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Abstract— Understanding how users adapt their motor be-
havior to damping forces can improve assistive haptic shared
control strategies, for instance in heavy robot-assisted lifting
applications. In previous experiments we showed that sub-
jects reaching in constant and position-dependent longitudinal
damping fields were able to reduce their movement time
and increase end-point accuracy. The movement time versus
movement distance and prescribed end-point accuracy agreed
with Fitts’ Law. However, why subjects were able to have
shorter movement time while subjected to impeding damping
forces is not explained by Fitts’ Law. Based on the minimal
variance principle we propose that humans exploit the noise-
filtering behavior of constant or position-dependent damping
forces. These damping forces attenuate mechanical effects of
activation-dependent motor noise. This allows for higher motor
activation and shorter movement time without losing end-point
accuracy. Consequently, higher allowed motor activation allows
for higher accelerations that lead to higher peak velocities,
resulting in shorter movement times. Linear and non-linear
stochastic optimal feedback control and optimal estimation
models with multiplicative noise corroborate measurement data,
supporting our hypothesis.

I. INTRODUCTION

A human’s mechanical power and force capabilities can

be augmented by assistive devices. Such devices amplify

or complement the user’s force or display forces to steer

and inform the user. Virtual fixtures, such as potential force

fields, have been used as haptic force sources to assist

humans in tasks in haptic tele-operation or during power

augmentation [1]. If there is any relevant intelligence in

the modulation of location and impedance of these virtual

fixtures, the haptic method can be regarded as haptic shared

control [2]. Shared control uses haptic forces and change

in device impedance to give cues, increase safety, assist

movements or force the user to change movement strategy.

In previous work [3] we proposed a simple shared controller

based on controlled variable damping forces around reaching

targets, i.e. position dependent damping or PDD. Such a

force can be used to support a person’s movements during

human-machine cooperative tasks of picking and placing of

heavy objects, while being completely passive.

Haptic viscous damping is a force that mimics a physical

dissipative force. This force (F) is proportional through a

damping coefficient (b) to the velocity of movement (v) in
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the form F = −bv where b > 0. In contrast to potential

forces, like stiffness, damping forces are more ‘forgiving’

by allowing users to move against them, albeit at the cost

of expending more energy. Furthermore, damping forces are

passive in the sense that they can only dissipate energy from

a mechanical system, making dissipative assistive devices

inherently stable and safe during interaction with human

users.

Constantly moving a device in a viscous damping field will

unnecessarily increase a user’s energy expenditure. There-

fore, damping can be made position-dependent by making

the damping coefficient change and increase near important

task-related movement targets. Viscous damping can be low

initially, such that the user can move unimpeded, and ramp

up when closing in to a task-relevant location, assisting

the user to reach the location accurately and assisting with

deceleration.

If the device consistently applies these damping forces

around task-relevant locations on the user, (s)he will change

his/her reaching movement plans accordingly. Motor adap-

tation research has mainly focused on orthogonal force per-

turbations during longitudinal arm reaching movements (e.g.

orthogonal force fields [4] or Coriolis forces [5]), but not on

how humans adapt their movement strategy to longitudinal
damping forces opposing the movement. Although these

orthogonal (curl) forces and longitudinal (damping) forces

are both velocity dependent, the former is an active force

(see similar reasoning of anti-symmetric stiffness in [6])

that steers the human reaching movement off-course, while

the latter is a passive force that impedes the movement.

Therefore, any conclusions drawn about curl-field adaptation

cannot be directly applied to longitudinal damping.

A number of studies investigated the effect of damping-

like forces on the performance and kinematics of human

motor tasks. Previous research showed that reaching under-

water increased reaching movement times (MT) [7], [8]. The

underwater environment is viscously dissipative, as well as

highly inertial. Other authors showed that constant static

friction helped in reducing reaching times and increasing

accuracy for moving low masses during reaching [9–11].

Crommentuijn et al. [11] found that increasing the Coulomb

friction magnitude did not negatively impact reaching accu-

racy but only decreased the likability of the task. The au-

thors hypothesized that friction forces provide a predictable

constant deceleration and act as a filter to unintentional

movement. However, they did not investigate the influence of

friction or damping forces when subjects move high masses.

Furthermore, they did not focus on how movement and force
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profiles changed after adaptation to the friction forces and

how to explain or predict the steady-state change in human

movement strategies.

Our previous research [3] showed that constant damping

and PDD both increased steady-state reaching performance

in terms of reduced MT and increased end-point accuracy,

for moving a mass of 12.5 kg. This mass was chosen to

be much heavier than the average human arm to resemble

the movement of a large weight. The relation between MT

and demanded accuracy (specified by index of difficulty)

followed Fitts’ Law for all damping conditions. Because of

its accuracy, simplicity and utility, Fitts’ Law is a widely

used model for predicting movement time for fast, aimed,

arm movements, with a good fit to empirical data [12].

However, it gives no insight into why constant damping and

PDD resulted in better reaching performance compared to

reaching without damping.

Literature shows that humans adapt and generalize their

reaching strategies based on their own limb dynamics,

state-dependent environment dynamics or artificial haptic

forces [4], [5], [13–16]. Evidence suggests that humans use

two different internal models during coordinated reaching:

a forward model (efferent copy of control through forward

dynamics), using an internal representation of the body and

environment to predict the body state [17], and an inverse

model [18] to calculate the motor commands needed to per-

form a movement in a combined feed-forward and feedback

controlled fashion. Although this explains how control is

carried out, it does not explain how humans adapt to different

environment dynamics.

It has been proposed that humans perform their move-

ments in some optimal way. Bell-shaped velocity profiles and

apparent trajectory smoothness seen in reaching movements

are due to some optimality principle. Harris and Wolpert [19]

proposed that the central nervous system (CNS) optimizes

reaching by minimizing the deviation at the target position;

called the minimum variance model. This model is based

on the fact that the neural signals and force production in

the human body are subjected to noise. They stated that

the motor command signals are characterized by signal-
dependent noise or multiplicative motor noise. This means

that higher muscle activation results in higher levels of

muscle force noise. Their first-order estimation was that the

standard deviation of this noise increases linearly with the

mean force output [20].

This movement uncertainty due to noise has to be opti-

mally integrated in a movement plan to make an optimal

movement. For each new environment, in our experiment

the damping condition, the motor plan is reoptimized for

those dynamics [21]. Therefore, a proposed model is the one

of stochastic optimal control and optimal estimation [22],

[23], that captures the signal-dependent noise together with

metabolic energy expenditure in a stochastic optimal control

framework.

In this model, the CNS predicts sensory consequences

of our motor commands using the forward model. These

predictions are combined with delayed sensory information

from proprioception and vision to infer the state of the body

and environment (optimal state estimation) [24]. The optimal

state estimate is used using the inverse model to optimally

tune the feedback-control gains to maximize some measure

of performance (optimal control) [25].

Several mathematical stochastic optimal control and opti-

mal estimation methods, known as Linear Quadratic Gaus-

sian (LQG) methods, have been put forth to mathematically

model reaching movements, showing high agreement with

empirical data [16], [23–25].

In this work, we asked ourselves why damping forces

allow for faster movement times, and how users adapted

their movement plan when subjected to these damping forces.

Furthermore we attempt to explain steady-state performance

results through a computational model. Our computational

analysis indicates that deterministic, or consistent and pre-

dictable, damping attenuates mechanical effects of multi-

plicative motor noise allowing for faster arm movements

while retaining target acquisition accuracy. Understanding

how users adapt their motor behavior to damping forces

can improve assistive haptic shared control strategies, for

instance in robot-assisted heavy lifting applications.

Building on the minimal variance principle and stochastic

optimal control models, our hypothesis is that damping

forces assist in reducing end-point variance introduced by

both additive and multiplicative motor noise. Subjects have

to guarantee an end-point variance sufficient to perform

and successfully finish the task. This requested end-point

variance is not necessarily minimal, but sufficient for the

requested target size. Therefore, subjects can apply high

control forces that would lead to more end-point variance in

the absence of (position dependent) damping. This, in result,

leads to shorter movement times. Evidence that corroborates

this hypothesis will be discussed in the following sections

by using models of stochastic optimal control and optimal

estimation.

II. DYNAMICS AND OPTIMAL CONTROL OF THE

REACHING TASK

In the experiment described in [3] we compared three

movement conditions (C1, C2 and C3) where 18 subjects

performed reaching tasks with a 1D haptic manipulandum

simulating a mass of 12.5 kg while feeling different longi-

tudinal damping forces. These three conditions were also

compared to a damping-free baseline condition (B). The

damping force was proportional to the velocity of movement

by the damping coefficient as shown in Fig. 1. Subjects were

instructed to reach the target as quickly as possible over a

distance between 18 and 28 cm within target sizes ranging

from 0.41 cm to 2.71 cm diameter.

The reaching dynamics of this task are modeled af-

ter Todorov [23], Diedrichsen [26] and Izawa and Shad-

mehr [24]. We believe it is sufficient to neglect multi-

link arm dynamics and simplify the dynamics to a single

degree of freedom point mass on which a damper acts. The

human force is generated by the neural input signal u(t) that

passes through two first-order low-pass filters, both with time
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Fig. 1: Damping coefficients for each condition. Conditions B1 and B2
have zero damping coefficient. Condition C1 has a constant coefficient of
40 Ns/m. In conditions C2 and C3 the coefficient increases linearly in value
from 0 Ns/m to 200 Ns/m when approaching the target at movement distance
D.

constant τ , to model the activation dynamics and calcium

dynamics of the muscle.

The continuous-time dynamics of this problem has five

states x(t) = [x(t), ẋ(t), f (t),h(t),g(t)]T , where x(t) is the

position of moved mass m, ẋ(t) is the mass velocity, f (t)
is the force the human applies onto the mass, h(t) is the

intermediate state of the low-pass filtered neural activation,

and g(t) is the target location of the reaching movement that

is chosen a priori.

A. Dynamical Model

The noise-free equations of motion of the aforementioned

dynamics are given by

mẍ(t) =−b(x)ẋ(t)+ f (t)

ḟ (t) =
h(t)− f (t)

τ
, ḣ(t) =

u(t)−h(t)
τ

,

where ẍ(t) is the mass acceleration and b(x) is the position

dependent damping coefficient.

The discrete-time (time instant k, time step δ ) state evo-

lution equations are given by⎡
⎢⎢⎢⎢⎣

xk+1

ẋk+1

fk+1

hk+1

gk+1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 δ 0 0 0

0 1− δb(x)
m

δ
m 0 0

0 0 1− δ
τ

δ
τ 0

0 0 0 1− δ
τ 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xk
ẋk
fk
hk
gk

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

0
δ
τ
0

⎤
⎥⎥⎥⎥⎦uk

xk+1 = A(x)xk +Buk.

The damping coefficient b(x) is given by

b(x) =

⎧⎪⎨
⎪⎩

0, if no damping,

bc, if constant damping,

bsmax{0,x(t)− x0}, if PDD,

(1)

with constant parameters: damping coefficient bc, damping

coefficient slope bs and positional offset x0. The PDD is zero

for x(t)≤ x0 and ramps up with slope bs for x(t)> x0.

The system dynamics are influenced by zero-mean Gaus-

sian white noise (N (0,Ω)) with specified covariance Ω =
σσT where σ is a vector of standard deviations. The relevant

noise sources are:

• noise with unit variance that will be scaled by neural

activation ξk ∼N (0,1),

• process noise ωk ∼N (0,σω σT
ω),

• measurement noise νk ∼ N (0,σν σT
ν ) that acts on

position, velocity and force state.

With process noise and uncertain observation the total model

dynamics become

xk+1 = A(x)xk +(B+Γξk)uk +ωk (2)

yk = Cxk +νk.

Matrix C picks the states to be observed by the CNS. Vector

Γ = [0 0 0 σu 0]T scales the unit noise variance of ξk and

positions it in the proper state equation for h(t) (as outlined

in [21] and [23]). All noise amplitudes are scaled by
√

δ to

normalize the random walk process [27], [28].

B. Optimal Control of the Reaching Task

An optimal controller and estimator can be designed for

the dynamics described in (2), lasting for time instants k =
1, . . . ,N. The modeled task is a reaching movement where the

hand starts at an initial position and moves to a target position

gk in a pre-specified time interval M and dwells inside the

target until terminal time N. This period of duration N−M
is the dwell period.

The optimal controller minimizes the expected quadratic

cost

J = E

{
xT

NQNxN +
N−1

∑
k=1

(
xT

k Qkxk +Rku2
k
)}

, (3)

with E{·} the expected value of a stochastic variable. Param-

eter Rk > 0 denotes the relative cost on energy expenditure,

which penalizes high control signals, and therefore influences

the level of multiplicative motor noise. The state dependent

cost can be given as Qk � 0 during the reaching movement,

or as terminal cost QN � 0. The terminal cost is held constant

during the whole dwell period. To enforce the reaching

movement towards target gk the cost matrix Q is comprised

of

Qk = 05×5, for k = 1, . . . ,M−1,

Qk =

⎡
⎢⎢⎢⎢⎣

wp 0 0 0 −wp
0 wv 0 0 0

0 0 w f 0 0

0 0 0 0 0

−wp 0 0 0 wp

⎤
⎥⎥⎥⎥⎦ , for k = M, . . . ,N,

where time indices k = 1, . . . ,M− 1 denote the movement

time, and indices k = M, . . . ,N denote the dwell period

where the subject had to keep the cursor in the target. Cost

weights wp, wv and wv relatively weight the contributions of

positioning error, velocity and used force respectively.

The optimal controller that minimizes (3) is a Linear

Quadratic Gaussian (LQG) controller capable of handling

multiplicative motor noise in the control input. Please refer

to [21] and [23] for an elaborate derivation of such a

controller.
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III. MODEL SIMULATION AND COMPARISON WITH

EXPERIMENTAL DATA

In this section we compare some of the results of the

experiment with the simulated model results. The model had

fixed weight values of: wp = 107, wv = 105, wp = 102 and

Rk = 1. The mass was m = 12.5 kg, the filter time constant

τ = 40 ms [23] and the time step δ = 10 ms.

The models were simulated with three damping b(x) con-

ditions. The first condition consists of a constant damping of

bc = 40 Ns/m (labeled C1). Conditions C2 and C3 consisted

of two different position-dependent damping (PDD), see (1).

Slope offset distance was x0 = 0.09 m for C2 and x0 = 0.18 m

for C3. The slope of the damping coefficient was bs = 20/9

kNs/m2 for C2 and bs = 10/9 kNs/m2 for C3. As a reference,

we also simulated the dynamical model without damping,

denoted as baseline (B).

The required optimal controller is different for constant

damping conditions (i.e. linear dynamics with no damping

or constant damping) and position dependent damping con-

ditions (i.e. non-linear and state-dependent PDD). For linear

and non-linear dynamics we use two different types of LQG

methods:

1) LTI LQG: This model solves for the optimal con-

troller for a linear time-invariant (LTI) system with

additive measurement noise, additive process noise

and activation-dependent (i.e. multiplicative with the

control signal) noise [21], [23]. A Kalman filter esti-

mates the states of the system that are disturbed by

measurement noise. We use this model to investigate

the difference in behavior, such as endpoint variance,

between additive and multiplicative noise, without non-

linear behavior influencing the results.

2) iLQG: In the case of non-linear dynamics, when b(x)
is not constant and state-dependent (i.e. PDD), the

optimal controller is an iterative LQG (iLQG) con-

troller [27], [28]. This model solves for the approx-

imately optimal controller for the dynamical system

with non-linear dynamics introduced by a position

dependent damping value. This model is chosen to

explain salient features of the movement and force

profiles and to show how damping reduces the end-

point variance of performed reaching movements.

A. Movement and Force Profiles

Fig. 2 shows the movement profiles of three subjects per-

forming reaching movements (over a distance of D = 0.18 m

and target ID = 3.5 bits for all four relevant conditions [3]).

Salient features of the measured movement profiles include

• B and C1: the symmetrical bell-shaped velocity profiles.

The force profiles are symmetrical in magnitude for B,

but asymmetrical for C1, since the damper helps with

slowing down.

• C2: the velocity profile is slightly asymmetrical with

a longer stretched tail in the deceleration phase. The

relative moment in time of peak velocity is earlier,

compared to B and C1. Furthermore, there is no need

for the subjects to apply a deceleration force.

• C3: the velocity profile is asymmetrical, with a ‘sharp
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(a) Recorded position, velocity and force profiles of subject 7.
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(b) Recorded position, velocity and force profiles of subject 14.
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(c) Recorded position, velocity and force profiles of subject 18.

Fig. 2: Recorded movement and force profiles of subjects 7, 14 and 18, reproduced from [3]. The solid curves show the mean of the movements after
learning. The shaded area shows ±1 standard deviation. The legend in the top-center subfigure applies to all subfigures.
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Fig. 3: Simulated mean movement profiles for the three damping condition and baseline. a) Position profiles, b) velocity profiles, and c) force profiles
produced by the iLQG method and the non-linear dynamical model. Dwell time starts at: 0.55 s for B, 0.525 s for C1, 0.475 s for C2 and at 0.425 s for
C3, indicated with a colored dashed line. Notice the same asymmetry in the velocity profiles for C2 (longer right tail) and C3 (sharp drop-off on the right)
as is visible in the experimental data in Fig. 2. The legend in b) applies to all subfigures.
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Fig. 4: Numerical results of the end-point standard deviation versus movement time. a–c) Different multiplicative noise scaling factors σu: the standard
deviation in reached end-point position taken from 40 movement repetitions of the iLQG method and the non-linear dynamical model at the end of the
dwell period, for different MT. The legend in c) applies to all subfigures.

bend’ near the peak velocity with fast deceleration. The

relative moment in time of peak velocity is later, close

to the onset of the damping. The force profiles are

asymmetrical in magnitude since the damper helps in

slowing down.

Fig. 3 shows the simulated mean movement profiles for

the linear and non-linear models. The salient features visible

in the experimental data can be seen in the simulation results:

the asymmetry in force profile magnitude and the asymmetry

in velocity bell-shapes for C2 and C3. Asymmetry in the

force value might be thought of as the optimal controller

exploiting useful effects and complementing opposing effects

of the damper force. Velocity and force profile asymmetry in

timing (i.e. skewing) is a result of an optimization process.

These results hints at the fact that reaching movements

subjected to time-varying damping can be well explained and

predicted by optimization methods such as optimal control.

It shows that humans re-optimize their movement plan for

the different dynamical conditions [24].

B. Influence of Noise Variance

1) Multiplicative Noise and Fitts’ Law: The non-linear

dynamical model was run with activation-dependent noise

with three different noise standard deviation scaling values

σu = 0.0001, 0.001 and 0.01 in (2). The movement time

was varied from 0.3 to 1.0 s with added dwell time of 0.5 s.

The model was run 40 times to get a measure of end-point

accuracy calculated by the standard deviation in reaching

position.

The numerical results of these models for the three σu
values, three damping conditions and baseline are shown

in Fig. 4. For all simulations, end-point position standard

deviation decreases (i.e. accuracy increases) with increasing

movement time. Also, all damping conditions increase the

model’s end-point accuracy compared to the baseline. This

might explain the reduced MT for conditions C1, C2 and

C3 observed in the experiment. To achieve similar reaching

accuracy for e.g. C1 as in B, we notice that this movement

can be performed with less MT. This relative trend between

conditions is true for all values of σu.

Notable is the minimum in variance for the C3 condition

for an MT around 0.6–0.8 s, after which it increases. We

cannot say with certainty whether minimal variance would

actually be achieved in real reaching tasks for those specific

MTs. Possibly, demanding a slow movement (> 0.8 s)

through an increasing damping field (i.e. C3) might require

more neural activation for a longer time, which in turn

actually reduces end-point accuracy.

2) Additive Noise versus Multiplicative Noise: To investi-

gate the relative effect of multiplicative and additive noise on

end-point variability, the LQG model was run for conditions

B and C1 with either a) multiplicative motor noise (σu = 0.3),

or b) a combination of additive observation noise and process

noise (σω = 5 N, σν = [0.025 m,0.1 m/s,6.5 N, 0, 0]T ). The

parameter values were chosen to show similar movement

variance visually, as the observed variance during movements
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(no-damping baseline) and C1 (constant damping). The additive process
and measurement noise (subscript ‘A’ for additive, dashed lines) in the
LQG model shows that for larger MT the end-point variance increases.
This is different from neural activation dependent noise (subscript ‘M’ for
multiplicative, solid line). Damping forces filter contributions of all noise
sources. The model results were averaged over 10,000 movement repetitions.

used to produce Fig. 4. The MT of the reaching movement

was varied from 0.3 to 1.0 s with added dwell time of 0.5 s.

The model was run 10,000 times to calculate the end-point

accuracy.

The end-point variance increases with MT for additive

noise, as is shown in Fig. 5. This trend is in contrast to the

trend for dynamics with multiplicative motor noise alone.

It would imply that taking a longer MT would result in less

accurate movements. This is neither in accordance with Fitts’

Law, nor with observation. Therefore, a model with large

additive noise cannot be a model that describes the variance

of our reaching dynamics. Nevertheless, some amount of

additive noise is unavoidable in the human’s motor system.

Adding damping forces reduces end-point variance for both

the multiplicative noise (this is a reconfirmation of the results

for B and C1 in Fig. 4) as well as for additive noise.

IV. DISCUSSION AND FUTURE WORK

The aim of this work was to give qualitative evidence that

dissipative damping reduces end-point variance by allowing

more motor activation and subsequently reducing movement

time during reaching tasks [3]. This knowledge is useful for

developing controllers that modulate damping forces gen-

erated by devices during physical human-robot interaction

and cooperation. The shown model results might allow for

the design of the optimal position dependent ‘shape’ of the

damping coefficient. In that case the optimality criterion

might be dependent on both preferred MT and subjective

preference, i.e. smoothness and maximum effort, of the user.

Through a model-based analysis and comparison to em-

pirical data [3], we investigated how additive and signal-

dependent motor noise influence reaching behavior, end-

point variance and movement time. The model simula-

tions show that end-point accuracy increases with increasing

movement time, according to Fitts’ Law. Analyzing the

effects of additive and signal-dependent noise showed that

signal-dependent motor noise can explain the increase in

reaching accuracy, whereas additive noise does not.

Performing optimally controlled movements with the same

cost function and same MT shows reaching kinematics with

smaller end-point variance in conditions C1, C2 and C3. This

corroborates results we presented in [3]. Salient features of

movement and force profiles of the models are highly similar

to experimental data. This suggests that the models used,

and therefore also their response to noise, are an indicator

of why subjects managed to reduce their reaching time.

Damping force gives subjects the possibility to increase their

neural activation and move faster, because it allows them to

guarantee a certain targeting variance.

The experimental results, and model results agree with

the hypothesis in [11] that the use of friction or damping, in

general, shows a noise filtering behavior. Our used models

give insight into how this filtering effect happens. The results

and model agree with our hypothesis that MT can be reduced

because subjects exploit the variance-reducing effect of the

damping force, because the task instruction was to reach the

target as quickly as possible.

Another way to think about the benefit of constant damp-

ing, or PDD, is that it acts as an antagonist muscle whose

activation is noise-free and does not contribute to increasing

the end-point variance. If this virtual antagonist muscle is

‘tuned properly’ to activate during a required deceleration or

targeting phase, it benefits the subject.

Somewhat in line with the previous statement, the decrease

in MT for the damping conditions could be ascribed to

implicit role distribution of the subject with the damping

field. We suggest the possibility that the subject considered

the damping field as another ‘agent’ which aided the subject

in the reaching movement by assisting in the deceleration

phase of the movement. Reed et al. [29] showed that two

human partners working together on a target acquisition task

performed the task faster than individuals performing the

same task alone. Through the recorded interaction forces,

they observed specialization, in which one partner acceler-

ated and the other partner decelerated the movement. The

specialization was hypothesized to be the cause of the faster

reaching movement [29].

To investigate this hypothesis in future experiments, artifi-

cial multiplicative force noise could be added to the damping

force, i.e. noise that scales with the velocity of movement.

According to our hypothesis, this should in turn increase

MT. If this does not happen it might be more indicative

of benefits of human-human role distribution. Although this

does not explain why this role distribution, with two agents

that are both influenced by their own multiplicative motor

noise, would result in a shorter MT.

The used optimal control reaching models have their

limitations. For physical reaching movements, the MT is an

outcome metric of the performed actions. However, in the

model, the MT is a predefined parameter. A similar issue

is raised in [30] where they ascribe slower movements of

Parkinson’s disease patients to higher cost on energy. The

high cost on energy would henceforth increase MT. However,

a model with fixed MT does not show this behavior with

different cost on energy expenditure.
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This problem can be overcome by adding a non-zero state-

dependent cost during the reaching movement before the

dwell period. However, this would put more cost on being

far away from the target, and less cost on being close. This is

different from the more reasonable idea of only inducing cost

when not ending up at the target. Also, state dependent cost

during reaching results in asymmetrical velocity and force

profiles that are not observed in free-air human reaching.

However, cost during a dwell period or at terminal time does

resemble human reaching kinematics very well.

The results of both the experiment and the model are

also limited in that they cannot be extrapolated to arbitrary

movement masses and arbitrary damping force magnitude. A

more realistic muscle model with force saturation would be

an extension to identify how humans would re-optimize their

reaching strategy for interacting with such heavy mechanical

mass or high damping force that they require peak voluntary

muscle contraction.

The currently performed experiment was set up mainly

to determine how subjects’ MT would change for all the

damping conditions compared to a no damping condition.

The used protocol was not ideal to extract the information to

explain the applied strategies with optimal control. There was

no comparable measure of end-point accuracy to compare to

the model results.

A Fitts’ like reaching experiment that demands subjects to

dwell in the target introduces more variance in MT than in

tapping tasks [3]. A dwell time measurement also eliminates

a proper measure of end-point variance. In future research, a

more typical two-way tapping task or button-press task, but

with high mass, might serve two useful purposes: 1) giving

a proper measure of end-point variance and 2) give a better

fit to Fitts’ law.

Future research might focus more on single distance reach-

ing with e.g. only two target sizes to remove any variance due

to target distance and target size. All non-baseline conditions

could have constant damping, with smaller steps in value

between conditions. This might give more insight in how

subjects re-optimize their movement, and (with a better cost

on state, or terminal state) how it can be explained with

a relative reweighting between targeting error and energy

expenditure.
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