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1 Abstract

We describe decentralized control laws for the coordi-
nation of multiple vehicles performing spatially distrib-
uted tasks. The control laws are based on a gradient
descent scheme applied to a class of decentralized navi-
gation functions that encode optimal coverage and sens-
ing policies. The approach exploits the computational
geometry of Voronoi diagrams.

Our central motivation in this note is provided by dis-
tributed sensing networks in scientific exploration or
surveillance missions. The motion coordination prob-
lem is to maximize the information provided by a swarm
of vehicles taking measurement of some process.

1.1 Setting up the coverage control
Let {p1, . . . , pn} be the location of n sensors moving
in a Riemannian manifold (with boundary) Q. Let
φ : Q → R+ be a distribution density function. The
measure φ plays the role of an “information density”.
Assume each vehicle has a sensor that provides accurate
local measurements and whose performance degrades
with distance. Formally, let f (dist(q, pi)) (with ‘dist’
the distance defined through the Riemmanian metric)
describe the performance degradation, e.g., noise, loss
of resolution, etc, of the measurement at the point
q ∈ Q taken from the ith sensor at position pi. The
function f : R+ → R+ is monotone increasing.

The overall “sensing performance” is given by,

U(p1, . . . , pn) =
∫

Q

min
i∈{1,...,n}

f (dist(q, pi)) φ(q)dq. (1)

This function (common in geographical optimization
science [1]) measures the ability of a collection of ve-
hicles to provide accurate distributed sensing. The lo-
cational optimization problem is to minimize U .

1.2 Voronoi diagrams
Let the Voronoi region Vi = V (pi) be the set of all
points q ∈ Q such that dist(q, pi) ≤ dist(q, pj) for all
j �= i. The set of regions {V1, . . . , Vn} is called the
Voronoi diagram for the generators {p1, . . . , pn}. When
the two Voronoi regions Vi and Vj are adjacent, pi is
called a (Voronoi) neighbor of pj (and vice-versa).

1.3 Decentralized control protocols
We propose the gradient descent as a decentralized con-
trol law that achieve “uniform coverage” of Q,

ṗi(t) = −∂U

∂pi
. (2)

The following result [2, 3] shows that indeed the con-
trol law is decentralized, in the sense that only depends
on local information, i.e. the location of pi and of its
neighbors,

∂U

∂pi
=

∫
Vi

∂

∂pi
f (dist(q, pi)) dφ(q). (3)

Hence, U provides us with a decentralized navigation
function [4] in the setting of multiple vehicle networks.
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Figure 1: Distribution of sensors obtained by 16 vehicles in
a polygon. The vehicles’ initial positions are in a
tight group in the lower left corner and their final
positions are optimally distributed.
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