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This study analyses a diffusion of renewable energy in an electricity system accounting for technological
learning. We explore long-term scenarios for capacity expansion of the Java-Bali electricity system in Indonesia,
considering the country’s renewable energy targets. We apply the Long-range Energy Alternative Planning
(LEAP) model with an integration of technological learning. Our results reveal that, at the medium and high pace
of technological learning, the total costs of electricity production to achieve the long-term renewable energy

target are 4-10% lower than the scenario without considering technological learning. With respect to tech-
nology, solar PV and wind become competitive with other types of renewables and nuclear. Moreover, the
fulfilment of the renewable energy targets decreases CO, emissions by 25% compared to the reference scenario.
Implications of our results indicate that energy policies should focus on the early deployment of renewables,
upgrading the grid capacity to accommodate variable renewable energy, and enabling faster local learning.

1. Introduction

Renewable energy is a critical component for combating climate
change. In fact, most of Nationally Determined Contributions (NDCs)
submitted by countries under the Paris Agreement include renewable
energy as their measure to address climate change (IRENA, 2017). The
implementation of NDCs will add at least 1.3 terawatts to the global
renewable installed capacity. This ambitious target would need a con-
siderable investment cost—1700 billion USD by 2030, according to the
IRENA estimate.

The high upfront expense for installation of renewable technologies
is one of the factors that hinder the deployment of renewable energy.
However, the capital costs of energy technologies are known to decline
over time due to cost-reducing technological changes, usually referred
to as learning (IEA, 2000; Lafond et al., 2017; McDonald and
Schrattenholzer, 2001; Rubin et al., 2015; Watanabe, 1995). The con-
cept of the learning effect has been widely used and analysed empiri-
cally in many applications (Griibler et al., 1999). The earliest example is
Wright (1936), who reported that unit labour costs in airframe manu-
facturing declined with accumulative experience measured by

cumulative output.

Cost savings brought up by technological learning are especially
attractive for developing countries, which are still facing rapid growths
of electricity demand while also pledging their NDCs. This case applies
to Indonesia, the fourth most populous country in the world. Electricity
demand in the country is projected to grow at an average of 8.3% per
year in the next decade (PLN, 2017a). Meanwhile, it pledges to reduce
29% of its greenhouse gas emissions against its business-as-usual sce-
nario by 2030 (Government of The Republic of Indonesia, 2016). While,
in 2015, renewable energy accounted only for 4% of the national en-
ergy mix’ (DEN, 2016b), the most recent national energy policy (NEP)
requires it to increase by 23% in 2025 and 31% in 2050 (Government of
The Republic of Indonesia, 2014). In the context of the electricity
sector, renewable energy currently accounts for 10% of the national
electricity generation mix” (PLN, 2016b). The Electricity Supply Busi-
ness Plan 2016-2025 (RUPTL) estimates an increase in unit costs of
electricity production by 22% to realize the NEP target in the electricity
sector by 2025. Such increases, if they occur, will cause a burden on the
electricity sector and, in turn, on the national economy. Yet, these
projections neglect the learning process of electric power technologies.
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! Energy mix is a set of various primary energy sources used to meet energy needs in a region (ton oil equivalent and % contributions).
2 Electricity generation mix is a set of primary energy sources that constitute the total electrical energy production in a region (Megawatt hour and % con-

tributions).
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As discussed above, technological learning may reduce the unit costs of
electricity production, making investments in renewable energy tech-
nologies more economically attractive.

Considering the essential role of technological learning, it is ne-
cessary to take it into account when projecting a long-term electricity
supply. In this study, we integrate technological learning into the Long-
range Energy Alternative Planning System (LEAP) model to explore a
number of electricity expansion scenarios. Prior to commencing this
study, the LEAP model was validated using historical data of the
Indonesian electricity system in Handayani et al. (2017). LEAP has been
actively used for assessing renewable energy expansion in many
countries, such as Pakistan (Ishaque, 2017), Bulgaria (Nikolaev and
Konidari, 2017), Ghana (Awopone et al., 2017), Thailand (Wongsapai
et al., 2016), Iran (Eshraghi and Maleki, 2016), Indonesia (Kumar,
2016), India (Kumar and Madlener, 2016), Malaysia (Samsudin, 2016),
Brazil (Andrade Guerra et al., 2015), Korea (Park et al., 2013), and
Lebanon (Dagher and Ruble, 2011). Despite its extensive use, little at-
tention has been paid to incorporating technological learning in the
LEAP model, which is likely to underestimate future deployment of
renewable energy. This study focuses on the Java-Bali electricity
system, which represents more than 70% of the Indonesian electricity
production (PLN, 2016b). We first develop scenarios for capacity ex-
pansion from 2016 through to 2050. Then, we apply a learning model
for each power generation technology into the LEAP cost function. The
simulation results are analysed in terms of energy, costs, and CO,
emissions.

The innovative contribution of this study is twofold. First, metho-
dologically, it moves beyond the current practice of LEAP usage by
incorporating a learning model with respect to energy technologies into
the LEAP cost function. Although there are some energy system models
that have included technology cost learning, such as MESSAGE-
MACRO, MARKAL-TIMES, NEMS, POLES, ERIS, GALLM, and EXO-XEL
(Heuberger et al., 2017), to the best of our knowledge, our study is the
first to include technological learning endogenously in LEAP. Secondly,
this article adds an understanding regarding the role of technological
learning in driving the transition from fossil fuel-based power genera-
tion to a lower carbon electricity system in the context of developing
countries.

The remainder of this paper is organized as follows: Section 2 pre-
sents the literature review; Section 3 explains the methodology, sce-
narios, and the model input parameters for the future Java-Bali elec-
tricity system; Section 4 discusses the results of model simulations; and
Section 5 presents the main conclusions and policy implications of this
study.

2. Literature review
2.1. Technological learning

The development of technology is not an autonomous, independent
process. Instead, it evolves from a number of interactions within social
systems as well as from experience in using the technology itself
(Barreto, 2001). The processes of technological change require con-
siderable time from innovation to widespread diffusions, such as what
has occurred in the past concerning the global technology transitions
from traditional biomass to coal-based technology and from coal-based
technology to electricity and petroleum-based technologies (Wilson and
Grubler, 2011).

The development and introduction of new technologies involve a
learning process that results in the improvement of the production
process and product, which, in turn, often makes the costs lower (GEA,
2012). The learning process starts from the first practical use of a new
technology until its maturation stage (Sagar and van der Zwaan, 2006).
Learning is a crucial element of early adoption of technologies, and it
indicates the experiences gained through the practical use of tech-
nology and contributes to cost reduction over time (Sagar and van der
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Zwaan, 2006). Since learning is a self-enforcing process, more accu-
mulated experiences in technology lead to lower cost, and more in-
crease in technology competitiveness leads to even more accumulated
experience (Gillingham et al., 2008). As such, it is not always the case
that a new technology is used because it becomes cheap but also a
technology becomes cheap because of its increased use and learning
process (Berglund and Séderholm, 2006). In addition to cost reduction,
learning can also lead to greater proficiency in technology operation as
well as institutional transformation necessary to allow the widespread
use of new technologies (Sagar and van der Zwaan, 2006).

The learning process triggering cost reduction is expressed as a
function of the accumulation of knowledge and experience related to R
&D expenditures, the production, and the use of technology (Kahouli-
Brahmi, 2008). Quantification of these learning patterns is presented in
the literature using so-called one-factor and multi-factor learning
curves (Kahouli-Brahmi, 2008; Rubin et al., 2015). The former is the
most widely used method for endogenously forecasting changes in
technology costs. Its experience performance is indicated by the cu-
mulative installed capacity or the cumulative production. The multi-
factor approach includes factors beyond the cumulative installed ca-
pacity or production that contribute to technology cost reduction, such
as R&D spending, knowledge spill-overs, and economies of scale (Rubin
et al., 2015). However, due to data requirements and theoretical lim-
itations, this approach is less prevalent in the literature compared to the
one-factor model (Farmer and Lafond, 2016; Rubin et al., 2015).

The term that is used to express experience gained from a tech-
nology is referred to as “learning rate.” The latter is measured as the
percentage, by which the unit cost declines with each doubling of cu-
mulative production or, alternatively, as the fraction by which the unit
price of energy service, such as electricity, declines with each doubling
of installed capacity (Sagar and van der Zwaan, 2006). The corre-
sponding change in price compared to its previous price with each
doubling of capacity is referred to as “progress ratio” (Berglund and
Soderholm, 2006). A progress ratio of 75% indicates that the costs of
technology have declined to 75% of its previous level after a doubling
of its cumulative capacity. In this case, the corresponding learning rate
is 25%.

2.2. Overview of the Indonesian electricity sector

Indonesia is an archipelagic country with more than 17,000 islands
(Prasetya, 2017) and 238 million in population (BPS, 2010). The de-
mand for electricity in this country has been growing at a fast rate—a
7.8% rise, on average, during 2010-2014 (PLN, 2015). PLN, the na-
tional electricity company, supplies most of the country’s electricity
needs and solely owns the power transmission and distribution net-
works. By 2015, 76% of the national power generation capacity be-
longed to PLN, while the rest are owned by independent power pro-
ducers (IPPs) (PLN, 2016c). Due to its archipelagic state, Indonesia has
many electricity systems distributed throughout the archipelago. The
largest one is the Java-Bali electricity system, which supplies electricity
within the Java, Madura, and Bali islands. These islands are the most
populated islands, as they are inhabited by 140.5 million or 59% of the
national population (BPS, 2010). In 2015, the Java-Bali islands covered
74% of the national electricity demand (PLN, 2016b).

Fig. 1 illustrates the electricity generation mix in 2015 (PLN,
2016b), 90% of which are fossil fuels. The primary fossil fuels here are
coal (56%), natural gas (25%), and oil (9%). Meanwhile, renewable
energy constitutes 10%, which is shared between geothermal (4%) and
hydro and other renewables (6%). With respect to dispatch order, coal
and geothermal operate as base load power plants, while hydro, natural
gas, and oil act as intermediate and peak load power plants (PLN,
2016b). As Fig. 1 demonstrates, the Java-Bali’s electricity generation
mix is equivalent to the national situation, in which 91% of electricity
supply is sourced from fossil fuels—mainly coal. In fact, the Java-Bali
system mirrors the national electricity sector in terms of the energy mix
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Fig. 1. Electricity production by sources in 2015 (PLN, 2016b). [These data include both PLN and IPP productions].

Table 1

Renewable energy potential and current practice in Indonesia.
Renewable Potential in Gigawatt Renewable deployment by 2015, total Indonesia Sources

Total Indonesia  Java- Bali islands  Installed capacity (Gigawatt)  Renewable utilization (%)

Hydro 75 4.2 5.1 6.8% DEN (2016a), DJK ESDM (2016)
Hydro pumped storage 4.3 3.9 0 0% PLN (2017a), DJK ESDM (2016)
Mini hydro 19.4 2.9 0.2 0.9% DEN (2016a), DJK ESDM (2016)
Geothermal 17.5% 6.8" 1.4 8% DEN (2016a), DJK ESDM (2016)
Biomass 30 7.4 0.1 0.3% DEN (2016a), DJK ESDM (2016)
Solar 5374° 2747° 8.9 0.2% Kunaifi and Reinders (2016), DJK ESDM (2016)
Wind 60.6 24.1 0.0004 0% DEN (2016a), DJK ESDM (2016)

2 Excluding the speculative and hypothetical potential.
> In Gigawatt peak.

and electricity supply and demand. Given our access to the unique,
high-quality data of the Java-Bali system, we focus the rest of this study
on this system, assuming that similar trends are likely to apply for the
country as a whole.

Indonesia’s historical reliance on fossil fuels stems from its abundant
fossil fuels resources, primarily coal. The country’s coal reserve is es-
timated to be as much as 88.6 billion ton oil equivalent (toe), the na-
tional natural gas and oil reserves account for 3.9 and 0.5 billion toe,
respectively (MEMR, 2016). While Indonesia also possesses abundant
renewable energy resources, such as geothermal, hydro, solar, and
wind, they are currently underutilized. Table 1 illustrates the potential
of renewable energy sources in Indonesia and the amount that has been
harnessed until present. The geothermal and hydro potentials have
been utilized up to 8% and 7%, respectively, while, for each of the rest,
less than 1% has been utilized.

The NEP 2014 proposes ambitious new® and renewable energy
(NRE) targets for increasing the role of renewable energy. The NRE
targets relate to two stages. In Stage 1, by 2025, the share of NRE
should be at least 23% of the national energy mix. In Stage 2, by 2050,
the share of NRE should be at least 31% of the national energy mix. NEP
also mentions that the economic aspects of renewables are taken into
consideration in achieving its targets (Government of The Republic of
Indonesia, 2014). Furthermore, NEP also considers nuclear as an al-
ternative energy to achieve its NRE targets, although it is the last option
after maximizing the use of renewable energy sources.

3The term “new energy” is defined as energy that is stemmed from new
technologies such as nuclear and hydrogen (Government of The Republic of
Indonesia, 2014).
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3. Methodology and data
3.1. The LEAP model

LEAP is a software tool for modelling energy systems and was de-
veloped at the Stockholm Environment Institute. The “scenario man-
ager” in LEAP allows simulations of various paths of the electricity
system expansion to achieve the NRE targets. LEAP includes a range of
accounting, simulation, and optimization methodologies for modelling
electric sector generation and capacity expansion planning (Heaps,
2017). The accounting setting enables an analysis of power capacity
expansion based on various assumptions. We use this setup when si-
mulating the reference scenario, which assumes the continuation of the
fossil fuel-based power generation. Meanwhile, the optimization setting
allows the construction of least-cost models of an electricity system’s
capacity expansion and dispatch under various constraints. We use this
setting for alternative scenarios (renewable energy scenarios), putting
the NRE targets as constraints in the simulation.

3.1.1. Electricity demand projection

In this study, demand for electricity is calculated based on the de-
mand growth projection stipulated in the Electricity Supply Business
Plan 2016-2025 (RUPTL) and the Indonesia Energy Outlook 2014
(IEO). Hence, the electricity demand in a specific year is the sum of
electricity demanded in the previous year and its anticipated growth:

ED, = (ED,_,*EDG,)+ED,_,, 1)

where ED; is the electricity demand in year ¢, and EDG, is the percen-
tage of growth in the electricity demand in year ¢. Total electricity
demand in the electricity system for a specific year (TED;) is calculated
as the sum of electricity demanded and electricity losses (EL,) during
transmission and distribution (T&D) process in that year:
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TED; = ED, + EL, 2
and
EL, = ED,*TL,, 3)

where TL, is the percentage of T&D losses in year ¢.

3.1.2. Capacity expansion in LEAP

The capacity of a set of technologies can be added both exogenously
and endogenously in LEAP. We specify exogenously the previously
existing capacities as well as committed additional capacities, such as
the power plants that are currently under construction. We also add the
capacity of hydro-pumped storage exogenously, in accordance with the
RUPTL assumptions (PLN, 2016a)

For the endogenous capacity addition, LEAP calculates the amount
of capacity to be added using the Egs. (4)-(6) below (Awopone et al.,
2017; Heaps, 2017). In the reference scenario, which uses the ac-
counting setting, we specify the types of the power plant to add, but
LEAP decides when they will be added based on the system’s require-
ment. In the renewable energy scenarios, which make use of LEAP’s
optimization capability, LEAP decides what types of technology should
be added and when it will be added based on the least-cost principal
and the set constraints. In these scenarios, we set the minimum capacity
of natural gas power plants to be added each year as intermediate and
peak plants as well as for balancing the variability of intermittent re-
newable energies.

Cen = D,(PRM — RM), @
b~ ED
P LF*8760° (5)
and
ru= 2
D, (6)

where Cg, is the endogenous capacity addition, D, is the peak electricity
demand, PRM is planning reserve margin, RM is the reserve margin
before addition, ED is electricity demand, LF is the load factor (cal-
culated as the ratio of the average load and the peak load), and C, is the
capacity before addition.

3.1.3. Total costs calculation
The total cost of the electricity system is the total net present value
of the system costs over the entire period of calculation:

Nt
1
TC = Cc*Ca; + foc,*Ca; + Voc,*P, + Fc, |,
ZZP (1+d)’( o foarCa Vool ’) @

where TC is total cost, N; denotes the total years from 2016 through to
2050, p is the process (technology), d is the discount rate, Cc is the
initial capital cost, Ca, is the capacity in year ¢, foc, is the fixed op-
eration and maintenance costs in year ¢, Voc, is the variable operation
and maintenance costs in year ¢, F, is the output power in year ¢, and Fc,
is the fuel cost in year ¢.

3.1.4. CO, emissions calculation
CO,, emissions from electricity production are calculated as follows
(Feng and Zhang, 2012):

1
CE=Y > EE p* b,
P f P (8

where CE is the CO, emissions, EF,; is the CO, emission factor from
one unit of primary fuel type f consumed for producing electricity
through technology p, E, is efficiency of technology p, and P, is the
output power from technology p.
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3.2. Integration of the learning model

LEAP does not provide a built-in expression for capturing techno-
logical learning. In this study, we integrate the one-factor learning
model into LEAP by adding an additional expression in LEAP re-
presenting the learning curve of electric power technologies. We build
the syntaxes in LEAP that enable the calculation of changes in capital
costs for each technology type along with changes in cumulative ca-
pacity and in learning rate value of the technology for each learning
phase.

The capital cost of energy technology in a specific year is calculated
using the following formulas (Kim et al., 2012):

B
cx(2)
Co (C))
and
Learning rate(LR) = 1-24, (10)

where K, denotes the capital cost in year t, K is the initial capital cost,
C; is the cumulative capacity until year t, Cy is the capacity in the base
year, and 3 is the positive learning parameter (learning by doing index)
which characterizes the inclination of the curve.

The shapes of learning curves for different energy technologies de-
pend on two factors: initial learning rates and the speed of their change.
To initialize the learning curve model, we retrieve the learning rate
values for electric power technologies from Rubin et al. (2015) and
Heuberger et al. (2017), see Appendix B. Further, with respect to the
speed of learning, we assume four learning phases throughout the time
horizon of this study. We assume the learning rate of each electric
power technology decreases with every phase, as shown in Table 2. Our
assumption refers to the World Energy Outlook (WEO) Model 2016,
which assumes reductions in the capital costs of renewable energy over
time. WEO distinguishes the capital costs in four time steps: 2015,
2020, 2030, and 2040 (OECD/IEA, 2017). The learning curve of solar
PV, as the results of its substantial deployment along the time horizon
of our study, is depicted in Appendix C (Fig. C.1).

3.3. Future scenarios

In this study, we design five scenarios for the future development of
the Java-Bali electricity system. The first one is the reference scenario,
which assumes the continuation of the present technology mix in the
Java-Bali electricity system. The other four are scenarios for meeting
the NEP’s NRE targets. The NRE targets aim at increasing the share of
new and renewable energy in the national energy mix, which refers to
the total national energy use coming from various sources. In this study,
we assume the same target is applied to the electricity sector.
Accordingly, we analyse four scenarios for maximizing the use of re-
newable energy—as mandated by NEP—in the context of the Java-Bali
electricity system and assess their impacts on costs and CO, emissions.
We employ the LEAP optimization method to analyse the least-cost
options of meeting the NRE targets with and without technological
learning. The assumptions for each scenario are as follows:

a. Reference scenario (REF): The reference scenario assumes a con-
tinuity of fossil fuel-based power generation in the Java-Bali elec-
tricity system. Hence, the technology mix in the future is expected to
be equivalent to the present situation. The main characteristics of
this scenario are as follows:

— Deployment of technology is limited to conventional technologies
that have been deployed up to 2015, mainly coal-fired power plants

— Renewable capacity expansion only limited to geothermal and
hydro, as they are the only renewable technologies existed in the
base year
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Table 2
Assumptions of learning rates of electric power technologies 2016-2050.
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Technology REN-Low LR scenario®: Low value of the initial REN-Medium LR scenario”: Medium value of the REN-High LR scenario®: High value of the initial

learning rate initial learning rate learning rate

Phase [ Phase II Phase III Phase IV Phase I Phase II Phase III Phase IV Phase I Phase II Phase III Phase IV

2016-2020 2021-2030 2031-2040 2040-2050 2016-2020 2021-2030 2031-2040 2040-2050 2016-2020 2021-2030 2031-2040 2040-2050
Solar PV 10.0% 7.1% 4.0% 1.6% 23.0% 16.3% 9.1% 3.7% 47.0% 33.4% 18.7% 7.7%
Wind Turbine - 11.0% - 7.8% — 4.4% - 1.8% 12.0% 8.5% 4.8% 2.0% 32.0% 22.7% 12.7% 5.2%
Biomass 0.0% 0.0% 0.0% 0.0% 11.0% 7.8% 4.4% 1.8% 24.0% 17.0% 9.5% 3.9%
USC Coal 5.6% 4.0% 2.2% 0.9% 8.3% 5.9% 3.3% 1.4% 12.0% 8.5% 4.8% 2.0%
NGOC 10.0% 7.1% 4.0% 1.6% 15.0% 10.7% 6.0% 2.4% 22.0% 15.6% 8.7% 3.6%
NGCC - 11.0% - 7.8% — 4.4% - 1.8% 14.0% 9.9% 5.6% 2.3% 34.0% 24.1% 13.5% 5.5%
Hydro 1.4% 1.0% 0.6% 0.2% 1.4% 1.0% 0.6% 0.2% 1.4% 1.0% 0.6% 0.2%
Nuclear - 6.0% - 4.3% — 2.4% - 1.0% - 1.0% - 0.7% — 0.4% - 0.2% 6.0% 4.3% 2.4% 1.0%

Note: The learning rates for the first phase is based on Rubin et al. (2015). For the other phases, we estimate learning rates ourselves based on data from OECD/IEA

(2017).

@ The initial learning rates (LR), i.e., the LR values in Phase I refer to the lowest values in Rubin et al. (2015) and assumption on the low LR value for nuclear in

Heuberger et al. (2017).

> The initial learning rates (LR), i.e., the LR values in Phase I refer to the mean values in Rubin et al. (2015) and assumption on the medium LR value for nuclear in

Heuberger et al. (2017).

¢ The initial learning rates (LR), i.e., the LR values in Phase I refer to the highest values in Rubin et al. (2015).

— No limitation on the domestic fossil fuels uses

— Geothermal and hydro expansions are dependent on their avail-
ability (potentials) in the Java and Bali islands

No specific target is set for renewable energy deployment

No technological learning is considered

. Renewable energy scenario (REN): The renewable energy scenario
takes into consideration the NRE targets when projecting the elec-
tricity system expansion. Besides hydro and geothermal that already
operate in Indonesia, three types of renewable energy are added
over the time horizon of this study: solar, wind, and biomass.
Moreover, in line with NEP, nuclear is considered as a new tech-
nology to be added after maximizing renewable energy uses. This
scenario includes the following characteristics:

The capacity expansion aims at achieving the NRE targets. Thus, the
NRE targets are set as constraints in the model

The types of technology that are considered for future capacity ex-
pansion include ultra-supercritical (USC) coal, natural gas combined
cycle (NGCC), natural gas open cycle (NGOC), hydropower, geo-
thermal, wind power, biomass, solar photovoltaic (PV), and nuclear
The renewables’ capacity expansions are dependent on their avail-
ability (potentials) in the Java and Bali islands

LEAP will choose the types of technology to be employed based on
costs and the set objectives

No technological learning is considered

In addition, we suggest three variations of this scenario, which vary
in the initialization of technological learning for electric power tech-
nologies. We consider the learning rate of not only renewable energy
technologies but also of non-renewables. Following the setup of en-
dogenous technology cost learning (ETL) in Section 3.2, we assume that

the technological learning for all energy technologies occurs in four
phases. We run LEAP with ETL assuming three different initial values
for the learning rate: low (REN-low LR in Table 2), medium (REN-
medium LR in Table 2), and high (REN-high LR in Table 2).

(i) Renewable energy scenario with low learning rate (REN-low LR): the
initial learning rate values refer to the minimum learning rate
values (REN-low LR in Table 2).

(ii) Renewable energy scenario with medium learning rate (REN-medium
LR): the initial learning rate values refer to the mean learning rate
values (REN-medium LR in Table 2).

(iii) Renewable energy scenario with high learning rate (REN-high LR): the
initial learning rate values refer to the maximum learning rate
values (REN-high LR in Table 2).

3.4. Data

We have collected most of the model input data from PLN and
governmental reports, rather than relying on default data provided by
LEAP. Therefore, this study represents the actual characteristics of the
Indonesian electricity system, making policy projections more reliable.
Table 3 presents the model input parameters and their sources. The
electricity demand projection for 2016 through to 2025 is based on
RUPTL with an annual average of 7.3% (PLN, 2016a). Meanwhile, the
demand growth projections for 2026 onwards refer to the Indonesia
Energy Outlook (IEO) with an annual average of 5.6% from 2026
through to 2040 and 4.3% from 2041 through to 2050 (DEN, 2014).
The transmission and distribution losses data come from the Electricity
Supply General Plan (RUKN), which estimates a reduction from 8.5% in
2015 to 7.9% in 2030 onwards. The planning reserve margin is set at
35%, in accordance with the RUKN criteria (KESDM, 2015). The energy
load shape in LEAP is drawn based on the hourly load data of the Java-

Table 3

Summary of model input parameter.
Input Data Value Source
Annual demand growth 2016-2030 4.3-7.3% Refers to the RUPTL and IEO estimates (DEN, 2014; PLN, 2017a)
Transmission & distribution losses 7.9-8.5% Refers to the draft RUKN estimates (KESDM, 2015)
System load shape Fig. B.1 Based on hourly demand data recorded by P2B (P2B, 2016)
Reserve margin® 35% Refers to the RUKN criteria (KESDM, 2015)

Environmental parameter
Discount rate

Per technology
12%

The IPCC Tier 1 default emission factors, embedded in the LEAP’s technology database (Heaps, 2017)
The discount rate used by PLN (JICA, 2010)

@ Reserve margin is the percentage of reserve capacity relative to the capacity needed to meet the standard peak demand.
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Bali electricity system that were collected from the Java-Bali grid op-
erator (see Appendix B, Fig. B.1). In our model, we take the Java-Bali’s
load characteristics into consideration by dividing the demand in a year
into 48 time-slices, which represent four variations for each month.
This approach is based on historical load characteristics where there are
four main variations in electricity demand, which occur during the day,
night, weekend, and weekday. Meanwhile, owing to a reasonably
constant temperature in Indonesia throughout the year, there are no
significant variations in demand between seasons.

The technological data of existing power plants is collected from
PLN. It includes capacity, planned retirement, heat rate, historical
production, and capacity factor. The accuracy of these data is essential
to ensure a reliable base year representation, as it is used as the starting
point for the future capacity expansion. There are currently 64 power
plants with 7 different technologies, namely coal steam turbine (CST),
NGCC, NGOC, diesel generator, hydroelectric (small and large-scale),
and geothermal. The existing coal power plants in the Java-Bali elec-
tricity system employed a conventional boiler, which has a lower effi-
ciency than the supercritical (SC) and ultra-supercritical (USC) tech-
nologies. However, the RUPTL states that only the USC boiler will be
employed for the future coal power plants (PLN, 2016a). Accordingly,
we only consider the USC boiler for the newly added coal capacity.

The characteristics of newly added technologies, including ultra-
supercritical CST, biomass, wind turbine, solar PV, and nuclear power,
were retrieved from various studies (see Table 4). Most of the tech-
nology costs assumptions were taken from the RUPTL cost data (PLN,
2017b), complemented with DEN (2016a), ACE (2016), OECD/IEA
(2017), and the IEA and NEA (2015). The fuel costs data for coal and
natural gas were retrieved from the PLN Statistics 2015 (PLN, 2016c),
while nuclear and biomass fuel costs data were taken from EIA and
ASEAN Energy Centre studies (ACE, 2016; IEA and NEA, 2015), re-
spectively. For renewable, we assume that the publicly available data of
the Indonesian renewable energy potential (Table 1) is accurate, and
they can be exploited over the time horizon of this study without any
constraints. Furthermore, since NEP listed nuclear as the least preferred

Table 4
Characteristics of technologies in the Java-Bali LEAP model.
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option for meeting the NRE targets, we assume that nuclear will be
deployed for the first time in 2035 when all renewable energy poten-
tials have been largely exploited. Coal, nuclear, and biomass power
plants are expected to cover the baseload, while natural gas and hydro
power plants are expected to cover the peak load. With regard to the
supply characteristics of intermittent renewable power plants (wind
and solar), we specify exogenously capacity addition for hydro-pumped
storages as well as set a minimum amount of natural gas power plant to
be added each year to balance the intermittent renewable energies.

Since LEAP does not provide for simulation of the expansion of
transmission and distribution lines, this study assumes that electricity
supply can be transmitted at any time to any load station without ad-
ditional constraints in the electricity networks.

4. Results and discussions

Following the model calculation of the demand growth (Eq. (1)),
demand for electricity in 2025 reaches 332 TWh, doubling values re-
corded in 2015. Furthermore, in 2050, it increases up to
1159 TWh—over three-fold of those in 2025. In the following sections,
we discuss the results of our five scenarios for the Java-Bali electricity
system’s expansion to satisfy the projected future demand.

4.1. Reference scenario (REF)

In the REF scenario, with the business as usual technology compo-
sition, the coal capacity is added expansively over the time horizon of
the study, followed by natural gas (see Fig. 2). Consequently, the
electricity generation mix in the Java-Bali electricity system is domi-
nated by coal. In total, fossil fuels (coal and natural gas) account for
92% and 94% of electricity supply in 2025 and 2050, respectively.
Interestingly, renewable energy share reduces from 8% in 2025 to 6%
in 2050 despite the full utilization of geothermal and hydro potentials
of the Java-Bali islands. Therefore, the electricity generation mix in the
REF scenario is far from what is expected by NEP. These results indicate

Technology Lifetime of Efficiency (%)" Maximum Capacity Capital cost Fixed OM Variable OM cost  Fuel cost® (2015
power plant availability” (%) credit (%) (2015 US cost (2015 US (2015 US$/MWh)"  US$)
(years)® $/kw)? $/kW)?
Ultra-supercritical coal 30 40 80 100 1400 31.3 2 51.8 US$/ton
Natural gas combined 25 55 80 100 800 19.2 1 7.6 US
cycle $/MMBTU
Natural gas open cycle 20 36 80 100 700 18 1 7.6 US
$/MMBTU
Hydro 50 100 41 51 2000 6.6 1 -
Mini hydro 25 100 46 58 2400 6.6 1 -
Hydro-pumped storage 50 95" 20 25 800 6.6 1 -
Geothermal 25 104 80 100 3500 30 1 -
Solar PV 20 100 17 22 2069° 24.8° 0.4" -
Wind power 20 100 28 35 2200 444 0.8" -
Nuclear 40° 34 858 100 6000 1641 8.6° 9.33 US$/MWh'
Biomass 20" 35¢ 80 100 2228 78¢ 6.5 11.67 US$/ton°

* Maximum availability in LEAP is defined as the ratio of the maximum energy produced to what would have been produced if the process ran at full capacity for a

given period (expressed as a percentage) (Heaps, 2017).

** Capacity credit in LEAP is defined as the fraction of the rated capacity considered firm for calculating the reserve margin. The values are calculated based on the
ratio of availability of the intermittent plant to the availability of a standard thermal plant (Heaps, 2017).

**% OM: Operation and Maintenance.
2 PLN (2017b).

> DEN (2016a).

¢ PLN (2016¢).

4 OECD/IEA (2017).

¢ ACE (2016).

f Rothwell and Rust (1997).

& IEA and NEA (2015).

" IRENA (2012).
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Fig. 3. Electricity generation mix, REF scenario.

that it is not possible to increase renewable energy share if the sector is
to rely on geothermal and hydro alone without exploiting other types of
renewable energy (Fig. 3).

4.2. Renewable energy scenario (REN)

The total power generation capacity of the Java-Bali electricity
system reaches 69.6 Gigawatt (GW) at the end of NEP’s Stage 1 (2025)
under the REN scenario without technological learning (Fig. 4). In this
scenario, the renewable capacity expands up to 15.2 GW—a nearly two-
fold increase compared to REF. Accordingly, there is a 22% decrease in
coal capacity. During the NEP Stage 2 period in the REN scenario, the
system’s capacity expands further, reaching 244.4 GW in 2050. Inter-
estingly, nuclear capacity is added significantly during this time. It is
first installed in 2035 and adds up to 22 GW by 2050. In the same year,
renewable capacity reaches 41 GW—three-fold of that in REF.

Looking more closely into the electricity generation mix, the total
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Fig. 4. Installed capacity in the renewable energy scenario (REN), no techno-
logical learning.
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electricity generation in 2025 and 2050 are 332 TWh and 1159 TWh,
respectively (Fig. 5). We observe that renewable energy accounts for
23% of the Java-Bali electricity generation mix in 2025, compared to
8% in REF. Hence, the NRE target Stage 1 is achieved solely by ex-
ploiting renewable energy. However, in 2050, renewable energy share
constitutes only 17.3% despite full utilization of hydro, geothermal, and
biomass potentials (Fig. 5b), which is below the NRE target Stage 2.
This gap is filled by nuclear, which accounts for 14.2% of the Java-Bali
electricity generation mix. These results imply that the least-cost option
to achieve the NRE target Stage 2, assuming no changes in relative costs
of energy technologies, is to combine renewables and nuclear. How-
ever, this scenario neglects technological learning, whereas most of
these technologies become more cost-effective over time.

In the following sections, we discuss the results of the REN sce-
narios, which take into account the learning curves of both renewable
and non-renewable technologies. In these scenarios, the capital costs of
electric power technologies change along with their increased capacity
depending on their learning rates.

4.2.1. Renewable energy scenario with low learning rate values (REN-low
LR)

REN-low LR scenario assumes the minimum value of learning rate of
each technology in Phase I, which evolves throughout the other phases.
The results indicate that there is a significant change in the 2025's
electricity generation mix when compared to REN (Figs. 6a vs. 5a).
Solar now accounts for 6% of the electricity generation mix, partially
replacing biomass and geothermal, in contrast to 1% in REN. It implies
that in the early phase of technological learning, even in its minimum
learning rate value, solar becomes competitive with other renewables.
Furthermore, the natural gas share slightly increases as compared to
REN, compensating a slight reduction in coal.

These changes are seen substantially by 2050. The share of nuclear
and wind power present in REN is replaced by solar (compare Figs. 6b
and 5b). The solar share is now 18%, which also slightly replaces the
coal share. Hence, this result suggests that when the minimum learning
rate values for all technologies are considered, solar becomes more
economically attractive compared to other technologies. Remarkably,
even under the most modest assumptions regarding technological pro-
gress, solar proliferates from less than 1% to become the third most
used energy source after coal and natural gas. A reasonable explanation
could be that, in this scenario, the initial learning rate of solar PV (10%)
is the highest, compared to those of nuclear (-6%), wind power (-11%),
and coal (5.6%). This also explains why nuclear and wind hardly appear
in the 2050's electricity generation mix.

4.2.2. Renewable energy scenario with medium learning rate values (REN-
medium LR)

When the medium learning rate value for each technology is ap-
plied, a significant change is also seen in the 2025's electricity gen-
eration mix (Fig. 7a) as compared to REN. Renewable energy is now
shared between biomass (7%), solar (6%), geothermal (5%), hydro
(4%), and wind (1%). This result suggests that, in the early phase of
technological learning when a medium learning rate for each tech-
nology is assumed, solar and biomass compete with each other. Coal
and natural gas still support 77% of the Java-Bali electricity production
while the renewables share accounts for 23% of the electricity gen-
eration mix, as targeted.

Turning now to the electricity generation mix in 2050, Fig. 7b
shows that renewables account for 30% of the electricity generation,
supplying nearly 350 TWh of electricity to the Java-Bali system. With
an additional 10 TWh electricity supply from nuclear, NRE now con-
stitutes 31% of the electricity generation mix, as targeted. An inter-
esting finding is revealed when comparing these results with those in
REN-low LR. It can be seen that the solar share in this scenario is 4%
lower than that in REN low-LR despite the fact that its learning rate in
this scenario is higher than that in REN-low LR. The 4% portion is
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2050: 1159 TWh
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Fig. 5. Electricity generation mix in the renewable energy scenario (REN), no technological learning.

replaced by wind, which hardly appears before (Fig. 7.a). This result
indicates that, in the later phases of technological learning when the
learning rate values of each technology diminish, the wind power is
more competitive than it is in the earlier phases.

4.2.3. Renewable energy scenario with high learning rate values (REN-high
LR)

In the scenario with the high learning rate value for each tech-
nology, it can be seen that the 2025 electricity generation mix is
comparable with those in the REN-low LR and REN-medium LR scenarios
(Fig. 8a vs. 6a and 7a). This finding suggests that, regardless of the
initial learning rate values, solar is competitive against other renew-
ables when it is deployed in the early phases.

Our results for 2050 under the intensive technological learning
show that hydro, geothermal, and biomass expand up to 28.1 GW,
reaching their maximum plausible capacities. Meanwhile, wind capa-
city adds up to 20.5GW, almost reaching its maximum potential of
24 GW. In total, these renewables account for a 16% share of the
electricity generation mix (Fig. 8b). After these renewables reach their
maximum plausible capacities, solar and nuclear are the only options

2025: 332 TWh

® Nuclear Solar Wind ® Biomass

(@)

® Geothermal

for meeting the NRE targets. Together with 14% of solar and 1% of
nuclear shares, NRE constitutes 31% of the Java-Bali electricity gen-
eration mix, satisfying the NRE target Stage 2. This is comparable with
REN-medium LR, indicating that, at the medium and high initial
learning rate values, all types of renewable compete with each other to
achieve the NRE target Stage 2.

Comparing results from the three renewable energy scenarios, sev-
eral significant findings emerge. Firstly, the integration of endogenous
technological learning in LEAP reveals comparable results for the early
phase of technological learning (2016-2025). In this phase, hydro,
geothermal, biomass, and solar PV compete with each other to meet the
NRE target Stage 1. Meanwhile, in the later phases, when the learning
rate value of all technologies decrease, the results are slightly different
between the REN-low RE scenario and the two other technological
learning scenarios. While, in the former scenario, the wind power share
is negligible, in the latter scenarios, wind is competitive with other
renewables. Secondly, as far as technological learning scenario is con-
cerned, they meet the NRE targets mostly through renewables without
depending on nuclear.

2050: 1159 TWh

® Hydro ® Natural Gas = Coal

(b)

Fig. 6. Electricity generation mix in the REN-low LR scenario, technological learning occurs at the minimum pace.
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Fig. 7. Electricity generation mix in the REN-medium LR scenario, average pace of technological learning.

4.3. Costs

Given the pressure from the competing socio-economic priorities,
including poverty eradication and other sustainable development goals
(SDGs), any effort in achieving the NRE targets relies on making NRE
technologies economically feasible. Hence, assessing the costs of
meeting these targets is essential. Here, we compare the results of si-
mulations from the five scenarios with respect to their capacity ex-
pansion and dispatch costs (Fig. 9). The total costs to achieve the NRE
target by 2050 are 103.1 billion USD in REN in the absence of tech-
nology learning, 15.9% higher when compared to 88.9 billion USD in
REFF.

The technological learning has an impact on the costs projections,
which vary non-linearly with the change in the learning pace. Our re-
sults show that the total costs of REN-medium LR and REN-high LR be-
come 4% and 10% lower, respectively, when compared to REN in 2050
(see Fig. 9). Meanwhile, the total costs of REN-low LR are 2% higher
than REN, which is due to the assumptions of negative learning rates of
NGCC, wind, and nuclear in this scenario (see Table 2). Interestingly,

2025: 332 TWh
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70 «=@— REN-medium LR
60 REN-high LR

50 —®—REN-low LR

Billion US$

40 —@—REN

30 Reference
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2020 2025 2030 2035 2040 2045 2050

Fig. 9. Total costs of electricity production under the reference and four re-
newable energy scenarios.
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Fig. 8. Electricity generation mix in the REN-high LR scenario, high pace of technological learning.
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Fig. 10. CO, emissions under the reference scenario and the renewable energy
scenario.

when the high learning rates are applied (REN-high LR), the total costs
become lower than REN even by 2025. This indicates that if progress in
energy technologies and their adoption intensifies, the cost reduction
starts earlier and the total costs of the expanding electricity sector in-
crease at a slower rate already before 2025, making it attractive to
invest in renewable energy.

4.4. CO5 emissions

Aligned with the Paris Agreement on mitigation of climate change,
the Government of Indonesia has announced its targets to reduce
greenhouse gas emissions by 29% in 2030 against the business-as-usual
scenario. Eleven-percent of the 29% target is allocated to the energy
sector. Our results indicate how much the NRE targets will contribute to
the achievement of the Indonesian CO, reduction target (Fig. 10). As
expected, all renewable scenarios, regardless of technological learning,
result in lower emissions compared to REF. In 2030, CO, emissions
from REN reaches 239 million-ton COse, as compared to 318 million-
ton CO.e in REF. This is equal to 25% of CO, reduction, more than two-
fold of what is targeted for the energy sector.

From 2030 onwards, the CO, emissions gap between the reference
and the renewable energy scenarios becomes higher. In 2050, CO,
emissions under REN reaches 533 million ton, compared to 798 million-
ton CO.e under REF, promising 33% emission reduction. Since the
contribution from achieving the NRE targets goes beyond the country’s
Paris climate target, it can contribute to the roadmap for rapid dec-
arbonization, which aims at achieving zero net emissions by mid-cen-
tury or soon thereafter (Rockstrom et al., 2016).

5. Conclusions and policy implications
5.1. Conclusions

The aim of the present study is to analyse the long-term capacity
expansion in the Java-Bali electricity system in Indonesia, taking the
national NRE targets into consideration. To the best of our knowledge,
this is the first study to assess the impacts of this national policy
quantitatively considering technological learning. On the methodolo-
gical side, this article makes an innovative contribution to the literature
by accounting for endogenous technological learning in the future
electricity supply analysis using LEAP. We employ a unique detailed
dataset to simulate five scenarios for the capacity expansion of the Java-
Bali system. The reference scenario assumes a business-as-usual elec-
tricity generation mix and no technological change. Renewable energy
scenarios assess the electricity system expansion under the national
energy policy in Indonesia, using the new and renewable energy targets
as constraints. Furthermore, we differentiate between the standard
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renewable energy scenario with fixed technological costs and three
renewable energy scenarios that include technological learning of
electric power technologies. We discuss the simulation results in terms
of the electricity generation mix, costs, and CO, emissions. Our analysis
suggests the following conclusions:

—

. In the reference scenario, the future capacity mix reflects the si-
tuation in 2015. This results in fossil fuels continuing to dominate in
the future Java-Bali’s electricity generation mix. In 2025 and 2050,
fossil fuels account for 92% and 94% share of the electricity gen-
eration mix, respectively.

2. The renewable energy scenario fulfils the NRE target Stage 1. In the
absence of technological change, it is driven mainly by expanding
geothermal and hydro capacity and by adding biomass. Meanwhile,
the NRE Stage 2 target is achieved by expanding renewables (17%)
and deploying nuclear (14%).

3. The inclusion of technological learning rates significantly alters the
electricity generation mix in 2025. In this phase of technological
learning, solar PV is competitive with other renewables.
Furthermore, by 2050, regardless of technological learning pace,
solar PV is competitive against other renewables and nuclear.
Meanwhile, in the long-run, wind power is competitive in the sce-
narios with medium and high learning rate values.

4. Without considering technological learning, the fulfilment of the
NRE targets increases the total costs of electricity production by
15%. The incremental costs become 4% and 10% lower, respec-
tively, when the medium and high paces of technological learning
are considered, but the effect changes non-linearly with the learning
rate.

5. The fulfilment of NRE targets provides co-benefits in term of redu-

cing CO, emissions. By 2030, CO, emissions decrease by 25% as

compared to the reference scenario, thereby assuring the achieve-
ment of the energy sector’s CO, emission reduction target.

This study provides a framework to explore the cost-reducing effect
of technological learning in the electricity sector using the LEAP model.
Furthermore, it also indicates the least-cost option for the Java-Bali
electricity system to meet the NRE targets. Looking further ahead, more
detailed research is needed to cover transmission capacity and spatial
analysis of each power plant including data on the supply character-
istics of intermittent energy sources, such as wind speed and solar ra-
diation in each region.

5.2. Policy implications

Our analysis has a number of policy implications, which relate to
the timing of renewable energy deployment, local learning processes
and improvement in the grid capacity.

Early deployment of renewable energy: With regard to timing,
the deployment of renewable energy should start as early as possible to
gain the benefits of technological learning. Moreover, the early de-
ployment of renewable energy helps avoiding excessive investments in
coal-based power plants and their related infrastructures, which have
decades to serve after they are built.

Local learning: Conditions for future investments in renewable
energy technologies in developing countries depend on a combination
of global and local learning processes. Since local learning has a sig-
nificant impact on the costs of renewable energy (Huenteler et al.,
2016), the conditions that enable faster local learning should be made
available. These include an increased number of skilled workforce, a
stable regulatory framework, and the establishment of sustainable
business models. Furthermore, improvement in infrastructure, such as
accessibility of remote areas, is required to enable faster distribution of
renewable energy technologies. Moreover, the involvement of all par-
ties, including users, suppliers, competitors, universities, and reg-
ulators, is critical as interactions between them is the key for the



K. Handayani et al. Energy Policy 127 (2019) 134-146

learning and innovation processes to occur (Lundvall, 2016). vehicles, require the global utility sector for transforming to a smarter
Improvements in the grid capacity: Integration of the vast re- grid.

newable energy capacity presents new challenges to any electricity
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Appendix A. Descriptions of LEAP

LEAP is a popular software tool for analysing energy policy and climate change and has been used by thousands of organizations in 190 countries
(Heaps, 2017). With respect to electricity capacity expansion, LEAP consists of three modules. First, the demand module projects yearly electricity
demand during the study period. Second, the transformation module adds new capacity of power generation technologies that are required to satisfy
the future demand and assigns them to dispatch electricity. Third, the resource module calculates the primary energy required to generate electricity
based on the fuel efficiency of each technology. Additionally, LEAP calculates an electricity system’s total costs based on costs input data. Moreover,
LEAP includes a Technology and Environmental Database (TED) that allows the calculation of CO, emissions from the electricity production based
on the IPCC Tier 1 emission factor (Heaps, 2017).

In LEAP, the optimal solution is defined as the electricity system with the lowest total net present value of the total costs over the entire period of
calculation (from the base year through to the end year) (Heaps, 2017). The optimization setting works through integration with the Open Source
Energy Modelling System (OSeMOSYS). LEAP automatically writes the data files required by OSeMOSYS making use of the same data that were input
into LEAP. The results of the optimization are also read back into LEAP so that all relevant results can be viewed in LEAP. The OseMOSYS, in turn,
depends on a solver software tool for developing decision optimization models. Due to the complexity of our study, instead of using the LEAP built-in
GNU Linear Programming Kit (GLPK), we use a more powerful solver namely CPLEX optimizer, a software toolkit developed by IBM.

Appendix B. Input data for the LEAP simulations
B.1. Assumptions of learning rates

Our assumptions for the initial learning rates are based on Rubin et al. (2015), as presented in Table B.1. They provide a review of learning rates
from various studies. Due to the wide range of learning rate values presented in that study, we use the minimum, mean, and maximum values of
learning rate of each technology in our analysis (REN-low LR, REN-medium LR, and REN-high LR). In the case of hydropower, only one study is present
in Rubin et al. (2015). Therefore, we use only one value for hydro in all three REN LR scenarios. Moreover, this secondary data specified a negative
minimum learning rate value for nuclear, while its mean value is not provided. In our study, we assume the minimum learning rate value for nuclear
is —6%, while the mean learning value for nuclear is assumed to be —1%, following the assumptions in Heuberger et al. (2017). Since learning rate
for geothermal is not available, we assume it as 0% in all three scenarios.

Table B.1

Learning rate values of power generation technologies (Rubin et al., 2015).
Technologies Learning Rates” Years covered across the

studies
Minimum Mean Maximum

Solar PV 10% 23% 47% 1959-2011
Wind Turbine - 11% 12% 32% 1979-2010
Biomass 0% 11% 24% 1976-2005
Pulverized coal 5.6% 8.30% 12% 1902-2006
Gas turbine 10% 15% 22% 1958-1990
NGCC* - 11% 14% 34% 1980-1998
NGOC 10% 15% 22% 1958-1990
Hydro 1.4% 1.4% 1.4% 1980-2001
Nuclear Negative - 6% 1972-1996

2 NGCC: Natural gas combined cycle.
> The learning rate values are based on empirical data reported in the literature that were collected and reviewed by Rubin et al. (2015).

B.2. Load shape of the Java-Bali electricity system

See Fig. B.1
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Fig. B.1. Load shape of the Java Bali electricity system (P2B, 2016).*

Appendix C. Learning curves of solar PV

The optimization simulations in LEAP result in a massive deployment of solar PV in all three technological learning scenarios. Hence, the capital
cost of solar PV reduced over time, as depicted in Fig. C.1 (for the REN-medium LR scenario). Fig. C.1 (a) shows a continues reduction in the capital
cost of solar PV along with the increase in its cumulative capacity. As Fig. C.1 (b) illustrates, in Phases I and II, the cost reduction occurs faster.
Meanwhile, in the later phases, the costs reduce slower partly because of the reduction in the learning rate value as well as the cumulative capacity
already being high. In Phase II, the cumulative capacity reaches nearly 20 GW; thus, in Phase III, it requires another 20 GW of additional capacity to
gain 9% cost reduction, as assumed for the REN-Medium LR scenario (see Table 2). Furthermore, in Phase IV, it requires another nearly 40 GW

additional capacity to gain 4% of cost reduction.

USS/kw)

Capital cost(201

(a)

Capital cost (2015 U

Phase IV

Cummuiative ¢

(b)

Fig. C.1. Learning curves of solar PV assuming the medium value of the initial learning rate: (a) depicts a continues cost reduction based on Eq. (9), while (b) depicts

a linear approximation of the cost reduction in (a) that divides in four phases.
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