model also means that if we would have 100 children of age 80 months, we
would expect that 20 of these children would pass the test and 80 would fail.
But we can’t make predictions for one individual alone: we don’t know which
child exactly will pass and which child won’t. Note that this is similar to the
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normally distributed residual in the linear model: in the linear model we expect
a child to have a certain value for y, but we know that there will be a deviation
from this predicted value: the residual. For a whole group of children with the
same predicted value for y, we know that the whole group will show residuals
that have a normal distribution. But we’re not sure what the residual will be
for each individual child.

Unfortunately, this model for probabilities is not very helpful. If we use
a linear model for the probability, this means that we can predict probability
values of less than 0 and more than 1, and this is not possible for probabilities.
If we use the above values of by = —3.8 and b; = 0.05, we predict a probability
of -.3 for a child of 70 months and a probability of 1.2 for a child of 100 months.
Those values are meaningless!

14.2.2 Odds and logodds

Instead of predicting probabilities, we could predict odds. The nice property of
odds is that they can have very large values, much larger than 1.

What are odds again? Odds are a different way of talking about probability.
Suppose the probability of winning the lottery is 1%. Then the probability of
loosing is 99%. This is equal to saying that the odds of winning against loosing
are 1 to 99, or 1 : 99, because the probability of success is 99 times smaller than
the probability of loosing.

As another example, suppose the probability of being alive tomorrow is equal
to 0.9999. Then the probability of not being alive tomorrow is 1 — 0.9999 =
0.0001. Then the probability of being alive tomorrow is 0.9999/0.0001 = 9999
times larger than the the probability of not being alive. Therefore the odds of
being alive tomorrow against being dead is 9999 to 1 (9999:1).

If we have a slightly biased coin, the probability of heads might be 0.6. The
probability of tails is then 0.4. Then the probability of heads is then 1.5 times
larger than the probability of heads (0.6/0.4=1.5). So the odds of heads against
tails is then 1.5 to 1. For the sake of clarity, odds are often multiplied by a
constant to get integers, so we can also say the odds of heads aganst tails are 3
to 2. Similarly, if the probablity of heads were 0.61, the odds of heads against
tails would be 0.61 to 0.39, which can be modified into 61 to 39.

Now that we know how to go from probability statements to statements
about odds, how do we go from odds to probability? If someone says the odds
of heads against tails is 10 to 1, this means that for every 10 heads, there will
be 1 tails. In other words, if there were 11 coin tosses, 10 would be heads and 1
would be tails. We can therefore transform odds back to probabilities by noting
that 10 out of 11 toin tosses is heads, so 10/11 = 0.91, and 1 out of 11 is tails,
so 1/11 = 0.09.

If someones says the odds of winning a gold medal at the Olympics is a
thousand to one (1000:1), this means that if there were 1000 + 1 = 1001 oppor-
tunities, there would be a gold medal in 1000 cases and failure in only one. This
corresponds to a probability of 1000/1001 for winning and 1/1001 for failure.
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As a last example, if at the horse races, the odds of Bruno winning against
Sacha are four to five (4:5), this means that for every 4 winnings by Bruno,
there would be 5 winnings by Sacha. So out of a total of 9 winnings, 4 will be
by Bruno and 5 will be by Sacha. The probability of Bruno outrunning Sacha
is then 4/9 = 0.44.

If we would summarize the odds by doing the division, we have just one number.
For example, if the odds are 4 to 5 (4:5), the odds are 4/5 = 0.8, and if the odds
are a thousand to one (1000:1), then we can also say the odds are 1000. Odds,
unlike probabilities, can have values that are larger than 1.

However, note that odds can never be negative: a very small odds is one to
a thousand (1:1000). This can be summarized as an odds of 0.000999001, but
that is still larger than 0. In summary: probabilties range from 0 to 1, and odds
from 0 to infinity.

Because odds can never be negative, mathematicians have proposed to use
the natural logam'thmﬂ of the odds as the preferred transformation of probabil-
ities. For example, suppose we have a probability of heads of 0.42. This can
be transformed into an odds by noting that in 100 coin tosses, we would expect
42 times heads and 58 times tails. So the odds are 42:58, which is equal to
‘5% = 0.724. The natural logarithm of 0.724 equals -0.323 (use the In button on
your calculator!). If we have a value between 0 and 1 and we take the logarithm
of that value, we always get a value smaller than 0. In short: a probability is
never negative, but the corresponding logarithm of the odds can be negative.

Figure shows the relationship between a probability (with values be-
tween 0 and 1) and the natural logarithm of the corresponding odds (the [o-
godds). The result is a mirrored S-shaped curve on its side. For large proba-
bilities close to one, the equivalent logodds becomes infinitely positive, and for
very small probabilities close to zero, the equivalent logodds becomes infinitely
negative. A logodds of 0 is equal to a probability of 0.5. If a logodds is larger
than 0, it means the probability is larger than 0.5, and if a logodds is smaller
than 0 (negative), the probability is smaller than 0.5.

In summary, if we use a linear model to predict probabilities, we have the
problem of predicted probabilities smaller than 0 and larger than 1 that are
meaningless. If we use a linear model to predict odds we have the problem of
predicted odds smaller than 0 that are meaningless: they are impossible! If on
the other hand we use a linear model to predict the natural logarithm of odds
(logodds), we have no problem whatsoever. We therefore propose to use a linear
model to predict logodds: the natural logarithm of the odds that correspond to
a particular probability.

IThe natural logarithm of a number is its logarithm to the base of the constant e, where
e is approximately equal to 2.7. The natural logarithm of = is generally written as inz or
log®x. The natural logarithm of z is the power to which e needs to be raised to equal x.
For example, In(2) is 0.69, because €°69 = 2, and In(0.2) = —1.6 because e ™16 = 0.2. The
natural logarithm of e itself, in(e), is 1, because e! = e, while the natural logarithm of 1,
In(1), is 0, since e® = 1.
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Figure 14.8: The relationship between a probability and the natural logarithm
of the corresponding odds.

Returning back to our example of the children passing the exam, suppose we
have the following linear equation for the relationship between age and the log-
arithm of the odds of passing the exam

logodds = —3.82 + 0.05age,

This equation predicts that a child aged 70 months has a logodds of —3.82+
0.05 x 70 = —0.34. In order to transform that logodds back to a probability, we
first have to take the exponential of the logoddsﬂ to get the odds:

odds = exp(logodds) = e'°9°4%s = ¢=0-31 = (.71

An odds of 0.71 means that the odds of passing the exam is 0.71 to 1 (0.71:1).
So out of 1 + 0.71 = 1.71 times, we expect 0.71 successes and 1 failure. The
probability of success is therefore 12‘5 171 = 0.42. Thus, based on this equation,
the expected probability of passing the exam for a child of 70 months equals
0.42.

If you find that easier, you can also memorize the following formula for the

relationship between a logodds of x and the corresponding probability:

2If we know In(z) = 60, we have to infer that x equals €50, because In(ef?) = 60 by
definition of the natural logarithm, see previous footnote. Therefore, if we know that In(z) = ¢,
we know that x equals e®. The exponent of ¢, e, is often written as exp(c). So if we know
that the logarithm of the odds equals ¢, logodds = In(oddsratio) = ¢, then the odds is equal
to exp(c).
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cap(x)

= ¥ exp(@) (14.13)

x

Thus, if you have a logodds x of —0.34, the odds equals exp(—0.34) = 0.71,
and the corresponding probability is —%7t- = (.42.

140.71

14.2.3 Exercises

From probability to logodds:
Given: In the Netherlands, 51% of the inhabitants is female.

1. If we randomly pick someone from this Dutch population, what is the
probability that that that person is female?

2. If we randomly pick someone from this Dutch population, what are the
odds that that that person is female over being male? ( : )

3. If we randomly pick someone from this Dutch population, what are the
odds that that that person is male over being female? ( : )

4. What is the odds of randomly picking an inhabitant that is female, ex-
pressed as one number?

5. What is the odds of randomly picking an inhabitant that is male, expressed
as one number?

6. What is the logodds of randomly picking an inhabitant that is female?

7. What is the logodds of randomly picking an inhabitant that is male?

Answers:

1. 0.51

2. 51 to 49 (51:49).

3. 49:51.

4. 51/49=1.04

5. 49/51=0.96

6. In(51/49)= 1n(1.04)=0.04

7. In(49/51)= In(0.96)=-0.04

From logoddss to probabilities:

Given: In the Netherlands, 51% of the inhabitants are female. Females
tend to get older than males, so if we predict sex by age, we should expect
a higher probability of a female for older ages. Suppose we have the following
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linear model for the relationship between age (in years) and the logodds of being

female:
logodds femaie = —0.01 + 0.01 x age,

1. What is the predicted logodds of being female for a person of age 207

2. What is the predicted logodds of being female for a person of age 907

3. What is the predicted odds of being female for a person of age 207

4. What is the predicted odds of being female for a person of age 907

5. What are the predicted odds of being female for a person of age 207

6. What are the predicted odds of being female against being male for a
person of age 907

7. What is the predicted probability of being female against being male for
a person of age 207

8. What is the predicted probability of being female for a person of age 907

9. What is the predicted probability of being MALE for a person of age 907

Answers:

1. —0.01 +0.01 x 20 =0.19

2. —0.0140.01 x 90 = 0.89

3. exp(0.19) =1.21

4. exp(0.89) = 2.44

5. 1.21 to 1, or 1.21:1

6. 2.44 to 1, or 2.44:1

7. 1.21/ (1.21 + 1)= 0.55

8.244 /(244 4+ 1)=0.711

9.1-0.71=0.29

A big data analyst constructs a model that predicts whether an account on
Twitter belongs to either a real person or organisation, or to a bot.

1.

For one account, a user of this model finds an logodds of 4.5 that the
account belongs to a bot. What is the corresponding probability that the
twitter account belongs to a bot? Give the calculation.
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2. For a short tweet with only a hyperlink, the probability that it comes
from a bot is only 10%. What is the logodds that corresponds to this
probability? Give the calculation.

Answers:

1. The logodds is 4.5, so the oddsratio is exp(4.5)=90.0. The odds of being
a bot is then 90:1. The probability of being a bot is 90/ (90+1)= 0.99

2. Out of 100 tweets with only a hyperlink, 10 are by bots and 90 are by
real persons or organisations. So the odds of coming from a bot are 10:90.
The odds is therefore 10/90 = 0.11. When we take the natural logarithm
of this odds, we get the logodd: In(0.11) = -2.21.

14.2.4 Logistic link function

In previous pages we have seen that logodds have the nice property of having
meaningful values between —oo and +oo. This makes them suitable for linear
models. In essence, our linear model for our exam data in children might then
look like this:

logoddspqss = by + biage (14.14)
y ~ Bern(ppass) (14.15)

Note that we can write the odds as p/(1—p), p is a probability (or a propor-
tion). So the logodds that corresponds to the probability of passing the exam,

uss, can be written as In-—L22s_ g0 that we have
D ’

1—ppass’

In-—Lrass  _ by + brage (14.16)
1- Ppass
y ~ Bern(ppass) (14.17)

Note that we do not have a residual anymore: the randomness around the
predicted values is no longer modelled using a residual e that is normally dis-
tributed, but is now modelled by a y-variable with a Bernoulli distribution.
Also note the strange relationship between the probability parameter ppqss for
the Bernoulli distribition, and the dependent variable for the linear equation
bg 4+ biage. The linear model predicts the logodds, but for the Bernoulli distri-
bution, we use the probability. But it turns out that this model is very flexible
and useful in many real-life problems. This model is often called a logit model:
one often writes that the logit of the probability is predicted by a linear model.

logit(ppass) = bo + biage (14.18)
y ~ Bern(ppass) (14.19)
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Figure 14.9: Example of a linear model for the logit of probabilities of passing
an exam.
In essence, the logit function transforms a p-value into a logodds:

p
)

logit(p) = ln(1 (14.20)

So what does it look like, a linear model for logodds (or logits of probabili-
ties)?

In Figure[14.9] we show a hypothetical example of a linear model for the logit
of probabilities of passing an exam. These logits or logodds are predicted by
age using a straight, linear regression line:

When we take all these predicted logodds and convert them back to proba-
bilities, we obtain the plot in Figure Note the change in the scale of the
vertical axis, the rest of the plot is the same as in Figure [14.9

Here again we see the S-shape relationship between probabilities and the
logodds. We see that our model predicts probabilities close to 0 for very young
ages, and probabilities close to 1 for very old ages. There is a clear positive effect
of age on the probability of passing the exam. But note that the relationship is
not linear on the scale of the probabilities: it is linear on the scale of the logit
of the probabilities, see Figure |14.9

The curvilinear shape we see in Figure [14.10]is called a logistic curve. It is
based on the logistic function: here p is a logistic function of age (and note the

similarity with Equation [14.13]):

exp(bo + brage)
1+ exp(by + brage)

p = logistic(bg + biage) = (14.21)
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Figure 14.10: Example with logodds transformed into probabilties (vertical
axis).

In summary, if we go from logodds to probabilties, we use the logistic func-
tion, logistic(x) = % If we go from probabilities to logodds, we use the
logit function, logit(p) = ln&. The logistic regression model is a generalized
linear model with a logit link function, because the linear equation by + b1 X
predicts the logit of a probability. It is also often said that we’re dealing with
a logistic link function, because the linear equation gives a value that we have
to subject to the logistic function to get the probability. Both terms, logit link
function and logistic link function can be used.

If we go back to our data on the third-grade children that either passed or
failed the exam, we see that this curve gives a description of our data, see Figure
14.11} The model predicts that around the age of 75 months, the probability
of passing the exam is around 0.50. We indeed see in Figure that some
children pass the exam (score=1) and some don’t (score=0). On the basis of
this analysis there seems to be a positive relationship between age in third-grade
children and the probability of passing the exam in this sample.

What we have done here is a logistic regression of passing the exam on age. It
is called logistic because the curve in Figure has a logistic shape. Logistic
regression is one specific form of a generalized linear model. Here we have
applied a generalized linear model with a so-called logit link function: instead
of modelling dependent variable y directly, we have modelled the logit of the
probabilities of obtaining a y-value of 1. There are many other link functions
possible. One of them we will see in the section on generalized linear models
for count data. But first, let’s see how logistic regression can be performed in
SPSS, and how we should interpret the output.
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Figure 14.11: Transformed regression line and raw data points.

14.3 Logistic regression in SPSS

Imagine a data set on travellers from Amsterdam to Paris. From 1000 travellers,
randomly sampled in 2017, we know whether they took the train to Paris, or
whether they used other means of transportation. Of these travellers, we know
their age, sex, yearly income, and whether they are travelling for business or
not.

Part of the data are displayed in Table A score of 1 on the variable
train means they took the train, a score of 0 means they did not.

Table 14.1: Taking the train to Paris data.

train age sex_male income business
1 35.12 1 7544.00 1
1 66.66 1 7096.00 0
0 42.77 1 29261.00 1
0 72.63 0  24977.00 0
1 76.25 0 876.00 1
0 19.87 1 126943.00 1

Suppose we want to know what kind of people are more likely to take the
train to Paris. We can use a logistic regression analysis to predict whether
people take the train or not, on the basis of their age, sex, income, and main
purpose of the trip.

Let’s first see whether income predicts the probability of taking the train.
The syntax for such a model involves the GENLIN procedure, which stands for
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GENeralized LINear model.

GENLIN train (REFERENCE=FIRST) WITH income
/MODEL income

DISTRIBUTION=BINOMIAL LINK=LOGIT
/PRINT CPS DESCRIPTIVES SOLUTION.

Note the similary with the GLM and MIXED procedures: start with the
dependent variable (train in this case, with only two possible values) and then
after the WITH word the variables that you’d like to treat quantitatively, here
income. Under the MODEL subcommand we specify the model, here only a
main effect of income. But further we have to specify that we want to use the
Bernoulli distribution and a logit link function. So LINK=LOGIT, but why a
binomial distribution? Well, a Bernoulli distribution (one coin flip) is only a
special case of the Binomial distribution (the distribution of several coin flips).
So here we use a binomial distribution for one coin flip, which is equivalent
to a Bernoulli distribution. The last line indicates what type of output we
want to see: case processing statistics, descriptives and the solution in terms of
parameter estimates.

One very important part of the syntax is the (REFERENCE = FIRST)
statement for the dependent variable. The default SPSS syntax uses (REFER-
ENCE = LAST), so that’s what you get when you do not specify this part.
(REFERENCE = LAST) means that the reference category of the train vari-
able is the last value. Since there are only two values, 0 an 1, the last value is
equal to 1. In that case, SPSS will derive a model that predicts the logoddss for
NOT taking the train, since it estimates the effect of income on the dependent
variable relative to taking the train. In our case, it makes more sense to derive
a model for the logoddss of taking the train. We want to predict logodddsratios
for taking the train, so we need to specify that our first value, 0, is our reference
category: (REFERENCE = FIRST).

In Figure [I4.12] we see the parameter estimates from this generalized linear
model run on the train data.

The parameter estimates table from a GENLIN analysis looks very much
like that of the ordinary linear model and the linear mixed model. The only dif-
ference is that we no longer see t-statistics, but Wald Chi-Square statistics. This
is because with logistic models, the ratio B/SE does not have a t-distribution.
In ordinary linear models, the ratio B/SFE has a t-distribution because in linear
models, the variance of the residuals, o2, has to be estimated. If the residual
variance was known, B/SE would have a standard normal distribution. In lo-
gistic models, there is no o2 that needs to be estimated, so the ratio B/SE
has a standard normal distribution’l One could therefore calculate a Z-statistic
Z = B/SE and see whether that value is smaller than 1.96 or larger than 1.96,
if you want to test with a Type I error rate of 0.05. SPSS has chosen to not

3This is the reason why you see (scale) equal to constant 1 in the SPSS output, right
under the parameter for income. In the logistic model, the variance (scale) is fixed (assumed
known).
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Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) | 90.017 | 32.5180 26.283 153.751 7.663 1 .006
income -.008 .0030 -.014 -.002 7.541 1 .006
(Scale) 12

Dependent Variable: train
Model: (Intercept), income

a. Fixed at the displayed value.

Figure 14.12: SPSS output of a generalized linear model for predicting taking
the train from income.

compute such a Z-statisic, but to compute a chi-square statistic X? = B2?/SE?.
This chi-square or X 2-statistic has a x? distribution with 1 degree of freedom.
Both approaches, computing Z or X2, are equivalent.

The interpretation of the B-parameters is very similar to other linear models.
Note that we have the following equation for the logistic model:

logit(pirain) = bo + brincome
train ~ Bern(ptrain) (1422)

If we fill in the values from the SPSS output, we get

logit(pirain) = 90.017 — 0.008 x income
train ~ Bern(pirain) (14.23)

We can interpret these results by making some predictions. Imagine a trav-
eller with a yearly income of 11,000 Euros. Then the predicted logodds equals

90.017 — 0.008 x 11000 = 2.017. When we transform this back to a probability,
exp(2.017)

we get Treap(2.017) = 0.542. So this model predicts that for people with a yearly
income of 11,000, about 52% of them take the train (if they travel at all, that
is!).

Now imagine a traveller with a yearly income of 100,000. Then the predicted
logodds equals 6.752 — 0.001 x 100000 = —709.983. When we transform this
back to a probability, we get % = 0. So this model predicts that

for people with a yearly income of 100,000, close to none of them take the train.
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Going from 11,000 to 100,000 is a big difference. But the change in probabilities
is also huge: it goes down from 0.52 to 0.

We found a difference in this sample of 1000 travellers, but is there also a
difference in the entire population of travellers between Amsterdam and Paris?
The SPSS table shows us that the effect of income, —0.008, is statistically
significant, X2(1) = 7.541,p < 0.01. We can therefore reject the null-hypothesis
that income is not related to whether people take the train or not.

Note that similar to other linear models, the intercept can be interpreted
as the predicted logodds for people that have values 0 for all other variables in
the model. Therefore, 90.017 means in this case that the predicted logodds for
people with zero income equals 90.017. This is equivalent to a probability of
very close to 1.

14.3.1 Exercises

Using the train data, we try to predict whether people take the train or not by
their purpose of their trip: business or not.

1. What does the SPSS syntax look like? Note the data in Table
2. Suppose the results look like those in Figure What is the predicted

probability of taking the train for people that travel for business? Provide
the calculations.

Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -1.155 .1196 -1.389 -.921 93.321 1 .000
business -.050 .1531 -.351 .250 .108 1 742
(Scale) 12

Dependent Variable: train
Model: (Intercept), business

a. Fixed at the displayed value.

Figure 14.13: SPSS output of a generalized linear model for predicting taking
the train from purpose of the trip.

3. Suppose the results look like those in Figure What is the predicted
probability of taking the train for people that travel NOT for business?
Provide the calculations.
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4. Suppose the results look like those in Figure [14.14 What is the predicted
probability of taking the train for people that travel for business? Provide
the calculations.

Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -1.205 .0957 -1.393 -1.018 158.757 1 .000
[business=.00] .050 .1531 -.250 .351 .108 1 742
[business=1.00] 02
(Scale) 1P

Dependent Variable: train
Model: (Intercept), business

a. Set to zero because this parameter is redundant.
b. Fixed at the displayed value.

Figure 14.14: SPSS output of a generalized linear model for predicting taking
the train from purpose of the trip.

5. Suppose the results look like those in Figure What is the predicted
probability of taking the train for people that travel NOT for business?
Provide the calculations.

6. On the basis of this SPSS output, do business travellers tend to take
the train more or less often than non-business travellers? Motivate your
answer.

7. Suppose in SPSS output for logistic regression, you find an intercept value
of 0.5 with a standard error of 0.1. There is a corresponding Wald chi-
square value of 25. Explain where this Wald chi-square value comes from.

8. Suppose we have the data on coin flips in following table:

ID | Heads | weight | type
2.783 | bcents
0.806 | 10cents
3.140 | 1Euro
1.016 | 10cents
1 4.450 | 1Euro

If we want to predict the outcome of the coin flip, on the basis of the
type of coin, should we use a linear model, a linear mixed model, or a
generalized linear model? Motivate your answer.

=~ W N
=== O

ot

If we want to predict the weight of the coin, on the basis of the type
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of the coin, should we use a linear model, a linear mixed model, or a
generalized linear model? Motivate your answer.

Answers:

1. It could look like this (using WITH, treating the independent variable as
quantitative):

GENLIN train (REFERENCE=FIRST) WITH business
/MODEL business

DISTRIBUTION=BINOMIAL LINK=LOGIT
/PRINT CPS DESCRIPTIVES SOLUTION.

or like this (using BY, treating the independent variable as qualitative)

GENLIN train (REFERENCE=FIRST) BY business
/MODEL business

DISTRIBUTION=BINOMIAL LINK=LOGIT
/PRINT CPS DESCRIPTIVES SOLUTION.

2. People that travel for business score 1 on the business variable. So the pre-
dicted logodds for those people is —1.155—0.050 x 1 = —1.205. The odds is
the exp(—1.205) = 0.3. So the odds of going by train are 0.30 to 1. This is
equivalent to 3 to 10. So suppose we have 13 trips, 3 are by train and 10 are
not by train. So the probability of a trip being by train equals 3/13 = 0.23.
Or logit(-1.205)=exp(-1.205) / (1+exp(-1.205))=0.3/1.3=0.23

3. People that travel NOT for business score 0 on the business variable. So
the predicted logodds for those people is —1.155 — 0.050 x 0 = —1.155.
The odds is the exp(—1.155) = 0.315. So the odds of going by train are
0.32 to 1. This is equivalent to 32 to 100. So suppose we have 132 trips,
32 are by train and 100 are not by train. So the probability of a trip being
by train equals 32/132 = 0.24.

4. logit(-1.205)=exp(-1.205)/(14exp(-1.205))=0.3/1.3=0.23
5. logit(-1.205+0.050)=logit (-1.155)= exp(-1.155) / (1+exp(-1.155))=0.32/1.32=0.24

6. If we want to predict the outcome of the coin flip, on the basis of the type
of coin, we should use a generalized linear model, because the dependent
variable is dichotomous (has only 2 values), so the residuals can never
have a normal distribution.

If we want to predict the weight of the coin, on the basis of the type

of the coin, we should use a linear model, because the dependent variable
is continuous.

319



320



Chapter 15

Generalized linear models
for count data: Poisson
regression

15.1 Poisson regression

Count data are inherently discrete, and often when using linear models, we see
non-normal distributions of residuals. In Chapter we discussed a data set
on the scores that a group of students got for an assignment. There were four
criteria, and the score consisted of the number of criteria that were met for each
student’s assignment. Figure [14.3] showed that after an ordinary linear model
analysis, the residuals did not look normal at all.

Table shows part of the data that were analysed. Similar to logistic
regression, perhaps we can find a distribution other than the normal distribution
that is more suitable for this kind of data? For dichotomous data (1/0) we
found the Bernoulli distribution very useful. For count data, the traditional
distribution is the Poisson distribution.

Table 15.1: Scores on an assignment.
ID score previous

1 0 0.41
2 2 -0.47
3 4 0.07
4 0 -0.50
) 2 -0.83
6 3 0.17

The normal distribution has two parameters, the mean and the variance. The
Bernoulli distribution has only 1 parameter (the probability), and the Poisson
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Figure 15.1: Count data example where the normal distribution is not a good
approximation of the distribution of the residuals.

distribution has also only 1 parameter, lambda or A. A is a parameter that
indicates tendency. Figure [I5.1] shows a Poisson distribution with a tendency
of 4.

What we see is that many values center around the tendency parameter
value of 4 (therefore we call it a tendency parameter)! We see only discrete
values, and no values below 0. We see a few values higher than 10. If we take
the mean of the distribution, we will find a value of 4. If we would compute
the variance of the distribution we would also find 4! In general, if we have a
Poisson distribution with a tendency parameter A = 4, we know that both the
mean and the variance will be equal to .

A Poisson model could be suitable for our data: a linear equation could
predict the parameter A\ and then the actual data show a Poisson distribution.

A=byg+ b X (151)
y ~ Poisson(\) (15.2)

However, because of the additivity assumption, the equation by + b1 X leads
to negative values. A negative value for A is not logical, because we then have a
tendency to observe data like -2 and -4 in our data, which is contrary to having
count data, which consists of non-negative integers. A Poisson distribution
always shows integers of at least 0, so one or way or another we have to make
sure that we always have a lambda of at least 0.

Remember that we saw the reverse problem with logistic regression: there
we wanted to have negative values for our dependent variable logoddsratio, so
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therefore we used the logarithm. Here we want to have positive values for our
dependent variable, so we can use the inverse of the logarithm function: the
exponential. Then we have the following model:

A = exp(by + by X) = ebottrX (15.3)
y ~ Poisson(\) (15.4)

This is a generalized linear model, now with a Poisson distribution and an
exponential link function. The exponential function makes any value positive,
for instance exp(0) = 1 and exp(—100) = 0.

Let’s analyze the assignment data with this generalized linear model. Our
dependent variable is the number of criteria met for the assignment (a number
between 0 and 4), and the independent variable is previous, which is a stan-
dardized mean of a number of previous assignments. We expect that the mean
score on previous assignments is associated with a higher score on the present
assignment. When we run the analysis, the result is as follows:

A = exp(0.158 — 0.055 x previous) (15.5)

score ~ Poisson(\) (15.6

What does it mean? Well, similar to logistic regression, we can understand
such equations by making some predictions for interesting values of the indepen-
dent variable. For instance, a value of 0 for previous means an average grade on
previous advanced that is around the mean value. So if we choose previous=0,
then we have the prediction for an average student. If we fill in that value, we
get the equation A = exp(0.158 — 0.055 x 0) = exp(0.158) = 1.17. Thus, for an
avarage student, we expect to see a score of 1.17. A Poisson distribution with
A = 1.17 is depicted in Figure [15.2]

Another interesting value of previous might be -2. That represents a stu-
dent with generally very low grades. Because the average grades were standard-
ized, only about 2.5% of the students has lower average grade than -2. If we
fill in that value, we get: A\ = exp(exp(0.158 — 0.055 x —2) = 0.85. A Poisson
distribution with A = 1.31 is depicted in Figure [15.3]

The last value of previous for which we calculate A\ is +2, representing a
high-performing student. We then get A = exp(0.158 — 0.055 x 2) = 1.6. A
Poisson distribution with A = 1.6 is depicted in Figure [15.4]

If we superimpose these figures, we obtain Figure 77, where we see that the
higher the average score on previous assignments, the higher is the expected
score on the present assignment.

We found that in this data set, previous high marks for assignments predicted
a higher mark for the present assignment. In the next section we see how to
perform the analysis in SPSS, and check whether there is also a relationship in
the population of students.
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Figure 15.2: Poisson distribution with lambda=1.17.
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Figure 15.3: Poisson distribution with lambda=0.85.
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Figure 15.4: Poisson distribution with lambda=1.60.
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Figure 15.5: Three different Poisson distributions with lambdas 0.85, 1.17, and
1.60, for three different kinds of students.
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15.2 Poisson regression in SPSS

Poisson regression is form of a generalized model analysis, similar to logistic
regression. However, instead of using a Bernoulli distribution we use Poisson
distribution. For a quantitative predictor like the variable previous, the syntax
is as follows.

GENLIN scores WITH previous
/MODEL previous
DISTRIBUTION=POISSON LINK=LOG
/PRINT CPS DESCRIPTIVES SOLUTION.

The output with parameter values is shown in Figure [15.6

Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) .158 .0925 -.024 .339 2.908 1 .088
previous -.055 .0899 -.231 121 .372 1 .542
(Scale) 12

Dependent Variable: score
Model: (Intercept), previous

a. Fixed at the displayed value.

Figure 15.6: SPSS output of a generalized linear model for predicting assign-
ments scores from the average of previous assignments.

We see the same values for the intercept and the effect of previous as in the
previous section. We now also see 95% confidence intervals for these parameter
values. For both, the value 0 is included in the confidence intervals, therefore
we know that we cannot reject the null-hypotheses that these values are 0 in the
population of students. This is also reflected by the Wald statistics. Remember
that the Wald chi-square (X?) statistic is computed by B2?/SE?. For large
enough samples, these X? statistics follow a x? distribution with 1 degree of
freedom. From that distribution we know that a value of 0.372 is not significant
at the 5% level. It has an associated p-value of 0.542.

We can write:

Scores for the assignment (1-4) for 100 students were analysed
using a generalized linear model with a Poisson distribution (Poisson
regression). The scores were not significantly predicted by the av-
erage score of previous assignments, B = —0.06, X?(1) = 0.37,p =
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0.54. Therefore we cannot reject the null-hypothesis that there is no
relationship between the average of previous assignments and the
score on the present assignment in the population of students.

Suppose we also have a qualitative predictor, for example degree that the stu-
dents are working for. Some do the assignment for bachelor’s degree (degree=1),
some for a master’s degree (degree=2), and some for a PhD (degree=3). The
syntax would then look like:

GENLIN scores BY degree
/MODEL degree
DISTRIBUTION=POISSON LINK=LOG
/PRINT CPS DESCRIPTIVES SOLUTION.

Note that only the independent variable has changed and the WITH state-
ment is changed into BY. The output is given in Figure [I5.7}

Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-

Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) .354 .1459 .068 .640 5.878 1 .015
[degree=1.00] -.584 .2415 -1.057 -.111 5.852 1 .016
[degree=2.00] -.089 .2110 -.503 .325 .178 1 .673
[degree=3.00] 0@

(Scale) 1°

Dependent Variable: score
Model: (Intercept), degree

a. Set to zero because this parameter is redundant.
b. Fixed at the displayed value.

Figure 15.7: SPSS output of a generalized linear model for predicting assign-
ments scores from the degree that is studied for.

We see that the parameter for the degree=3 category is fixed to 0, meaning
that it is used as the reference category. If we make a prediction for this group
of students that is studying for a PhD degree, we have A\ = exp(.354 + 0) =
exp(0.354) = 1.4. For the students studying for a Master’s degree we have
A = exp(.354 — 0.089) = 1.3 and for students studying for their Bachelor’s de-
gree we have A = exp(.354 — 0.584) = 0.8. These A-values correspond to the
expected number in a Poisson distribution, so for Bachelor students we expect
a score of 0.8, for Master students we expect a score of 1.3 and for Phd stu-
dents a score of 1.4. Are these different scores also present in the population?
We see that the effect for degree=1 is significant, X?(1) = 5.85,p = 0.02, so
there is a difference in score between students studying for a Bachelor’s degree
and students studying for a PhD. The effect for degree=2 is not significant,
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X2(1) = 0.18,p = 0.67, so there is no difference in assignment scores between
Master students and PhD students.

Remember that for the linear model, when we wanted to compare more than
two groups at the same time, we used an F-test to test for an overall difference
in group means. Also for the generalized linear model, we might be interested
in whether there is an overall difference in scores between Bachelor, Master and
PhD students. For that we need to tweak the syntax a little bit, by stating that
we also want to see an overall test printed. The PRINT statements then also
needs the word SUMMARY. In other words, the syntax becomes

GENLIN scores BY degree
/MODEL degree
DISTRIBUTION=POISSON LINK=LOG
/PRINT CPS DESCRIPTIVES SOLUTION SUMMARY.

We then get the relevant output in Figure There we see a Wald Chi-
Square statistic for the effect of degree. It has 2 degrees of freedom, since the
effect for the 3 categories is coded by 2 dummy variables. So this test tells us
that the null-hypothesis that the expected scores in each group of students are
the same can be rejected, X2(2) = 6.27,p = 0.04.

Tests of Model Effects

Type llI
Wald Chi-
Source Square df Sig.
(Intercept) 1.844 1 .175
degree 6.271 2 .043

Dependent Variable: score
Model: (Intercept), degree

Figure 15.8: SPSS output of a generalized linear model for predicting assign-
ments scores from the degree that is studied for.

15.3 Interaction effects in Poisson models

In the previous subsection we looked at a count variable, the number of criteria
fulfilled, and we wanted to predict it from the degree that students were studying
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for. Let’s look at an example where we want to predict a count variable from
two qualitative predictors.

In 1912, the ship Titanic sank after the collision with an iceberg. There we
2201 people on board that ship. Some of these were male, others were female.
Some were passengers, others were crew, and some survived, and some did not.
For the passengers there were three groups: those travelling first class, second
class and third class. There were also children on board. If we focus on only
the adults, suppose we want to know whether there is a relationship between
the sex and the counts of people that survived the disaster. The table in [I5.2]
gives the counts of survivors for males and females separately.

Table 15.2: Counts of adult survivors on the Titanic.

count
Male 338
Female 316

Let’s analyse this small data set with SPSS. In SPSS we assign the value
sex=1 to Females and sex=2 to Males. Our dependent variable is count, and
the independent variable is sex.

GENLIN count BY sex
/MODEL sex

DISTRIBUTION=POISSON LINK=LOG
/PRINT CPS DESCRIPTIVES SOLUTION.

Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) 5.823 .0544 5.716 5.930 11460.858 1 .000
[sex=1.00] -.067 .0783 -.221 .086 .740 1 .390
[sex=2.00] 0@
(Scale) 1°

Dependent Variable: count
Model: (Intercept), sex

a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.

Figure 15.9: SPSS output of a generalized linear model for predicting numbers
of men and women onboard the Titanic.
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From the output in Figure we see that the expected count for females
is exp(5.823 — 0.067) = 318.3 and the expected count for males is exp(5.823) =
340.4. These expected counts are close to the observed counts of males and fe-
males. The only reason that they differ from the observed is because of rounding
errors (SPSS shows only the first three decimals). From the Wald statistic, we
see that the difference in counts between males and females is not significant,
X?%(1) = 0.74,p = 0.3

The difference in these counts is very small. But does this tell us that women
were as likely to survive as men? Note that we have only looked at those who
survived. How about the people that perished: were there more men that died
then women? Table shows the counts of male survivors, female survivors,
male non-survivors and female non-survivors. Then we see a different story:
on the whole there were many more men than women, and a relatively small
proportion of the men survived. Of the men, most of them perished: 1329
perished and only 338 survived, a survival rate of 20.3%. Of the women, most
of them survived: 109 perished and 316 survived, yielding a survival rate of
74%. Does this tell us that women are much more likely than men to survive
collisions with icebergs?

Table 15.3: Counts of adults on the Titanic.

sex survived count
Male 0 1329
Female 0 109
Male 1 338
Female 1 316

Let’s first run a multivariate Poisson regression analysis including the effects
of both sex and survival. The syntax is

GENLIN count BY sex WITH survived
/MODEL sex survived
DISTRIBUTION=POISSON LINK=LOG
/PRINT CPS DESCRIPTIVES SOLUTION.

where we treat sex qualitatively and survival quantitatively for convenience
(survived is alread coded as a dummy, sex is not).

The output is given in Figure From the parameter values, we can
calculate the predicted numbers of male (sex = 2) and female (sex = 1) that
survived and perished. For female survivors we have exp(7.04 — 1.37 —.79) =
131.63, for female non-survivors we have exp(7.04 — 1.37) = 290.03, for male
survivors we have exp(7.04 — .79) = 518.01 and for male non-survivors we have
exp(7.04) = 1141.39.

INote that a hypothesis test is a bit odd here: there is no clear population that we want
to generalize the results to: there was only one Titanic disaster. Also, here we have data on
the entire population of those people on board the Titanic, there is no random sample here.
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Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-

Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) 7.044 .0286 6.988 7.100 60709.658 .000
[sex=1.00] -1.367 .0543 -1.473 -1.260 632.563 .000
[sex=2.00] 0@ . . . . .
survived -.788 .0472 -.880 -.695 279.073 .000
(Scale) 1°

Dependent Variable: count
Model: (Intercept), sex, survived

a. Set to zero because this parameter is redundant.
b. Fixed at the displayed value.

Figure 15.10: SPSS output of a generalized linear model for predicting numbers
of men and women that perished and survived onboard the Titanic.

These predicted numbers are displayed in Figure It also shows the
observed counts. The pattern that is observed is clearly different from the one
that is predicted from the generalized linear model. The linear model predicts
that there are fewer survivors then non-survivors, irrespective of sex, but we
observed that in females, there are more survivors then non-survivors. It seems
that sex is is moderator of the effect of survival on counts.

In order to test this moderation effect, we run a new generalized linear model
for counts including an interaction effect of sex by survived. This is done in SPSS
syntax by changing the MODEL part by includding a sex*survived interaction:

GENLIN count BY sex WITH survived
/MODEL sex survived sex*survived
DISTRIBUTION=POISSON LINK=LOG
/PRINT CPS DESCRIPTIVES SOLUTION.

The output is displayed in Figure

When we plot the predicted counts from this new model with an interaction
effect, we see that they are exactly equal to the counts that are actually observed
in the data, see Figure 77.

From the output we see that the interaction effect is significant, X?(1) =
91.82,p = 0. If we regard this data set as a random sample of all ships that sink
after collision with an icebergs, we may conclude that in such situations, sex is
a significant moderator of the difference in the numbers of survivors and non-
survivors. One could also say: the proportion of people that survive a disaster
like this is different in females than it is in males. Here we saw a higher survival
rate in women than in men.
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Figure 15.11: Difference between expected and observerd numbers of passengers.

15.4 Crosstabulation and the Pearson chi-square
statistic

The data on male and female survivors and non-nonsurvivors are often tabulated
in a cross-table like in Table [I5.4]

Table 15.4: Counts of adult survivors and non-survivors on the Titanic.
No Yes

Male 1329 338
Female 109 316

In the previous section these counts were analysed using a generalized linear
model with a Poisson distribution and an exponential link function. We wanted
to know whether there was a significant difference in the proportion of survivors
for men and women. In this section we discuss an alternative method of ana-
lyzing count data. We discuss an alternative chi-square (X?) statistic for the
moderation effect of one variable of the effect of another variable.

First let’s have a look at the overall survival rate. In total there we 654
people that survived and 1438 people that did not survive. Table shows
these column totals.

Looking at these total numbers of survivors and non-survivors, we can calcu-
late the proportion of survivors overall (the survival rate) as 654 /(654 +1438) =
0.31.

Table ?? shows the totals for men and women, as well as the overall total
number of adults.
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Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-

Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) 7.192 .0274 7.138 7.246 68745.825 .000
[sex=1.00] -2.501 .0996 -2.696 -2.306 630.032 .000
[sex=2.00] 02 . . . . .
survived -1.369 .0609 -1.489 -1.250 505.126 .000
[sex=1.00] * 2.434 1267 2.185 2.682 368.979 .000
[sex=2.00] * a
survived 0
(Scale) 1P

Dependent Variable: count
Model: (Intercept), sex, survived, sex * survived

a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.
Figure 15.12: SPSS output of a generalized linear model for predicting numbers
of men and women that perished and survived onboard the Titanic.

Table 15.5: Counts of adult survivors and non-survivors on the Titanic.
No Yes

Male 1329 338
Female 109 316
Total 1438 654

Suppose we only know that of the 2092 people, 1667 were men, and of all
people, 654 survived. Then suppose we pick a random person from these 2092
people. What is the probability that we get a male person that survived, given
that sex and survival have nothing to do with eachother?

Well, from probability theory we know that if two events A and B are inde-
pendent, the probability of observing A and B at the same time, is equal to the
product of the probability of event A and the probabilty of event B.

Prob(AandB) = Prob(A) x Prob(B) (15.7)

If sex and survival are independent from eachother, then the probabilty of
observing a male survivor is equal to the probability of seeing a male times the
probability of seeing a survivor. The probability for survival is 0.31, as we saw
earlier, and the probability of seeing a male is equal to the proportion of males
in the data, which is 1667/2092 = 0.8. Therefore, the probability of seeing a
male survivor is 0.8 x 0.31 = 0.24. The expected number of male survivors is
then that probability times the total number of people, 0.24 x 2092 = 502.08.
Similarly we can calculate the expected number of non-surviving males, the
number of surviving females, and the number of non-surviving females.
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Figure 15.13: Difference between observed and predicted numbers of passengers.

Table 15.6: Counts of adult survivors and non-survivors on the Titanic.
No Yes Total

Male 1329 338 1667
Female 109 316 425
Total 1438 654 2092

These numbers, after rounding, are displayed in Table

Table 15.7: Expected numbers of adult survivors and non-survivors on the Ti-
tanic.

No Yes
Male 1155 519
Female 289 130

The expected numbers in Table [I5.7] are quite different from the observed
numbers in Table [I5.4] Are the differences large enough to think that the two
events of being male and being a survivor are NOT independent? If the expected
numbers on the assumption of independence are different enough from the ob-
served numbers, then we can reject the null-hypothesis that being male and
being a survivor have nothing to do with eachother. To measure the difference
between expected and observed counts, we need a test statistic. Here we use
Pearson’s chi-square statistic. It involves calculating the difference between the
numbers in the respective cells, and standardize them by the expected number.
Here’s how it goes:

For each cell, we take the predicted count subtract it from the observed
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count. For instance, for the male survivors, we expected 519 but observed 338.
The difference is therefore 338 — 519 = —181. Then we take the square of this
difference, 1812 = 32761. Then we divide this number by the expected number,
and then we get 32761/519 = 63.123. We do exactly the same thing for the
male non-survivors, the female survivors and the female non-survivors. Then
we add these 4 numbers, and then we have the Pearson chi-square statistic. In
formula form:

(0; — E;)?

X2=y; i (15.8)
So for male survivors we get
338 — 519)2
For male non-survivors we get
1329 — 1155)2
% = 26.213 (15.10)
For female survivors we get
316 — 130)2
(IT) = 266.123 (15.11)
and for female non-survivors we get
_ 2
% = 112.111 (15.12)

If we add these 4 numbers we have the chi-square statistic: X2 = 467.57.
Note that we only use the rounded expected numbers. Better would be to use
the non-rounded numbers. Had we used the non-rounded expected numbers,
we would have gotten X2 = 460.87.

The Wald chi-square statistic for the sex*survived interation effect was 368.979,
see Figure It tests exactly the same null-hypothesis as the Pearson chi-
square: that of independence, or in other words, that the numbers can be
explained by only two main effects, sex and survival.

If the data set is large enough and the numbers are not too close to 0,
the same conclusions will be drawn, whether from a Wald chi-square for an
interaction effect in a generalized linear model, or from a crosstabulation and
computing a Pearson chi-square. The advantage of the generalized linear model
approach is that you can do much more with them, for instance more than
two predictors, and that you make it more explicit that when computing the
statistic, you take into account the main effects of the variables. You do that also
for the Pearson chi-square but it is less obvious: we did that by first calculating
the probability of survival and second calculating the proportion of males.
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15.5 Poisson regression or logistic regression?

In the previous section we analyzed the relationship between the variable sex
of the person onboard the Titanic, and the variable survived: whether or
not a person survived the shipwreck. We found a relationship between these
two variables by studying the crosstabulation of the counts, and testing that
relationship using a Pearson chi-square statistic. In the section before that, we
saw that this relationship could also be tested by applying a Poisson regression
model and looking at the sex by survived interaction effect. These methods are
equivalent.

There is yet a third way to analyze the sex and survived variables. Remem-
ber that in the previous chapter we discussed logistic regression. In logistic
regression, a dichotomous variable (a variable with only two values, say 0 and
1) is the dependent variable, with one or more quantitaive or qualitative in-
dependent variables. Both sex and survived are dichotomous variables: male
and female, and survived yes or survived no. In prinicple therefore, we could
do a logistic regression: for example predicting whether a person is a male or
female, on the basis of whether they survived or not, or the other way around,
predicting whether people survive or not, on the basis of whether a person is a
women or a man.

What variable is used here as your dependent variable, depends on your
research question. If your question is whether females are more likely to survive
than men, perhaps because of their body fat composition, or perhaps because of
male chivalry, then the most logical choice is to take survival as the dependent
variable and sex as the independent variable.

The syntax for logistic regression then looks like

GENLIN survived (REFERENCE=FIRST) BY sex
/MODEL business

DISTRIBUTION=BINOMIAL LINK=LOGIT
/PRINT CPS DESCRIPTIVES SOLUTION.

Note however that the data is the wrong format. For the Poisson regression,
the data were there in the form of what we see in Table However, for a
logistic regression, we need the data in the format like in Table [I5.8] For every
person onboard the ship, we have to know their sex and their survival status.

We use BY to treat the sex variable as qualitative. We use (REFERENCE =
FIRST) because we want to predict whether people survive (survive=1). Then
our reference category is survive=0, which is the first value. In the output in
Figure we see that sex is a significant predictor of the survival status,
B = 2.434, X? = 368,98, p < 0.001. The logoddsratio for a male surviving the
shipwreck is —1.37, and the logoddsratio for a female surviving the shipwreck
is —1.37 + 2.43 = 1.06. These logoddsratios correspond to probabilities of 0.20
and 0.74, respectively. Thus, some are much more likely to survive than men.

However, suppose you are the relative of a passenger onboard a ship that
shipwrecks. After two days, there is news that a person was found. The only
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Table 15.8: Individual data of adult survivors and non-survivors on the Titanic.

ID  sex survived
238 Male 0
1302 Male 0
1274 Male 0
1303 Male 0
1798 Female 1
1337 Female 0
20 Male 0
485 Male 0
1389 Female 0
1072 Male 0

thing known about the person is that he or she is alive. Your relative is your
niece, so you’d like to know on the basis that the person that was found lives,
what is the probability that that person is a woman, cause then it could be your
believed niece! You could therefore run a logistic regression on the Titanic data
to see to what extent the survival of a person predicts the sex of the person.
The syntax would then look like this:

GENLIN sex (REFERENCE=LAST) WITH survived
/MODEL survived

DISTRIBUTION=BINOMIAL LINK=LOGIT
/PRINT CPS DESCRIPTIVES SOLUTION.

Note that we use WITH in order to treat the dummy variable survived as
quantitative. We also use (REFERENCE=LAST) to indicate that we use the
last (second) category of sex (2) as the reference category, because that category
refers to men, because we want to predict whether a person is a female.

The output is give in Figure

From this output we conclude that survival is a signficant predictor of sex,
B = —2.434, X% = 368,98, p < 0.001. The logoddsratio for a surviving person
to be a woman is —4.93+2.43 = —2.50, and the logoddsratio for a non-surviving
person to be a woman is —4.93. These logoddsratios correspond to probabilities
of 0.08 and 0.01, respectively. Thus, if you know that there is a person that
survived the Titanic, it is not very likely that it was a woman, only 8% chance.
If you think this is counterintuitive, remember that even though a large propor-
tion of the women survived the Titanic, there were many more men onboard
than women.

In summary if you have count data, and one of the variables is dichotomous,
you have the choice whether to use a Poisson regression model or a logistic re-
gression. The choice depends on the research question: if your question involves
prediction of a dichotomous variable, logistic regression is the logical choice.
If you have a theory that one or more independent variable ezplain one other
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Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -1.369 .0609 -1.489 -1.250 505.126 1 .000
[sex=1.00] 2.434 .1267 2.185 2.682 368.979 1 .000
[sex=2.00] 02
(Scale) 1P

Dependent Variable: survived

Model: (Intercept), sex

a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.

Figure 15.14: SPSS output of a generalized linear model for predicting numbers
of men and women that perished and survived onboard the Titanic.

variable, logistic regression is the logical choice. If however your theory does not
involve a natural direction or prediction of one variable, and you are simply in-
terested in associations among variables, then Poisson regression is the obvious

choice.
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Parameter Estimates

Hypothesis Test

95% Wald Confidence Interval
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -4.934 2141 -5.354 -4.515 531.265 1 .000
survived 2.434 .1267 2.185 2.682 368.979 1 .000
(Scale) 12

Dependent Variable: sex

Model: (Intercept), survived
a. Fixed at the displayed value.

Figure 15.15: SPSS output of a generalized linear model for predicting numbers
of men and women that perished and survived onboard the Titanic.
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