
Chapter 9
Security Games with Restricted
Strategies: An Approximate Dynamic
Programming Approach

C.M. Laan, A.I. Barros, R.J. Boucherie and H. Monsuur

Contents

9.1 Introduction . 172
9.2 Model Description . 174

9.2.1 Basic Model . 174
9.2.2 Static Approach . 175
9.2.3 Dynamic Approach . 177

9.3 Solution Approach: Approximate Dynamic Programming . 178
9.3.1 Introduction to ADP . 179
9.3.2 ADP for a Stochastic Game . 180

9.4 Experiments . 183
9.4.1 Benefits of the Dynamic Approach . 183
9.4.2 Computational Results of ADP . 185
9.4.3 Numerical Results for a Realistic Sized Instance . 188

9.5 Conclusion . 190
References . 191

Abstract In this chapter we consider a security game between an agent and
an intruder to find optimal strategies for patrolling against illegal fishery. When
patrolling large areas that consist of multiple cells, several aspects have to be taken
into account. First, the current risk of the cells has to be considered such that cells
with high risk are visited more often. Moreover, it is important to be unpredictable
in order to increase the patrolling effectiveness countering illegal fishery. Finally,

C.M. Laan (B) · H. Monsuur
Netherlands Defence Academy, Den Helder, The Netherlands
e-mail: c.m.laan@utwente.nl

H. Monsuur
e-mail: h.monsuur@mindef.nl

C.M. Laan · A.I. Barros
TNO, The Hague, The Netherlands
e-mail: ana.barros@tno.nl

C.M. Laan · R.J. Boucherie
University of Twente, Enschede, The Netherlands
e-mail: r.j.boucherie@utwente.nl

© t.m.c. asser press and the authors 2018
H. Monsuur et al. (eds.), NL ARMS Netherlands Annual Review of Military
Studies 2018, NL ARMS, https://doi.org/10.1007/978-94-6265-246-0_9

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-94-6265-246-0_9&domain=pdf

172 C.M. Laan et al.

patrolling strategies have to be chosen in such a manner that they satisfy given oper-
ational requirements. For example, the agent might be required to patrol some cells
more often than others imposing extra restrictions on the agent strategies. In this
chapter, we develop a dynamic variant of the security game with restrictions on the
agent’s strategy so that all these requirements are taken into account. We model this
game as a stochastic game with a final penalty to ensure that the operational require-
ments are met. In this way, strategies are formed that both consider past actions
and expected future risk levels. Due to the curse of dimensionality, these stochas-
tic games cannot be solved for large scale instances. We develop an approximate
dynamic programming algorithm to find approximate solutions.

Keywords Stochastic games · Security · Patrolling · Restricted strategies ·
Approximate dynamic programming · Aggregation

9.1 Introduction

The coast guard is responsible for patrolling the coastal waters. Patrolling strate-
gies should be unpredictable, cover the entire region, and must satisfy operational
requirements on e.g. the frequency of visits to certain vulnerable parts of the region
(cells). We develop a special security game dealing with the protection of a large
area in which the agent’s strategy set is restricted. This area consists of multiple cells
that have to be protected during a fixed time period. The agent has to decide on a
patrolling strategy, which is constrained by governmental requirements that establish
a minimum number of visits for each cell. Some cells have to be visited more often
than others because these regions are more vulnerable. For example, cells close to
a port have to be visited more often. A static version of this model is discussed in
Laan et al.,1 where a strategy for the complete time period is identified before the
game starts. The requirements are modeled in such a way that they are met with high
probability. However, this model does not allow patrolling strategies adjusted to the
current situation. In this chapter, we consider a dynamic approach to the security
game with restricted strategies in which the agent decides on his strategy for each
day taking into account expected future rewards. This allows finding a more flexible
strategy for the agent, where current payoffs and number of visits to each cell can be
taken into account.

An example application of this model lies in countering illegal or unreported and
unregulatedfishing. These illicit activities endanger the economyof thefishery sector,
fish stocks and the marine environment and require the monitoring of large areas
with scarce resources subject to national regulations. To support the development of
patrols against illegal fishing, in Haskell2 a decision support system is developed.
This system models the interaction between different types of illegal fishers and the

1 Laan et al. 2017.
2 Haskell et al. 2014.

9 Security Games with Restricted Strategies … 173

patrolling forces as a repeated game. Moreover, in order to cope with the uncertainty
on the adversary’s strategy a robust optimization approach is used. More recently,
Fang et al.3 introduced a new game theoretical approach, the green security games,
wherein a generalization of Stackelberg games is used to derive sequential agent
strategies that learn from adversary behavior. However, in these papers restrictions
to the patroller’s strategy are not considered.

We model the dynamic variant of the security game with restricted strategies as
a finite-time stochastic game in which the state depends on both the current payoff
matrix and the remaining minimum number of visits left to each cell. The direct
reward is given by the intruder’s payoff and at the end of the time period a penalty
is given if the operational requirements are not met. Solving stochastic games can
be done by iterating over all states and time periods. However, the state space grows
exponentially in the number of cells and we are unable to solve realistic sized games.
Therefore, we develop an approximate dynamic programming (ADP) approach to
find approximate solutions.

Due to the curse of dimensionality, many stochastic optimization models cannot
be solved by iterating over all possible states. ADP is a technique that can be used to
solve large scaleMarkov decision processes (MDPs).Wedevelop anADP framework
to find approximate solutions for our stochastic game. A brief introduction in ADP
can be found in Powell4 and various examples are given in Mes and Rivera.5 In
the ADP framework, the optimal solutions are not found using standard backward
dynamic programming, but by using a forward dynamic programming approach over
only a fixed number of iterations. In this forward approach, different value function
approximations can be used. In this chapter, we use multiple aggregation levels of
the state space to approximate the value functions as discussed in George et al.6

In the basic ADP algorithm, only a very limited number of states will be updated
during each iteration. In our method using aggregation of the state space, multiple
value function approximations are updated at the same time, possibly with different
weight for different aggregation states. In this way, the value functions are updated
more often and will converge faster.

Although most of the research in ADP focuses on solving MDPs, some models
focus on solving games. In Perolat et al.,7 the authors consider the error propagation
for different approximation schemes of zero-sum stochastic games. However, this
chapter does not provide a clear procedure that can be used to solve stochastic games
usingADP.A solution technique that is very similar toADP is reinforcement learning
(RL), see for example Bucsoniu.8 The main difference between ADP and RL is that
RL is considered to be model-free, which means that information about transition
probabilities is not necessarily required. In the field of RL, there is also limited

3 Fang et al. 2015.
4 Powell 2010.
5 Mes and Rivera 2017.
6 George et al. 2008.
7 Perolat et al. 2015.
8 Buşoniu et al. 2010.

174 C.M. Laan et al.

research about applications to stochastic games. In Lin et al.,9 the authors use RL
to approximate unknown rewards and use an iterative algorithm to find a policy for
both players, while we are interested in calculating this policy using approximation
algorithms.

Themain contribution of this chapter is twofold. First, we develop amodel to solve
security games with restrictions on the agent’s strategy. Formulating this model as a
stochastic game enables the agent to adjust the strategy to the current situation and
actions that already have been chosen in the past. Second, we approximate optimal
solutions of this stochastic game via an ADP approach. We adjust the standard ADP
model that is often used to solve large scale MDPs to analyze stochastic games.
Experimental results show that this method gives better payoffs for the agent’s than
using a static approach where strategies are fixed for the complete planning period.

The remainder of this chapter is organized as follows. In Sect. 9.2, we intro-
duce the model and give the elements of the stochastic game. In Sect. 9.3, we first
give a brief introduction in ADP and then describe our formulation for stochas-
tic games. In Sect. 9.4, we give computational results and compare the static and
dynamic approach. Finally in Sect. 9.5, we summarize the main findings and provide
directions for future research.

9.2 Model Description

In this section, we give the formulation of the security game with restrictions on
the agent’s strategy. We first describe the basic model in Sect. 9.2.1. In Sect. 9.2.2,
we briefly explain the solution method that is used to solve the game with a static
strategy for the complete time period as studied in Laan et al.10 In Sect. 9.2.3, we
describe a new stochastic game approach which is used to enable strategies over the
entire planning period.

9.2.1 Basic Model

The game is played between an agent and an intruder over a time period of ND days.
The area is given by a finite set of cells C = {1, . . . , NC }. Each day, an intruder
selects one cell to attack while the agent chooses a route from a finite set of routes
R = {1, . . . , NR}. The agent and intruder choose their action simultaneously. Routes
consist of multiple cells where the agent is allowed to move between adjacent cells.
The matrix A indicates which cells are visited by each route, such that ai j equals 1
if route i visits cell j and 0 otherwise.

9 Lin et al. 2017.
10 Laan et al. 2017.

9 Security Games with Restricted Strategies … 175

The risk of a cell is displayed in the payoff matrices. Cells with a high risk have
higher payoffs than low risk cells. This payoff is interpreted as the intruders gain:
the higher the gain for the intruder, the higher the probability that the intruder will
attack there. The payoff matrix can change over time due to, e.g., weather conditions
or seasonal fluctuations resulting in multiple payoff matrices. We assume that we
have some information about how these payoff matrices change. Let M (k) be the k-th
payoff matrix of size NR × NC out of a finite set of payoff matrices, k = 1, . . . , NM .
The element m(k)

i j is the expected payoff if the agent uses route i and the intruder
attacks cell j , i = 1, . . . , NR , j = 1, . . . , NC . We consider the payoff given by the
intruder’s expected gain:

m(k)
i j = (

(1 − d j)ai j + (1 − ai j)
)
g
(k)
j , i = 1, . . . , NR , j = 1, . . . , NC , k = 1, . . . , NM ,

where d j is the detection probability for cell j and g(k)
j is the intruder’s gain if the

intruder successfully attacks cell j . If the agent successfully intercepts the intruder,
the payoff is 0.

There are operational requirements on the number of visits to the cells: the agent’s
strategy is restricted by the requirements that impose a minimum number of visits
v j for each cell j , j = 1, . . . , NC . During the time period, the agent has to decide
on his actions such that cell j is visited at least j times.

Note that the model described in this chapter only describes a basic security game
with one intruder. Themethods developed in this chaptermaybe applied to extensions
to matrix games obtained by changing the payoff matrices, such as including more
(cooperating) intruders or detection probabilities depending on the cell or chosen
action.

9.2.2 Static Approach

When using a static approach, the strategies are the same for each time period,
but might be different for each payoff matrix M (k). The strategy of the agent is
pT = (p(1), . . . , p(NM)), where p(k)

i is the probability that route i is chosen when the
payoff matrix is M (k). The strategy of the intruder is qT = (q(1), . . . , q(NM)), where
q(k)
j is the probability that cell j is attacked when the payoff matrix is M (k). The

probability that the payoff matrix is M (k) equals μ(k).
The restrictions to the agent’s strategy are modeled by the constraint f (p) ≥

1 − ε. The function f (p) gives the probability that all the agent’s restrictions on the
minimum of visits for the cells are met, given the agent’s strategy p. Randomized
strategies are used to guarantee the unpredictability of the patrolling. Therefore,
it is not possible to demand that the requirements are always met. By requiring
f (p) ≥ 1 − ε, we guarantee that the requirements are met with high probability. For
the experiments in this chapter, we use ε = 0.05.

176 C.M. Laan et al.

The value of the game is the expected payoff per day and can be found by solving
the following optimization problem:

V = min
p

max
q

NM∑

k=1

μ(k)(p(k))T M (k)q(k)

s.t. f (p) ≥ 1 − ε,

NR∑

i=1

p(k)
i = 1, k = 1, . . . , NM , (9.1)

NC∑

i=1

q(k)
i = 1, k = 1, . . . , NM ,

p, q ≥ 0.

Taking the dual of the inner linear program, maxq{∑NM
k=1 μ(k)(p(k))T M (k)q(k)

| ∑NC
j=1 q

(k)
j = 1, k = 1, . . . , nM , q ≥ 0}, the minmax formulation from (9.1) can be

rewritten as a minimization problem to obtain the game value and optimal strategies
for the agent.

We use approximations to determine f (p). We explain the basic idea of these
approximations and refer to Laan et al.11 for a more detailed description. Consider
the gamewith only one payoff matrix, so we omit the index k. Let Y = (Y1, . . . ,YNR)

be the number of times that each route is chosen by the agent. The random variable
Y is multinomially distributed with parameters p and ND , where p is the prob-
ability distribution over the routes and ND is the length of the planning period.
For large ND , Y can be approximated by a multivariate distribution with mean
ND pi and variance ND pi (1 − pi) and covariance −ND pi pi ′ , i, i ′ = 1, . . . , NR . Let
X = (X1, . . . , XNC) be the number of times that each cell is visited:

X j =
NR∑

i=1

ai jYi .

Using the approximation of Y , X can be approximated by a multivariate nor-
mal distribution with mean NDa j p, variance NDa j p(1 − a j p) and covariance∑NR

i=1

∑NR
i ′=1 ai j ai ′ j ′Cov(Ỹi , Ỹi ′), j, j ′ = 1, . . . , NC (see Ross).12 Now, the probabil-

ity that the requirements are met can be calculated using the cumulative distribution
for the multivariate normal distribution, but this function is difficult to implement. A
lower bound for the probability that all requirements are met is:

11 Laan et al. 2017.
12 Ross 1996, Chapters1.4 and 1.8.

9 Security Games with Restricted Strategies … 177

f (p) ≥ 1 −
NC∑

j=1

�

(
v j − NDa j p√
NDa j p(1 − a j p)

)

,

where�(x) is the cumulative distribution of the standard normal distribution. Imple-
menting this function in (9.1) gives an upper bound for the game value. Experimental
results show that the error that is made by this lower bound is small (≤2%).13 A sim-
ilar expression for f (p) can be derived for the case with multiple payoff matrices.

9.2.3 Dynamic Approach

When considering a dynamic approach, strategies can change during the timewindow
depending on the current payoff matrix and the number of times each cell already
has been visited. We model this as a finite-time zero-sum stochastic game. We now
describe the elements of this game.

The state space S of the game is given by the current payoff matrix and the number
of visits that are still required for each cell:

S = {s|s = (k, v̄1, . . . , v̄NC), k = 1, . . . , NM , 0 ≤ v̄ j ≤ v j , j ∈ C}.

The action space of the agent and intruder are given by AA and AI . The intruder
attempts to maximize the payoff by choosing which cell to attack, so the action set of
the intruder is given by C . The agent tries to catch the intruder by selecting a route,
so the action set of the agent is given by R:

AA = R, AI = C.

The matrix T gives the transitions between the payoff matrices. These transitions
do not depend on the actions of the agent and the intruder. If the current payoff matrix
is M (k), then with probability tkl the next payoff matrix is M (l). The transition matrix
of the game P depends on both T and the action i of the agent:

P(s ′|s, i) =
{
tkl, if v̄′

j = max{v̄ j − ai j , 0}, for all j ∈ C,

0, otherwise.

where s = (k, v̄1, . . . , v̄NC) and s ′ = (l, v̄′
1, . . . , v̄

′
NC

) and i is the agents action.
The direct reward is given by R and depends on the agent’s strategy i , the intruder’s

strategy j and the current payoff matrix M (k):

R(s, (i, j)) = m(k)
i j .

13 Laan et al. 2017.

178 C.M. Laan et al.

To ensure that the requirements are met, we introduce a final reward which is a
penalty for the requirements that are not met. This can either be a penalty for each
requirement that is not met or one penalty if the requirements are not met. For the
results considered in this chapter we consider the last option:

R f (s) =
⎧
⎨

⎩

B, if
∑

j∈C
v̄ j > 0,

0, otherwise,

where B is chosen large enough such that it is never beneficial to violate one of the
requirements.

Optimal strategies can be found by solving the game iterative (see Owen).14 Let
Vt (s) be the game value at time period t , when the game is in state s.

VND (s) = Val

(

M (k) +
∑

s ′∈S
P(s ′|s, ·)R f (s

′)

)

, (9.2)

Vt (s) = Val

(

M (k) +
∑

s ′∈S
P(s ′|s, ·)Vt+1(s

′)

)

, t < ND. (9.3)

where s = (k, v̄1, . . . , v̄NC), so M (k) depends on the first element of state s, and
P(s ′|s, ·) is the matrix consisting of the values P(s ′|s, i) for all agent’s actions. The
expression between brackets defines a matrix game. Val gives the value of this matrix
game, so this is the game value when both players choose a strategy corresponding
to a Nash equilibrium.

Solving Eqs. (9.2) and (9.3) will give an optimal value of the game. However, the
size of the state space is exponentially increasing in the number of cells and conditions
andwe are unable to solve these equations analytically. In the next section, we present
a model to deal with this large state space.

9.3 Solution Approach: Approximate Dynamic
Programming

In this section, we present amethod that can be used to overcome the large state space
of the stochastic game formulation in Sect. 9.2. Approximate dynamic programming
(ADP) is a technique that is often used to solve large scale MDPs. In Sect. 9.3.1, we
give a short introduction in ADP for solvingMDPs based on Powell.15 In Sect. 9.3.2,
we develop ADP to solve our stochastic game.

14 Owen 1995, Chapter V.3.
15 Powell 2010.

9 Security Games with Restricted Strategies … 179

9.3.1 Introduction to ADP

Consider an MDP over time horizon T , with states st , actions at , transition matrix
P , and cost functions Ct . The value of an MDP can be found by solving the Bellman
equations:

Vt (st) = min
xt

(

Ct (st , xt) +
∑

st+1

P(st+1|st , xt)Vt+1(st+1)

)

.

When the state space is large, solving the Bellman equations is too time con-
suming. The main idea of ADP is not to solve the model by enumerating over all
possible solutions but only over a limited number of states using a forward dynamic
programming approach over a fixed number of iterations N . For each iteration, the
random information is sampled using Monte Carlo experiments.

The random information that is revealed after action at is chosen is given bywt+1.
Both the action and the random information define the next state. For ADP, the post-
decision state sat is introduced. A post-decision state is the state after an action at is
chosen, but before the new random information wt+1 is revealed:

Vt (st) = min
at

(
Ct (st , at) + V a

t (sat)
)
,

V a
t (sat) =

∑

wt+1

P(wt+1)Vt+1(st+1|sat , wt+1).

By the use of the post-decision state, we only have to evaluate the possible out-
comes over wt+1 for each action and not over all possible states st+1. This decreases
the number of possible outcomes that have to be evaluated during each iteration
significantly.

The output of the algorithm is an approximation V̄ n
t (sat) of the value of the post-

decision states.During each step, the approximation V̄ is updatingusing the following
update rule:

V̄ n
t (st) =

{
(1 − α)V̄ n−1

t (snt) + αv̂n
t , if st = snt ,

V̄ n−1
t (st), otherwise.

(9.4)

where α is a step size between 0 and 1. In the next section, we discuss the value of
α.

The basic structure of an ADP is given by the following algorithm.

180 C.M. Laan et al.

Algorithm 1 ADP algorithm
1: Initialize:

• Choose an initial approximation V̄ 0
t (sat) for each t .

• Set n = 1 and choose an initial state s10 .

2: Choose a sample path wn = (wn
1 , . . . , w

n
T).

3: For t = 0, . . . , T

• Solve

v̂nt = min
at

(
Ct (s

n
t , at) + E

w
(
V̄ n−1
t+1 (st |satt , w)

))
,

and let ant be the action that solves this minimization.
• Update V̄ n

t (st) using (9.4).
• Compute the next state to visit from the action ant .

4: Set n = n + 1 and go to Step 2.

This algorithm is a basic outline and will in general not always give good approx-
imation results. There are some methods for improving the algorithm, mainly in the
step of choosing the next state (random or not), the choice of α and in the steps of
the value function approximation. We discuss these methods in the next section.

9.3.2 ADP for a Stochastic Game

The ADP approach described in the previous section is used to solve large scale
MDPs. In this section, we describe the adjustments we make to the ADP to solve the
stochastic game in Sect. 9.2.3. The difference is that we deal with multiple players.
Therefore, the Bellman equations are replaced by:

Vt (s) = Val

(

M (k) +
∑

s ′∈S
P(s ′|s, ·)Vt+1(s

′)

)

.

As a consequence, we have to optimize over both the intruder’s and the agent’s
actions. However, in our case, the next state does not depend on the intruder’s action.
Therefore, we can use an ADP algorithm similar to the ADP algorithm which is used
to solve MDPs.

Due to the introduction ofmultiple playerswe are not dealingwith discrete actions.
Both agent and intruder choose as an action a probability distribution over the action
spaces at each time step. Therefore, we are not able to calculate a value for each
combination of actions and states. We modify the formulation and use of the post-
decision state, which in our case only depends on the agents actions. Let sit be the
post-decision state at time t and state s when the agent chooses pure strategy i ∈ R:

9 Security Games with Restricted Strategies … 181

V̄t (s
i
t) =

NM∑

l=1

tkl V̄t+1
(
(l, (st (2) − ai1)

+, . . . , (st (NC + 1) − aiNC)
+)

)
,

where s = (k, v̄1, . . . , v̄NC).
We now describe the basic ADP algorithm adjusted for our game:

Algorithm 2 ADP algorithm for stochastic game
1: Initialize:

• Choose an initial approximation V̄ 0
t (st) for each t , st .

• Set n = 1 and choose an initial state s10 .

2: Choose a sample path wn which describe the payoff matrices.
3: For t = 0, . . . , ND − 1

• Construct M , such that:

mi j = m(k)
i j + V̄ n−1

t+1 (sit), t < ND,

mi j = m(k)
i j + R f (s

i
t), t = ND .

• Solve

v̂nt = Val (M) ,

and let πn
t be the agent’s strategy that solves this minimization.

• Update V̄ n
t (st) using (9.4).

• Compute the next state to visit: w.p. β decide on the next state using πn
t and with

probability 1 − β choose a random action.

4: Set n = n + 1 and go to Step 2.

We now discuss the choice of α and β and introduce aggregation, which can be
used to speed up the convergence of the algorithm.

Choice of α Thevalue of the step step sizeα can be chosen in differentways.A review
of different step sizes that are used in literature is given in George and Powell.16 Two
popular step sizes that are often used are the harmonic and the polynomial step size.17

We use a harmonic step size where α depends on the iteration n:

αn = max

{
a

a + n − 1
, α0

}
,

where the value of αn decreases in the number of iterations. In Sect. 9.4, we conduct
experiments to decide on the value of a and α0.

16 George and Powell 2006.
17 Powell 2010.

182 C.M. Laan et al.

Choice of β In Step 3 of the ADP algorithm, the next state is chosen. If the next
state only depends on the strategy πn

t , it is possible that some states will never be
visited and the algorithm does not converge to the best possible value. To avoid this,
a random action is chosen with probability 1 − β. In Sect. 9.4, we show the results
of experiments with the value of β.

Aggregation To have a good approximation of the value function of a state, this
specific state has to be visited often enough. During one iteration, the value function
of only one state is updated and when the number of states is large, a lot of iterations
are necessary to ensure a good approximation. There are different methods that can
be used to speed up the convergence by updating multiple states per iteration. Two
methods that are commonly used are aggregation and the use of basic functions.18

We use aggregation with multiple aggregation levels which is proven to work well
for large scale MDPs.19 An example of an aggregation level is to only consider the
requirements and not the payoff matrix.

Let G be the number of aggregation levels and S(g), g = 0, . . . ,G, be the state
space corresponding to the g-th aggregation level (S(0) = S). The state s(g) is the state
corresponding to s in the g-th aggregation level and V̄ (g)(s(g)) is the value function
approximation for this state. The value function approximation of each state s is
given by a weighted combination of the value functions of all the corresponding
states for the different aggregation levels:

V̄ n(s) =
G∑

g=0

w(g,n)(s)V̄ (g,n)(s(g)),

where w(g,n)(s) is the weight of the g-th aggregation level for state s. We choose the
weight by inverse mean squared errors as described in George et al.20 using the bias
and variance of each estimator:

w(g,n)(s) ∼ 1
(σ̃ (g)(s))2

N (g)
s

+ (μ̃
(g)
s)2

,

where σ̃ (g)(s))2 is the sample variance of all the observations corresponding to the
estimate V̄ (g)(s(g)), N (g)

s is the number of all these observations and μ̃
(g)
s is the bias

from the true value V̄ (0)(s). A detailed description of these computations can be
found in George et al.21 Experiments with different aggregation levels can be found
in Sect. 9.4.

18 Powell 2010.
19 George et al. 2008.
20 George et al. 2008.
21 George et al. 2008.

9 Security Games with Restricted Strategies … 183

In this section, we have described a framework to enable us to deal with large
scale dynamic games. In the next section, we show computational results to illustrate
the performance of the ADP framework.

9.4 Experiments

We have developed a model and solution approach to solve a dynamic variant of
security games with restrictions on the agent’s strategy. In this section, we perform
experiments to see howourmodel performs. First, we compare the static and dynamic
approach in Sect. 9.4.1. In Sect. 9.4.2, we experiment with different input variables of
the ADP approach and give computational results. Finally, in Sect. 9.4.3, we explore
the model for an instance of realistic size.

9.4.1 Benefits of the Dynamic Approach

To show the benefits of the dynamic approach studied in this chapter, we compare it
with the static approach as described in Sect. 9.2.2.

Consider a game with 9 cells and 8 routes as described in Fig. 9.1. In this example,
the routes are chosen in such a way that the agent moves right, left or diagonal. The
numbers are the cell numbers and the color of the cells correspond to the intruder’s
gain. The darker the color, the higher the intruder’s gain: white cells have a payoff
of 1, light gray cells have a payoff of 2 and dark gray cells have a payoff of 3. The
transition probabilities for the payoff matrices are:

T =
[
0.7 0.3
0.3 0.7

]
.

This means that on average both M (1) and M (2) occur with equal probability, so
μ(1) = μ(2) = 0.5. The time period, ND , equals 80.

In Table 9.1, the second and third columns show the game value for both the static
and dynamic approach for different requirements on the agent’s strategy. The value
that is given is the expected value per day. The last column gives the running time for
the stochastic game. The static game always runs within a second. All experiments in
this section are implemented in Matlab version R2016b22 on an Intel(R) Core(TM)
i7 CPU, 2.4GHz, 8 GB of RAM.

Both the static and the dynamic game are played over a time period of ND days.
Note that the strategies from the static game, can always be recreated using the
dynamic approach. When there are no restrictions, the dynamic game gives almost
the same strategies as in the static game because previous actions do not influence

22 MATLAB 2016.

184 C.M. Laan et al.

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

Routes Cells visited by route
1 1, 5, 9
2 2, 3, 6
3 6, 8, 7
4 1, 4, 7
5 1, 2, 3
6 2, 6, 8
7 3, 5, 6
8 4, 5, 9

Fig. 9.1 Payoff matrices and routes [Source C.M. Laan, A.I. Barros, R.J. Boucherie, H. Monsuur]

Table 9.1 Expected payoff per day for different requirements [Source C.M. Laan, A.I. Barros, R.J.
Boucherie, H. Monsuur]

Requirements Static Dynamic

Game value Game value Running time
(s)

None 1.45 1.45 1.01

v = (0, 0, 40, 0, 0, 0, 0, 0, 0) 1.64 1.55 10.38

v = (0, 30, 0, 0, 0, 0, 20, 0, 0) 1.88 1.52 143.81

v = (0, 30, 40, 0, 0, 0, 20, 0, 0) 2.31 1.58 6513.91

v = (0, 0, 40, 0, 0, 0, 30, 0, 0) – 1.85 275.19

the outcome and, when ND is large enough, the number of times each payoff matrix
appears is approximately the expected value μ as used in the static game. As can
be seen in Table 9.1, the dynamic game approach gives better results for the agent
when there are restrictions. This is because he has more flexibility in planning his
strategy. The agent does not have to plan his complete strategy in advance anymore
and can adjust his strategy depending onwhich routes were chosen before.Moreover,
using the stochastic game approach, it is guaranteed that the requirements are met.
Another advantage is that we do not have to require that each payoff matrix occur
often enough because we do not need to apply the law of large numbers. Also, some
requirements give an infeasible solution for the static approach, while they can be
met for the dynamic case. This follows from the fact that for the static approach
we use randomized strategies that are the same for each time period. To meet the
requirements with high probability, the cells have to be visited more often on average
than the requirements require. This is not necessary for the dynamic approach, since
the strategies can be adjusted to the number of visits in the past. The disadvantage
of the stochastic game approach is that the running time increases exponentially in
the number of visits.

9 Security Games with Restricted Strategies … 185

9.4.2 Computational Results of ADP

In this section, we explore the performance of the ADP approach for the dynamic
game. Also, we test different inputs parameters and multiple aggregation lev-
els. Consider the game as described in Sect. 9.4.1 with the requirements v =
(0, 30, 40, 0, 0, 0, 20, 0, 0). This example will be used to illustrate our experi-
ments.

The running times of the experiments in this section depend on the level of aggre-
gations: the more levels of aggregations, the higher the running time. For the case
without aggregation, the running time of the experiments is approximately 1000 s
and the running time for the case with for levels of aggregation, the running time
was approximately 1500 s. For all the experiments, we used 3000 as the number of
iterations.

First, we test the model without aggregation for different input parameters: the
step size parameters, a and α0, and the probability that a random action is chosen
1 − β. The value function approximation of the initial state is displayed in Fig. 9.2 for
a selection of different combinations of these parameters without aggregation. The
ADP algorithm gives value function approximations for each possible state. Also,
for each possible state, a strategy is calculated in Step 3 of the algorithm. We test
this strategy by simulating the game after different numbers of iterations. The game
is simulated 100 times, where the value approximations and strategies obtained by
the ADP algorithm are used.

Tables 9.2, 9.3, 9.4 and 9.5 show the results for the model with and without
aggregation. Tables 9.2 and 9.4 show the percentage that the requirements are met.
In general, it holds that the better the value function approximations are, the higher
the probability that the requirements are met. For the dynamic game, it is guaranteed
that the conditions are met if this is feasible and the penalty is high enough. However,
when using the value function approximations to decide on the strategies, this is not
always guaranteed if the approximations are still too far from the optimal values.

Fig. 9.2 Convergence of ADP for different values of α0 and a and β, no aggregation [Source C.M.
Laan, A.I. Barros, R.J. Boucherie, H. Monsuur]

186 C.M. Laan et al.

Table 9.2 Percentage requirements satisfied, no aggregation [Source C.M. Laan, A.I. Barros, R.J.
Boucherie, H. Monsuur]

β a 250 750 1500

Iterations/α0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.25 1000 1% 0% 1% 1% 2% 0% 2% 2% 4%

2000 4% 8% 5% 9% 5% 15% 16% 6% 6%

3000 13% 8% 7% 17% 7% 5% 30% 14% 4%

0.5 1000 0% 9% 3% 3% 1% 1% 4% 1% 4%

2000 2% 11% 9% 13% 20% 7% 29% 20% 3%

3000 6% 20% 26% 18% 11% 68% 47% 18% 4%

0.75 1000 0% 25% 80% 9% 8% 43% 94% 34% 44%

2000 77% 89% 63% 40% 91% 100% 99% 58% 98%

3000 88% 100% 96% 99% 100% 99% 100% 99% 100%

Table 9.3 Average game value, no aggregation [Source C.M. Laan, A.I. Barros, R.J. Boucherie,
H. Monsuur]

β a 250 750 1500

Iterations/α0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.25 1000 1.73 − 1.76 1.87 2.04 − 1.92 1.84 2.11

2000 1.84 1.87 1.98 1.97 1.99 1.93 1.97 1.93 1.82

3000 1.93 1.91 1.92 1.99 1.90 1.86 1.94 1.92 1.85

0.5 1000 − 2.04 2.01 2.09 2.01 1.89 2.05 2.02 2.05

2000 1.94 1.97 1.93 2.00 1.99 1.98 1.99 2.04 1.95

3000 1.97 1.98 1.93 2.00 1.99 1.98 1.94 1.97 1.97

0.75 1000 − 2.20 2.17 2.17 2.07 2.22 2.16 2.22 2.16

2000 2.23 2.13 2.06 2.13 2.14 2.07 2.07 2.15 2.06

3000 2.16 2.12 2.00 2.13 2.09 2.00 2.00 2.10 2.00

Tables 9.3 and 9.5 show the average game value for the case that the requirements
are met. These tables show that β = 0.75 gives the best results for all different step
values. For the value of the step size, the results are less conclusive. However, higher
step sizes gives better value function approximation. The choice of α0 is herebymore
important than the choice of a. This can also be seen in Fig. 9.2.

In Fig. 9.3 the value function approximation for the starting state is shown for
both the ADP with and without aggregation (a = 750, α0 = 0.75, β = 0.75). For
the case with aggregation, we use 4 aggregation levels. The first level considers
the state without payoff matrix, the second level considers the state with only even
number of visits left, the third level considers the state with the number of visits
divided and rounded to the nearest integer above and the fourth level only considers
the total number of visits. We use the first level for the case with one level, the first
two for the case with two levels, etc.

9 Security Games with Restricted Strategies … 187

Table 9.4 Percentage requirements satisfied, with 3 aggregation levels [Source C.M. Laan, A.I.
Barros, R.J. Boucherie, H. Monsuur]

β a 250 750 1500

Iterations/α0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.25 1000 0% 0% 2% 2% 0% 3% 2% 2% 2%

2000 3% 9% 3% 7% 1% 9% 2% 5% 11%

3000 18% 11% 9% 20% 9% 20% 10% 20% 21%

0.5 1000 3% 4% 8% 4% 1% 1% 4% 2% 3%

2000 24% 29% 57% 14% 9% 6% 33% 27% 49%

3000 48% 60% 88% 23% 27% 12% 62% 31% 72%

0.75 1000 83% 35% 84% 76% 85% 86% 32% 99% 80%

2000 98% 94% 100% 41% 100% 100% 95% 100% 99%

3000 100% 99% 99% 100% 100% 100% 100% 100% 100%

Table 9.5 Average game value, with 3 aggregation levels [Source C.M. Laan, A.I. Barros, R.J.
Boucherie, H. Monsuur]

β a 250 750 1500

Iterations/α0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.25 1000 – – 2.06 2.04 − 1.97 1.89 2.06 1.93

2000 1.85 1.88 1.86 1.98 1.91 1.97 1.93 1.91 1.98

3000 1.91 1.97 1.90 2.01 1.92 2.01 1.96 1.99 1.92

0.5 1000 2.03 2.19 2.01 2.01 2.13 2.10 2.04 2.12 2.04

2000 2.03 1.98 2.00 1.99 2.07 1.87 1.97 2.02 1.95

3000 2.02 1.99 1.93 2.00 1.97 1.91 1.98 2.01 1.93

0.75 1000 2.26 2.21 2.11 2.16 2.18 2.13 2.19 2.12 2.17

2000 2.16 2.09 1.98 2.06 2.08 1.98 2.09 2.01 2.03

3000 2.11 2.00 1.92 2.03 2.01 1.92 2.07 1.94 1.99

Fig. 9.3 Convergence of
ADP for different
aggregation levels [Source
C.M. Laan, A.I. Barros,
R.J. Boucherie, H. Monsuur]

188 C.M. Laan et al.

Figure 9.3 shows that more aggregation levels give faster convergence. However
in this example, the differences between the different aggregation levels are small.
This can be explained by the fact that this is a relative small problem and the conver-
gence for the case without aggregation is already fast. In the next section, we discuss
a larger instance where it can be seen that the algorithm with aggregation converges
significantly faster than without.

Recall the results in Sect. 9.4.1 as shown in Table 9.1. For the game with require-
ments v = (0, 30, 40, 0, 0, 0, 20, 0, 0), the game value for the static approach
is 2.31 and for the dynamic approach 1.58. In this section, we approximated the
dynamic approach solution by using ADP, where we were able to obtain game val-
ues of 1.92 (see Table 9.5). These results show that the expected reward ofwhen using
theADP approach is a higher than the optimal value of the stochastic game. However,
it still outperforms the static approach. Moreover, this method can be used for larger
instances where the stochastic game approach is too computationally expensive.

We tested the ADP approach for different instances, which gave similar results.
The ADP approach usually outperforms the static approach, but not always in the
cases where the game value of the static and dynamic case are close. This can
explained by the fact that in these cases, the requirements do not have a large impact
on the optimal strategy, so the static game already gives a solution close to the
solution of the dynamic game. Since some approximation error is made in the ADP
approach, it might occur that the static game gives a better value. Also, the optimal
choice of input parameters vary a bit for different instances, so these have to be
chosen carefully depending on the instance. From our computational results, we can
say that a high value of β always gives good results and that the value of a needs to
be chosen higher for larger instances.

9.4.3 Numerical Results for a Realistic Sized Instance

In this section, we give numerical results of a larger instance of the security game for
which we cannot solve the stochastic game to optimality. The size of this instance
is comparable to real world sized problems. However, we still consider a limited
number of payoff matrices such that we can compare the game values with the game
value of the static game as described in Sect. 9.2.2.

Consider the game as described in Fig. 9.4 with two payoff matrices and with
requirements on Cells 1–5: v = (10, 30, 30, 30, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0). The time period, ND , is 100. The transition probabilities for the
payoff matrices are:

T =
[
0.3 0.7
0.4 0.6

]
,

which means that on average, the payoff matrix is M (1) with probability 0.36 and
M (2) with probability 0.64. Solving the static game gives a game value of 2.57.

9 Security Games with Restricted Strategies … 189

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Routes Cells visited by route
1 1, 2, 3, 8, 13, 18
2 5, 10, 14, 15, 19
3 4, 5, 6, 7, 8, 11
4 4, 9, 12, 13, 14, 17
5 16, 17, 18, 19, 20
6 1, 2, 6, 7, 11, 12
7 3, 8, 11, 12, 13
8 4, 5, 10, 15, 20
9 1, 2, 6, 11, 16
10 3, 8, 14, 19, 20
11 6, 7, 12, 16, 17

Fig. 9.4 Payoff matrices and routes for realistic sized scenario [Source C.M. Laan, A.I. Barros,
R.J. Boucherie, H. Monsuur]

We ran the ADP algorithm with 4000 iteration with multiple aggregation levels
in different configurations. We used the same aggregation levels as described in
Sect. 9.4.2 with one additional aggregation level. The fifth aggregation level only
considers the maximum number of visits over all cells.

The results for a selection of aggregation level configurations are shown inFig. 9.5.
This figure shows that aggregation ensures convergence a lot faster in this game. For
this instance, the best convergence is obtained with levels 1, 2 and 4 combined. With
these levels combined, the problems converge faster than without aggregation levels.
This can also be seen in Table 9.6. However, not for all aggregation configurations
outperform the algorithm without aggregation. For example, only using levels 3, 4
and 5 decreases the convergence speed. This can be explained by the fact that an error
is made when aggregation multiple states. Aggregating many states will speed up
the convergence, but may also lead to approximations far from the optimal solution.
The right choice of aggregation levels depends on the instance and has to be chosen
carefully.

Table 9.6 Percentage and average realistic sized scenario (β = 0.75, a = 150, α0 = 0.75) [Source
C.M. Laan, A.I. Barros, R.J. Boucherie, H. Monsuur]

Iterations No aggregation 3 levels

Average Percentage (%) Average Percentage (%)

1000 – 0 2.47 98

2000 – 0 2.33 100

3000 2.08 83 2.25 100

4000 2.03 82 2.17 100

5000 2.01 98 2.07 100

190 C.M. Laan et al.

Fig. 9.5 Realistic sized
scenario with and without
aggregation [Source C.M.
Laan, A.I. Barros, R.J.
Boucherie, H. Monsuur]

9.5 Conclusion

In this chapter, we have developed a model for the dynamic decision making of an
agent when his strategy is restricted by operational requirements. We have formu-
lated the problem as a stochastic game and have shown that the use of a dynamic
formulation outperforms the model in which strategies cannot be adjusted to the cur-
rent situation: better game values for the agent can be obtained. Also, the stochastic
game formulation can yield a feasible solution when more operational requirements
are considered.

The disadvantage of the stochastic game formulation is that the solving time
grows exponentially in the number of cells with requirements. This means that we
cannot solve the game to optimality for real world instances. For that reason, we
have developed an ADP approach to find approximate solutions. ADP is often used
to solve large scale MDPs. With a limited number of adjustments, we have been able
to develop a similar approach for our stochastic game.

Experimental results show that the game value which is found by the ADP algo-
rithm is about 25% worse than the optimal solutions. However, using this algo-
rithm we can solve much larger instances than for the full stochastic game. We also
compared the ADP approach with a static approach and this showed that the ADP
approach outperforms the static approach in our computational experiments.

For large instances, the convergence of the value function approximation can be
slow, because states have to be visited multiple times before a good approximation
can be given. We have used state space aggregation to speed up this convergence.
For small instances, we do not gain a lot from this aggregation, because the algo-
rithm without aggregation is already fast. However, for large instances, the speed of
convergence is increased considerably with this aggregation.

9 Security Games with Restricted Strategies … 191

The convergence of theADP algorithm also depends on different input parameters
which define the step size and the level of randomness. The optimal value of these
parameters can vary for each instance and may also depend on the aggregation level.
From our computational experiments, we can say that a large step size and a small
number of randomness performs the best for our instances.

In this chapter, we have assumed that the evolution of the payoff matrices is
defined by a given transition matrix and that at the beginning of each day, the payoff
for that day is known. For future research, it would be interesting to investigate the
case where not all payoff matrices are knows and only predictions for each day are
given.

References

BuşoniuL, de SchutterB,BabuškaR (2010)Approximate dynamic programming and reinforcement
learning. Interactive collaborative information systems, pp 3–44

Fang F, Stone P, Tambe M (2015) When security games go green: Designing defender strategies to
prevent poaching and illegal fishing. IJCAI, pp 2589–2595

George AP, Powell WB (2006) Adaptive stepsizes for recursive estimation with applications in
approximate dynamic programming. Machine Learning, 65(1):167–198.

George AP, Powell WB, Kulkarni SR (2008) Value function approximation using multiple
aggregation for multiattribute resource management. Journal of Machine Learning Research,
9(Oct):2079–2111

Haskell W, Kar D, Fang F, Tambe M, Cheung S, Denicola E (2014) Robust protection of fisheries
with compass. Twenty-Sixth IAAI Conference

LaanCM,BarrosAI,BoucherieRJ,MonsuurH (2017) Security gameswith probabilistic constraints
on the agents strategy. International Conference on Decision and Game Theory for Security, pp
481–493

Lin X, Beling PA, Cogill R (2017) Multi-agent inverse reinforcement learning for zero-sum games.
IEEE Transactions on Computational Intelligence and AI in Games (published online)

MATLAB (2016) version 9.1 (R2016b). The MathWorks Inc., Natick MA
Mes MRK, Rivera AP (2017) Approximate dynamic programming by practical examples. In:
Boucherie RJ, van Dijk NM (eds) Markov Decision Processes in Practice, Springer, pp 63–101.

Owen G (1995) Game theory, 3rd edn. Academic Press
Perolat J, Scherrer B, Piot B, Pietquin O (2015) Approximate dynamic programming for two-player
zero-sumMarkov games, Proceedings of the 32nd International Conference onMachine Learning
(ICML-15), pp 1321–1329

Powell WB (2010) Approximate dynamic programming: Algorithms.Wiley Encyclopedia of Oper-
ations Research and Management Science

Ross S (1996) Stochastic processes, 2nd edn. John Wiley & Sons, Inc

	9 Security Games with Restricted Strategies: An Approximate Dynamic Programming Approach
	9.1 Introduction
	9.2 Model Description
	9.2.1 Basic Model
	9.2.2 Static Approach
	9.2.3 Dynamic Approach

	9.3 Solution Approach: Approximate Dynamic Programming
	9.3.1 Introduction to ADP
	9.3.2 ADP for a Stochastic Game

	9.4 Experiments
	9.4.1 Benefits of the Dynamic Approach
	9.4.2 Computational Results of ADP
	9.4.3 Numerical Results for a Realistic Sized Instance

	9.5 Conclusion
	References

