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(PARAMETRIZED) FIRST ORDER TRANSPORT EQUATIONS:
REALIZATION OF OPTIMALLY STABLE PETROV--GALERKIN

METHODS∗
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Abstract. We consider ultraweak variational formulations for (parametrized) linear first order
transport equations in time and/or space. Computationally feasible pairs of optimally stable trial
and test spaces are presented, starting with a suitable test space and defining an optimal trial space
by the application of the adjoint operator. As a result, the inf-sup constant is one in the continuous
as well as in the discrete case and the computational realization is therefore easy. In particular,
regarding the latter, we avoid a stabilization loop within the greedy algorithm when constructing
reduced models within the framework of reduced basis methods. Several numerical experiments
demonstrate the good performance of the new method.
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1. Introduction. Transport phenomena are omnipresent in several areas of sci-
ence and technology such as cell movement [19], for instance, in brain tumors [13].
Even though there is a vast literature on the corresponding partial differential equa-
tions (PDEs), there is still significant need for research, in particular concerning ef-
ficient and robust numerical solvers. Even fewer results are known for parametrized
PDEs when one wishes to compute the solution either for many different parameters
(many-query) or in real-time. Of course, in the simplest case of first order linear
transport problems with constant coefficients, there are even closed formulas for the
solution using the method of characteristics. This, however, already changes when
allowing for variable advection and/or reaction coefficients, which we encounter, for
instance, in mesoscopic formulations of Glioma spreading models [13]. Such a model
contains patient-specific data as parameters. To use this problem for individual can-
cer treatment planning it has to be solved numerically reasonably quickly for given
parameter values. This is the background for why, in this paper, as a first step, we
are concerned with the simplified model problem of (parametrized) time-dependent
linear first order transport:

(1.1) \.u\mu (t, x) + b⃗\mu (t, x) ⋅ ∇u\mu (t, x) + c\mu (t, x)u\mu (t, x) = f\mu (t, x)
for all parameters \mu in a compact set \scrP ⊂ \BbbR p, for all times t ∈ (0, T ) (T > 0 being some
final time) and all x ∈ D ⊂ \BbbR d accompanied with appropriate initial and boundary
conditions.
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(PARAMETRIZED) FIRST ORDER TRANSPORT EQUATIONS A593

It is well known that the above pointwise formulation of (1.1) does not make
sense for several realistic cases of coefficients, initial and/or boundary conditions, the
geometry of D, etc. In fact, often it is known that continuous solutions of (1.1) do
not exist; appropriate variational formulations are a possible way out.

Recalling d'Alembert's solution formula for the linear transport equation [9], it is
well known that the solution ``inherits"" the (lack of) regularity of the initial condition,
which means, for instance, that the solution stays in L2(D) if the initial condition
is only in L2(D) (and not more). This motivates us to consider an ultraweak space-
time formulation with \scrX = L2(I;L2(D)) ≅ L2(I ×D) as a trial space. It then remains
to determine a test space \scrY such that the arising variational problem is well-posed.
Besides existence and uniqueness of the solution, the stability is of particular interest
for numerical purposes. In the optimal case the stability constant is unity, which
means that error and residual coincide and at the same time the approximation is the
best one from the chosen trial space. This is highly relevant for error estimation in
adaptive methods and reduced order models.

Such optimally stable ultraweak variational formulations for first order transport
equations have been proposed, for instance, in [6, 7, 10, 11]. The optimal relation
between trial and test spaces is thus known. For numerical purposes, however, this
relation is not easy to deal with. In fact, given a finite-dimensional approximation
trial space \scrX \delta ⊂ \scrX , where \delta is some discretization parameter such as the mesh size,
the numerical construction of the optimal test space \scrY \delta amounts to solving the PDE
dim(\scrX \delta ) times, which is in general infeasible. Therefore, in [4, 6, 10, 11, 28] a discon-
tinuous Petrov--Galerkin (DPG) approximation with a (possibly suboptimal) broken
test space is suggested so that the approximation of the optimal test basis functions
reduces to the solution of local problems. In [7], a global approximate test space
\scrY \delta ⊊ \scrZ \delta ⊂ \scrY is constructed by using an appropriate so-called test search space \scrZ \delta 

similar to [11]. Finally, the authors of [12] employ a discontinuous Galerkin approxi-
mation in space and a conforming Petrov--Galerkin approximation in time resulting in
a suboptimal inf-sup constant, in particular with respect to (w.r.t.) time [12, Lemmas
1 and 3].

In this article we propose first choosing an appropriate test space \scrY \delta and sub-
sequently computing the corresponding trial space \scrX \delta . Doing so, the optimal trial
space \scrX \delta arises from the application of the differential operator on the basis func-
tions of \scrY \delta rather than by approximately solving (local) PDEs. If the test space is
chosen, for instance, as a standard finite element (FE) space, the application of the
differential operator is straightforward and by far more efficient than computing ap-
proximate test functions. Moreover, the approach is (very) easy to implement. In
contrast to the approaches mentioned above, we obtain an optimally stable scheme,
meaning inf-sup and continuity constants of unity also for variable coefficients. In
particular, the inf-sup constant does not depend on \delta . We also prove convergence
for our scheme as \delta → 0 but do not derive convergence rates in \delta . Instead, we in-
vestigate the achieved rates numerically, obtaining convergence rates similar to the
ansatz proposed in [7]. We also believe that our approach relatively easily might be
generalizable to more complex problems. Finally, we note that first choosing the test
space and subsequently constructing the associated optimal trial space was already
suggested in [6, Theorem 2.10] for the DPG method but was not further pursued in
the remainder of the respective article. Moreover, the same approach is investigated
in parallel for the wave equation in [15].

Generalizing and applying our proposed approach to parametrized PDEs offers
additional advantages. To realize the generalization we make use of the reduced
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A594 JULIA BRUNKEN, KATHRIN SMETANA, AND KARSTEN URBAN

basis (RB) method (see, for instance, [16, 18, 22] and references therein), which is
today a well-known and accepted efficient numerical method for solving parametrized
PDEs in a many-query and/or real-time context. For instance, we employ a greedy
algorithm for the construction of reduced test and trial spaces. Here, by applying the
now parameter-dependent operator to the reduced test space in order to construct
the then also parameter-dependent reduced trial space, we obtain an optimally stable
reduced scheme. In contrast, the approaches proposed in [8, 27] yield a suboptimal
inf-sup constant. Moreover, we avoid an additional stabilization loop during the
greedy algorithm as proposed in [8] or the construction of a parameter-dependent
preconditioner as suggested in [27] for the approximation of the optimal test space.
Not least because of that, our proposed ansatz allows (especially in the parametric
context) for a (very) easy implementation. However, in contrast to [8, 27], until
now, we were not able to prove the convergence of the greedy algorithm proposed in
this paper. Note also that the RB approximation is no longer a linear combination of
snapshots, but a linear combination of parameter-dependent applications of operators.
Nevertheless the reproduction of snapshots is maintained. We finally note that our
approach does not aim at obtaining an approximation that converges faster than the
Kolmogorov n-width.

The remainder of this paper is organized as follows: In section 2 we present
an optimally stable ultraweak variational formulation of first order linear transport
equations, covering both time-independent and time-dependent operators. Section 3
is devoted to the finite-dimensional, discrete case where we introduce an optimally
stable Petrov--Galerkin method. Parametrized transport problems are considered in
section 4 within the framework of the RB method. We describe the fairly easy compu-
tational realization of the new approach in section 5 and report on several numerical
experiments in section 6. Finally, we end with some conclusions in section 7.

2. An optimally stable ultraweak (space-time) formulation. In this sec-
tion we present an ideally conditioned variational framework for linear first order
transport equations using results from [7] and [1, 2]. To that end, let \Omega ⊂ \BbbR n, n ≥ 1,
be a bounded polyhedral domain with Lipschitz boundary, where we note that \Omega 
may also be a space-time domain, as will be shown in Example 2.6 at the end of this
section. Moreover, n⃗ shall denote the outward normal of \Gamma ∶= \partial \Omega . Next, we introduce
the advection field b⃗(⋅) ∈ C1(\=\Omega )n and the reaction coefficient c(⋅) ∈ C0(\=\Omega ), noting that
for some statements the regularity assumption on b⃗(⋅) may be relaxed. We assume
throughout this paper that

c(z) − 1
2
∇ ⋅ b⃗(z) ≥ 0 for z ∈ \Omega almost everywhere.

Then, we consider the first order transport equation

(2.1)
B○u(z) ∶= b⃗(z) ⋅ ∇u(z) + c(z)u(z) = f○(z), z ∈ \Omega ,
u(z) = g(z), z ∈ \Gamma − ≡ \Gamma inflow,

where f○ ∈ C0(\=\Omega ), g ∈ C0(\Gamma −), and \Gamma ± ∶= {z ∈ \partial \Omega ∶ b⃗(z) ⋅ n⃗(z) ≷ 0}.
For functions v,w ∈ C0(\=\Omega ) ∩C1(\Omega ) we obtain

(B○v,w)L2(\Omega ) = (v,B∗

○
w)L2(\Omega ) + ∫

\Gamma −
vw(b⃗ ⋅ n⃗)ds + ∫

\Gamma +
vw(b⃗ ⋅ n⃗)ds,

where B∗

○
w = −b⃗ ⋅ ∇w +w(c −∇ ⋅ b⃗) denotes the formal adjoint of B○.

1 To account for

1Considering (2.1) with g(z) ≡ 0 and thus homogeneous Dirichlet boundary conditions, we define
the formal adjoint B∗○ of B○ by (B○v,w)L2(\Omega ) = (v,B

∗○w)L2(\Omega ) for all v,w ∈ C∞
0 (\Omega ).
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(PARAMETRIZED) FIRST ORDER TRANSPORT EQUATIONS A595

the nonhomogeneous boundary conditions, we introduce as in [7] the spaces C1
\Gamma ±
(\Omega ) ∶=

{v ∈ C0(\=\Omega ) ∩C1(\Omega ) ∶ v\bigcup \Gamma ± = 0} and obtain

(B○v,w)L2(\Omega ) = (v,B∗

○
w)L2(\Omega ), v ∈ C1

\Gamma −(\Omega ),w ∈ C1
\Gamma +(\Omega ).

Thus, we may define the domain of B∗

○
as dom(B∗

○
) = C1

\Gamma +
(\Omega ). For the derivation of

a stable variational formulation we require as in [7] the following two assumptions.

Assumption 2.1. We assume that the following conditions hold:
(B1) There exists a dense subspace dom(B∗

○
) ⊆ L2(\Omega ) on which B∗

○
is injective.

(B2) The range ran(B∗

○
) ∶= {B∗

○
v ∶ v ∈ dom(B∗

○
)} of B∗

○
is densely embedded in

L2(\Omega ).
We now give examples for conditions on the coefficient functions b⃗ and c such that

Assumption 2.1 holds true.2

Proposition 2.2. Let one of the following two conditions hold:
(i) The flow associated with b⃗ is \Omega -filling, meaning that its trajectories starting

from the inflow boundary do fill \=\Omega except perhaps for a set of measure zero
in a finite bounded time T (see [1, 2]).3

(ii) There exists \kappa > 0 with c − 1
2
∇ ⋅ b⃗ ≥ \kappa in \Omega (see [7, Remark 2.2(ii)]).

Then, the operator B∗

○
satisfies (B1) and (B2). Moreover, we have the curved

Poincar\'e inequality

(2.2) \prod v\prod L2(\Omega ) ≤ C\prod B∗

○
v\prod L2(\Omega ), v ∈ C1

\Gamma +(\Omega ).

In case of condition (i) the constant is C = 2T ; in case (ii) C = 1
\kappa 
.

Proof. See Appendix A.

The following proposition gives a sufficient condition for b⃗ to have an \Omega -filling
flow.

Proposition 2.3 (see [1, Prop. 7]). If b⃗ ∈ C1(\=\Omega )n is bounded as well as its
gradient in a neighborhood V of \=\Omega , if there are a unit vector k⃗, a number \alpha > 0 such
that

(2.3) b⃗(x) ⋅ k⃗ ≥ \alpha ∀x ∈ \=\Omega ,

and if \Omega is bounded in the k⃗ direction, then the flow is \Omega -filling.

We may now define as in [7]

\prod v\prod ∗ ∶= \prod B∗

○
v\prod L2(\Omega )

and note that due to (B1) \prod ⋅\prod ∗ is a norm on dom(B∗

○
). With this framework at hand,

we can define as in [7] the test space by

\scrY ∶= clos\prod ⋅\prod ∗{dom(B∗

○
)},

which is a Hilbert space with inner product (v,w)\scrY ∶= (B∗v,B∗w)L2(\Omega ) and induced
norm \prod v\prod \scrY ∶= \prod v\prod ∗, v,w ∈ \scrY . Here, B∗ ∶ \scrY → L2(\Omega ) denotes the continuous extension

2We reuse condition (ii) of the corresponding Remark 2.2 in [7]. However, as can be seen from the
counterexamples in section SM1, Remark 2.2(i) in [7] is in general not sufficient for well-posedness.
Therefore, we develop an alternative condition based on [1, 2].

3For a more formal definition see Definition A.1.
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A596 JULIA BRUNKEN, KATHRIN SMETANA, AND KARSTEN URBAN

of B∗

○
from dom(B∗

○
) to \scrY . Then, we can define B ∶ L2(\Omega )→ \scrY ′ again by duality, i.e.,

B ∶= (B∗)∗. The variational formulation of (2.1) may then be based upon the bilinear
form

(2.4) b ∶ L2(\Omega )×\scrY → \BbbR , b(v,w) ∶= (v,B∗w)L2(\Omega ) = ∫
\Omega 
v(−b⃗ ⋅∇w+w(c−∇⋅ b⃗))dx.

To incorporate the boundary conditions, we introduce as in [7] the weighted L2-space
L2(\Gamma −, \bigcup b ⋅ n⃗\bigcup ) with norm \prod w\prod L2(\Gamma −,\bigcup b⃗⋅n⃗\bigcup )

∶= (∫\Gamma − \bigcup w\bigcup 
2\bigcup b ⋅ n⃗\bigcup ds)1\Uparrow 2 and show that functions

in \scrY have a trace in L2(\Gamma −, \bigcup b ⋅ n⃗\bigcup ).4

Proposition 2.4. Assume that one of the two conditions of Proposition 2.2 holds.
Then, there exists a linear continuous mapping

\gamma − ∶ \scrY → L2(\Gamma −, \bigcup b ⋅ n⃗\bigcup ),

such that

(2.5) \prod \gamma −(v)\prod L2(\Gamma −,\bigcup b⃗⋅n⃗\bigcup )
≤ Ctr\prod v\prod \scrY , v ∈ \scrY .

The constant is Ctr =
\biggr\rfloor 
4T , or Ctr =

\biggr\rfloor 
2\kappa −1, respectively.

Proof. Integration by parts yields (see also (A.4))

(B∗

○
v, v)L2(\Omega ) = ∫

\Omega 
v2(c − 1

2
∇ ⋅ b)dx − 1

2 ∫
\Gamma −
v2b⃗ ⋅ n⃗ds.

By using the general assumption c− 1
2
∇⋅b⃗ ≥ 0 and b⃗⋅n⃗ < 0 on \Gamma −, we have for v ∈ C1

\Gamma +
(\Omega )

(2.6) ∫
\Gamma −
v2\bigcup b ⋅ n⃗\bigcup ds ≤ 2\bigcup (B∗

○
v, v)\bigcup ≤ 2\prod v\prod L2(\Omega )\prod v\prod \scrY ≤ 2C\prod v\prod 2

\scrY 
,

where we have used (2.2) in the last estimate. The assertion for v ∈ \scrY follows by
density.

Next, we define for any f○ ∈ L2(\Omega ) and g ∈ L2(\Gamma −, \bigcup b ⋅ n⃗\bigcup ) a linear form f ∈ \scrY ′ as

(2.7) f(v) ∶= (f○, v)L2(\Omega ) + ∫
\Gamma −
g\gamma −(v)\bigcup b ⋅ n⃗\bigcup ds.

Then, we obtain the well-posedness of the variational formulation.

Theorem 2.5 (see [7, Thm. 2.4]). Assume that one of the two conditions in
Proposition 2.2 is valid and b and f are defined as in (2.4) and (2.7), respectively.
Then, there exists a unique u ∈ L2(\Omega ) such that

(2.8) b(u, v) = f(v) ∀v ∈ \scrY ,

and the stability estimate \prod u\prod L2(\Omega ) ≤ \prod f\prod \scrY ′ holds. Moreover,

sup
w∈L2(\Omega )

sup
v∈\scrY 

b(w, v)
\prod w\prod L2(\Omega )\prod v\prod \scrY 

= inf
w∈L2(\Omega )

sup
v∈\scrY 

b(w, v)
\prod w\prod L2(\Omega )\prod v\prod \scrY 

= 1,

i.e., inf-sup and continuity constants are unity and, equivalently,

\prod B\prod \scrL (L2(\Omega ),\scrY ′) = \prod B∗\prod \scrL (\scrY ,L2(\Omega )) = \prod B−1\prod \scrL (\scrY ′,L2(\Omega )) = \prod B−∗\prod \scrL (L2(\Omega ),\scrY ) = 1,

where B−∗ ∶= (B∗)−1 = (B−1)∗ ∶ L2(\Omega )→ \scrY .
4Note that, due to a wrong estimate, the constant given in the corresponding result [7, Prop. 2.3]

is generally not true. We therefore give a modified proof using (2.2) for the estimate in question.
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Proof. The proof follows the lines of the proof of [7, Thm. 2.4] invoking Proposi-
tion 2.4 instead of [7, Prop. 2.3].

Example 2.6 (time-dependent linear transport equations). The setting described
in the beginning of this section includes both time-independent and time-dependent
linear first order transport problems: As remarked in [7], we can consider time as
an additional transport direction in the space-time domain, i.e., z = (t, x) ∈ \Omega ∶=
(0, T ) × D = I × D, n = 1 + d, where D ⊂ \BbbR d denotes the spatial domain. Next,
we define the space-time transport direction b⃗ ∶= (1, b⃗x)T ∈ C1(I ×D)1+d, where b⃗x
denotes the spatial advective field. Moreover, we introduce the space-time gradient
operator as ∇ ∶= (\partial \Uparrow \partial t,∇x)T , where ∇x is the gradient on the spatial domain D.
Accordingly, we set \Gamma ± ∶= {(t, x) ∈ \Gamma ∶ b⃗(t, x) ⋅ n⃗(t, x) ≷ 0}, where n⃗(t, x) is again the
outward normal of \Gamma . Then, we obtain exactly the form (1.1), namely

B○u ∶= b⃗ ⋅ ∇u + cu = f in \Omega , u = g on \Gamma −.

For the space-time boundary, we have \Gamma = \Gamma in ⊍ \Gamma out ⊍ \Gamma D, where \Gamma in ∶= {0}×D, \Gamma out ∶=
{T}×D, \Gamma D ∶= I × \partial D, along with its corresponding outward normals n⃗in ∶= (−1,0)T ,
n⃗out ∶= (1,0)T , and n⃗D ∶= (0, n⃗x)T , where n⃗x denotes the spatial outward normal (of
D). Hence, b⃗ ⋅ n⃗in = −1, b⃗ ⋅ n⃗out = 1, and b⃗ ⋅ n⃗D = b⃗x ⋅ n⃗x, so that \Gamma − = \Gamma in ⊍ \Gamma D−

, where
\Gamma D±

= I × \partial D± and \partial D± ∶= {x ∈ \partial D ∶ b⃗x(x) ⋅ n⃗x(x) ≷ 0}. We emphasize that also
nonhomogeneous initial values are thus prescribed in an essential manner. Note that,
for the time-dependent case, condition (i) of Proposition 2.2 is always fulfilled, which
can be seen by taking k⃗ = (1, 0⃗) in Proposition 2.3, since k⃗ ⋅ b⃗ ≡ 1 (cf. [1]). As an
alternative to this realization of a space-time formulation, one could also treat spatial
and temporal variables separately. Such a strong in time variational formulation,
however, results in a suboptimal inf-sup constant; for details see section SM2.

3. An optimally stable Petrov--Galerkin method. In this section we intro-
duce computationally feasible and optimally stable (conforming) finite-dimensional
trial and test spaces \scrX \delta ⊂ \scrX = L2(\Omega ) and \scrY \delta ⊂ \scrY for the approximation of the so-
lution of (2.8). Here, we denote by \delta a discretization parameter, where \delta equals the
mesh size h for spatial problems and \delta = (\Delta t, h) for time-dependent problems in space
and time with a time step \Delta t.5 Then, the discrete counterpart of (2.8) reads

(3.1) u\delta ∈ \scrX \delta ∶ b(u\delta , v\delta ) = f(v\delta ) ∀v\delta ∈ \scrY \delta .

This latter equation admits a unique solution u\delta ∈ \scrX \delta provided that

\gamma \delta ∶= sup
w\delta ∈\scrX \delta 

sup
v\delta ∈\scrY \delta 

b(w\delta , v\delta )
\prod w\delta \prod L2(\Omega ) \prod v\delta \prod \scrY 

<∞, \beta \delta ∶= inf
w\delta ∈\scrX \delta 

sup
v\delta ∈\scrY \delta 

b(w\delta , v\delta )
\prod w\delta \prod L2(\Omega ) \prod v\delta \prod \scrY 

>0,(3.2)

where we additionally require the existence of \beta and \gamma such that

\gamma \delta ≤ \gamma <∞, \beta \delta ≥ \beta > 0 ∀ \delta > 0.

These constants for continuity \gamma \delta and stability (or inf-sup) \beta \delta also play a key role for
the relation of the error e\delta ∶= u − u\delta and the residual r\delta ∈ \scrY ′ defined as

r\delta (w) ∶= f(w) − b(u\delta ,w) = b(e\delta ,w), w ∈ \scrY ,

5If we use a tensor product discretization in space, \delta may also take the form \delta = (h1, . . . , hd) or
\delta = (\Delta t, h1, . . . , hd), respectively.
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as can be seen by the standard lines

\beta \prod e\delta \prod L2(\Omega ) ≤ sup
w∈\scrY 

b(e\delta ,w)
\prod w\prod \scrY 

= sup
w∈\scrY 

r\delta (w)
\prod w\prod \scrY 

= \prod r\delta \prod \scrY ′ ≤ \gamma sup
w∈\scrY 

\prod e\delta \prod L2(\Omega ) \prod w\prod \scrY 
\prod w\prod \scrY 

= \gamma \prod e\delta \prod L2(\Omega ).

In the optimal case, i.e., \beta = \gamma = 1, error and residual coincide, i.e., \prod e\delta \prod L2(\Omega ) = \prod r\delta \prod \scrY ′ .
Moreover, we have the following C\'ea-type lemma [26]:

\prod e\delta \prod L2(\Omega ) = \prod u − u\delta \prod L2(\Omega ) ≤
\gamma 

\beta 
inf

v\delta ∈\scrX \delta 
\prod u − v\delta \prod L2(\Omega ) =

\gamma 

\beta 
\sigma L2(\Omega )(u;\scrX \delta ),

where \sigma L2(\Omega )(u;\scrX \delta ) ∶= infv\delta ∈\scrX \delta \prod u − v\delta \prod L2(\Omega ) denotes the error of the best approxi-

mation to an element u ∈ L2(\Omega ) in \scrX \delta w.r.t. the L2(\Omega )-norm. Since u\delta ∈ \scrX \delta , it is
trivially seen that \sigma \scrX (u;\scrX \delta ) ≤ \prod u − u\delta \prod L2(\Omega ) = \prod e\delta \prod L2(\Omega ), so that in the optimal case
\beta = \gamma = 1 it holds that

(3.3) \prod r\delta \prod \scrY ′ = \prod e\delta \prod L2(\Omega ) = \sigma L2(\Omega )(u;\scrX \delta ),

i.e., the numerical approximation is the best approximation.

3.1. An optimally conditioned Petrov--Galerkin method. To realize an
optimally conditioned and thus optimally stable Petrov--Galerkin method, which is
also computationally feasible, we suggest in this paper to first choose a conformal
finite-dimensional test space \scrY \delta ⊂ \scrY and then to set

(3.4) \scrX \delta ∶= B∗(\scrY \delta ) ⊂ L2(\Omega ).

For this pair of trial and test spaces we then obtain for every w\delta ∈ \scrX \delta that

(3.5) sup
v\delta ∈\scrY \delta 

b(w\delta , v\delta )
\prod w\delta \prod L2(\Omega )\prod v\delta \prod \scrY 

= b(w\delta ,B−∗w\delta )
\prod w\delta \prod L2(\Omega )\prod B−∗w\delta \prod \scrY 

=
(w\delta ,B∗B−∗w\delta )L2(\Omega )

\prod w\delta \prod L2(\Omega )\prod B∗B−∗w\delta \prod L2(\Omega )

≡ 1.

Here, we have exploited the fact that for all w\delta ∈ \scrX \delta for the supremizer s\delta w\delta ∈ \scrY \delta ,

defined as the solution of (s\delta w\delta , v
\delta )\scrY = b(w\delta , v\delta ) for all v\delta ∈ \scrY \delta , we have s\delta w\delta = B−∗w\delta 

as B∗ is boundedly invertible. From (3.5) we may thus conclude that indeed

(3.6) \beta \delta = \gamma \delta = 1

and the proposed method is optimally stable. We note that the same approach is
investigated in parallel for the wave equation in [15].

Moreover, we emphasize that the suggested approach is computationally feasible
since B∗ is a differential operator which can easily be applied---as long as the test
space is formed by ``easy""functions such as splines as in the case of FEs. Additionally,
for our choice of test and trial space we may reformulate the discrete problem (3.1)
as follows: Thanks to the definition of the trial space \scrX \delta in (3.4), there exists for
all v\delta ∈ \scrX \delta a unique w\delta ∈ \scrY \delta such that v\delta = B∗w\delta . Therefore, the problem (3.1) is
equivalent to the problem

(3.7) w\delta ∈ \scrY \delta ∶ a(w\delta , v\delta ) ∶= (B∗w\delta ,B∗v\delta )L2(\Omega ) = f(v\delta ) ∀v\delta ∈ \scrY \delta ,

which obviously is a symmetric and coercive problem, the normal equations, or a least-
squares problem. Thus, problem (3.7) is well-posed, and we identify the solution of
(3.1) as u\delta ∶= B∗w\delta . This reformulation will also be used for the implementation of

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

30
.8

9.
46

.4
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

(PARAMETRIZED) FIRST ORDER TRANSPORT EQUATIONS A599

the framework. From (3.7) we see that for the setup of the linear system for w\delta the
precise knowledge of the basis of \scrX \delta = B∗\scrY \delta is not needed; it is needed only for the
pointwise evaluation of u\delta when, e.g., visualizing the solution. For further details on
the computational realization we refer the reader to section 5.

Thanks to (3.6), we are, moreover, in the optimal case described in the beginning
of this section, and the numerical approximation u\delta ∈ \scrX \delta is thus the best approxima-
tion of u ∈ L2(\Omega ) for our suggested choice of trial and test space. Hence, we obtain
\prod e\delta \prod L2(\Omega ) = \sigma L2(u,\scrX \delta ) = \prod r\delta \prod \scrY ′ . Due to (3.4) we have that for any w\delta ∈ \scrX \delta there

exists a unique v\delta ∈ \scrY \delta with B∗v\delta = w\delta . In view of (B1) in Assumption 2.1, there also
exists a unique v ∈ \scrY such that B∗v = u, namely v∗ = B−∗u. Therefore,

\prod e\delta \prod L2(\Omega ) = \sigma L2(u,\scrX \delta ) = inf
w\delta ∈\scrX \delta 

\prod u −w\delta \prod L2(\Omega ) = inf
v\delta ∈\scrY \delta 

\prod B∗v −B∗v\delta \prod L2(\Omega )

(3.8)
= inf

v\delta ∈\scrY \delta 
\prod v − v\delta \prod \scrY = \sigma \scrY (B−∗u,\scrY \delta ).

We may thus also infer from (3.8) the (strong) convergence of the approximation u\delta 

to u in L2(\Omega ) provided that infv\delta ∈\scrY \delta \prod v − v\delta \prod \scrY converges to 0 as \delta → 0. Note that
the latter can be ensured by choosing an appropriate test space \scrY \delta , such as, say, a
standard FE space.

We finally remark that in standard FE methods the error analysis is usually
done in two steps: (1) relation of the error to the best approximation by a C\'ea-type
lemma; (2) proving an asymptotic rate of convergence, e.g., by using a Cl\'ement-type
interpolation operator. As seen above, (1) also holds for our new trial spaces---in a
nonstandard norm, however. Regarding the second step (2), there is hope that it
may be possible to derive convergence rates via the term infv\delta ∈\scrY \delta \prod v−v\delta \prod \scrY (see (3.8))
and mapping properties of the operator B. This is, however, beyond the scope of the
present paper and will be the subject of future work. Here, we will hence investigate
the rate of convergence in numerical experiments in section 6.

Example 3.1 (illustration of trial space). We illustrate the trial space \scrX \delta as de-
fined in (3.4) for a very simple, one-dimensional problem. In detail, we consider
\Omega ∶= (0,1), a constant transport term b > 0, and a variable reaction coefficient
c ∈ C0(\bigl( 0,1\bigr\rfloor ); that means B○u(x) ∶= bu′(x) + c(x)u(x), x ∈ \Omega , as well as u(0) = g
on \Gamma − = {0}. We get B∗

○
v(x) ∶= −b v′(x) + c(x) v(x). According to our proposed ap-

proach, we start by defining a test space \scrY h. To this end, let nh ∈ \BbbN and h ∶= 1
nh

,

Ii ∶= \bigl( (i − 1)h, ih) ∩ \=\Omega , i = 1, . . . , nh, I0 ∶= ∅. We use standard piecewise linear FEs,
i.e.,

\eta i(x) ∶=
\bigr) \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr] 

x
h
+ 1 − i if x ∈ Ii−1,

−x
h
+ 1 + i if x ∈ Ii,
0 else,

for i = 1, . . . , nh and define \scrY h ∶= span{\eta 1, . . . , \eta nh
}. Then, we construct the optimal

trial space in the above sense by \scrX h ∶= span{\xi 1, . . . , \xi nh
}, where we set

\xi i(x) ∶= B∗\eta i(x) = −b \eta ′i(x) + c(x)\eta i(x) =
\bigr) \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr] 

− b
h
+ c(x)(x

h
+ 1 − i) if x ∈ Ii−1,

b
h
+ c(x)(−x

h
+ 1 + i) if x ∈ Ii,

0 else

for i = 1, . . . , nh. Note that for the special case of constant reaction c(x) ≡ c, the
functions \xi i are piecewise linear and discontinuous; see Figure 1.
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0 0.5 1
0

0.5

1
Basis of \scrY h

0 0.5 1
−5

0

5

Basis of \scrX h = B∗\scrY h

Fig. 1. Basis functions of \scrY h and \scrX h for h = 1
4
, b ≡ 1, c ≡ 2.

3.2. Nonphysical restrictions at the boundary. From a computational per-
spective it is appealing to use discrete spaces that are tensor products of one-dimen-
sional spaces; for details see section 5. However, this choice may result in nonphysical
restrictions of functions in the trial space on certain parts of the outflow boundary.

To illustrate this, consider \Omega = (0,1)2 and let b⃗ ≡ (b1, b2)T ∈ \BbbR 2, c ∈ \BbbR with
b1, b2 > 0, such that we have for the inflow boundary \Gamma − = ({0}×(0,1))∪((0,1)×{0})
and thus for the outflow boundary \Gamma + = ({1} × (0,1)) ∪ ((0,1) × {1}). Let \scrY h

1D be a
univariate finite-dimensional space with \scrY h

1D = span{\phi 1, . . . , \phi nh
} ⊂ H1

(1)(0,1) ∶= {v ∈
H1(0,1) ∶ v(1) = 0}. Next, we define the discrete test space on \Omega = (0,1)2 as the
tensor product space

\scrY \delta ∶= \scrY h
1D ⊗\scrY h

1D = span{\phi i ⊗ \phi j ∶ 1 ≤ i, j ≤ nh}, \delta = (h,h).

Then, the optimal trial functions are given for i, j,= 1, . . . , nh by

\psi i,j ∶= B∗(\phi i ⊗ \phi j) = −b1(\phi ′i ⊗ \phi j) − b2(\phi i ⊗ \phi ′j) + c(\phi i ⊗ \phi j),

and we set \scrX \delta ∶= span{\psi i,j ∶ 1 ≤ i, j ≤ nh}. However, this simple tensor product ansatz
results in \psi i,j(1,1) = 0 for all i and j; i.e., any numerical approximation would vanish
at the right upper corner (1,1) ∈ \Omega . Needless to say, this is a nonphysical restriction
at the boundary, even though point values do not matter for an L2-approximation. It
is obvious that the 2D case is only the simplest one in which this effect appears. In
fact, in a general dD situation (d ≥ 2), we would obtain that optimal trial functions
constructed as the B∗-image of tensor products would vanish on (d − 2)-dimensional
sets along the boundary of \Omega , leading to nonphysical boundary values. To reduce
the impact of this effect, we suggest considering an additional ``layer"" around the
computational domain by defining a tube of width \alpha > 0 around \Gamma + by

(3.9) \Omega +(\alpha ) ∶= {x ∈ \BbbR n ∖\Omega ∶ ∃y ∈ \Gamma + ∶ \prod x − y\prod ∞ < \alpha }, \Omega (\alpha ) ∶= \Omega ∪\Omega +(\alpha ).

Then, we solve the original transport problem on the extended domain \Omega (\alpha ) using the
associated pair of optimal trial and test spaces. As a result, the trial functions vanish
on the exterior boundary of \Omega +(\alpha ), but not on \partial \Omega . From a numerical perspective,
by choosing \alpha = mh for a (small) m ∈ \BbbN and the mesh size h, this adds m layers of
grid cells and thus \scrO (nd−1h ) degrees of freedom. On the larger domain \Omega +(\alpha ), the
numerical solution remains a best-approximation in the enlarged trial space. Due to
the larger dimension, this is no longer true w.r.t. the original domain \Omega . However,
note that the additional unknowns are only (d− 1)-dimensional. We will numerically
investigate this effect in section 6.

3.3. Postprocessing. As already mentioned, we are particularly interested in
using our framework for problems with nonregular solutions u ∈ L2(\Omega ), which espe-
cially includes jump discontinuities that are transported through the domain. How-
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ever, it is well known that (piecewise) polynomial L2-approximations of such discon-
tinuities result---especially for higher polynomial orders---in overshoots; this is the
so-called Gibbs phenomenon. There are many works concerning postprocessing tech-
niques to mitigate such effects; see, for instance, [23] and the references therein.

Within the scope of this paper, we restrict ourselves to a rather simple postpro-
cessing procedure aimed at limiting the solution near jump discontinuities. Let \scrY \delta ⊂ \scrY 
be a conforming FE test space on \Omega ⊂ \BbbR n corresponding to a partition \scrT \delta = {Ki}

n\scrT \delta 
i=1

of \Omega = ⋃n\scrT \delta 
i=1 Ki with polynomial order p ≥ 2:

\scrY \delta ∶= {v ∈ C0(\Omega ) ∶ v\bigcup K ∈ \BbbP p(K)∀K ∈ \scrT \delta , v\bigcup \Gamma + = 0} ⊂ \scrY .

If w\delta ∈ \scrY \delta denotes the solution to (3.7), the solution u\delta ∈ \scrX \delta = B∗\scrY \delta to (3.1) reads
u\delta = B∗w\delta = −∑n

i=1 bi\partial xiw
\delta +(c−∇⋅ b⃗)w\delta . Since w\delta ∈ \scrY \delta is an FE function, the partial

derivatives \partial xiw
\delta , i = 1, . . . , n, contain discontinuities across the cell boundaries, such

that limiting these terms has the potential to mitigate overshoot effects. For all
K ∈ \scrT \delta , we have \partial xiw

\delta \bigcup K ∈ \BbbP p(K). Based upon this, we define

\partial xiw
\delta ∈ L2(\Omega ) by \partial xiw

\delta \bigcup K ∶= P\BbbP (p−1)(K)
\partial xiw

\delta \bigcup K ∀K ∈ \scrT \delta ,

where P\BbbP (p−1)(K)
is the L2-orthogonal projection onto the polynomials of order at most

(p − 1) on K. We then define the postprocessed solution to (3.1) as

\~u\delta ∶= −
n

∑
i=1

bi\partial xiw
\delta + (c −∇ ⋅ b⃗)w\delta .

As a first attempt, one may perform the elementwise L2-projection on all grid cells.
However, for many problems it might be better (or even necessary) to choose a set of
grid cells \scrT jump

\delta ⊂ \scrT \delta that contains all cells where overshoots due to the jumps indeed

occur, and only perform the postprocessing for the cells K ∈ \scrT jump
\delta . For methods that

are able to detect such cells we refer the reader to [21].
Due to the construction of the postprocessed solution independent from the trial

space \scrX \delta , it is not clear whether the postprocessed solution shows the same conver-
gence rate as the standard solution. We will investigate the convergence behavior in
numerical examples in section 6. We will test this approach for piecewise constant
solutions u with jump discontinuities. For more complex problems, perhaps other,
more sophisticated methods from the literature have to be used.

4. The reduced basis method for parametrized transport problems. In
this section we generalize the above setting to problems depending on a parameter
and apply the RB method for that purpose [16, 18, 22].

4.1. Parametrized transport problem. We consider a parametrized problem
based upon a compact set of parameters \scrP ⊂ \BbbR p. In analogy to the above framework,
we define the domain \Omega and the now possibly parameter-dependent quantities b⃗\mu ∈
C1(\=\Omega )n and c\mu ∈ C0(\=\Omega ) with c\mu − 1

2
∇ ⋅ b⃗\mu ≥ 0 for all \mu ∈ \scrP . For all \mu ∈ \scrP we define

f\mu ;○ ∈ C0(\=\Omega ) and g\mu ∈ C0(\=\Gamma −). Then we consider the parametric problem of finding
u\mu ∶ \Omega → \BbbR such that

B\mu ;○u\mu (z) ∶= b⃗\mu (z) ⋅ ∇u\mu (z) + c\mu (z)u\mu (z) = f\mu ;○(z), z ∈ \Omega ,
u\mu (z) = g\mu (z), z ∈ \Gamma −.

Assumption 4.1. We assume that \Omega , \scrP , and b⃗\mu are chosen such that the inflow

and outflow boundaries \Gamma ± ∶= {z ∈ \partial \Omega ∶ b⃗\mu (z) ⋅ n⃗(z) ≷ 0} are parameter-independent.
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Remark 4.2. As we shall see below, Assumption 4.1 is a direct consequence of
a necessary density assumption to be formulated below. However, as stated in [8],
for parameter-dependent \Gamma ±(\mu ) and a polyhedral domain \Omega , it is always possible to
decompose \scrP into a finite number of subsets \scrP m, m = 1, . . . ,M , with fixed parameter-
independent corresponding inflow and outflow boundaries. Hence, one considers
M subproblems on \scrP m, m = 1, . . . ,M , with separate reduced models. Moreover,
one could also consider parameter-dependent \Omega \mu , \Gamma ±,\mu that can be mapped onto a
parameter-independent reference domain \Omega with fixed inflow and outflow boundaries
by varying the data.

Next, we require Assumption 2.1 for the formal adjoint B∗

\mu ;○ for all \mu ∈ \scrP such
that we can apply the above framework separately for all \mu ∈ \scrP in order to define
the test space \scrY \mu with parameter-dependent norm \prod v\prod \scrY \mu ∶= \prod B∗

\mu v\prod L2(\Omega ) as well as
the extended operators B\mu ∶ L2(\Omega ) → \scrY ′\mu and B∗

\mu ∶ \scrY \mu → L2(\Omega ). Hence, we aim at
determining solutions u\mu ∈ L2(\Omega ) such that

(4.1) b\mu (u\mu , v) ∶= (u\mu ,B∗

\mu v)L2(\Omega ) = f\mu (v) ∀v ∈ \scrY \mu .

Note that, thanks to the definition of \scrY \mu , we have \prod B−∗

\mu \prod L(L2(\Omega ),\scrY \mu )
= 1, and therefore

(4.2) \prod u\mu \prod L2(\Omega ) ≤ \prod f\mu \prod \scrY ′\mu .

We mention that the norms \prod ⋅ \prod \scrY \mu cannot be expected to be pairwise equivalent
for different \mu ∈ \scrP , which means that even the sets of two test spaces \scrY \mu 1 , \scrY \mu 2 , \mu 1 ≠ \mu 2,
can differ. Therefore, we define as in [8] the parameter-independent test space

\=\scrY ∶= ⋂
\mu ∈\scrP 

\scrY \mu ,

where we assume that \=\scrY is dense in \scrY \mu for all \mu ∈ \scrP .6 Thanks to the compactness
of \scrP , we may equip \=\scrY with the norm \prod v\prod \=\scrY ∶= sup\mu ∈\scrP \prod v\prod \scrY \mu . The above theory of
optimal trial and test spaces as well as well-posedness immediately extends to the
parameter-dependent case in an obvious manner.

As usual, we assume that B∗

\mu and f\mu are affine w.r.t. the parameter. In detail,

we assume that there exist functions \theta qb ∈ C0( \=\scrP ) for q = 1, . . . ,Qb and \theta qf ∈ C0( \=\scrP ) for

qf = 1, . . . ,Qf and \mu -independent operators (Bq)∗ ∈ L( \=\scrY , L2(\Omega )), q = 1, . . . ,Qb, and
linear functionals fq ∈ \=\scrY ′, qf = 1, . . . ,Qf , such that for all \mu ∈ \scrP we have

(4.3) B∗

\mu =
Qb

∑
q=1

\theta qb(\mu ) (B
q)∗ ∈ L(\scrY \mu , L2(\Omega )), f\mu =

Qf

∑
q=1

\theta qf(\mu ) f
q ∈ \scrY ′\mu .

Lemma 4.3. Under the above assumptions, the set \scrM ∶= {u\mu solves (4.1), \mu ∈ \scrP }
of solutions is a compact subset of L2(\Omega ).

Proof (sketch). The main idea of the proof is to exploit the continuity of the
mappings \mu ↦ B∗

\mu and \mu ↦ f\mu to show that \~u satisfies (4.1) for some \mu , for all v ∈ \=\scrY 
and subsequently use a density argument; see section SM3 for details.

6This assumption, which is required, for instance, for Lemma 4.3, automatically implies that \Gamma ±
are parameter-independent (Assumption 4.1), since a homogeneous Dirichlet boundary condition on
\Gamma + is included in the test spaces.
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4.2. Discretization. For the discretization of the parametric problem, we in-
troduce a parameter-independent discrete space \scrY \delta ⊂ \=\scrY . Next, for fixed \mu ∈ \scrP we
define the discrete test space and the corresponding trial space as

\scrY \delta 
\mu ∶= clos\prod ⋅\prod \scrY \mu 

(\scrY \delta ) ⊂ \scrY \mu , \scrX \delta 
\mu ∶= B∗

\mu (\scrY \delta ) ⊂ L2(\Omega ).

Note that, for different \mu ∈ \scrP , the spaces \scrX \delta 
\mu differ as sets but have the common norm

\prod ⋅ \prod L2(\Omega ), whereas the spaces \scrY \delta 
\mu consist of the common set \scrY \delta with different norms

\prod ⋅ \prod \scrY \mu . By the same reasoning as for the nonparametric case (see (3.5)), we have an

optimal discrete inf-sup constant for all \mu ∈ \scrP , i.e., \beta \delta 
\mu ∶= inf

w\delta ∈\scrX \delta 
\mu 

sup
v\delta ∈\scrY \delta 

\mu 

b\mu (w
\delta ,v\delta 

)

\prod w\delta \prod L2(\Omega )
\prod v\delta \prod \scrY \mu 

= 1.

The discrete solution u\delta \mu ∈ \scrX \delta 
\mu is then defined via

(4.4) u\delta \mu ∈ \scrX \delta 
\mu ∶ b\mu (u\delta \mu , v\delta ) = (u\delta \mu ,B∗

\mu v
\delta )L2(\Omega ) = f\mu (v\delta ) ∀v\delta ∈ \scrY \delta 

\mu .

As in section 3.1, we observe that problem (4.4) is equivalent to the problem

(4.5) w\delta 
\mu ∈ \scrY \delta 

\mu ∶ a\mu (w\delta 
\mu , v

\delta ) ∶= (B∗

\mu w
\delta 
\mu ,B

∗

\mu v
\delta )L2(\Omega ) = f\mu (v\delta ) ∀v\delta ∈ \scrY \delta 

\mu ,

and we may thus solve (4.5) and identify the solution of (4.4) as u\delta \mu ∶= B∗

\mu w
\delta 
\mu .

Remark 4.4. Since for all \mu ∈ \scrP we have \scrX \delta 
\mu = B∗

\mu (\scrY \delta ) = ∑Qb

q=1 \theta 
q
b(\mu )(Bq)∗(\scrY \delta ),

there holds \scrX \delta 
\mu ⊂ \Bigg( \scrX \delta ∶= (B1)∗(\scrY \delta ) +⋯ + (BQb)∗(\scrY \delta ) ⊂ L2(\Omega ), which means that the

trial spaces for all \mu ∈ \scrP are contained in a common discrete space with dimension

dim \Bigg( \scrX \delta ≤ Qb ⋅ dim\scrY \delta .

Corollary 4.5. Under the above assumptions the discrete solution set \scrM \delta ∶=
{u\delta \mu solves (4.4), \mu ∈ \scrP } ⊂ \Bigg( \scrX \delta is a compact subset of \Bigg( \scrX \delta .

Proof. The proof can be done completely analogously to the continuous setting,

exploiting that \Bigg( \scrX \delta is a Hilbert space equipped with the L2-inner product.

4.3. Reduced scheme. We assume that we have at our disposal a reduced test
space Y N ⊂ \scrY \delta with dimension N ∈ \BbbN 7 constructed, for instance, via a greedy algo-
rithm (see section 4.4). Then, for each \mu ∈ \scrP we introduce the reduced discretization
with test space Y N

\mu ∶= clos\prod ⋅\prod \scrY \mu 
(Y N) ⊂ \scrY \delta 

\mu and trial space XN
\mu ∶= B∗

\mu (Y N
\mu ) ⊂ \scrX \delta 

\mu . The
reduced problem then reads

(4.6) uN\mu ∈XN
\mu ∶ b\mu (uN\mu , vN) = (uN\mu ,B∗

\mu v
N)L2(\Omega ) = f\mu (vN) ∀vN ∈ Y N

\mu .

As in the high-dimensional case discussed in section 4.2, these pairs of spaces yield
optimal inf-sup constants

\beta N
\mu ∶= inf

wN ∈XN
\mu 

sup
vN ∈Y N

\mu 

b\mu (wN , vN)
\prod wN\prod L2(\Omega )\prod vN\prod \scrY \mu 

= 1 ∀\mu ∈ \scrP .

Hence, regardless of the choice of the ``initial""reduced test space Y N , we get a perfectly
stable numerical scheme without the need to stabilize. Note that this is a major
difference from the related work [8], where, due to a different strategy in finding

7In order to have a clear distinction between high- and low-dimensional spaces, we use calligraphic
letters for the high-dimensional and normal symbols for the reduced spaces.
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A604 JULIA BRUNKEN, KATHRIN SMETANA, AND KARSTEN URBAN

discrete spaces, a stabilization procedure is necessary. Using the least-squares-type
reformulation (4.5), we can (similarly to (3.7)) first compute wN

\mu ∈ Y N
\mu such that

(4.7) a\mu (wN
\mu , v

N) = (B∗

\mu w
N
\mu ,B

∗

\mu v
N)L2(\Omega ) = f\mu (vN) ∀vN ∈ Y N

\mu 

and then set uN\mu ∶= B∗

\mu w
N
\mu as the solution of (4.6).

Offline-/online-decomposition. By employing the assumed affine parameter
dependence of B∗

\mu and f\mu , the computation of uN\mu can be decomposed efficiently in an

offline stage and an online stage: Let {vNi ∶ i = 1, . . . ,N} be a basis of the parameter-
independent test space Y N . In the offline stage, we precompute and store the following
parameter-independent quantities:

bq,i ∶= (Bq)∗vNi for q = 1, . . . ,Qb, i = 1, . . . ,N,

Aq1,q2;i,j ∶= (bq1,i, bq2,j)L2(\Omega ) for q1, q2 = 1, . . . ,Qb, i, j = 1, . . . ,N,

fq,i ∶= fq(vNi ) for q = 1, . . . ,Qf , i = 1, . . . ,N.

In the online stage, given a new parameter \mu ∈ \scrP , we assemble for all i, j = 1, . . . ,N

(AN
\mu )i,j ∶= (B∗

\mu v
N
i ,B

∗

\mu v
N
j )L2(\Omega ) =

Qb

∑
q1=1

Qb

∑
q2=1

\theta q1b (\mu )\theta q2b (\mu )Aq1,q2;i,j ,

(fN\mu )i ∶= f\mu (vNi ) =
Qf

∑
q=1

\theta qf(\mu )fq,i.

Next, we compute wN
\mu = ∑N

i=1wi(\mu ) vNi ∈ Y N as in (4.7) by solving the linear system

AN
\mu wN

\mu = fN\mu of size N , where wN
\mu ∶= (wi(\mu ))i=1,...,N ∈ \BbbR N . The RB approximation is

then determined as

uN\mu ∶= B∗

\mu w
N
\mu =

N

∑
i=1

wi(\mu )B∗

\mu v
N
i =

N

∑
i=1

Qb

∑
q=1

wi(\mu ) \theta qb(\mu ) bq,i.

4.4. Basis generation. While in the standard RB method a reduced trial space
is generated from snapshots of the parametrized problem, the reduced discretization
of our method is based upon one common reduced test space, while the reduced trial
spaces are parameter-dependent. However, although we have to find a good basis
of the reduced test space Y N ⊂ \scrY \delta , we still want to build the reduced model from
snapshots of the problem. To that end, we again use the formulation (4.5): Given
\~\mu ∈ \scrP , let w\delta 

\~\mu ∈ \scrY \delta 
\~\mu be the solution of (4.5), such that u\delta \~\mu ∶= B∗

\~\mu w
\delta 
\~\mu ∈ \scrX \delta 

\~\mu is the solution

of (4.4). If w\delta 
\~\mu ∈ Y N , then we have u\delta \~\mu ∈ XN

\~\mu = B∗

\~\mu Y
N , such that uN\~\mu = u\delta \~\mu holds for

the solution of (4.6). Note, however, that due to the parameter dependence of the
trial spaces, u\delta \~\mu is only included in XN

\~\mu , but in general u\delta \~\mu ∉ XN
\mu for \mu ≠ \~\mu (instead,

B∗

\mu w
\delta 
\~\mu ∈ XN

\mu ). Building the reduced test space Y N from ``snapshots"" of (4.5) is thus
analogous to the standard RB strategy to build the reduced trial space from snapshots
of the problem of interest: Although a single trial space XN

\mu is not solely spanned by

snapshots, the model error \prod uN\mu − u\delta \mu \prod L2(\Omega ) is zero for all parameter values \mu whose

(4.5)-snapshot is included in Y N .
Algorithm 4.1 describes an analogue of the standard RB strong greedy algorithm

for our setting: Iteratively, we first evaluate the model errors of reduced solutions for
all parameters \mu in a train sample \Xi ⊂ \scrP . Then, we extend Y N by the (4.5)-snapshot
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(PARAMETRIZED) FIRST ORDER TRANSPORT EQUATIONS A605

Algorithm 4.1. Strong greedy method.

input: train sample \Xi ⊂ \scrP , tolerance \varepsilon 
output: set of chosen parameters SN , reduced test space Y N

1: Initialize S0 ← ∅, Y 0 ← {0}
2: for all \mu ∈ \Xi do
3: Compute w\delta 

\mu and u\delta \mu = B∗

\mu w
\delta 
\mu 

4: end for
5: while true do
6: if max\mu ∈\Xi \prod u\delta \mu − uN\mu \prod L2(\Omega ) ≤ \varepsilon then
7: return
8: end if
9: \mu ∗ ← argmax\mu ∈\Xi \prod u\delta \mu − uN\mu \prod L2(\Omega )

10: SN+1 ← SN ∪ {\mu ∗}
11: Y N+1 ← span{w\delta 

\mu , \mu ∈ SN+1}
12: N ← N + 1
13: end while

w\delta 
\mu ∗ ∈ \=\scrY \delta corresponding to the worst-approximated parameter \mu ∗. This automatically

extends XN
\mu ∗ by the (4.4)-snapshot u\delta \mu ∗ ∈ \scrX \delta 

\mu ∗ , such that from then on the model error
for \mu ∗ is zero.

Of course, this algorithm is computationally expensive, since we have to com-
pute u\delta \mu for all \mu ∈ \Xi , which may not be feasible for very complex problems and a
finely resolved \Xi ⊂ \scrP . It is hence desirable to use some kind of surrogate---ideally a
reliable and efficient error estimator---instead of the true model error in the greedy
algorithm. However, as will be seen in the next subsection, the standard error estima-
tor is not offline-online decomposable in our setting---a problem already encountered
in [8]. Therefore, we have to use error indicators instead when using the full model
error is computationally not feasible. We note that until now we have not been able
to prove convergence of the greedy algorithm due to the parameter-dependent trial
spaces.

Alternatively, to obtain a computationally more feasible offline stage, one might
let the strong greedy method run on a small test set with relatively high tolerance
and use a hierarchical a posteriori error estimator on the large(r) training set, which
was proposed in a slightly different context in [24]. Another idea might be to keep a
second test training set during the greedy algorithm. In order to estimate the dual
norm of the residual more cheaply, one could then compute Riesz representations on
the span of test training snapshots instead of the full discrete space.

4.5. Error analysis for the reduced basis approximation. In the online
stage, for a given (new) parameter \mu ∈ \scrP we are interested in efficiently estimating
the model error \prod u\delta \mu − uN\mu \prod L2(\Omega ) to assess the quality of the reduced solution. As
already mentioned above, due to the choice of the reduced spaces, the reduced inf-sup
and continuity constants are unity. This means that the error, the residual, and the
error of best approximation coincide also in the reduced setting (cf. (3.3)). To be
more precise, defining for some v ∈ L2(\Omega ) the discrete residual r\delta \mu (v) ∈ (\scrY \delta 

\mu )′ as

\coprod r\delta \mu (v),w\delta \widetilde (\scrY \delta 
\mu )

′×\scrY \delta 
\mu 
∶= f(w\delta ) − (v,B∗

\mu w
\delta )L2(\Omega ), w\delta ∈ \scrY \delta 

\mu ,
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A606 JULIA BRUNKEN, KATHRIN SMETANA, AND KARSTEN URBAN

we have
\prod u\delta \mu − uN\mu \prod L2(\Omega ) = \prod r\delta \mu (uN\mu )\prod (\scrY \delta 

\mu )
′ = inf

vN ∈XN
\mu 

\prod u\delta \mu − vN\prod L2(\Omega ).

In principle, r\delta \mu (v) ∈ (\scrY \delta 
\mu )′ can be computed. However, due to the special choice of

the parameter-dependent norm of \scrY \delta 
\mu , i.e., \prod w\prod \scrY \delta 

\mu 
= \prod B∗

\mu w\prod L2(\Omega ), the computation of

the dual norm involves applying the inverse operator (B∗

\mu )−1 and is thus as computa-
tionally expensive as solving the discrete problem (4.4). Therefore, the computation
of \prod r\delta \mu (uN\mu )\prod (\scrY \delta 

\mu )
′ is not offline-online decomposable, so that the residual cannot be

computed in an online-efficient manner.
As an alternative for the error estimation mainly in the online stage, we consider

an online-efficient but nonrigorous hierarchical error estimator similar to the one
proposed in [3]. Let Y N ⊂ YM ⊂ Y \delta be nested reduced spaces with dimensions N and
M , N < M and denote for some \mu ∈ \scrP by uN(\mu ) ∈ XN

\mu ∶= B∗

\mu Y
N , uM(\mu ) ∈ XM

\mu ∶=
B∗

\mu Y
M the corresponding solutions of (4.6). Then, we can rewrite the model error of

uN as

\prod uN − u\delta \prod L2(\Omega ) = \prod uN − uM + uM − u\delta \prod L2(\Omega ) ≤ \prod uN − uM\prod L2(\Omega ) + \prod uM − u\delta \prod L2(\Omega ).

Assuming that YM is large enough such that \prod uM −u\delta \prod L2(\Omega ) < \varepsilon ≪ 1, we can approx-

imate the model error of uN by

\prod uN − u\delta \prod L2(\Omega ) ≤ \prod uN − uM\prod L2(\Omega ) + \varepsilon ≈ \prod uN − uM\prod L2(\Omega ),

which can be computed efficiently also in the online stage. In practice, Y N and YM

can be generated by the strong greedy algorithm with different tolerances \varepsilon N and
\varepsilon M ≪ \varepsilon N . Of course, this approximation to the model error is in general not reliable,
since it depends on the quality of YM . Reliable and rigorous variants of such an error
estimator can be derived based on an appropriate saturation assumption; see [17].
Reference [17] also discusses a strategy for the use of hierarchical estimators in terms
of Hermite spaces YM for the construction of a reduced model in the offline phase.
We do not go into details here. Numerical investigations of the quality of the error
estimator will be given in section 6.2.

5. Computational realization. In this section, we specify the implementation
of the solution procedure developed in section 3. This is also used for the methods for
parameter-dependent problems developed in section 4. In fact, due to our assumption
of affine dependence in the parameter (4.3), the computational realization in the
parametric setting is very similar to the standard setting and can be done following
the offline-online decomposition described at the end of section 4.3, which is why we
do not address it in this section.

To solve the discrete problem (3.1) we use the equivalent formulation (3.7); i.e.,
we first find w\delta ∈ \scrY \delta such that (B∗w\delta ,B∗v\delta )L2(\Omega ) = f(v\delta ) for all v\delta ∈ \scrY \delta , and then set

u\delta ∶= B∗w\delta ∈ \scrX \delta . The solution procedure thus consists of first assembling and solving
the problem for w\delta in \scrY \delta and second computing u\delta . The implementation is especially
dependent on the exact form of the adjoint operator B∗. First, we address the case
of constant data, which is easier to implement and slightly more computationally
efficient than the general case, which we discuss subsequently.

5.1. Implementation for constant data. We first consider constant data
functions in the adjoint operator, which thus has the form B∗w ∶= −b⃗ ⋅ ∇w + cw for
0 ≠ b⃗ ∈ \BbbR n, c ∈ \BbbR . We have already seen in Example 3.1 that in the one-dimensional
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case, choosing a standard linear continuous FE space for the test space \scrY \delta yields a trial
space \scrX \delta with piecewise linear and discontinuous functions. This can be generalized
to conforming FE test spaces with arbitrary dimension, grid, and polynomial order: If
v\delta ∈ \scrY \delta is globally continuous and polynomial on each grid cell, all terms of B∗v\delta , due
to the constant data functions, are still polynomials of the same or lower order on the
cells, while the gradient terms yield discontinuities on the cell boundaries. Denoting
thus by \scrY \delta ⊂ \scrY a conforming FE space on a partition \scrT \delta = {Ki}

n\scrT \delta 
i=1 of \Omega = ⋃n\scrT \delta 

i=1 Ki

with polynomial order p, and by \=\scrX \delta ⊂ L2(\Omega ) the corresponding discontinuous FE
space, i.e.,

\scrY \delta ∶= {v ∈ C0(\Omega ) ∶ v\bigcup K ∈ \BbbP p(K)∀K ∈ \scrT \delta , v\bigcup \Gamma + = 0} ⊂ \scrY ,(5.1)

\=\scrX \delta ∶= {u ∈ L2(\Omega ) ∶ u\bigcup K ∈ \BbbP p(K)∀K ∈ \scrT \delta } ⊂ L2(\Omega ),(5.2)

we have \scrX \delta = B∗\scrY \delta ⊂ \=\scrX \delta and can determine the solution u\delta ∈ \scrX \delta in terms of the
standard nodal basis of \=\scrX \delta .

Let B∗ ∈ \BbbR \=nx×ny be the matrix representation of B∗ ∶ \scrY \delta → \=\scrX \delta in the nodal bases
(\phi 1, . . . , \phi ny) of \scrY \delta and (\psi 1, . . . , \psi \=nx) of \=\scrX \delta , meaning that the ith column of B∗ con-

tains the coefficients of B∗\phi i in the basis (\psi 1, . . . , \psi \=nx), i.e., B∗\phi i = ∑\=nx

j=1\bigl( B∗\bigr\rfloor j,i\psi j .
Due to the form of the operator and the chosen spaces, the matrix B∗ can be com-
puted rather easily; see the example in section 5.2. Then, the coefficient vector
u = (u1, . . . , u\=nx)T of u\delta = ∑\=nx

i=1 ui\psi i ∈ \=\scrX \delta can simply be computed from the coefficient
vector w = (w1, . . . ,wny) of w\delta = ∑ny

i=1wi\phi i ∈ \scrY \delta by u = B∗w.
To solve (3.7), we have to assemble the matrix corresponding to the bilinear

form a ∶ \scrY \delta ×\scrY \delta , a(w\delta , v\delta ) = (B∗w\delta ,B∗v\delta )L2(\Omega ) = (w\delta , v\delta )\scrY , i.e., the \scrY -inner product
matrix of \scrY \delta . One possibility for the assembly is to use the matrix B∗: Denoting by
M \=\scrX \delta ∈ \BbbR \=nx×\=nx the L2-mass matrix of \=\scrX \delta , i.e., \bigl( M \=\scrX \delta \bigr\rfloor i,j = (\psi i, \psi j)L2(\Omega ), we see that

for Y ∶= (B∗)TM \=\scrX \delta B∗ ∈ \BbbR ny×ny it holds that \bigl( Y\bigr\rfloor i,j = (B∗\phi i,B
∗\phi j)L2(\Omega ) = (\phi i, \phi j)\scrY .

The solution procedure thus consists of the following steps:
1. Assemble B∗ and Y.
2. Assemble the load vector f ∈ \BbbR ny , \bigl( f\bigr\rfloor i ∶= f(\phi i), i = 1, . . . , ny.
3. Solve Yw = f .
4. Compute u = B∗w.

5.2. Assembling the matrices for spaces on rectangular grids. As a con-
crete example of how to assemble the matrices B∗ and Y, we consider \Omega = (0,1)n
and use a rectangular grid. We start with the one-dimensional case, as already seen
in Example 3.1. Let thus \Omega = (0,1) and b > 0. Moreover, let \scrT h = {\bigl( (i − 1)h, ih)}nh

i=1

be the uniform one-dimensional grid with mesh size h = 1\Uparrow nh, fix a polynomial order

p ≥ 1, and define \scrY h,p
1D ,

\=\scrX h,p
1D as in (5.1), (5.2). Let (\phi 1, . . . , \phi ny) and (\psi 1, . . . , \psi \=nx) be

the respective nodal bases of \scrY h,p
1D and \=\scrX h,p

1D .
Moreover, let I1D ∈ \BbbR \=nx×ny be the matrix representation of the embedding Id ∶

\scrY h,p
1D → \=\scrX h,p

1D in the respective nodal bases; i.e., the ith column of I1D contains the

coefficients of \phi i ∈ \scrY h,p
1D ⊂ \=\scrX h,p

1D in the basis (\psi 1, . . . , \psi \=nx), such that for u = I1D ⋅
w it holds that ∑\=nx

i=1 ui\psi i = ∑ny

i=1wi\phi i. Similarly, let A1D ∈ \BbbR \=nx×ny be the matrix

representation of the differentiation d
dx

∶ \scrY h,p
1D → \=\scrX h,p

1D ,wh ↦ (wh)′. Additionally, as
above, we define M1D ∈ \BbbR \=nx×\=nx , \bigl( M1D\bigr\rfloor i,j = (\psi i, \psi j)L2((0,1)) as the L2-mass matrix of
\=\scrX h,p
1D .

For p = 1, i.e., linear FEs, and a standard choice of the nodal bases, the matrices
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I1D, A1D, and M1D read

I1D ∶=

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 ⋯
0 1 0
0 1 0
0 0 1
⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

, A1D ∶= 1

h
⋅

⎛
⎜⎜⎜⎜⎜
⎝

−1 1 0 ⋯
−1 1 0
0 −1 1
0 −1 1
⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

, M1D = h⋅

⎛
⎜⎜⎜⎜⎜
⎝

1\Uparrow 3 1\Uparrow 6 0 0 ⋯
1\Uparrow 6 1\Uparrow 3 0 0
0 0 1\Uparrow 3 1\Uparrow 6
0 0 1\Uparrow 6 1\Uparrow 3
⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

.

With these three matrices we can then compose the matrices B∗

1D and Y1D by

B∗

1D ∶= −b ⋅A1D + c ⋅ I1D, Y1D ∶= (B∗

1D)TM1DB
∗

1D.

Next, we consider a rectangular domain of higher dimension, e.g., \Omega = (0,1)n, n ≥
2. We choose in each dimension one-dimensional FE spaces \scrY i, \=\scrX i, i = 1, . . . , n, as in
(5.1), (5.2) separately, and use the tensor product of these spaces \scrY \delta ∶=⊗n

i=1\scrY i, \=\scrX \delta ∶=
⊗n

i=1
\=\scrX i as FE spaces on the rectangular grid formed by a tensor product of all one-

dimensional grids. The system matrices can then be assembled from Kronecker prod-
ucts of the one-dimensional matrices corresponding to the spaces \scrY i, \=\scrX i, i = 1, . . . , n:
We first assemble for i = 1, . . . , n the matrices Ii1D and Ai

1D corresponding to the
pair of spaces \scrY i, \=\scrX i. Then, the matrix corresponding to the adjoint operator can be
assembled by

(5.3) B∗ ∶= −
n

∑
i=1

biI
1
1D ⊗⋯⊗ I

(i−1)
1D ⊗Ai

1D ⊗ I
(i+1)
1D ⊗⋯⊗ In1D + c

n

⊗
i=1

Ii1D;

e.g., for n = 2 we have

B∗

2D ∶= −b1(A1
1D ⊗ I21D) − b2(I11D ⊗A2

1D) + c(I11D ⊗ I21D).

Similarly, the mass matrix M of \=\scrX \delta can be computed from the one-dimensional mass
matrices Mi

1D of \=\scrX i, i = 1, . . . , n, by M ∶= ⊗n
i=1M

i
1D, such that Y ∶= (B∗)TM \=\scrX \delta B∗

can also be directly assembled using the matrices Ii1D,A
i
1D,M

i
1D, i = 1, . . . , n.

5.3. Implementation for nonconstant data. If the data functions b⃗ and c
are not constant, we do not automatically get a standard FE space \=\scrX \delta in which the
solution u\delta can be described; thus the implementation has to be adapted. A way
to retain the implementation for constant data functions is to approximate the data
by piecewise constants on each grid cell. Then, there holds again u\delta ∈ \=\scrX \delta , and we
only have to slightly modify the implementation presented in section 5.1: Every nodal
basis function \psi i ∈ \=\scrX \delta , i = 1, . . . , \=nx, has, due to the discontinuous FE space, a support
of only one grid cell. Denoting by ci the value of c on the grid cell of \psi i, we define
the diagonal matrix c ∈ \BbbR \=nx×\=nx , \bigl( c\bigr\rfloor i,i ∶= ci, and, similarly, the matrices bj ∈ \BbbR \=nx×\=nx

corresponding to bj , j = 1, . . . , n. We then simply change the scalars bj and c in (5.3)
to matrices bj and c, j = 1, . . . , n.

However, a piecewise constant approximation of the functions b⃗ ∈ C1(\Omega )n, c ∈
C0(\Omega )may not lead to a sufficient accuracy of the solution. For general b⃗ ∈ C1(\Omega )n, c ∈
C0(\Omega ), we thus first assemble the \scrY -inner product matrix Y ∈ \BbbR ny×ny of \scrY \delta and the
load vector f ∈ \BbbR ny corresponding to the right-hand side as in standard FE implemen-
tations for elliptic equations, by using, e.g., Gauss quadratures for the approximation
of the integrals. We can then solve (3.7) as above byw ∶=Y−1f , w\delta ∶= ∑ny

i=1\bigl( w\bigr\rfloor i\phi i ∈ \scrY \delta .
To compute the solution u\delta ∈ \scrX \delta , we use the fact that we still have w\delta ∈ \=\scrX \delta and
\partial w\delta 

\partial xi
∈ \=\scrX \delta , i = 1, . . . , n, and store the corresponding \=\scrX \delta -coefficients of w\delta and its deriva-

tives separately, as well as the data functions. We can then evaluate u\delta = B∗w\delta for
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(PARAMETRIZED) FIRST ORDER TRANSPORT EQUATIONS A609

Table 1
1D: L2-error and convergence rate as h → 0 for

linear and quadratic FE spaces.

Linear FE Quadratic FE
1\Uparrow h L2-error rate L2-error rate

4 0.03311 --- 0.00247 ---
8 0.01664 0.99274 0.00062 1.98932

16 0.00833 0.99817 0.00016 1.99729
32 0.00417 0.99954 3.896e-05 1.99932
64 0.00208 0.99989 9.741e-06 1.99983

128 0.00104 0.99997 2.435e-06 1.99996
256 0.00052 0.99999 6.088e-07 1.99999

0 0.5 1

0.2

0.4

0.6

0.8

1

Fig. 2. 1D: L2-approximation ver-
sus exact solution for linear FE space
with h = 1\Uparrow 8.

arbitrary x ∈ \Omega by evaluating all w\delta -dependent functions and all data functions in x

and using the definition of B∗ to get u\delta (x) = −∑n
i=1 bi(x)\partial w

\delta 

\partial xi
(x)+ (c−∇ ⋅ b⃗)(x)w\delta (x).

6. Numerical experiments. In this section, we report on results of our numer-
ical experiments. We consider the parametric and the nonparametric cases, starting
with the latter. We are particularly interested in quantitative results concerning the
rate of approximation for the discrete case as the discretization parameter \delta (see
above) approaches zero, quantitative comparisons of the inf-sup constant with exist-
ing methods from the literature, and the greedy convergence in the parametric case.
We report on time-dependent and time-independent test cases. The source code to
reproduce all results is provided in [5].

6.1. Nonparametric cases.

6.1.1. Convergence rates for problems with different smoothness. As
indicated in section 3.1, we can show the convergence of the proposed approximation
for appropriate test spaces \scrY \delta , but did not derive theoretical rates of convergence
in this paper. Therefore, in this subsection we investigate the rate of convergence
in numerical experiments. In all test cases we use as test space \scrY \delta a continuous
FE space on a uniform hexahedral grid. Since we want to investigate here the best
possible convergence rates, we choose test cases where the trial space restrictions due
to tensor product spaces described in section 3.2 do not lead to additional errors.
These cases will then afterwards be compared to cases where the restrictions indeed
do lead to additional errors in section 6.1.2.

We start with the one-dimensional problem introduced in Example 3.1 and set
\Omega = (0,1), b(x) ≡ 1, c(x) ≡ 2 with boundary value u(0) = 1. We compute approximate
solutions for linear FE spaces \scrY h (recall Figure 1 for the corresponding basis functions,
and see Figure 2 for an illustration of the solution) as well as quadratic FE spaces. We
observe an (optimal) convergence rate of 1 for the linear case and 2 for the quadratic
case (see Table 1).

Next, we consider \Omega = (0,1)2 and choose b⃗ ≡ (cos 30°, sin 30°)T , c ≡ 0, f ≡ 0 and
compare boundary values with different smoothness. In detail, we solve

b⃗ ⋅ ∇u = 0 in \Omega , u = gi on \Gamma − = ({0} × (0,1)) ∪ ((0,1) × {0}), i = 1,2,3,

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

30
.8

9.
46

.4
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A610 JULIA BRUNKEN, KATHRIN SMETANA, AND KARSTEN URBAN

Table 2
L2-errors and convergence rates for two-dimensional problem with boundary values (6.1), (6.2),

and (6.3).

g = g1 ∈ C1(\Gamma −) g = g2 ∈ C0(\Gamma −) g = g3 ∈ L2(\Gamma −)
1\Uparrow h L2-error rate L2-error rate L2-error rate
16 0.00768 --- 0.01974 --- 0.10630 ---
32 0.00247 1.63387 0.00973 1.02096 0.08484 0.32533
64 0.00079 1.65196 0.00493 0.98128 0.06764 0.32683

128 0.00025 1.65937 0.00248 0.99302 0.05386 0.32862
256 7.872e-05 1.66280 0.00124 0.99476 0.04285 0.33009
512 2.483e-05 1.66452 0.00062 0.99636 0.03406 0.33120

for the boundary values

g1 ∈ C1(\Gamma −), g1(x,0) ≡ 1, g1(0, y) =
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

31.25y3 − 18.75y2 + 1, y ≤ 0.4,

0, y > 0.4,
(6.1)

g2 ∈ C0(\Gamma −), g2(x,0) ≡ 1, g2(0, y) =
\bigr) \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr] 

1, y < 0.2,

2 − 5y, 0.2 ≤ y < 0.4,

0, 0.4 ≤ y,
(6.2)

g3 ∈ L2(\Gamma −), g3(x,0) ≡ 1, g3(0, y) =
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

1, y < 0.25,

0, 0.25 ≤ y.
(6.3)

We use second order FEs on a uniform rectangular mesh with nh = h−1 cells in both
dimensions, i.e., \delta = (h,h). As already mentioned above, the data is chosen such that
for all boundary conditions it holds that u(1,1) = 0 for the exact solution, so that
we do not observe problems from the nonphysical restriction of the trial space. We
observe a convergence of order about 1.65 for the differentiable case g = g1, an order
of 1 for the continuous case g = g2, and an order of about 1\Uparrow 3 for the discontinuous
boundary g = g3 (see Table 2).

To assess the effect of a nonconstant transport direction on the convergence rate,
we use b⃗(x, y) = (1− y, x)T , which has an \Omega -filling flow with T = \pi 

2
, c ≡ 0, f ≡ 0, and a

C1-boundary value g4 ∈ C1(\Gamma −) as

g4(x,0) = 0, g4(0, y) =
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

256y4 − 512y3 + 352y2 − 96y + 9, 0.25 ≤ x ≤ 0.75,

0 else.

We observe a convergence behavior even slightly better than that for the case of
constant b⃗ with a C1-boundary function; see Table 3. The curved transport is resolved
without artifacts; see Figure 3.

6.1.2. Influence of restrictions due to tensor product spaces. So far we
have investigated the convergence of discrete solutions for cases where the nonphysical
boundary restrictions described in section 3.2 do not lead to problems. Here we
want to compare these results to similar test cases where the restriction indeed is
unphysical, i.e., for the exact solution we have u ≠ 0 at the relevant outflow boundary
part. We again choose \Omega = (0,1)2, b⃗ ≡ (cos 30°, sin 30°)T , c ≡ 0, and f ≡ 0. We first
consider a constant boundary value \~g ≡ 1, leading to u ≡ 1, where the impact of the
unphysical restriction can be observed best, since the shifted version g ≡ 0 leading to
u ≡ 0 would of course have no discretization error at all. We compare this to shifted
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Table 3
L2-error and convergence rate for b⃗ = (1 −

y, x)T and g = g4.

1\Uparrow h L2-error Rate
4 0.09317 ---
8 0.03329 1.48458

16 0.01124 1.56702
32 0.00366 1.61950
64 0.00117 1.64276

128 0.00037 1.65386

Fig. 3. Approximate solution for b⃗ = (1−
y, x), g = g4, and h = 1\Uparrow 32.

Table 4
L2-errors and convergence rates for two-dimensional problem with different boundary conditions

and unphysical restrictions of the trial space.

g ≡ 1 g = g1 − 1 ∈ C1(\Gamma −) g = g2 − 1 ∈ C0(\Gamma −) g = g3 − 1 ∈ L2(\Gamma −)
1\Uparrow h L2-error rate L2-error rate L2-error rate L2-error rate
16 0.01280 --- 0.01479 --- 0.02627 --- 0.10618 ---
32 0.00676 0.92191 0.00691 1.09798 0.01281 1.03615 0.08515 0.31838
64 0.00355 0.92883 0.00349 0.98507 0.00616 1.05729 0.06773 0.33028

128 0.00186 0.93469 0.00183 0.92944 0.00292 1.07500 0.05389 0.32963
256 0.00097 0.93973 0.00097 0.92081 0.00149 0.97073 0.04286 0.33058
512 0.00050 0.94411 0.00050 0.94099 0.00081 0.88878 0.03406 0.33141

versions of the boundary values considered in section 6.1.1, i.e., \~gi = gi − 1, i = 1,2,3,
for g1, g2, and g3 defined in (6.1)--(6.3).

In the constant case g ≡ 1 we have a convergence of order ≈ 1 (see Table 4).
Comparing Tables 2 and 4, we see that indeed the restriction leads to an additional
error that converges with order 1: While the problem for the C1-boundary value g1

converges with an order of about 1.65, the shifted problem for \~g1 = g1−1 converges only
with an order of ≈1. For the less smooth boundaries \~g2 ∈ C0(\Gamma −) and \~g3 ∈ L2(\Gamma −), we
see that the convergence order stays the same, and thus the full error is not dominated
by the restriction artifacts. All in all, for the present test cases, the restriction due to
the tensor product structure limits the convergence rate to 1 but does not deteriorate
smaller convergence orders for less smooth problems, such that for these problems
the additional error is negligible. Recall that we are primarily interested in such
nonsmooth solutions in L2(\Omega ).

Next, we investigate the approach proposed in section 3.2 to use an additional
layer for the computational domain. In detail, we extend the data functions onto
the larger domain \Omega (\alpha ) defined in (3.9), solve the problem for the discrete solution
u\delta \Omega (\alpha ) ∈ L2(\Omega (\alpha )) on this extended problem, and then define the restriction u\delta \Omega (\alpha )\bigcup \Omega ∈
L2(\Omega ) as the discrete solution to the original problem.

We consider constant boundary values g ≡ 1. For each discrete space \scrY \delta , \delta = (h,h),
we compare values of \alpha =mh, m = 1, . . . ,5; i.e., we extend the domain by 1 to 5 layers
of grid cells of the original size. The L2- and L∞-errors of these solutions and the
respective solutions computed on the original domain \Omega are shown in Figure 4. We
see that using extended domains for the computation reduces the L2-errors: A first
layer of grid cells has the most significant effect, but also larger extensions further
reduce the errors. Since the difference is larger for coarser meshes, the L2-rates are
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∞
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Standard
\alpha = h
\alpha = 2h
\alpha = 3h
\alpha = 4h
\alpha = 5h

Fig. 4. 2D, g ≡ 1, L2-errors (left) and L∞-errors (right) for solutions computed on the standard
domain \Omega = \Omega (0) and on extended domains \Omega (\alpha ), \alpha =mh, m = 1, . . . ,5, for different mesh sizes.

Fig. 5. 2D, numerical approximation for h = 1\Uparrow 32, g ≡ 1. Left: Standard domain \Omega . Right:
u\delta \bigcup \Omega solved on extended domain \Omega (h).

slightly lower than those for the original solution, which improves, however, for finer
mesh sizes. We obtained similar results for the boundary values g = g1 − 1. Moreover,
the extended domain approach has a positive impact on the L∞-error of the solution
and thus on the ``optical quality"": While for the computations on \Omega we automatically
have an L∞-error of 1 for all mesh sizes, the error is reduced to values between about
0.16 for \alpha = h and 0.05 for \alpha = 5h; also the L∞-error on the extended domains seems
to be relatively independent of the mesh size (see Figure 4). A comparison of the
solution computed on \Omega and \Omega (h) is provided in Figure 5.

We conclude from these experiments that for the current test case the use of an
extended domain slightly reduces the L2-error while maintaining comparable conver-
gence rates and considerably reduces the L∞-error at the boundary. Hence, at the
expense of (moderate) additional computational cost a better approximation of the
solution on the outflow boundary can be achieved.

6.1.3. Assessment of postprocessing procedure. We next compare the ap-
proximation of discontinuities of a standard solution u\delta ∈ \scrX \delta to the postprocessed
solution \~u\delta described in section 3.3. To this end, we again consider the example in
section 6.1.1 with boundary value g3 ∈ L2(\Gamma −) that is piecewise constant with a dis-
continuity. Note that the choice of a constant advection b⃗ and no reaction simplifies
the postprocessing procedure, such that the postprocessed solution \~u\delta directly is the
L2-orthogonal projection of u\delta onto the discontinuous first order FE space. Com-
paring the errors of u\delta and \~u\delta (see Tables 2 and 5), we see that the errors for the
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Table 5
L2-error and conver-

gence rate for postprocessed
solution \~u\delta for boundary g3.

1\Uparrow h L2-error Rate
16 0.09769 ---
32 0.07765 0.33128
64 0.06179 0.32946

128 0.04917 0.32965
256 0.03911 0.33042
512 0.03108 0.33123

Fig. 6. Standard solution u\delta (left) and postprocessed solution \~u\delta 

(right) for boundary g3 and h = 1\Uparrow 32.

postprocessed solutions are about 8\% smaller than those for the standard solutions,
while the order of convergence stays the same. Figure 6 shows that the postprocess-
ing removes the severe overshoots of the standard solution at the jump discontinuity.
We also note that the postprocessing is computationally inexpensive, since it is only
based upon local multiplications of an element projection matrix for each grid cell. A
comparison of the computational costs will be given in section 6.1.4.

6.1.4. Comparison to approach proposed in [7]. Next, we compare the
results of our method, which we call the Optimal Trial method, with the related
approach in [7], which we call Optimal Test method. We use the same test case as
in [7]; i.e., we set \Omega = (0,1)2, b⃗ ≡ (cos 22.5°, sin 22.5°)T , c ≡ 0, and f ≡ 0. For the
boundary condition we again have the discontinuous boundary value g = g3 defined
in (6.3).

While our Optimal Trial approach consists of choosing a test space \scrY \delta ⊂ \scrY which
automatically determines the trial space \scrX \delta = B∗\scrY \delta ⊂ L2(\Omega ) and the corresponding
linear system in \scrY \delta , for the Optimal Test method in [7] one chooses a trial space
\bigg\backslash \scrX \delta ⊂ L2(\Omega ) and a larger test search space \scrZ \delta ⊂ \scrY , i.e., \scrY \delta ⊂ \scrZ \delta . The optimally stable
problem in \bigg\backslash \scrX \delta ×(B∗)−1 \bigg\backslash \scrX \delta is then substituted by the problem in \bigg\backslash \scrX \delta ×P\scrZ \delta ((B∗)−1 \bigg\backslash \scrX \delta ),
which in turn is solved approximately by an Uzawa algorithm. Within this algorithm,
one iteratively solves problems in the test space \scrZ \delta , which are in fact based upon the
same bilinear form as for (3.7) to be solved in \scrY \delta in the Optimal Trial method. We
therefore choose the spaces such that \scrY \delta = \scrZ \delta , which means that the same matrix has
to be assembled for both methods. More precisely, we choose for the Optimal Trial
method the same spaces as in the experiments above; i.e., \scrY \delta is the space of continuous
FEs of second order on a rectangular grid with mesh size \delta = (h,h). Consistent with
that, we choose---as proposed in [7]---for \bigg\backslash \scrX \delta the space of discontinuous bilinear FEs
on a rectangular grid with mesh size (2h,2h), and \scrZ \delta = \scrY \delta , such that here the grid
for the test search space results from one uniform refinement of the grid of the trial
space.

We first compare the relation of L2-errors and CPU times for both methods. For
the solution of the linear systems, we always use sparse LU factorization and subse-
quent forward and back substitution implemented in UMFPACK. Figure 7 shows the
respective CPU-error plots for the Optimal Test method using 1 iteration and 5 itera-
tions of the Uzawa algorithm (as proposed in [7]) and for the standard solution of the
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10−2 10−1 100 101

10−1.5

10−1

CPU time

L
2
-e
rr
o
r Opt. Test 1;

Opt. Test 5;

Opt. Trial ;

Opt. Trial postproc.

Fig. 7. L2-errors versus CPU-times for the Optimal Test method with 1 iteration (Opt. Test
1) and 5 iterations (Opt. Test 5) of the Uzawa algorithm, and for the Optimal Trial method in
standard (Opt. Trial) and postprocessed (Opt. Trial postproc.) form.

Optimal Trial method as well as the postprocessed solution described in section 3.3.
We observe similar decay rates of the errors w.r.t. the CPU times for both methods.
For the chosen linear solver, the Optimal Test method with 5 iterations performs best,
which is mainly due to the fact that assembly of the matrices and LU factorization
dominate the computational costs. Therefore, the costs for 5 Uzawa iterations are
only slightly higher than for, e.g., only 1 Uzawa iteration, while the errors are re-
duced significantly. If we use iterative methods, e.g., the CG method, instead, the
results depend on the used preconditioner: If the computation of the preconditioner
dominates, the results are similar to the results using LU decomposition. In contrast,
if the iterative solver takes as much time as or more time than the preconditioner,
then the Optimal Test solutions using 5 Uzawa iterations would take considerably
more time compared to the other solutions, and we speculate that the postprocessed
Optimal Trial solution might perform fairly equally to the Optimal Test solutions.
However, a comparison of different preconditioners is outside the scope of this paper.

Finally, we compare the inf-sup constants of both methods. While for the Opti-
mal Trial method we automatically have an inf-sup constant of 1, this is not the case
for the Optimal Test method. Since here not the truly optimal test space (B∗)−1 \bigg\backslash \scrX \delta 

but the projection onto the test search space P\scrZ \delta ((B∗)−1 \bigg\backslash \scrX \delta ) is used for the discrete
test space, the inf-sup constant for the discrete problem as well as for the corre-
sponding saddle-point problem on which the Uzawa iteration is based is subopti-
mal. Tables 6 and 7 show the inf-sup constants for the considered two-dimensional
problem, i.e., \Omega = (0,1)2, b⃗ = (cos 22.5°, sin 22.5°)T , c ≡ 0, and the corresponding
time-dependent problem, i.e., a three-dimensional problem with \Omega = (0,1)3 and
b⃗ = (1, cos 22.5°, sin 22.5°)T , respectively. We clearly see that the inf-sup constants
decrease with smaller mesh sizes; in both cases they decay roughly with an order of
h1\Uparrow 3.

6.2. Parametric cases: The reduced basis method. To examine our method
in the parametric setting, we consider three different test cases. For all cases, we
choose \Omega = (0,1)2 and a parametrized constant transport direction b⃗\mu ∈ \BbbR 2, \mu ∈ \scrP ,
such that \Gamma − = ({0} × (0,1)) ∪ ((0,1) × {0}) for all \mu ∈ \scrP , as well as parameter-
independent reaction, source, and boundary data; see Table 8. Again, we want to
solve for all \mu ∈ \scrP 

b⃗\mu ⋅ ∇u + cu = f in \Omega , u = g on \Gamma −.
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Table 6
Inf-sup constants for the Optimal

Test method and the 2D problem.

1/(2h) Inf-sup
4 0.74521
8 0.66426

16 0.55840
32 0.45422
64 0.36029

128 0.28273
256 0.21901

Table 7
Inf-sup constants for the Optimal

Test method and the 3D problem.

1/(2h) Inf-sup
4 0.64800
8 0.60160

16 0.48294
32 0.38015

Table 8
Data for parametric test cases.

Test Case 1 (see [20]) Test Case 2 (cf. [8]) Test Case 3 (cf. [8])

b⃗\mu (\mu ,1)T (cos\mu , sin\mu )T (cos\mu , sin\mu )T

\scrP \bigl( 0.01,1\bigr\rfloor \bigl( 0.2, \pi 
2
− 0.2\bigr\rfloor \bigl( 0.2, \pi 

2
− 0.2\bigr\rfloor 

c ≡ 0 ≡ 1 ≡ 1

f ≡ 0 ≡ 1

\bigr) \bigr\rceil \bigr\rceil 
\bigr\rfloor 
\bigr\rceil \bigr\rceil \bigr] 

0.5, x < y

1, x ≥ y

g

\bigr) \bigr\rceil \bigr\rceil 
\bigr\rfloor 
\bigr\rceil \bigr\rceil \bigr] 

1, x = 0

0, y = 0
≡ 0

\bigr) \bigr\rceil \bigr\rceil 
\bigr\rfloor 
\bigr\rceil \bigr\rceil \bigr] 

1 − y, x ≤ 0.5

0, x ≥ 0.5
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∼N−1\Uparrow 2

N
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2
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o
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Test Case 1

100 101 102
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10−2

100

∼N−3\Uparrow 2

N

Test Case 2

100 101 102

10−4

10−2

100

∼N−1

N

Test Case 3

h−1 = 16; h−1 = 32; h−1 = 64; h−1 = 128; h−1 = 256; h−1 = 512

Fig. 8. Maximum errors of 500 test parameter values for different model orders, mesh sizes,
and Test Cases 1, 2, and 3.

For all test cases, we choose a training set of 500 equidistant parameter values
distributed over \scrP and set \varepsilon = 10−4. We then generate reduced models with Algorithm
4.1 for different mesh sizes. The maximum model errors \prod uN(\mu ) − u\delta (\mu )\prod L2(\Omega ) on an
additional test set of 500 uniformly distributed random parameter values are shown
in Figure 8.

Since we did not derive theoretical convergence results for the greedy algorithm,
we investigate the convergence behavior numerically. To that end, we first consider a
test case where the best possible convergence rate of linear approximations is known:
In [20], it is shown that the Kolmogorov N -width of the solution set of Test Case 1
decays with an order of N−1\Uparrow 2. In the corresponding results of our greedy algorithm,
we indeed observe the same (and thus optimal) convergence behavior; see Figure 8.

In Test Case 2 we choose constant reaction and source terms that lead to more
regular solutions. Here, the greedy algorithm shows a faster convergence of order
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A616 JULIA BRUNKEN, KATHRIN SMETANA, AND KARSTEN URBAN

about N−3\Uparrow 2. With discontinuous source and boundary data in Test Case 3 we finally
observe an order of roughly N−1.

Similar experiments were also performed in [8], where reduced models are built
by the so-called Double Greedy algorithm that chooses reduced trial spaces and uses
additional loops to find stabilized reduced test spaces (of larger dimension). To realize
a fair comparison with our approach, we also implemented a ``strong"" Double Greedy
algorithm using the model error instead of a surrogate in [8, Algorithm 4]. For the full
solutions we use the discretization of the Optimal Test method described in section
6.1.4. We then run the ``strong"" variant of the Double Greedy algorithm [8, Algorithm
5] for Test Case 3 on a training set of 500 equidistant parameter values distributed
over \scrP and with tolerance \varepsilon = 0.01 comparing different thresholds \beta min for the inf-sup
stability of the reduced spaces.8

The resulting maximum model errors for 500 test parameter values are shown
in Figure 9. For the smaller stability thresholds of 0.3 and 0.6 we observe slight
instabilities, while for a threshold of 0.7 the maximum model errors are decreasing for
increasing model orders. Comparing the approximation properties of the trial spaces
of the Double Greedy and Optimal Trial Greedy method, we see that for model orders
up to 32 the Double Greedy trial spaces lead to smaller errors than the Optimal Trial
spaces of the same dimension, while for larger model orders the Optimal Trial reduced
spaces perform better.

Since, unlike the new method, for the Double Greedy method the test spaces are
significantly larger (for Test Case 3, \beta N ≥ 0.7, approximately by a factor of 3) than
the trial spaces, the test space dimensions are essential for the online complexity of
the reduced saddle point problems. In Figure 10, online computation times for both
methods are shown, where we use for the Double Greedy solutions a reformulation of
the saddle point problem where the inversion of a test space sized matrix dominates
the costs.9 We clearly see that the Optimal Trial reduced models outperform the
Double Greedy models both when comparing the same trial space dimensions and the
same model errors.10

These results show that for the rather challenging Test Case 3 the Optimal Trial
method leads to comparable, and for larger model orders even better, approximation
properties for the same dimension of the trial spaces and to faster online computation
times than the Double Greedy method. We note that for smoother cases, e.g., Test
Case 2, the Optimal Trial models show the same, but not better, convergence order
as the Double Greedy models.

Finally, to test the hierarchical error estimator described in section 4.5, we use
Test Case 2 with mesh size \delta = (h,h), h−1 = 512. For the reduced space Y N , we
choose a greedy basis with tolerance \varepsilon = 10−2, which here corresponds to N = 13.
For the error estimator reference space YM ⊃ Y N , we compare spaces with tolerances
\varepsilon = 10−2.5,10−3,10−3.5, and 10−4, leading to M = 31,62,91, and 127, respectively. The

8In [8] it is proposed to use \beta min ∶= \zeta \beta \delta , where 0 < \beta \delta ≤ 1 is a lower bound of the discrete inf-sup
constants of the full discretizations for all \mu ∈ \scrP and some 0 < \zeta < 1, such that the desired threshold
is guaranteed to be achievable for all reduced spaces. Here, we simply compare different values of
\beta min < 1 without computing \beta \delta .

9Directly solving the larger linear system of size (trial space dim.)+(test space dim.) correspond-
ing to the saddle point formulation leads to comparable results.

10Note, however, that, as usual, online computation times contain only the computation of the
coefficients of the reduced solutions in the respective reduced basis. If an assembly of the full-
dimensional solution vector is needed, this dominates the costs and is clearly faster for the Double
Greedy models, since for the Optimal Trial method the separate parts of the affine decomposition of
the trial space have to be assembled, and the trial space vector is usually larger.
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DouGre, \beta N ≥ 0.3, error vs. test space dim.
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DouGre, \beta N ≥ 0.7, error vs. trial space dim.

DouGre, \beta N ≥ 0.7, error vs. test space dim.

Optimal Trial Greedy

Fig. 9. Test Case 3, h−1 = 512. Maximum errors of 500 test parameter values for reduced
models from Algorithm 4.1 (Optimal Trial Greedy) and the strong Double Greedy (DouGre) Algo-
rithm with different lower inf-sup bounds, plots of maximum error versus trial space dimension and
test space dimension, respectively.
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Fig. 10. Test Case 3, h−1 = 512. Comparison of online computation times (median of 5000
runs) for reduced models from Optimal Trial Greedy Algorithm and strong Double Greedy Algorithm
with \beta N ≥ 0.7. Left: Computation time versus trial space dimension. Right: Maximum model error
versus computation time.
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Fig. 11. Test Case 2, h−1 = 512. Model errors \prod uN − u\delta \prod L2(\Omega ) for all test parameter values

(left) and ratios of estimated and real model errors \prod uN − uM \prod L2(\Omega )\Uparrow \prod u
N − u\delta \prod L2(\Omega ) (right).

results in Figure 11 show the quantitative good performance. Note that the values of
M are significantly larger than reported for the hierarchical error estimator in [17],
which is due to the fact that M is determined differently and transport problems are
not considered there.

7. Conclusions. In this work, we presented a Petrov--Galerkin method for (pa-
rametrized) transport equations leading to a computationally feasible optimally stable
numerical scheme that is easy to implement.

Numerical experiments show convergence of order about 1/3 for nonsmooth L2-
solutions. Despite the L2-framework, higher convergence orders between 1 and 2
can be observed for smooth solutions, even though tensor product discrete spaces
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may limit the convergence order to 1 due to unphysical restrictions of the trial space
at the outflow boundary. The proposed method shows similar ratios of errors and
computational costs to [7], where fixed trial spaces are used. We thus conclude that our
nonstandard problem-dependent trial spaces have satisfying approximation properties
for the considered test cases.

Moreover, the framework allows for an efficient realization and implementation of
reduced basis methods for parametrized transport equations while ensuring optimal
stability for full and reduced spaces. The suggested (strong) greedy algorithm realizes
the convergence order of the Kolmogorov n-width for a nonsmooth transport problem.
A comparison with the algorithm in [8] that uses fixed trial spaces and therefore needs
additional stabilization techniques shows comparable or even better convergence rates
and significantly lower online costs for the new framework. The results suggest that
the new framework might be especially beneficial for problems where a stabilization
is rather challenging.

Appendix A. Proof of Proposition 2.2. We first give a more formal definition
of an \Omega -filling flow. To that end, let the flow associated with the vector field b⃗ ∈ C1(\=\Omega )n
be described by the integral curves \xi ∶ (s, x) ∈ \bigl( \sigma x, \tau x\bigr\rfloor × \=\Omega → \xi (s, x) ∈ \=\Omega that solve

d\xi 

ds
= b⃗(\xi ), \xi (0, x) = x.

Definition A.1 (\Omega -filling flow [1]). Let b⃗ ∈ C1(\=\Omega )n; then the associated flow is
called \Omega -filling if there exists T > 0 such that for almost every x ∈ \=\Omega there exist x0 ∈ \Gamma −
and 0 ≤ t ≤ T such that

x = \xi (t, x0).
Similar to [1, Lem. 7], we show the following lemma.

Lemma A.2. If the flow associated with b⃗ is \Omega -filling, then there exists \rho ∈ L∞(\Omega )
such that

(A.1) b⃗ ⋅ ∇\rho = 2 in \Omega , and \rho = 0 on \Gamma −.

Moreover, we have \prod \rho \prod L∞(\Omega ) ≤ 2T and \rho ≥ 0 almost everywhere in \Omega .

Proof. The function \rho can be found by the method of characteristics: Since the
flow associated with b⃗ is \Omega -filling, for almost every x ∈ \Omega , there exist x0 ∈ \Gamma − and
0 ≤ t ≤ T with x = \xi (t, x0). Define \rho (x) = 2t. Since 0 ≤ t ≤ T , we get \rho ∈ L∞(\Omega ),11
\prod \rho \prod L∞(\Omega ) ≤ 2T , and \rho ≥ 0 almost everywhere in \Omega . By definition, for x0 ∈ \Gamma − we have
\xi (0, x0) = x0, i.e., \rho (x0) = 0, which means \rho \bigcup \Gamma − = 0. Furthermore, it holds for almost
every x ∈ \Omega that

⃗b(x) ⋅ ∇\rho (x) = b⃗(\xi (t, x0)) ⋅ ∇\rho (\xi (t, x0)) =
d

dt
\xi (t, x0) ⋅ ∇\rho (\xi (t, x0))

= d

dt
\rho (\xi (t, x0)) =

d

dt
2t = 2;

i.e., \rho fulfills (A.1).

With these preliminaries, we can now give the proof of Proposition 2.2.

11\rho is in general not continuous: Consider, e.g., a nonconvex domain \Omega where a characteristic
curve is tangential to the boundary at some (isolated) x ∈ \Gamma 0, but not in a neighborhood of x. Then
\rho is discontinuous along the characteristic curve starting from x.
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Proof of Proposition 2.2. We first show (2.2), i.e., \prod v\prod L2(\Omega ) ≤ C\prod B∗

○
v\prod L2(\Omega ). Let

thus v ∈ C1
\Gamma +
(\Omega ). If condition (i) holds, we can slightly adapt the proof of [2, Thm.

1]: Let \rho be given as in Lemma A.2. Then,

(B∗

○
v, \rho v)L2(\Omega ) = (−b⃗ ⋅ ∇v + v(c −∇ ⋅ b⃗), \rho v)L2(\Omega )

= −∫
\Omega 
b⃗ ⋅ ∇v\rho vdx + ∫

\Omega 
v2\rho (c −∇ ⋅ b⃗)dx

= −∫
\Omega 

1
2
\rho b⃗ ⋅ ∇v2dx + ∫

\Omega 
v2\rho (c −∇ ⋅ b⃗)dx

= ∫
\Omega 

1
2
∇ ⋅ (\rho b⃗)v2dx + ∫

\Omega 
v2\rho (c −∇ ⋅ b⃗)dx,

where we have no boundary integral from the partial integration since the traces of v
on \Gamma + and of \rho on \Gamma − vanish. Further, we obtain

(A.2) (B∗

○
v, \rho v)L2(\Omega ) = ∫

\Omega 
v2( 1

2
b⃗ ⋅ ∇\rho 
\big\backslash 

=2

+ \rho 
\bigr\rangle 
≥0

(c − 1
2
∇ ⋅ b⃗)

\Bigr) \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr] \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr) 
≥0

)dx ≥ \prod v\prod 2L2(\Omega ).

Using \prod \rho v\prod L2(\Omega ) ≤ \prod \rho \prod L∞(\Omega )\prod v\prod L2(\Omega ) ≤ 2T \prod v\prod L2(\Omega ), we have

(A.3) \prod B∗

○
v\prod L2(\Omega ) ≥ \prod \rho v\prod −1L2(\Omega )

(B∗

○
v, \rho v)L2(\Omega ) ≥

1

2T
\prod v\prod L2(\Omega ).

For condition (ii), i.e., c− 1
2
∇⋅b⃗ ≥ \kappa > 0, we obtain by integration by parts (see [25, Lem.

3.1.1])

(B∗

○
v, v)L2(\Omega ) = ∫

\Omega 
−vb⃗ ⋅ ∇vdx + ∫

\Omega 
v2(c −∇ ⋅ b)dx

= − 1
2 ∫

\Omega 
vb⃗ ⋅ ∇vdx + 1

2 ∫
\Omega 
vb⃗ ⋅ ∇v + v2∇ ⋅ b⃗dx − 1

2 ∫
\Gamma −
v2b⃗ ⋅ n⃗ds

+ ∫
\Omega 
v2(c −∇ ⋅ b)dx

= ∫
\Omega 
v2(c − 1

2
∇ ⋅ b)dx − 1

2 ∫
\Gamma −
v2 b⃗ ⋅ n⃗
\bigm\| 
<0

ds ≥ \kappa \prod v\prod 2L2(\Omega )(A.4)

and thus
\prod B∗

○
v\prod L2(\Omega ) ≥ \kappa \prod v\prod L2(\Omega );

i.e., (2.2) holds for both cases.
Since (2.2) implies injectivity of B∗

○
on C1

\Gamma +
(\Omega ), which is dense in L2(\Omega ), assump-

tion (B1) is fulfilled.
To prove assumption (B2), we slightly modify the proof of [1, Thm. 16]. To prove

density of ran(B∗

○
) in L2(\Omega ), we take w ∈ L2(\Omega ) that is orthogonal to ran(B∗

○
) and

show w ≡ 0. We thus have

(B∗

○
v,w)L2(\Omega ) = 0 ∀v ∈ C1

\Gamma +(\Omega ).

Let at first v ∈ C1
0(\Omega ). We then have

0 = ∫
\Omega 
−b⃗ ⋅ ∇vw + (c −∇ ⋅ b⃗)vwdx = ∫

\Omega 
−∇ ⋅ (b⃗v)w + cvwdx.(A.5)

By partial integration we see that b⃗ ⋅ ∇w + cw is a distribution of order 1 with

\coprod b⃗ ⋅ ∇w + cw, v\widetilde = 0,
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which already means b⃗ ⋅ ∇w + cw = 0, i.e., b⃗ ⋅ ∇w = −cw ∈ L2(\Omega ). Therefore, since
w ∈ H(\Omega , b⃗) ∶= {\phi ∈ L2(\Omega ) ∶ b⃗ ⋅ ∇\phi ∈ L2(\Omega )} and \partial \Omega is piecewise C1, we can consider
the trace w\bigcup \Gamma − ∈ L2,loc(\Gamma −, \bigcup b ⋅ n⃗\bigcup ) (see [14, Prop. I.1]). Let now v ∈ C1

\Gamma +
(\Omega ). We then

obtain from partial integration of (A.5), using b⃗ ⋅ ∇w + cw = 0 and v\bigcup \Gamma + = 0, that

∫
\Gamma −
vwb⃗ ⋅ n⃗ds = 0.

Since v is arbitrary on \Gamma − and b⃗ ⋅ n⃗ < 0 on \Gamma −, we thus have w\bigcup \Gamma − = 0.
We now consider the curved Poincar\'e inequality (2.2) for the (nonadjoint) oper-

ator B○z = b⃗ ⋅ ∇z + cz: By setting b⃗1 = −b⃗ and c1 = c −∇ ⋅ b⃗, (2.2) reads

(A.6) \prod − b⃗1 ⋅ ∇z + (c1 −∇ ⋅ b⃗1)z\prod L2(\Omega ) = \prod b⃗ ⋅ ∇z + cz\prod L2(\Omega ) ≥ C1\prod z\prod L2(\Omega ) ∀z ∈ C1
\Gamma −(\Omega ),

as \Gamma − is the outflow boundary for b⃗1 = −b⃗. Since C1
\Gamma −
(\Omega ) is dense in {\phi ∈ L2(\Omega ) ∶

b⃗ ⋅ ∇\phi ∈ L2(\Omega ), \phi \bigcup \Gamma − = 0}, we obtain 0 = \prod b⃗ ⋅ ∇w + cw\prod L2(\Omega ) ≥ C1\prod w\prod L2(\Omega ), and thus
w = 0. Hence, (B2) is also fulfilled.
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