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For rare blood groups the recruitment of donor relatives, for example siblings, is expected
to be effective, since the probability of a similar rare blood group is likely. However, the
likelihood differs between blood groups and is not commonly available. This paper provides
a unified mathematical formulation to calculate such likelihoods. From a mathematical
and probabilistic point of view, it is shown that these likelihoods can be obtained from
the computation of a stationary genotype distribution. This, in turn, can be brought
down to a system of quadratic stochastic operators. A generic mathematical approach is
presented which directly leads to a stationary genotype distribution for arbitrary blood
groups. The approach enables an exact computation for the effectiveness of recruiting next
of kin for blood donorship. Next to an illustration of computations for ‘standard’ ABO
and Rhesus-D blood groups, it is particularly illustrated for the extended Rhesus blood
group system. Also other applications requiring next of kin blood group associations can
be solved directly by using the unified mathematical formulation.
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2 J. H. J. van Sambeeck et al.

1. INTRODUCTION

1.1. Motivation

The challenges faced by blood transfusion services are becoming more complex and are
changing continuously over time due to growing economic pressure, new technologies, and
increasing customer expectations [5,16]. One of these expectations is the ability to select
extensively (blood group) matched red blood cells (RBCs) for transfusion recipients, to
decrease the number and severity of transfusion reactions. However, current blood donor
recruitment strategies are based on historical matching strategies and cannot meet the
demand for extensively matched blood products. Furthermore, due to increasing immi-
gration rates and differences in blood group distributions between ethnic populations the
diversity among blood groups within the transfusion population increases. For instance, the
blood group profiles of Caucasian individuals (i.e., individuals with European ancestors) and
individuals from African descent differ significantly. In contrast, in the donor base compo-
sition ethnic minorities are underrepresented, complicating extended blood group matching
of donors and transfusion recipients. Hence, one of the major challenges for current blood
donor recruitment practice is to maintain an adequate donor base with a sufficiently diverse
blood group composition [3]. In actual fact, an overrepresentation of donors from African
descent would be preferable, as individuals from African descent have a higher probability of
requiring repeated blood transfusions as a result of sickle cell decease, which is uncommon
in other populations [2].

In practice, it has been shown effective to increase the number of donors with O, Rhesus-
D (RhD) negative blood groups by recruiting among their relatives, since these are more
likely to be O, RhD-negative than individuals in the general population. Although intuitively
this seems to be an effective strategy, it is not evident to what extent such strategies are
more effective than random donor selection. Moreover, it gives rise to the question whether
this also holds for other blood group combinations. If so, it may steer towards more effective
recruitment strategies.

1.2. Approach

To model blood group antigen inheritance quadratic stochastic operators (QSOs) are used,
as introduced by Bernstein in 1924 [1]. Recently, Ganikhodjaev et al. [7–9] applied QSOs
to model the heredity of ABO and RhD blood groups. However, a general formulation that
goes beyond the standard ABO, RhD blood groups was not given. In addition, an exact
computation of the effectiveness of recruiting relatives of donors with rare blood groups has
not been included. Of course, the idea that relatives have similar blood groups is intuitively
correct, but quantification is insightful and allows balancing recruitment efforts against the
benefits from blood group matching.

In this paper, therefore, we present a unified mathematical formulation to determine the
probability that two relatives (next of kins) share the same blood group. In short, the steps
and formulation that will be provided, transform phenotype distributions into genotype
distributions and back. By this generic mathematical approach we can directly analyze the
effectiveness of specific next of kin recruitment strategies, for any blood group, ethnicity,
and population (as numbers may differ worldwide).

The mathematical approach only requires a phenotype distribution as an input, whereas
the population genotype distribution is required for calculating the blood group distribution
probability for the next of kin. Phenotype distributions can be easily determined by simple
blood tests, genotype distributions are more difficult to obtain. However, these genotype
distribution can be derived from the phenotype distributions using our generic mathematical
approach.
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BLOOD GROUP PROBABILITIES BY NEXT OF KIN 3

This paper starts with a known, but motivational example in Section 2. Next, in
Section 3, a unified mathematical formulation of the approach is covered. In Section 4, this
unified mathematical formulation is used to compute the effectiveness of recruiting next of
kin for blood donorship. Finally, we explore some specific applications of the approach in
Section 5. At the end of the paper, we provide a clear overview of the notation used (see
Appendix A).

2. MOTIVATIONAL AND ILLUSTRATIVE EXAMPLE

In this section, let us first provide the genetic terminology and illustrate our steps and
formulation for the ‘standard’ ABO and RhD blood groups. That is, we show

• how the approach for determining the distribution of genotypes in a population
essentially comes down to a system of quadratic equations,

• how the distribution of genotypes can be used to evaluate the effectiveness of
targeted recruitment strategies for the ABO and RhD blood groups separately,

• how the results for both blood groups can be combined.

Later, in Sections 3 and 4, the same steps and approach are provided in a unified math-
ematical formulation, such that this formulation can be applied to any blood group
system.

2.1. ABO, RhD blood groups

According to the International Society of Blood Transfusion (ISBT), there are more than
300 different blood group antigens belonging to 35 blood group systems [12]. Each antigen
can be either present or absent on the surface of an RBC, leading to an extremely large
number of different blood group profiles. In practice, however, not all antigens are equally
important with regard to transfusion-related problems. The most important antigens are A
and B (both belonging to the ABO blood group system), followed by RhD, which belongs to
the RhD blood group system. Taking only these three antigens into consideration the total
number of blood group profiles can be compressed into eight major groups, the so-called
ABO, RhD blood groups. These ABO, RhD blood groups consist of a combination of a
blood group belonging to the ABO blood group system (O, A, B, AB) and a RhD blood
group (RhD-neg (d), RhD-pos (D)).

For just the RhD blood groups three different genotypes (GD = {dd,Dd,DD}) and
two different phenotypes (FD = {d,D}) exist, where the genotype is a genetic code that
determines which antigen might be expressed on the surface of the RBCs. The expression
of particular antigen is called the phenotype. Moreover, multiple genotypes may lead to
the same phenotype. The relation between the different RhD genotypes and phenotypes is
shown in the following matrix:

S =

d D[ ]
dd 1 0
Dd 0 1
DD 0 1

, (2.1)

where 1 indicates which genotypes results in a particular phenotype. Note that genotypes
(and genes) are presented in italics and phenotypes (and antigens) are presented in a regular
typeface.
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4 J. H. J. van Sambeeck et al.

Table 1. Phenotype frequencies for the ABO–RhD
blood groups [13].

O A B AB
0.48 0.40 0.09 0.03

d 0.15 0.072 0.060 0.013 0.005
D 0.85 0.408 0.340 0.077 0.026

dd

dd

(dd, dd) (dd,Dd) (dd,DD)

Dd

Dd

(Dd, dd) (Dd, Dd) (Dd, DD)

DD

DD

(DD, dd) (DD,Dd)(DD,DD)

Donor

Parents

Sibling

Figure 1. Probability diagram which relates the RhD genotype of a donor to the RhD
genotype of its parents and siblings.

Similarly, the ABO blood group system consists of six different genotypes (GABO =
{OO,OA,OB,AA,AB,BB}) and four different phenotypes (FABO = {O,A,B,AB}). The
phenotype frequencies for the ABO, RhD blood groups in the general Caucasian population
are given in Table 1. The RhD and ABO blood groups belong to two blood group systems
and are inherited independently. Therefore, in the next sections we will explore which steps
are required to investigate the effectiveness of recruiting next of kin with respect to the
RhD and ABO blood groups separately. At the end of this section the results for both
blood groups are combined.

Note that most of the computations performed in this section are similar to what can
be found in the literature [4,7–10,14]. However, the specific structure of the mathematical
approach, the usage of just a known phenotype distribution, and the connection to the
effectiveness of targeted recruitment strategies (see Section 2.4) are new.

2.2. Motivational example for the RhD blood group

Figure 1 shows a probability diagram describing the relation between the RhD genotype of
a donor and its parents and siblings (i.e. brothers or sisters). The probability that a donor
has a particular genotype is the a priori probability. From the figure it is clear that the
probability of a sibling having the same genotype requires information on genotypes of the
parents. However, it might be that the distribution of genotypes in the general population
is unknown or difficult to obtain. On the other hand, the phenotype distribution for the
general population is usually more easily available, so it would be convenient if we could
use this instead, to determine the genotype distribution. This is possible by using quadratic
stochastic operators.

When the a priori probabilities are known, Bayes rule is applied to find the probability
that a relative of a donor has a specific RhD genotype, given the genotype of the donor. In
order to compute these probabilities, particularly for a sibling of a donor, we thus need to
work top-down.
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Figure 2. Inheritance matrix P for the RhD blood group.

2.3. Finding a stationary distribution

For a particular blood group, a child inherits its genotype from a combination of genotypes of
the parents. For the RhD blood group a genotype consists of two genes, each of which either
d or D, leading to three possible genotype combinations: dd, Dd, and DD. Each parent gives
one of these two to the child. The probability that two parents with a particular genotype
conceive a child with a certain genotype is captured by an inheritance matrix P . For the
RhD blood groups, the inheritance matrix is depicted in Figure 2. We are going to use
this inheritance matrix P ∈ R

3×3×3 to compute a stationary distribution of genotypes. The
exact structure of this matrix will be explained in Section 3.1.

Let x(n) ∈ R
3×1 be a column vector containing the genotype distribution for the RhD

blood groups in generation n. We assume that this genotype distribution is stationary,
which implies that the distribution of genotypes in generation n − 1 is equal to the distri-
bution of genotypes in generation n: x(n−1) = x(n) = x. Let xfather, xmother, and xchild be
the genotype distributions of respectively father, mother, and child. Then, in a stationary
population, the following equations hold:

x�
fatherPxmother = xchild ⇒ x�Px = x. (2.2)

Moreover, the genotypes are related to the phenotypes. This relation was given in the matrix
S (see Eq. (2.1)). Besides Eq. (2.2) the following equation should also hold for variable x:

S�x = f , (2.3)

where f ∈ R
2×1 is the phenotype distribution. For the RhD blood groups, Eqs. (2.2) and

(2.3) can be solved analytically, which gives:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2
dd + xddxDd + 1

4x2
Dd = xdd

xddxDd + 2xddxDD + 1
2x2

Dd + xDdxDD = xDd
1
4x2

Dd + xDdxDD + x2
DD = xDD

xdd = fd

xDd + xDD = fD

⇒

⎧⎪⎨
⎪⎩

xdd = fd

xDd = fD − (
1 −√

fd

)2

xDD =
(
1 −√

fd

)2
.

Note that this analytic solution is in accordance with the Hardy–Weinberg law [11]. Since
f� = (fd, fD) = (0.15, 0.85) we get

x =

⎡
⎣ xdd

xDd

xDD

⎤
⎦ =

⎡
⎣ 0.150

0.475
0.375

⎤
⎦ .

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000153
Downloaded from https://www.cambridge.org/core. Twente University Library, on 11 Dec 2018 at 13:24:18, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000153
https://www.cambridge.org/core


6 J. H. J. van Sambeeck et al.

In a similar way, equations and computations can be provided for the ABO-blood group
system from which we find

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

xOO

xOA

xOB

xAA

xAB

xBB

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.480
0.341
0.084
0.061
0.030
0.004

⎤
⎥⎥⎥⎥⎥⎥⎦ .

In Casas et al. [4] square root expressions have been provided for the ABO blood group
system and are therefore omitted here. However, this reference has not discussed the concept
of effectiveness. This will be elaborated on in the next section.

2.4. Effectiveness of recruiting next of kin for donorship

Donors are recruited for their phenotypes expressions (blood is matched on phenotypes),
however, inheritance is determined by genotypes. Therefore, to compute the probability that
a sibling of a donor with a particular phenotype has the same phenotype, the stationary
genotype distribution is required. Once this genotype distribution has been obtained the
likelihood of a particular blood group for a sibling, given the blood group of a relative, can
then be computed using Bayes’ rule.

Suppose that we have a RhD-pos donor, the likelihood that its sibling is also RhD-pos
can be computed by calculating the following conditional probability:

P [sibling D | donor D] = 0.908.

Details on this calculation are provided in Appendix B.
We find that the conditional probability is slightly higher than the probability that a

random individual is RhD-pos (0.850). The effectiveness, defined as the difference between
these two probabilities, is equal to

ED = P [sibling D | donor D] − fD

= 0.058.

Figure 3 shows the results of an analysis of ABO and RhD blood groups. Especially
for rare blood groups (i.e. B, AB, and RhD-neg) it appears to be effective to recruit among
relatives. Here, the likelihood of a similar blood group is considerably higher than that of
the general population. For example, for the RhD-neg blood group the likelihood increases
from 0.16 to 0.40 for parents and to 0.48 for siblings. Note that the probability of the siblings
is higher than that of the parents.

The most important ABO–RhD blood group is O, RhD-neg, since this is the blood
group of a so-called universal donor. This means that every individual can receive RBCs
from a donor with this blood group. Figure 3 show that recruiting O, RhD-neg donors among
relatives of donors with an O, RhD-neg blood group is five or four times more effective for
siblings and parents respectively, than recruiting donors at random. These computations
are insightful when assessing targeted donor recruitment among relatives.

This section provided an illustration of calculating next of kin blood group probabilities
for the ABO–RhD blood groups. In the next sections we will provide a more generic math-
ematical framework to compute (i) stationary genotype distribution and (ii) effectiveness
of recruiting next of kin for blood donorship by using QSOs and Bayesian statistics. This
allows calculating next of kin probabilities for more complex blood group combinations.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000153
Downloaded from https://www.cambridge.org/core. Twente University Library, on 11 Dec 2018 at 13:24:18, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000153
https://www.cambridge.org/core


BLOOD GROUP PROBABILITIES BY NEXT OF KIN 7

(a) (b)

(c)

Figure 3. Proportion of ABO–RhD blood groups in the general population and condi-
tional probabilities that parents/siblings have the same blood group. The numbers above
the conditional probabilities represent the effectiveness of recruiting relatives of a donor
with a known blood group, where the effectiveness is defined as the difference between the
the proportion of individuals with a particular blood group in the population (see Table 1)
and the conditional probabilities. (a) Proportion and inheritance probability of RhD blood
groups. (b) Proportion and inheritance probability of ABO blood groups. (c) Proportion
and inheritance probability of ABO–RhD blood groups.

3. GENERIC MATHEMATICAL APPROACH

As illustrated in Section 2.4 we want to calculate the conditional probability that a relative
of a donor has the same phenotype as the donor, or mathematically stated:

P [relative ϕ | donor ϕ] , (3.1)

where ϕ ∈ F is the known phenotype of the donor. We, therefore, aim to provide a unified
mathematical framework, starting in this section with providing a generic mathematical
approach for computing the stationary genotype distribution. In the next section, it will
be shown how this stationary genotype distribution is used to calculate the effectiveness of
recruiting next of kin for blood donorship.

First, in Section 3.1, we start with mathematically modeling the blood group genetics
and introduce some notation. Next, In Section 3.2, the calculation steps required are listed
and in the remainder of Section 3, we elaborate on the computation of a stationary genotype
distribution.
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8 J. H. J. van Sambeeck et al.

3.1. Blood group genetics

To explain the relation between the blood group of a child and its parents, we start with
a compact description of the underlying genetic mechanism of inheritance, based upon the
terminology of Elston et al. [6]. The information of an individual’s blood group is present on
the genes, which occur in pairs on homologous chromosomes at particular positions called
loci (singular: locus). Genes that occur at the same locus are allelic to each other and are,
therefore, also referred to as alleles. Each allele may encode for the production of a specific
antigen. For example, the ABO blood groups are determined by three alleles A, B, and O,
where A encodes for the production of antigen A, B encodes for the production of antigen
B, and O encodes for no antigen production. To write this down mathematically, we first
introduce for each locus a set of alleles L and a set of antigens A. Then, for each allele l ∈ L
a binary vector of length |A| is constructed with la = 1 if allele l encodes for the production
of antigen a ∈ A and la = 0 otherwise. Finally, the alleles are sorted into a lexicographical
order, for example LABO = {A,B,O} = {{1, 0}, {0, 1}, {0, 0}}. Hence, L is a lexicographical
ordered set of alleles.

In contrast to the ABO blood groups, which are determined by alleles lying on a
single locus, the Rh blood groups are determined by a combination of alleles occurring
at multiple loci. This combination of alleles is called a haplotype (the multilocus ana-
logue of an allele at a single locus), where a haplotype consists of one allele from each
of the loci. The set of haplotypes is denoted by H, where each h ∈ H can be written as
a union of alleles belonging to unique loci. For example, the set of haplotypes for the
Rh blood groups is determined by alleles from three loci (LC = {C, c} = {{1, 0}, {0, 1}},
LD = {D, d} = {{1}, {0}}, and LE = {E, e} = {{1, 0}, {0, 1}}) leading to eight different Rh
haplotypes:

Binary representation Antigens Haplotype

{1, 0, 1, 1, 0} CDE CDE
{1, 0, 1, 0, 1} CDe CDe
{0, 1, 1, 1, 0} cDE cDE
{0, 1, 1, 0, 1} cDe cDe
{1, 0, 0, 1, 0} CE CdE
{1, 0, 0, 0, 1} Ce Cde
{0, 1, 0, 1, 0} cE cdE
{0, 1, 0, 0, 1} ce cde

Although the sets LC, LD, and LE all consist of two alleles, they are different. On the one
hand, the alleles in the sets LC and LE always lead to the production of antigens, that is
{1, 0} ∈ LC implies production of antigens C, {0, 1} ∈ LC implies production of antigens c,
{1, 0} ∈ LE implies production of antigens E, and {0, 1} ∈ LE implies production of antigens
e. On the other hand, the alleles in the set LD might lead to the production of an antigen,
that is {1} ∈ LD implies production of antigens D, but {0} ∈ LD implies that no antigens
are produced. We define H as a lexicographical ordered set of haplotypes with cardinality
|H| =

∏
i |Li|.

Let G = {γ1, . . . , γm} be the lexicographic ordered set of genotypes consisting of all
combinations of 2 haplotypes from H:

G = { {h1, h1}, . . . , {h1, h|H|}︸ ︷︷ ︸
|H| elements

, {h2, h2}, . . . , {h2, h|H|}︸ ︷︷ ︸
|H|−1 elements

, . . . , {h|H|, h|H|}︸ ︷︷ ︸
1 element

}, (3.2)
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BLOOD GROUP PROBABILITIES BY NEXT OF KIN 9

with cardinality m = |G| = (1/2)|H|(|H| + 1). Finally, let F = {ϕ1, . . . , ϕn} be the lexico-
graphic ordered set of phenotypes, with cardinality n = |F|. These phenotypes determine
which antigens are present on the RBCs. Let S ∈ {0, 1}m×n be a matrix describing the
relation between genotypes and phenotypes, that is

Sij =

{
1, if genotype γi ∈ G leads to phenotype ϕj ∈ F ,

0, otherwise.
(3.3)

Children inherit blood group antigens from their parents. Which antigens are inherited
depends on the genotypes of both parents. Suppose that the father has genotype γi ∈ G
(γi = {hi1 , hi2}), the mother has genotype γj ∈ G (γj = {hj1 , hj2}), and they get a child with
genotype γk ∈ G. Clearly, this child could have four different genotypes, since there are four
different combinations of the haplotypes of the parents: {hi1 , hj1}, {hi1 , hj2}, {hi2 , hj1},
and {hi2 , hj2}. Without loss of generality, we assume that Mendelian rules hold, which
implies that each combination occurs with probability 1/4. In this section, we will index
the genotypes by

• γi - genotype of the father,
• γj - genotype of the mother,
• γk - genotype of the child,

and use no index if we do not refer specifically to a father, mother, or child.
In order to construct the inheritance matrix P ∈ R

m×m×m, we first introduce some
vectors vh = [vh(γ1), . . . , vh(γm)], h ∈ H, where vh(γi) is the probability that a parent with
genotype γi = {hi1 , hi2} will give haplotype h to the child:

vh(γi) =

⎧⎪⎨
⎪⎩

1, if γi = {h, h},
1
2 , if γi = {h, �h} or γi = {�h, h},
0, otherwise.

h ∈ H, γi ∈ G, (3.4)

Then the probability that a child has genotype γk = {hi, hj}, where hi is the haplotype the
child inherited from the father and hj is the haplotype the child inherited from the mother,
is equal to:

P (γk) = P ({hi, hj}) =

{
vhi

vT
hj

, if i = j,

vhi
vT

hj
+ vhj

vT
hi

, if i �= j.
(3.5)

Note that P (γk) ∈ R
m×m is a two-dimensional matrix as is shown in Figure 4.

3.2. Steps

The probability that two relatives share the same blood group is substantially higher than
the probability that two individuals from the general population share the same blood group.
For selective donor recruitment it is therefore worthwhile to quantify these probabilities as a
function of the family relation. One might have the perception that these probabilities can be
easily computed by elementary statistics. This is true, except that the a priori probabilities,
that is the genotype distributions, are generally unknown and have to be calculated first.
As will be shown, these a priori probabilities can be determined by a system of quadratic
equations or rather a system of quadratic stochastic operators. Therefore, the mathematical
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10 J. H. J. van Sambeeck et al.

Figure 4. Inheritance matrix P , with P (γk | γi, γj) the probability that two individuals
with genotypes γi ∈ G and γj ∈ G conceive a child with genotype γk ∈ G.

approach, combining both elementary statistics and operations research-related methods,
can be divided into the following three steps:

• Determine the stationary distribution of genotypes.
• Compute the probability that a relative of a donor has a particular phenotype given

that this donor has a particular phenotype.
• Compute the effectiveness of recruiting a next of kin donor instead of an individual

from the general population.

3.3. Determine a stationary distribution of genotypes

By performing simple tests it is possible to determine the distribution of phenotypes in a
population for a (combination of) blood group(s). Genotype distributions or allele frequen-
cies are more difficult to obtain. A way to obtain estimates of these genotype distributions
is by using QSOs. These estimates are based on the known phenotype distributions and the
assumption that the genotype distributions within a population are stable.

First, we explain how we can model the inheritance of antigens by using a quadratic
stochastic operator. This leads to a system of quadratic equations. Next, we show how
this system of quadratic equations can be solved, by iteratively solving a least-squares
problem.

Consider a set G of genotypes. Let xγ be a variable that describes the frequency of
genotype γ ∈ G in a population and let P (γk | γi, γj) be the probability that two individ-
uals with genotypes γi ∈ G and γj ∈ G conceive a child with genotype γk ∈ G. Now, as in
Section 2.3 using x = xfather = xmother = xchild, the following equations hold:

x�
fatherPxmother = xchild ⇒ x�Px = x, (3.6)

where P (γk | γi, γj) is the heredity matrix satisfying P (γk | γi, γj) ≥ 0, P (γk | γi, γj) =
P (γk | γj , γi),

∑
γk∈G P (γk | γi, γj) = 1.
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Since we have a system of quadratic equations, there could be multiple stationary
solutions x. Based on the phenotype distribution f , we can investigate which of these
solutions is correct, requiring S�x = f . Hence, we need to solve the following system of
equations: {

x�Px = x,

S�x = f .
(3.7)

To compute a solution x that satisfies (3.7), we are first going to rewrite this system of
quadratic equations as:

{
x�Px = x

S�x = f
⇒

{(
x�P − I

)
x = 0

S�x = f
⇒

[
x�P − I

S�

]
︸ ︷︷ ︸

A(x)

x =
[

0
f

]
︸ ︷︷ ︸

b

,

where I ∈ R
m×m is the identity matrix and 0 ∈ R

m×1 is the zero vector. In short, we thus
get

A(x)x = b, (3.8)

with A(x) ∈ R
(m+n)×m, x ∈ R

m×1, and b ∈ R
(m+n)×1. Since this is not a linear but an

implicit equation, an iterative approximate procedure is proposed. For given x0 let x(n) for
n = 1, 2, . . . be determined by

A(x(n−1))x(n) = b. (3.9)

In Section 3.5 we will make this more explicit. To this end, since there are different methods
possible, let us first provide the one that will be used.

3.4. QR-factorization

If we would regard the matrix A independent of x(n−1), then we just have a system of linear
equations. Normally, a linear system can easily be solved by applying Gaussian elimination.
However, in this specific case, an exact solution may not exist, since this system has more
equations than unknown variables. Accordingly, we propose to solve a least-squares problem.
Let r = Ax(n) − b, or simply r = Ax − b, be the vector of residuals. Next, we want to find
a solution x that minimizes the sum of squared residuals:

min
x∈Rm

{
‖r‖2

2 | r = Ax − b
}

. (3.10)

Different methods are known to solve least-squares problems. One of them, based upon QR
factorization [15], will be applied here. If the matrix A has full column rank, then it can be
decomposed into the matrices Q and R (A = QR), such that the matrix Q ∈ R

(m+n)×(m+n)

has orthonormal columns and the matrix R ∈ R
(m+n)×m is upper triangular (see Figure 5).

In Appendix C, we proof that the matrix A has indeed full column rank and hence the
residuals can be written as r = QRx − b.
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Figure 5. QR decomposition of the matrix A, where Q is a orthogonal matrix and R is
an upper triangular matrix. Matrices Q and R can be partitioned, such that Q = [Q1 Q2]
and R� = [R1 0].

Define r̄ = Q�r as a linear transformation of the residuals. Then minimizing ‖r̄‖2
2 is

equivalent to minimizing ‖r‖2
2, since

‖r̄‖2
2 =

(
Q�r

)�
Q�r = r�QQ�r = r�r = ‖r‖2

2 .

Moreover, note that r̄ = Rx − Q�b and hence (3.10) is equivalent to

min
x∈Rm

{
‖r̄‖2

2 | r̄ = Rx − Q�b
}

. (3.11)

We can find an exact solution to (3.11) by exploiting the specific structure of R. Partition R
into an upper triangular matrix R1 and a zero matrix. Similarly, we can write Q = [Q1 Q2]
and r̄� = [r̄�

1 r̄�
2 ] (see Figure 5). Hence, r̄ = Rx − Q�b can be split into two sets of

equations {
r̄1 = R1x − Q�

1 b,

r̄2 = −Q�
2 b,

(3.12)

and (3.11) is equivalent to∥∥−Q�
2 b

∥∥2

2
+ min

x∈Rm

{
‖r̄1‖2

2 | r̄1 = R1x − Q�
1 b

}
. (3.13)

Note that Q�
1 b = R1x consist of m equations with m unknowns and can be solved by

backward substitution since R1 is an upper triangular matrix. A different way to solve
these equation is by multiplying both side by R−1

1 : x = R−1
1 Q�

1 b. Hence, the second part
of (3.13) is equal to zero and therefore the sum of squared residuals is equal to

‖r̄‖2
2 =

∥∥Q�
2 b

∥∥2

2
. (3.14)

This implies that if
∥∥Q�

2 b
∥∥2

2
= 0 all equations Ax = b are satisfied. Moreover the minimizer

of (3.11) is equal to
x = R−1

1 Q�
1 b. (3.15)

3.5. Iterative procedure

In Section 3.4, we included x(n−1) in A. This suggests the following iterative procedure:
choose an initial solution x(0) and find a new solution x(1) by solving the least square
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Figure 6. Convergence speed of the iterative procedure for the Rh blood group system.

problem described in the previous section. Hence, a solution to Eq. (3.9) can be found by
iteratively solving

x(n) = R1

(
x(n−1)

)−1

Q1

(
x(n−1)

)�
b, n = 1, 2, . . . , (3.16)

where the sum of squared residuals equals

‖r‖2
2 =

∥∥∥∥Q2

(
x(n−1)

)�
b

∥∥∥∥2

2

, n = 1, 2, . . . . (3.17)

A solution x(n) is defined satisfactory when ‖x(n) − x(n−1)‖1 < 10−6. Hence, we consider
(3.8) to be solved numerically.

3.6. Convergence of the algorithm

To support the iterative procedure from Section 3.5, we have performed numerical experi-
ments for different blood group systems (i.e. ABO, Rhesus, Kell, Duffy, Kidd), phenotype
distributions, and populations (e.g. European, American, African). We took x(0) ∈ X0,
where X0 is the set of all identity vectors of size m. This means that every starting position
x(0) represents an initial population with only one genotype. Despite these extreme start-
ing points all experiments converged to the same stationary solution x within 37 iterations.
For the Rh system, which will be presented in Section 5.1 there are 36 starting points. In
Figure 6, the fasted, slowest, and average convergence rates from these experiments for the
Rh system are shown.

4. EFFECTIVENESS OF RECRUITING NEXT OF KIN FOR BLOOD DONORSHIP

The effectiveness of recruiting a next of kin for donorship for phenotype ϕ ∈ F is defined as
the difference between the conditional probability that a relative of a donor has the same
phenotype ϕ as the donor and the probability that an arbitrary individual in the population
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Table 2. Probability that a relative of a donor has genotype γj given that
the donor has genotype γi.

Relative P[relative γj | donor γi]

Sibling
∑

γv∈G

∑
γw∈G

P (γj | γv, γw) · P (γi | γv, γw)xγv xγw

xγi

Parent
∑

γv∈G

P (γi | γj , γv)xγj xγv

xγi

Child
∑

γv∈G
P (γj | γi, γv)xγv

Uncle / Aunt
∑

γv∈G
(P[sibling γj | parent γv] · P[parent γv | donor γi])

Nephew / Niece
∑

γv∈G
(P[child γj | sibling γv] · P[sibling γv | donor γi])

Grandparent
∑

γv∈G
(P[parent γj | parent γv] · P[parent γv | donor γi])

has this phenotype. That is

Eϕ = P [relative ϕ | donor ϕ] − P [individual ϕ] , ∀ϕ ∈ F . (4.1)

We would like to rewrite this equation into the known phenotype distribution (f), the
heredity matrix (P ), and the stationary genotype distribution (x).

The conditional probability in Eq. (4.1) is, according to Bayes’ rule, equal to

P [relative ϕ | donor ϕ] =
P [donor ϕ ∩ relative ϕ]

P [donor ϕ]
,

=
1
fϕ

P [donor ϕ ∩ relative ϕ] .

Since every genotype is related to a single phenotype the probability that the donor and its
relative have the same phenotype can be computed by summing over all combinations of
genotypes that they might have. Hence, if we denote the genotype of the donor by γi ∈ G
and the genotype of its relative by γj ∈ G, then we should sum over those combinations of
genotypes for which Siϕ and Sjϕ are both equal to one:

P [relative ϕ ∩ donor ϕ] =
∑
γi∈G

Siϕ=1

∑
γj∈G

Sjϕ=1

P [relative γj ∩ donor γi] .

Moreover, applying Bayes’ rule for the second time gives

P [relative ϕ | donor ϕ] =
1
fϕ

∑
γi∈G

Siϕ=1

∑
γj∈G

Sjϕ=1

(P [relative γj | donor γi] · P [donor γi]) ,

=
1
fϕ

∑
γi∈G

Siϕ=1

∑
γj∈G

Sjϕ=1

(P [relative γj | donor γi] · xγi
) ,

where P[relative γj | donor γi] can be expressed in terms of P and x according to the relation
between the donor and its relative, as is indicated in Table 2. The second probability in
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Eq. (4.1) equals the frequency of ϕ in the general population. Hence, the effectiveness of
recruiting a next of kin for donorship for phenotype ϕ ∈ F is equal to

Eϕ =
1
fϕ

∑
γi∈G

Siϕ=1

∑
γj∈G

Sjϕ=1

(P [relative γj | donor γi] · xγi
) − fϕ. (4.2)

5. APPLICATION TO MULTIPLE BLOOD GROUPS

In Section 2, we illustrated the effectiveness of a targeted donor recruitment strategy for
siblings and parents of donors with particular ABO–RhD blood groups. To demonstrate the
generic feature of our mathematical approach, we are going to analyze the more complicated
Rh blood group system. Patients with sickle cell disease or thalassemia require regular (life-
long) blood transfusions. To prevent these recipients from forming antibodies against foreign
RBC antigens, they are matched for a relatively large number of antigens. However, it is
not easy to ensure that there is a sufficient number of required blood units available. We
show how our generic model can be used to find more donors with the desired blood groups
combinations.

5.1. Rh blood group system

In contrast to the well-known RhD blood group consisting of just three genotypes and
two phenotypes, the full Rh system consists of 36 different genotypes and 18 different
phenotypes. To compute the effectiveness of recruiting relatives of donors with desired Rh
phenotypes, we first have to compute the stationary distribution based on Rh phenotype
probabilities.

We computed these stationary probabilities by solving Eqs. (3.7) via an iterative pro-
cedure (3.16) (see Table 3). Next, we can apply use Bayes rule to compute the effectiveness
of recruiting relatives as compared with random individuals from the general population. In
Table 4 the calculated effectiveness of recruiting new donors among relatives is presented.
Dependent of the family relationship effectiveness changes. Note that the effectiveness is
variable, as it is dependent on the phenotype considered.

5.2. Recruitment of special blood groups

In the Netherlands, for some patient groups (e.g. women of reproductive age, patient with
hemoglobinopathies) blood for transfusion is matched for up 13 antigens. With current
recruitment strategies, it can be difficult to find enough donors with particular blood groups
combinations. Moreover, due to the fact that the donor population in the Netherlands is
mainly Caucasian, the patient population increasingly diversifying, and blood group fre-
quencies differ between ethnic populations, the likelihood of finding suitable blood units
for non-Caucasian individuals decreases. One of the main differences between phenotype
frequencies of the Caucasian and African population is located in the so-called Duffy blood
group system. This blood group system is similar to the ABO blood group system as it
consists of six genotypes, four phenotypes F = (Fy(a-b-),Fy(a+b-),Fy(a-b+),Fy(a+b+)),
and two antigens (Fya, and Fyb). The phenotype frequencies for the Caucasian and African
population are f = (0, 0.18, 0.33, 0.49) and f = (0.68, 0.06, 0.25, 0.01), respectively [13]. The
probability that an African individual is Fy(a-b-) is 0.68 whereas the probability that a
Caucasian individual has this combination is rare (< 0.0001). Hence, recruiting donors for
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Table 3. Phenotype distribution of the Rh blood group system and the corresponding
genotype distribution computed by the generic mathematical approach.

Phenotype f Genotype x

CcDe 0.349 CDe/cde 0.326
CDe/cDe 0.022
cDe/Cde 0.001

CDe 0.185 CDe/CDe 0.176
CDe/Cde 0.009

ce 0.151 CDE/cDE 0.151
CcDEe 0.133 CDe/cDE 0.119

CDe/cdE 0.010
cDE/Cde 0.003
CDE/cde 0.002
cDe/CdE 0.000
CDE/cDe 0.000

cDEe 0.118 cDE/cde 0.110
cDE/cDe 0.007
cDe/cdE 0.001

cDE 0.023 cDE/cDE 0.020
cDE/cdE 0.003

cDe 0.021 cDe/cde 0.020
cDe/cDe 0.001

cEe 0.009 cdE/cde 0.009
Cce 0.008 Cde/cde 0.008
CDEe 0.002 CDE/CDe 0.002

CDE/Cde 0.000
CcDE 0.001 CDE/cDE 0.001

CDE/cdE 0.000
Other 0.000

Table 4. Effectiveness of recruiting new donors among relatives of donors with a known
Rh phenotype. Although this effectiveness depends on the specific phenotype sought for,
we reported a minimum, average, and maximum effectiveness measure.

Effectiveness

Relative Minimum Average Maximum

Sibling 0.197 0.275 0.361
Parent 0.068 0.156 0.245
Child 0.068 0.156 0.245
Uncle / Aunt 0.028 0.078 0.122
Nephew / Niece 0.028 0.078 0.122
Grandparent 0.034 0.078 0.122

this specific blood group randomly within the Caucasian population is virtually impos-
sible. However, for a donor with this blood group combination, the probability that a
sibling has the same combination is 25% if the donor is Caucasian, and 83% if the donor is
African.
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6. CONCLUSIONS

The generic mathematical approach described in this paper allows computing a stationary
genotype distribution for a given set of blood groups, which may even belong to multiple
blood group systems. The input for the model consists of the phenotype distributions in
a population only. This stationary genotype distribution allows answering a number of
interesting questions using elementary statistics.

This paper was tailored to quantify the effectiveness of targeted recruitment strategies
aiming for relatives of donors with specific blood groups. It shows that the impact, in terms
of the efficiency of targeting the next of kin of donors with known blood groups as potential
new donors, can be substantial.

Recently, another application was found in computing the probability of a blood group
mismatch between mother and fetus during pregnancy. This analysis also required an
estimate of the stationary distribution of genotypes as a basis for further calculations. The
approach outlined in this paper, therefore, seems promising for answering various question
related to genetic counseling.
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APPENDIX A

Sets

A Set of antigens,
L Set of alleles,
H Set of haplotypes (index h),
G Set of genotypes, with cardinality |G| = m (index γ),
F Set of phenotype, with cardinality |F| = n (index ϕ).

Matrices

S ∈ {0, 1}m×n Matrix mapping blood group genotypes to blood group
phenotypes,

P ∈ R
m×m×m Heredity matrix, with P (γk | γi, γj) the probability that two

parents with genotypes γi and γj conceive a child with
genotype γk,

A ∈ R
(m+n)×m Matrix used for the linearization of a system of quadratic

equations, (A� = [x�P − I S�]),
I ∈ R

m×m Identity matrix,
Q ∈ R

(m+n)×(m+n) Orthogonal matrix used for QR factorization, Q = [Q1 Q2],
Q1 ∈ R

(m+n)×m, Q2 ∈ R
(m+n)×n,

R ∈ R
(m+n)×m Upper triangular matrix used for the QR decomposition,

R� = [R1 0], R1 ∈ R
m×m, 0 ∈ R

n×m.

Vectors

x ∈ R
m×1 Column vector representing a stationary genotype distribution,

f ∈ R
n×1 Column vector representing the distribution of phenotypes in the

general population,
vh ∈ R

m×1 Column vector containing the probabilities that a parent
transmits haplotype h ∈ H to the child,

b ∈ R
(m+n)×1 Column vector used for the linearizion of a system of quadratic

equations (b� = [0 f ]),
r ∈ R

(m+n)×1 Column vector for the residuals r = Ax − b.

The symbols H′, G′, B, em, π, y and a are omitted here, as they will be defined and only
used in Appendix C.

APPENDIX B

This appendix provides a calculation for the conditional probability that a sibling of a donor
has phenotype D, given that it is known that this donor has phenotype D, or mathematically
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stated:

P [sibling D | donor D] .

First Bayes’ rules is applied giving

=
P [sibling D ∩ donor D]

P [donor D]
.

Then we replace the numerator by enumerating over all possible combinations of genotypes that
the donor and its sibling might have if the both have phenotype D:

=
1

P [donor D]
· (P [sibling DD ∩ donor DD] + P [sibling DD ∩ donor Dd]

+ P [sibling Dd ∩ donor DD] + P [sibling Dd ∩ donor Dd]
)
.

Subsequently, enumerate over all possible combinations of genotypes that the parents might
have:

=
1

P [donor D]
·

∑
γv∈G

∑
γw∈G

((
P [sibling DD ∩ donor DD | parents (γv, γw)]

+ P [sibling DD ∩ donor Dd | parents (γv, γw)]

+ P [sibling Dd ∩ donor DD | parents (γv, γw)]

+ P [sibling Dd ∩ donor Dd | parents (γv, γw)]
) · P [parents (γv, γw)]

)
.

Rewriting the above formula gives:

=
1

fD
·

∑
γv∈G

∑
γw∈G

((
P (DD | γv, γw) · P (DD | γv, γw) + P (DD | γv, γw) · P (Dd | γv, γw)

+ P (DD | γv, γw) · P (Dd | γv, γw) + P (Dd | γv, γw) · P (Dd | γv, γw)
) · xγv xγw

)
=

1

fD
·

∑
γv∈G

∑
γw∈G

(
(P (DD | γv, γw) + P (Dd | γv, γw))2 · xγv xγw

)
.

Filling in the numbers presented in the table below gives us the following solution for the
probability that the sibling of the donor and the donor have both a RhD-pos phenotype:

=
1

0.850
· (0.141 + 0.178 + 0.056 + 0.178 + 0.127 + 0.018 + 0.056 + 0.018 + 0.000)

= 0.908.

v w (P (DD | γv, γw) + P (Dd | γv, γw))2 xγv xγw

DD DD (1 + 0)2 0.375 0.375

DD Dd ( 1
2 + 1

2 )2 0.375 0.475

DD dd (0 + 1)2 0.375 0.150

Dd DD ( 1
2 + 1

2 )2 0.475 0.375

Dd Dd ( 1
4 + 1

2 )2 0.475 0.475

Dd dd (0 + 1
2 )2 0.475 0.150

dd DD (0 + 1)2 0.150 0.375

dd Dd (0 + 1
2 )2 0.150 0.475

dd dd (0 + 0)2 0.150 0.150
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APPENDIX C

In this entire appendix, we fix ourselves to one and the same male genotype distribution x (as to

be conceived for an iteration step as x = x(n−1)). We only include x in the representation of H′(x)
and G′(x) as these can be explicitly different for different x.

Now, for given x, let A ∈ R
(m+n)×m be defined as follows:

A =

[
x�P − I

S�

]
,

where x ∈ R
m×1 is the genotype distribution, P ∈ R

m×m×m is the heredity matrix, I ∈ R
m×m

is the identity matrix, and S ∈ {0, 1}m×n is the matrix mapping blood group genotypes to blood
group phenotypes. It need to be shown that A has full column rank. Let B ∈ R

m×m be a matrix
(B� = x�P ), with

Bjk =
∑
γi∈G

P
(
γk | γi, γj

)
xγi ,

where Bjk can be interpreted as the probability that a mother with genotype γj conceives a child
with genotype γk, given that the genotype distribution of the father equals x. Clearly, B is a
stochastic matrix.

We are now going to use B as a transition matrix of a Markov chain with state space G. Hence,
purely abstractly, the outcomes of the Markov chain can be seen as keeping track of the genotype
distribution of mothers, which are based on the heredity matrix P and a fixed genotype distribution
x. (For the simple RhD example, Table 5 shows Markov chains for different x.)

Let H′(x) ⊆ H be defined as the set of haplotypes that a father may transmit to his child, or
differently stated: for every haplotype h ∈ H′(x) there exists a genotype γi ∈ G, γi = {h, ·} and/or
γi = {·, h}, such that xγi > 0. This implies that the following two conditions should be satisfied:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
γi∈G:h∈γi

xγi > 0 if h ∈ H′(x),

∑
γi∈G:h∈γi

xγi = 0 if h /∈ H′(x).

As a consequence, roughly speaking, the haplotypes that are not present in the male population
will eventually disappear. More precisely, the Markov chain, depending on the given genotype

Table 5. Markov chains for the RhD example.

x
dd Dd DD
[ ]1 0 0

dd Dd DD
[ ]0 1 0

dd Dd DD
[ ]0 0 1

dd Dd DD[ ]
1
2 0 1

2

B

⎡
⎣ 1 0 0

1
2

1
2 0

0 1 0

⎤
⎦

⎡
⎣ 1

2
1
2 0

1
4

1
2

1
4

0 1
2

1
2

⎤
⎦

⎡
⎣ 0 1 0

0 1
2

1
2

0 0 1

⎤
⎦

⎡
⎣ 1

2
1
2 0

1
4

1
2

1
4

0 1
2

1
2

⎤
⎦

Markov chain

H′(x) {d} {d, D} {D} {d, D}
G′(x) {dd} {dd, Dd, DD} {DD} {dd, Dd, DD}
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distribution x, will always have a single closed class given by

G′(x) =
{
γk ∈ G | γk = {hk1 , hk2}, hk1 , hk2 ∈ H′(x)

}
.

Note that for x1, x2, two fixed genotype distributions, and a ∈ (0, 1) the following relation holds
H′(ax1 + (1 − a)x2) = H′(x1) ∪H′(x2), but G′(ax1 + (1 − a)x2) = G′(x1) ∪ G′(x2) is generally
not true (see also Table 5).

Since the Markov chain has a single closed class, there exists a unique stationary distribution
π satisfying {

B�π = π

e�mπ = 1
⇒

[
B� − I

e�m

]
π =

[
0
1

]
,

where em is the all ones vector of length m. What remains, is to use this statement to proof the
full column rank property of A.

The only candidate vector y (up to a constant), such that Ay = 0, is y = π, the stationary
distribution of the matrix B. Now note that column sum of each column of S is at least one (i.e.,
S�en ≥ em) and therefore S�y = 0 if y = 0. Hence, the only vector satisfying Ay = 0 is y = 0,
which implies that the matrix A has full column rank.
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