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ABSTRACT

Objectives To measure the length, width and area
of the urogenital hiatus (UH), and the length and mean
echogenicity (MEP) of the puborectalis muscle (PRM),
automatically and observer-independently, in the plane
of minimal hiatal dimensions on transperineal ultrasound
(TPUS) images, by automatic segmentation of the UH
and the PRM using deep learning.

Methods In 1318 three- and four-dimensional (3D/4D)
TPUS wvolume datasets from 253 nulliparae at 12
and 36 weeks’ gestation, two-dimensional (2D) images
in the plane of minimal hiatal dimensions with the
PRM at rest, on maximum contraction and on maximum
Valsalva maneuver, were obtained manually and the UH
and PRM were segmented manually. In total, 713 of
the images were used to train a convolutional neural
network (CNN) to segment automatically the UH and
PRM in the plane of minimal hiatal dimensions. In the
remainder of the dataset (test set 1 (TS1); 601 images,
four having been excluded), the performance of the
CNN was evaluated by comparing automatic and manual
segmentations. The performance of the CNN was also
tested on 117 images from an independent dataset (test
set 2 (TS2); two images having been excluded) from 40
nulliparae at 12 weeks’ gestation, which were acquired
and segmented manually by a different observer. The
success of automatic segmentation was assessed visually.
Based on the CNN segmentations, the following clinically

relevant parameters were measured: the length, width and
area of the UH, the length of the PRM and MEP. The
overlap (Dice similarity index (DSI)) and surface distance
(mean absolute distance (MAD) and Hausdorff distance
(HDD)) between manual and CNN segmentations were
measured to investigate their similarity. For the measured
clinically relevant parameters, the intraclass correlation
coefficients (ICCs) between manual and CNN results
were determined.

Results Fully automatic CNN segmentation was success-
ful in 99.0% and 93.2% of images in TS1 and TS2,
respectively. DSI, MAD and HDD showed good overlap
and distance between manual and CNN segmentations
in both test sets. This was reflected in the respective
ICC wvalues in TS1 and TS2 for the length (0.96 and
0.95), width (0.77 and 0.87) and area (0.96 and 0.91)
of the UH, the length of the PRM (0.87 and 0.73) and
MEP (0.95 and 0.97), which showed good to very good
agreement.

Conclusion Deep learning can be used to segment
automatically and reliably the PRM and UH on 2D
ultrasound images of the nulliparous pelvic floor in the
plane of minimal hiatal dimensions. These segmentations
can be used to measure reliably UH dimensions as well as
PRM length and MEP. © 2018 The Authors. Ultrasound
in Obstetrics ¢& Gynecology published by John Wiley
& Sons Ltd on behalf of the International Society of
Ultrasound in Obstetrics and Gynecology.

Correspondence to: Ms F. van Limbeek-van den Noort, University of Twente, Carre 3.526, Drienerlolaan 5, 7522NB, Enschede, The

Netherlands (e-mail: f.vandennoort@utwente.nl)

Accepted: 15 November 2018

© 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd

ORIGINAL PAPER

on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.


https://orcid.org/0000-0002-9998-1229
https://orcid.org/0000-0003-0890-5368
https://orcid.org/0000-0002-5385-5841
https://orcid.org/0000-0002-9432-8845
https://orcid.org/0000-0001-6544-4567
https://orcid.org/0000-0002-3051-5000

Automatic pelvic floor assessment

INTRODUCTION

In the last 5years, deep learning has had an increasing
impact on automating the analysis of medical imaging
datal. Deep learning is a class of computer algorithms
that mimics the learning of the human brain and
performs well on tasks formerly thought of as primarily
human. For example, in image analysis, convolutional
neural networks (CNNs), which are a type of deep
learning, outperform state-of-the-art algorithms>=#. In
medicine, CNNs are used for diagnosis, for example in
discrimination between images of benign and malignant
skin lesions® and the detection of Alzheimer’s disease
on magnetic resonance imaging (MRI)®. Segmentation
can also be learned by CNN and was found to be
successful in, for example, segmenting brain structures on
MRI and ultrasound” and segmentation of the urogenital
hiatus (UH)S.

Transperineal ultrasound (TPUS) is used in the field of
urogynecology to diagnose and understand pelvic floor
biometrics and problems. UH dimensions”!? and mean
echogenicity (MEP)''~13 and global strain of the puborec-
talis muscle (PRM)'* provide information about PRM
composition and function, and are therefore parameters
of potential clinical relevance!!¢. These parameters are
measured manually, making them observer dependent
and time consuming, limiting their introduction into
general practice. To automate these measurements,
Bonmati et al.® used a CNN for UH segmentation. We
showed previously automatic segmentation of the PRM'”
using active appearance models. However, this was
three-dimensional (3D) and the clinical relevance still
needs to be investigated.

In this study, we aimed to segment automatically the
PRM and UH in the plane of minimal hiatal dimensions,
using a CNN. In addition, we aimed to use these
segmentations to measure the corresponding relevant
clinical parameters (width, length and area of the UH,
the length of the PRM and MEP) automatically and to
test the reliability.

METHODS
Data

In this study, the dataset acquired by van Veelen
et al.'® was used. This dataset contains three- and
four-dimensional (3D/4D) TPUS data of 280 nulliparae at
12 and 36 weeks of gestation and 6 months postpartum.
The data were acquired using the GE Voluson 730 Expert
ultrasound system (GE Medical Systems, Zipf, Austria),
using the RAB4-8L probe. During the examinations, the
women were asked to relax and contract their pelvic floor
muscles and to perform a Valsalva maneuver. Only data
on the intact pelvic floor, acquired at 12and 36 weeks
of gestation, were included in this study. In a previous
study!?, ultrasound images from the 253 women had
been segmented manually in the plane of minimal hiatal
dimensions. A total of 1318 two-dimensional (2D) TPUS
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images in the plane of minimal hiatal dimensions from
these women were used in this study.

The ultrasound data were loaded into 4D View 7.0
(GE Medical Systems) and rotated manually to obtain
the plane of minimal hiatal dimensions which was then
exported as a 2D bitmap image. This was done for
images obtained at rest, on maximum pelvic floor muscle
contraction and on maximum Valsalva. Afterwards, the
PRM and UH were segmented manually for further
study'">!2 and inter- and intraobserver agreement were
investigated!?. These segmentations were used in this
study to train and test the CNN as follows: the dataset
was split randomly into a training set (122 women, 649
images), a validation set (12 women, 64 images) and a
test set (test set 1, TS1). Four images obtained on Valsalva
maneuver in the test set did not capture fully the PRM
and were excluded, giving a total of 601 images obtained
in 119 women (Figure 1). The training set was used to
train different CNNs. In order to decide which network
performed best on these data, the validation set was used.
The best performing CNN was then applied to the test set
in order to analyze its performance independently.

The developed CNN was additionally tested on an
independently acquired dataset that contained TPUS
images obtained at 12weeks’ gestation in pregnant
nulliparae. This dataset was acquired using the same
ultrasound system and settings as those used to acquire
the previous dataset!®, but was obtained and processed by
a different independent sonographer. The TPUS images
of 40 subjects were selected randomly (test set 2, TS2)
and the PRM and UH were segmented manually at
rest, on contraction and on Valsalva, following the same
procedure as that used for the first data set. Two images
obtained on Valsalva maneuver did not capture fully the
PRM and were therefore excluded, giving a total of 117
images obtained in 40 women (Figure 1). The remaining
manual segmentations were used as the gold standard for
evaluation of the performance of the CNN.

Dataset 1 Dataset 2
253 women 40 women
1318 images 119 images
v v v v
Training set || Validation set Test set Test set
122 women 12 women 119 women 40 women
649 images 64 images 605 images 119 images
Exclusion Exclusion
4 images 2 images
Test set (TS1) || Test set (TS2)
119 women 40 women
601 images 117 images

Figure 1 Flowchart summarizing division of two datasets of
transperineal ultrasound images used in training, validation and
testing of convolutional neural network for automatic
segmentation of urogenital hiatus and puborectalis muscle.
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Figure 2 During training of convolutional neural network (CNN) for automatic segmentation, image from training set is fed into CNN and
output of CNN is compared to manual segmentation of this image. If error is too large, CNN is updated and process starts again. If error is
sufficiently small, CNN can be tested on test set of data that it has not seen during training. Quality of CNN segmentations can thus be

evaluated independently.

Convolutional neural networks

CNNs can learn to segment the PRM on TPUS images
from example segmented data'. They consist of a number
of layers (which can be adjusted, creating different
CNN architectures), each filtering the previous layer and
subsequently creating a higher level of abstraction of
the input image in the final layer, creating a pixel-wise
segmentation of the PRM. Within the layers, feature
detectors are learned (the kernels), based on the example
training data. Sufficient and representative data need to
be provided during the learning phase to be able to
generalize over the input examples. During training, the
output of the CNN is compared to the desired output
(the manual segmented gold standard) and the kernels are
optimized mathematically to minimize the error between
the CNN output and the ground truth segmentations for
the training set only. After optimization, the CNN is tested
on an independent dataset that it has not seen before to
evaluate its performance. Figure 2 illustrates the training
and testing phases. The specifics of the implementation of
our CNN are available in Appendix S1 and Figure S1.

Validation

To validate the performance of our trained CNN, it
was applied to TS1 and TS2. We first determined
CNN segmentation success by assessing the completeness
of the segmentations, rejecting obvious errors when
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(a)

Figure 3 (a) Transperineal ultrasound image of pelvic floor in plane
of minimal hiatal dimensions, in pregnant nullipara. (b) Same
image, showing parameters measured in this plane: width (orange),
length (purple) and area (green) of urogenital hiatus and length
(blue) and mean echogenicity of puborectalis muscle (i.e. of red
area).

the CNN segmented only half or less of the PRM.
From the successful CNN segmentations, the UH height,
width and area, PRM length and MEP were calculated
automatically. Figure 3 shows how these parameters are
defined in the plane of minimal hiatal dimensions. For
these measurements, mean 4= SD and intraclass correlation
coefficients (ICCs) with 95% CI were calculated using
Python and the ICCs were evaluated according to
the subgroup definitions of Landis and Koch??. The
Bland-Altman method?! was used to investigate the mean
difference and limits of agreement (LOA) between CNN
and manual segmentations.
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Min overlap PRM

PRM Dice 0.75

PRM Dice 0.50

Median overlap PRM

PRM Dice 0.79

273

Max overlap PRM

PRM Dice 0.91

PRM Dice 0.89

Figure 4 Convolutional neural network (CNN) automatic segmentation results of urogenital hiatus and puborectalis muscle (PRM) on
transperineal ultrasound in plane of minimal hiatal dimensions in pregnant nulliparae for images in test sets 1 (a—c) and 2 (d-f), with
minimum (min; a,d), median (b,e) and maximum (max; c,f) overlap between manual (red) and CNN (green) PRM segmentations. Yellow

denotes overlap between green and red lines.

In order to analyze the similarity of the manual and
CNN segmentations, the Dice similarity index (DSI), mean
absolute distance (MAD) and Hausdorff distance (HDD)
were calculated. DSI is a measure of overlap between
two segmentations, X and Y, calculated as follows: DSI =
(21X N YN/(|X] +1Y]). Here, DSI = 0 indicates no overlap
and DSI=1 indicates maximum overlap between the
segmentations. MAD is the average distance between
the borders of the two segmentations and HDD is the
maximum distance between the two segmentations.

RESULTS

After applying the trained CNN to both test sets (TS1
and TS2), the results were checked visually. There were
six (1.0%; three at rest, three on Valsalva) unsuccessful
segmentations of images in TS1 and eight (6.8%; two
at rest, three on contraction, three on Valsalva) in TS2.
In Figure 4, the automatic segmentations with the
worst, median and best results for PRM overlap are shown
for each test set. Table 1 displays the results for DSI, MAD
and HDD between CNN and manual segmentations,
providing an indication of how similar the segmentations
are. In Table 2, the performance of the CNN in measuring

© 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd

the corresponding clinically relevant parameters is shown
in comparison to the manual measurements, showing
ICCs, means, SD, mean differences and LOA. The ICCs
indicate good to very good agreement between manual
and automatic measurements.

DISCUSSION

In this study, we developed a CNN for segmenting
the UH and PRM in the plane of minimal hiatal
dimensions on TPUS images in pregnant nulliparae.
From these segmentations, we were able to measure
UH and PRM dimensions. We showed in both test sets
that these automatic measurements have good agreement
with manual measurements.

Our results can be compared to the (semi) automatic
segmentation results obtained for the UH, reported
previously by Sindhwani et al.>> and Bonmati et al.b.
With respect to overlap and distance measures, the
automatic segmentations in the current study performed
similarly or slightly better. However, it should be noted
that Sindhwani et al.?? explicitly also included avulsion
patients, while we included nulliparae with no known

Ultrasound Obstet Gynecol 2019; 54: 270-275.
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Table 1 Dice similarity index (DSI), mean absolute distance (MAD) and Hausdorff distance (HDD) values between manual and convolu-
tional neural network segmentations of puborectalis muscle (PRM) and urogenital hiatus (UH) on transperineal ultrasound in plane of
minimal hiatal dimensions in pregnant nulliparae, for test sets 1 (TS1) and 2 (TS2)

DSI MAD (mm) HDD (mm)
Test set UH PRM UH PRM UH PRM
TS1 0.94+0.02 0.73+0.09 1.194+0.43 1.234+0.33 3.68+1.52 4.85+1.70
TS2 0.9340.03 0.77 +0.06 1.2240.43 1.35+0.36 3.524+1.18 5.854+1.69

Data are given as mean & SD.

Table 2 Comparison of manual and convolutional neural network (CNN) measurements of length, width and area of urogenital hiatus and
length and mean echogenicity (MEP) of puborectalis muscle on transperineal ultrasound in plane of minimal hiatal dimensions in pregnant

nulliparae, for test sets 1 (TS1) and 2 (TS2)

Urogenital hiatus

Puborectalis muscle

Length Width Area Length MEP
TS1
ICC (95% CI) 0.96 (0.94-0.97) 0.77 (0.65-0.84) 0.96 (0.95-0.96) 0.87 (0.64-0.93) 0.95 (0.90-0.97)
CNN 4.86+0.85 4.03+0.45 14.47 +3.68 11.54+1.70 141+£21
Manual 4.93+0.85 4.17+£0.55 14.63+3.83 12.08+1.76 1384+21
Mean difference® —0.07+£0.23 —0.14+0.31 —-0.16+1.11 —0.54+0.74 3.1+£5.8
LOA —0.53t0 0.38 —0.75 t0 0.47 —2.35t02.02 —2.00 to 0.92 —8.2to 14.5
TS2
ICC (95% CI) 0.95 (0.79-0.97) 0.87 (0.71-0.93) 0.91 (0.21-0.97) 0.73 (0.00-0.92) 0.97 (0.70-0.99)
CNN 4.46 £0.68 4.00£0.42 12.974+3.01 10.644+1.42 119£25
Manual 4.31+0.70 3.884+0.47 11.90 £ 3.06 11.68+1.42 114 +£23
Mean difference® 0.15+0.18 0.124+0.19 1.07+£0.77 —-1.03+£0.57 4.2+3.5
LOA —0.21 t0 0.50 —0.26 t0 0.51 —0.44 t0 2.58 —2.16 t0 0.09 —2.6t011.2

Data are given as mean = SD in cm (length, width), cm? (

area) or arbitrary units (MEP), unless stated otherwise. *Mean difference =

(CNN - Manual). ICC, intraclass correlation coefficient; LOA, limits of agreement.

pelvic floor problems, which may positively influence our
results.

Automatic segmentation of the PRM in the plane
of minimal hiatal dimensions has, to the best of our
knowledge, not been presented before. The MAD of the
UH and PRM segmentations are comparable and indicate
only a few pixels’ mismatch on average between manual
and automatic segmentations. The maximum error, the
HDD, was about 1-2 mm higher for the PRM than for the
UH. This maximum mismatch is typically found at the site
of attachment to the pubic symphysis, as this is the most
difficult part in PRM segmentation, which is similarly
the case for volume segmentations on 3D ultrasound'”.
Therefore, the maximum segmentation mismatch is
expected to be higher for the PRM. The DSI values were
lower for the PRM than for the UH because DSI is sensitive
to the shape of segmentations; round segmentations (such
as the UH) are more likely to have high DSI values as
compared with thin segmentations (such as the PRM)!7.

The reliability of the measured clinical parameters
with respect to the UH and PRM can be compared
to the results obtained manually by Weinstein et al.10,
van Veelen etal'® and Grob etal.'. The ICC and
LOA values for the length, width and area of the UH,
when comparing computer and observer measurements,
are comparable to or better than those between manual
observers!®!8. The ICC and LOA values for MEP between
automatic and manual measurements are comparable to
those between manual measurements'’. Reliability of

© 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd

manual measurements of length of the PRM has, to
the best of our knowledge, never been analyzed but,
comparing the ICC values in the current study to those
for manual measurement of the PRM inner perimeter,
which is comparable to PRM length!, suggests that the
automatic measurements are slightly less reliable.

Of the 14 images that were excluded after the CNN
segmented only half of the PRM, the majority had poor
image contrast. These mismatches can potentially be
filtered out automatically as they have a short PRM length.
In principle, a PRM length threshold can be defined and
used by a human observer to check the segmentation
results. Alternatively, in future work, the model could be
extended with a discriminator network to check realistic
PRM segmentations in all cases?3.

The large amount of data available in this study pro-
vides strong evidence for the reliability of the presented
method. The confirmation of these results in an inde-
pendent data set (TS2) demonstrates its potentially wide
applicability as each dataset was acquired and segmented
manually by different observers. This also confirms that
the performance is on a par with that of human observers.

This study has some limitations. The algorithm was
trained using only data on nulliparous women. As the
complete dataset (including some postpartum patients
from the dataset of van Veelen et al.'®) consists of mostly
nulliparous data, the number of TPUS images capturing an
avulsion is relatively low. This selection could introduce
bias into the CNN, challenging the development of such

Ultrasound Obstet Gynecol 2019; 54: 270-275.
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a method capable of dealing with avulsions, based on
these limited data. Avulsion of the PRM influences its
appearance on TPUS and there is no complete agreement
between experts on the appearance of avulsions?*~27.
Therefore, we decided to focus on the intact pelvic floor
by including only the data of nulliparae in our training
set. Now that we have shown that a CNN can detect
reliably an intact pelvic floor, the next step is to analyze
women with PRM avulsion and retrain the CNN.

Another limitation of this study is that the CNN was
applied to the plane of minimal hiatal dimensions, the
selection of which is still a manual process. Therefore,
before our CNN method can be used in clinical practice,
there are a few steps that need to be taken. These include
training the computer on selecting automatically the
relevant frame in the movie (rest, contraction or Valsalva)
and finding the plane of minimal hiatal dimensions.

Furthermore, detection of a PRM avulsion or a
wide levator—urethra gap as a sign of an avulsion,
as proposed by Dietz et al.”®, may make our results
valuable in clinical practice. Nevertheless, there is value
in automatically filtering out images with normal PRM
and hiatal dimensions to limit the number of images that
need to be examined visually.

In conclusion, we have shown that, using deep learning,
it is possible to segment automatically and reliably the
PRM and UH on 2D TPUS images of the nulliparous
pelvic floor in the plane of minimal hiatal dimensions.
From these segmentations, we could measure reliably the
width, length and area of the UH, MEP and length of
the PRM. These results were confirmed in an independent
dataset.
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