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A B S T R A C T
Background: Lung cancer screening can reduce cancer mortality. Most
implementation studies focus only on low-dose computed tomography
(LDCT) and clinical attributes of screening and do not include prefer-
ences of potential participants. In this study we evaluated the per-
ceived value of screening programs based on LDCT, breath analysis
(BA), or blood biomarkers (BB) according to the perspective of the target
population. Methods: A multi-criteria decision analysis framework
was adopted. The weights of seven attributes of screening (sensitivity,
specificity, radiation burden, duration of screening process, waiting
time until results are communicated, location of screening, and mode
of screening) were obtained from an earlier study that included a broad
sample from the Netherlands. Performance data for the screening
modalities was obtained from clinical trials and expert opinion.
Parameter uncertainty about clinical performances was incorporated
probabilistically, while heterogeneity in preferences was analyzed
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through subgroup analyses. Results: The mean overall values were
0.58 (CI: 0.57 to 0.59), 0.57 (CI: 0.56 to 0.59), and 0.44 (CI: 0.43 to 0.45) for
BB, BA, and LDCT, respectively. Seventy-seven per cent of respondents
preferred BB or BA. For most subgroups, the overall values were similar
to those of the entire sample. BA had the highest value for respondents
who would have been eligible for earlier screening trials. Discussion:
BB and BA seem valuable to participants because they can be applied in
a primary care setting. Although LDCT still seems preferable given its
strong and positive evidence base, it is important to take non-clinical
attributes into account to maximize attendance.
Keywords: lung cancer screening, multicriteria decision analysis,
public preferences, subgroup analysis, uncertainty.
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Introduction

Although the prognosis of cancer survival has greatly improved
over the last few decades, lung cancer mortality has not been
significantly reduced, with the 5-year survival being only 18%
[1]. Because the primary reason for the high mortality is that the
disease has already metastasized once detected, it is found that
early detection can substantially improve prognosis [2]. In the
National Lung Screening Trial (NLST) it was shown that annual
screening with low-dose computed tomography (LDCT) can
reduce cancer-related mortality by 20% compared with annual
screening with chest x-ray [3]. Given these promising results,
policymakers across the world are considering whether lung
cancer screening should be adopted as part of national screen-
ing programs [4]. Nevertheless, there is still no consensus
about actual screening guidelines or how these might be
implemented [5]. A few studies have been performed investigat-
ing how lung cancer screening using LDCT should be imple-
mented, yet these focus only on optimizing clinical parameters
such as screening frequency or eligibility criteria [6,7]. Further-
more, although there is considerable experience with CT-based
screening, recent advances in the fields of breath analysis (BA)
and blood biomarker (BB) screening modalities should be con-
sidered as well, because they might be preferred more by the
general public because of convenience benefits [8–10]. Also,
results from lung cancer screening trials suggest that there are
some subgroups that are less likely to participate in screening
after being invited compared with other subgroups [11,12]. This
may be explained from previous research that shows that a
decision to attend also depends on nonclinical attributes of
screening such as comfort, duration, and location [13] or on
person-specific factors such as self-perceived risk of lung
fessional Society for Health Economics and Outcomes Research.
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cancer [14]. Because low screening attendance rates may lead to
lower cancer-related mortality reductions than predicted in
trials, a lung cancer screening guideline should be optimized
for attendance and thus appreciate both clinical diagnostic
performance and other factors related to the process and
convenience of the modality [13].

Several survey methods such as multicriteria decision analy-
sis (MCDA) or discrete choice experiments can be used to assess
the relative value of hypothetical screening programs with differ-
ent clinical and nonclinical attributes [15–17]. Studies using
preference elicitation methods have been carried out in breast
[18], colorectal [19–23], and prostate [24–26] cancers. The under-
lying assumption in these stated preference studies is that the
screening program with the highest relative value is most
preferred by the respondents, and therefore has the highest
likelihood that the eligible population will attend. Although such
preferences cannot directly predict screening attendance, they do
provide insight into what attributes of screening programs
influence the intention to attend. In a previous study, using a
stated preference survey we identified seven attributes of screen-
ing programs for lung cancer that were most important for
potential participants in the Netherlands [27]. The aim of the
present study was to use MCDA to construct and evaluate the
relative values for different screening programs that use LDCT,
BA, or BB. A second aim was to investigate whether the value of
screening programs differs between preference subgroups or risk
profile subgroups.
Methods

MCDA is a methodology stemming from operations research that
can support a wide range of decisions. In general, an MCDA
distinguishes four consecutive steps: structuring, weighting,
scoring, and aggregating [28,29]. During the structuring step, the
decision problem needs to be defined (who is the decision maker
and what are the decision options) and important attributes of
the decision alternatives are selected. The relative importance or
attribute weight of each included attribute is then assessed using
elicitation methods such as swing weighting or MACBETH [28,30].
After this, the performance of each decision option on each
attribute is measured and valued numerically in the scoring step.
Then, the weights and scores are aggregated to obtain an overall
value estimate for each decision option, and the decision option
with the highest value is considered the preferred choice. In the
final step of the MCDA process, the impact of various types of
uncertainty in the scores, weights, and overall values should be
investigated and the results of the MCDA should then be
communicated to stakeholders.

Structuring the Decision

In this study, we investigated the decision whether to attend the
first round of a screening program for lung cancer. We assumed
the decision perspective of (potential) participants from a broadly
determined eligible population in the Netherlands, which we
assumed were all men and women aged between 40 and 80 years
with no history of lung cancer. We assumed that someone is most
likely to attend the screening program with the highest perceived
value. Therefore, we aimed to assign a value to each alternative
screening program using the respondents from a previously con-
ducted stated preference study [27]. The program with the highest
mean value across the respondent sample would be denoted as
the preferred program. The screening programs in this study were
based on three different modalities, namely, LDCT, BA, and BBs. In
case of LDCT, a malignancy is suspected if the diameter or volume
(growth) of a nodule on a low-dose thorax image exceeds a
predefined threshold [5]. We focused on LDCT with a threshold
based on volume-doubling time instead of a diameter-based
malignancy threshold because a high false-positive rate was
reported for the latter [3,31]. Regarding the second modality, BA,
there are multiple technologies [32]. We chose to focus on the
electronic nose (“e-Nose”) technology [8]. With BA, one must exhale
into a device similar to that used for lung function testing. The
e-Nose detects (patterns of) volatile organic compounds in
the exhaled air, which are then compared with patterns found in
patients with lung cancer and healthy persons. If the chemical
patterns in the collected breath sample match those of patients
with lung cancer, the participant is referred for further testing. For
the last modality, a multitude of BB-based screening technologies
exist [9,33,34]. For the present study, we chose to focus on
circulating tumor cells in blood [35]. With these so-called liquid
biopsies, blood is taken from the participant and a laboratory
procedure is used to find malignant cells that have shed into the
vascular system from the primary tumor.

We compared the three screening modalities on seven attrib-
utes of screening that were identified in a previous study [27]. The
attributes that were identified together with interviewees and
panel members were sensitivity, specificity, radiation burden,
duration of screening, waiting time until results are communi-
cated, location of screening, and mode of screening. Sensitivity was
defined as the probability of a positive (i.e., suspect) test result
given that someone has lung cancer. Specificity was defined as the
probability of a negative (i.e., nonsuspect) test result given that
someone does not have lung cancer. Radiation burden was defined
as the radiation that a participant receives during a single screen-
ing on top of the normal yearly background radiation in the
Netherlands (in millisievert [mSv]) [36]. Duration of screening was
defined as the time the participant would spend at the facility
where screening takes place (in minutes). Waiting time until results
was defined as the time until the participant receives the screen-
ing results (in days), either through a consultation or with a letter
sent to his or her home address. Mode of screening was the
modality of screening, with “going through a scanner,” “exhaling
into a device,” and “giving a blood sample” as levels. The location of
screening attribute had two levels: “the office of your general
practitioner (GP)” and “the hospital nearest to you.” For each
attribute, a lower (worst) level and an upper (best) level were
identified. The actual performance of the screening programs
should fall in this range. Furthermore, it was assumed that
respondents are indifferent to performance changes outside of
this range; for example, performing worse than the lower level
confers the same value as performance exactly at the lower level.
For the sensitivity, specificity, and radiation burden attributes, the
lower and upper levels were identified on the basis of literature
and the clinical expertise of two of the authors.

In the preference survey, the percentages used for sensitivity
and specificity were rounded to the nearest single decimal
percentage (i.e., 10%, …, 100%) to improve clarity for respondents.
The worst and best levels for the duration of screening and
waiting time until results attributes were established in the panel
session. Finally, the preferential order of mode and modality of
screening cannot be assumed a priori (e.g., it will differ between
persons whether the GP location is preferred over the hospital
location). Respondents in the preference survey were therefore
asked to rank the modes of screening from least burdensome to
most burdensome and they were asked to indicate their most
preferred location. An overview of the attributes and their levels
is presented in Table 1.

Weighting Attributes Using a Preference Survey

The aim of the weighting step is to identify the relative
importance of attributes with attribute weights. These attribute



Table 1 – Included attributes and levels.

Attribute Attribute name Worst level Best level

Continuous attributes Sensitivity 70% 100%
Specificity 70% 100%
Radiation burden Background þ 1.5 mSv Background
Duration of screening procedure 45 min 15 min
Waiting time until results 14 d 1 d

Categorical attributes Scan type Levels: “lie in scanner,” “sustained breath into device,” “give blood”
Location Levels: “nearest hospital,” “at your GP’s office”

Note. Sensitivity is the probability of a positive/suspect test result given that the person has lung cancer. Specificity is the probability of a
negative test result given that the person does not have lung cancer. The worst and best levels for the continuous attributes were defined on
the basis of interviews with clinicians. For the categorical attributes, the preference order was elicited from respondents in separate questions.
GP, general practitioner.
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weights were elicited in the preference study from the
respondents using a swing weighting task [27,37]. From this
we obtained a set of seven attribute weights for each respond-
ent (see Table 2). These weights indicate the relative impor-
tance of improvements from the worst performance level to
the best performance level between attributes [38]. One
thousand thirty-four respondents from the Dutch general
population completed the preference survey. Fifty-one percent
of the respondents were women, the mean age was 58 � 11
years, and the respondents were distributed evenly between
low, medium, and higher levels of education. For more details
regarding the attribute selection process, the preference
elicitation process, and the characteristics of the population
sample, you may refer to the study by Broekhuizen et al. [27].

Measuring the Performance Data of Screening Programs

The aim of the scoring step is to find out how well screening
programs perform on the included attributes. To be able to do this,
we collected clinical evidence on the screening programs’ perform-
ances. When this was not available, we made assumptions on the
basis of the clinical experience of two of the authors (R.V. and H.
G.). For the sensitivity and specificity of LDCT, published pooled
estimates from the first round of the Dutch-Belgian Randomized
Lung Cancer Screening Trial (NELSON) were used [39]. For the
sensitivity and specificity of BA, we included trials from a recent
systematic review [32]. For the estimation of the predictive power
of BA in terms of the sensitivity and specificity, a prediction model
was constructed on the basis of the chemical patterns found in
known patients with cancer and known healthy persons. Predic-
tion models constructed in this way are susceptible to “overfitting,”
Table 2 – Preference data.

Attribute name Weight, mean � SD

Sensitivity 0.16 � 0.14
Specificity 0.13 � 0.12
Radiation burden 0.13 � 0.12
Duration of screening procedure 0.10 � 0.09
Waiting time until results 0.13 � 0.12
Mode of screening 0.17 � 0.14
Location of screening 0.18 � 0.17

Note. For mode of screening, the bisection point indicates the responden
bisection point and the improvement from the bisection point to the be
because it had only two (categorical) levels. The lower and upper levels
Broekhuizen et al. [27].
an undesirable effect when the model memorizes the persons in
the case-control study instead of identifying generalizable pat-
terns and this leads to poor predictive power for new cases outside
of the original case-control study. We excluded trials from the
review that did not correct for overfitting because their perform-
ance estimates (mostly very close to 100%) were unlikely to
generalize well [32]. We subsequently pooled the sensitivity and
specificity estimates from the eight included clinical trials with a
bivariate copula random effects model in which the choice of
copula function was made with maximum-likelihood estimation
[40]. Performance data for sensitivity and specificity of BB were
also obtained from trials cited in a systematic review [35]. As for
BA, the estimates for BB were pooled using a bivariate copula
random effects model [40]. The radiation burden for LDCT was set
to 1.5 mSv, and the radiation burden for BA and BB was set to 0
mSv. For duration of screening we assumed that the participant
would need between 15 and 45 minutes for LDCT, between 20 and
30 minutes for BA, and between 10 and 25 minutes for BB. LDCT
images have to be evaluated by a radiologist and we assumed that
it would take 1 week for the participant to receive the result.
Samples for BB are mostly analyzed in separate laboratory facili-
ties and therefore the time until results for BB was set to 2 days.
We assumed that the BA results would be available the next day
because the BA review authors noted that “time between breath
collection and analysis was usually a couple of hours” [32]. We
assumed that LDCT screening is performed at the local hospital.
Screening based on BA or BB is assumed to be done at a primary
care facility. Table 2

Finally, the three screening technologies directly corre-
sponded to the levels for the mode of screening attribute: for
LDCT one “goes through a scanner,” for BA one “has to exhale into
Bisection point percentiles

2.5% 50% 97.5%

63.5% 90.0% 100.0%
64.3% 90.4% 100.0%

0.16 mSv 1.10 mSv 1.5 mSv
42.0 min 26.4 min 15.0 min
12.8 d 5.2 d 1 d
21.0% 72.5% 100.0%

– – –

t’s indifference between an improvement from the worst level to the
st level. No bisection point was elicited for the location of screening
per attribute are presented in Table 1. More details can be found in
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a device,” and for BB one has to “give blood.” An overview of all
performance inputs is presented in Table 3.

Aggregating into Overall Values

In the aggregation step, a value score is calculated for each
screening program. Because performances are measured on
different natural scales (percentages, days, etc.) we first need to
transform these metrics to a partial value between 0 (no value)
and 1 (maximum value). Finally, the value estimate for each
included screening policy is obtained by weighting the partial
values with the attribute weights.

A partial value function is a mathematical function that
maps attribute-specific performances (percentages, days, etc.)
onto a partial value scale between 0 and 1. Although partial
value functions are commonly assumed to be linear, we consid-
ered this to be unrealistic in our case because there are two
time-related attributes in our attribute set and people’s prefer-
ences for time are often nonlinear [41]. Moreover, we considered
it unlikely that the difference in preference between the first- and
second-ranked screening modes was equal to the difference in
preference between the second- and third-ranked screening
modes.

To estimate a nonlinear partial value function for the con-
tinuous attributes, we elicited from each respondent a bisection
point on the performance scale of each attribute (except for
location). We excluded 48 respondents who did not complete
the bisection point questions. The bisection point indicates the
respondent’s indifference between an improvement from the
worst level to the bisection point and the improvement
from the bisection point to the best level. Denoting the indiffer-
ence point with xn

kq and the worst and best levels with x�k and xþ
k ,

respectively, we obtained the two-piece partial value function
vkq of continuous attribute k (k ¼ 1,...,5) for respondent
q (q ¼ 1,...,n):
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Here, xki is the performance of screening program i on
attribute k. The sixth attribute, mode of screening, is categorical.
Therefore, we defined the partial value v6,q for the third-ranked
mode for a respondent q as having a value of 0, the second-rank
mode as having a value of xn

6,q (the bisection point), and the first-
ranked mode as having a value of 1. The seventh attribute
(location of screening) is also categorical with two levels, and so
Table 3 – Used performance data of the three included sc
specificity) or ranges (for duration of screening).

Attribute name LDCT

Sensitivity (%) 92.5 (85.3–97.5)
Specificity (%) 98.8 (98.0–98.6)
Radiation burden (mSv) 1.5
Duration of screening (min) 30 (range 15–45)
Waiting time until results (d) 7
Mode Go through scanner
Location Hospital

BA, breath analysis; BB, blood biomarkers; CI, confidence interval; GP, ge
* Pooled with Frank copula with Kendall τ¼0:9.
† Pooled with normal copula with Kendall τ¼1:0.
the partial value v7,q for the second-ranked location was 0 and
that for the first-ranked location was 1.

To aggregate the respondents’ partial values for the different
attributes into an overall value for each included screening
program (denoted as Viq), the partial values were scaled using
the attribute weights and then summed:

Viq¼
X7
k¼1

wkqvkq: ð2Þ

Then, an estimate of the mean overall value for a screening
program in the general population (denoted as Vi), was obtained
by averaging the individual overall values over all n respondents:

Vi¼
Pn

q¼1 Viq

n
: ð3Þ

By sorting the screening programs per respondent from the
highest value to the lowest value, a rank order of screening
programs per respondent riq was obtained. Furthermore, we
denoted the rank of program i with Ri. The proportion of the
population for whom this rank equals y ¼ 1, 2, or 3 was then
estimated with the proportion of respondents for whom program
i had rank y (Equations 4 and 5):Pn

q¼1 1yðriqÞ
n

, ð4Þ

where

1y riq
� �¼ 1, if riq¼y

0, otherwise
:

(
ð5Þ

Uncertainty Analyses

We investigated the impact of parameter uncertainty in clinical
evidence and heterogeneity in attribute weights on the mean
overall values of the screening programs [42,43]. Parameter
uncertainty was investigated using a probabilistic approach.
The uncertain parameter estimators in our model were those
for the programs’ performance on the sensitivity, specificity, and
duration of screening attributes. For LDCT, we modeled the
uncertainty in the parameter estimates for sensitivity and spe-
cificity by two independent beta distributions according to best
practices for modeling proportions [44]. We also assumed that the
average screening duration for LDCT was uniformly distributed
between 15 and 45 minutes. For both BA and BB, the uncertainty
in the estimators for sensitivity and specificity was modeled with
the bivariate copula distributions that were fitted for the pooling
of study-level estimates [40]. Furthermore, we assumed that the
average screening duration was uniformly distributed between 20
and 30 minutes for BA and between 10 and 25 minutes for BB.
reening policies with 95% CIs (for sensitivity and

BA BB

80.0 (52.8–96.7) 74.8 (66.7–85.2)*

79.8 (66.7–89.9) 87.9 (77.1–95.7)†

0 0
25 (range 20–30) 17.5 (range 10–25)
1 2
Exhale into device Give blood
GP’s office GP’s office

neral practitioner; LDCT, low-dose computed tomography.



Fig. 1 – Modeling flowchart.

V A L U E I N H E A L T H 2 1 ( 2 0 1 8 ) 1 2 6 9 – 1 2 7 7 1273
Because the overall value of each screening program is a combi-
nation of weights and performances, it is hard to analytically find
the distribution of Vi given the parameter uncertainty in sensi-
tivity, specificity, and duration. We therefore estimated this value
distribution using Monte-Carlo simulations [45]. This meant
that we drew one sample from the aforementioned probability
distributions of the performance estimators for each respondent
and then calculated the partial values of each program for each
respondent with Equations 1a to 1c and the overall values using
Equation 2. We also calculated the 95% confidence intervals (CIs)
of the partial and overall values across the preference sample by
taking the empirical 95% CI from the Monte-Carlo simulations.
A flowchart of the Monte-Carlo process is shown in Figure 1.

To investigate whether heterogeneity in preferences would
influence which of the screening programs had the highest value,
we performed the following subgroup analyses. Each scenario
consisted of a subgroup from the preference study. First, with
cluster analysis the respondents were divided into five subgroups
of persons with similar preferences [27]. Each of these preference
subgroups is named after the attribute(s) respondents in the
Table 4 – Mean partial values (as calculated for the base

Attribute name LDCT

Sensitivity 0.63 (0.62–0.64)
Specificity 0.81 (0.80–0.82)
Radiation burden 0.00 (0.00–0.00)
Duration of screening 0.17 (0.16–0.18)
Waiting time until results 0.26 (0.26–0.26)
Mode 0.65 (0.63–0.67)
Location 0.40 (0.37–0.43)

Note. 95% CIs were obtained with Monte-Carlo simulations.
BA, breath analysis; BB, blood biomarkers; CI, confidence interval; LDCT
subgroup considered most important: radiation-sensitivity (n ¼
236), waiting time until results (n ¼ 157), location-mode (n ¼ 299),
mode-sensitivity (n ¼ 184), and sensitivity-specificity (n ¼ 158).
Apart from these preference subgroups, we investigated sub-
groups in the preference study that can be defined in terms of
their eligibility for screening according to three recent screening
trials. Each of these trials (NLST, NELSON, and the UK Lung
Cancer Screening [UKLS]) had different eligibility criteria based on
a person’s risk profile. The NLST study included men and women
aged between 55 and 74 years who had more than 30 pack-years
of smoking [3]. Furthermore, former smokers must have quit
within the previous 15 years. A pack-year is defined as 20
cigarettes smoked every day for 1 year. In the preference study,
it was not asked how many cigarettes respondents smoked per
day but instead it was asked how many years respondents had
smoked and if they had quit, how long ago that was. Because the
average number of cigarettes smoked in the Netherlands by
smokers in the eligible population is 11 [46], we multiplied the
total number of years smoked by 11/20 ¼ 0.55 to estimate the
respondents’ pack-years. Here, we also assume that the daily
case with Equation 1) with 95% CIs.

BA BB

0.39 (0.37–0.41) 0.33 (0.32–0.34)
0.37 (0.36–0.38) 0.52 (0.51–0.53)
1.00 (1.00–1.00) 1.00 (1.00–1.00)
0.23 (0.23–0.23) 0.53 (0.51–0.55)
1.00 (1.00–1.00) 0.45 (0.45–0.45)
0.37 (0.34–0.40) 0.68 (0.65–0.71)
0.60 (0.57–0.63) 0.60 (0.57–0.63)

, low-dose computed tomography.



Table 5 – Overview of values and rank proportions.

Mode Parameter uncertainty Stochastic uncertainty

Mean overall value (CI) Value percentiles Percent of respondents for whom modality was ranked …

2.5% 50% 97.5% First Second Third

LDCT 0.44 (0.43–0.45) 0.16 0.44 0.74 23.4% 19.7% 56.9%
BA 0.57 (0.56–0.59) 0.26 0.58 0.87 32.7% 45.0% 22.3%
BB 0.58 (0.57–0.59) 0.26 0.60 0.87 43.9% 35.3% 20.8%

Note. The CI for the mean overall values reflects uncertainty on the sample level because of uncertainty in parameter estimates for clinical
performance. The results under “Stochastic uncertainty” reflect differences at the respondent level.
BA, breath analysis; BB, blood biomarkers; CI, confidence interval; LDCT, low-dose computed tomography.
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number of cigarettes smoked by someone is constant. The
NELSON study included men and women aged between 50 and
78 years who smoked either more than 15 cigarettes every day
during more than 25 years or more than 10 cigarettes every day
during more than 30 years [47]. Furthermore, to be eligible for the
NELSON study one needs to be a current smoker or a former
smoker who quit within the previous 10 years. Finally, the UKLS
study included men and women aged between 50 and 75 years
with 5-year lung cancer risk of more than 5% as calculated with
the Liverpool Lung Project model [48,49]. Note that the subgroups
based on the screening trials were not mutually exclusive; that is,
persons with a very high risk of lung cancer are likely to be
eligible for multiple trials. For each of the eight subgroups, we re-
ran the model, including parameter uncertainty in estimates for
sensitivity, specificity, and duration of screening. In this way we
obtained mean value estimates and associated CIs of the screen-
ing programs according to each subgroup. By comparing these
mean values, we assessed which screening program would be
most valuable for different subgroups.
Results

The partial values of the screening programs for sensitivity and
specificity reflected the differences in the clinical evidence: LDCT
had the highest partial value for both sensitivity and specificity,
BA had a higher partial value for sensitivity than did BB, and BB
had a higher partial value for specificity than did BA. LDCT had
the lowest partial value for the duration of screening and waiting
time until results attributes, BB had the highest partial value for
the duration of screening attribute, and BA had the highest
partial value for the waiting time until results attribute. Both
LDCT and BB had similar partial values for the mode of screening
Table 6 – Overall values (with 95% CIs) for the three diffe
included subgroups.

Preference subgroup LDCT

Radiation-sensitivity 0.44 (0.42–0.46)
Mode-sensitivity 0.47 (0.45–0.49)
Location-mode 0.42 (0.39–0.44)
Waiting time until results 0.36 (0.35–0.38)
Sensitivity-specificity 0.54 (0.52–0.56)
NLST inclusion criteria 0.47 (0.44–0.50)
NELSON inclusion criteria 0.47 (0.45–0.50)
UKLS inclusion criteria 0.51 (0.47–0.54)

BA, breath analysis; BB, blood biomarkers; CI, confidence interval; LDC
Screening Trial; UKLS, UK Lung Cancer Screening.
attribute (about 0.65), whereas BA had a clearly lower partial
value for that attribute (0.37). Because both BA and BB were
assumed to take place at the GP’s office and both had no radiation
burden, the partial values for this attribute were identical. An
overview of the partial values is presented in Table 4.

BB had a mean overall value of 0.58 (95% CI 0.57–0.59) and BA
had a mean overall value of 0.57 (95% CI 0.56–0.59). Although the
mean overall value for BB was slightly higher than that of BA, the
absolute difference was small (0.01) and the CIs due to parameter
uncertainty overlapped. LDCT, however, clearly had the lowest
mean overall value (0.44), and its CI (0.43–0.45) did not overlap
with that of either BA or BB. Although the distribution of the
overall value is skewed to the left, the median overall values
coincide with the mean. In contrast with the CIs around esti-
mates of the mean overall values, which were small, the indi-
vidual value distributions showed considerable overlap. This is
reflected in the rank proportions: BB had the highest value for
43.9% of respondents, whereas this was 32.7% for BA and 23.4%
for LDCT. For 56.9% of respondents, LDCT had the last rank. An
overview of the overall values and the rank probabilities is
presented in Table 5. For most preference subgroups, the overall
values were similar to those of the entire sample (Table 6; Fig. 2).
For the respondents in the waiting time until results preference
subgroup, however, BA had the highest value and its CI did not
overlap with those of the other screening programs. In the
sensitivity-specificity preference subgroup, LDCT had the highest
mean value although its CI overlapped with those of the other
programs. The preference for BB according to respondents in the
radiation-sensitivity preference subgroup was stronger than that
of the entire sample in that the CI for BB no longer overlapped
with that of BA. From the sample, 10.3% to 18.1% were eligible for
one of the trials (see Tables 7 and 8). The attribute weights as
assigned by respondents in these particular subgroups were
rent screening programs according to each of the

BA BB

0.57 (0.55–0.59) 0.63 (0.61–0.65)
0.56 (0.53–0.59) 0.55 (0.52–0.58)
0.58 (0.56–0.60) 0.61 (0.58–0.64)
0.66 (0.64–0.68) 0.58 (0.56–0.60)
0.50 (0.47–0.52) 0.51 (0.49–0.53)
0.56 (0.53–0.59) 0.53 (0.51–0.56)
0.55 (0.52–0.57) 0.55 (0.52–0.58)
0.54 (0.50–0.58) 0.51 (0.47–0.54)

T, low-dose computed tomography; NELSON; NLST, National Lung



Fig. 2 – Overall mean values for LDCT (blue), breath analysis (green), and blood biomarkers (red) with 95% CI. “Base” denotes
the total sample and “PSGx” denotes the xth preference subgroup (see Supplemental Materials found at http://dx.doi.org/10.
1016/j.jval.2018.01.021 and Tables 7 and 8 for an overview). CI, confidence interval; LDCT, low-dose computed tomography;
NLST, National Lung Screening Trial; UKLS, UK Lung Cancer Screening.
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similar to those of the whole sample. Nevertheless, they seemed
to consider the burden of exhaling into a device more severe and
giving blood less severe than the sample as a whole [27].
Also, although in the entire sample 60% prefer a GP’s office to a
hospital, this is only 53% for those eligible for the NLST trial.
In the subgroup of respondents who are eligible for the UKLS trial,
48% of respondents prefer the GP’s office. With regard to the
overall values for these risk subgroups, we see that the overall
values for the NLST and NELSON subgroups are similar to those
of the entire sample; that is, BA and BB have similar values and
LDCT has a significantly lower value. For the respondents who
were eligible for the UKLS trial, BA had the highest value
although the CIs of all three programs overlapped.
Discussion

In this study, we have assessed the relative value of three lung
cancer screening policies using a probabilistic MCDA model. BB
had the highest mean overall value but the difference between BB
and BA is so small that it is unlikely to have policy relevance. We
do see that LDCT had the lowest mean overall value and this is
stable given the parameter uncertainty in estimates for clinical
performance. Furthermore, LDCT had the lowest mean overall
Table 7 – Attribute weights per respondent subgroup.

Subgroup based on n (%) Se Sp

Preference subgroup preferences
PSG1 227 (23) 0.21 � 0.12 0.20 � 0.11 0.2
PSG2 174 (18) 0.15 � 0.11 0.10 � 0.06 0.0
PSG3 284 (29) 0.08 � 0.06 0.06 � 0.04 0.1
PSG4 151 (15) 0.09 � 0.06 0.07 � 0.04 0.1
PSG5 150 (15) 0.30 � 0.19 0.26 � 0.17 0.0

Population according to trial
eligibility
NLST 188 (18) 0.15 � 0.14 0.12 � 0.10 0.1
NELSON 183 (18) 0.16 � 0.15 0.13 � 0.12 0.1
UKLS 106 (10) 0.15 � 0.14 0.12 � 0.11 0.1

Note. The preference subgroup names are based on the two most impo
presented per subgroup as well.
Attributes: Se, sensitivity; Sp, specificity; Ra, radiation burden; Du, du
screening; Lo, location of screening; NELSON; NLST, National Lung Scree
sensitivity, 2 is mode-sensitivity, 3 is location-mode, 4 is waiting time
Screening.
value in most subgroups we investigated. It is important to
consider that the present study was based on a public sample,
from which only 10% to 18% is currently eligible for screening
under guidelines used by recent lung cancer screening trials. If
only the preferences of those eligible for screening according to
the criteria used in the NELSON or NLST trial are taken into
account, it can be seen that the overall values for the screening
programs are very similar to those found in the entire sample. For
the respondents who are eligible for screening according to the
UKLS trial criteria, BA has the highest mean value but the CIs
around the mean overall values for all three screening programs
overlap. Although our analyses show that the mean values for BA
and BB are higher than for LDCT, there is still considerable
variation in the value of screening programs for individual
respondents as can be seen in the ranking proportions. It seems
that most respondents focus on nonclinical attributes, whereas
only 15% (namely those in the sensitivity-specificity subgroup)
focus on diagnostic accuracy. Unsurprisingly, LDCT had the
highest mean value for this subgroup. For the other subgroups
and the sample as a whole, LDCT had the lowest mean overall
value. This implies that nonclinical attributes of screening play
an important role in people’s preferences for screening programs,
explaining why LDCT has such a low mean value. Nevertheless,
the high mean values for BA and BB found in our study may be
Attribute weight, mean � SD

Ra Du Wa Mo Lo

5 � 0.17 0.09 � 0.07 0.07 � 0.05 0.12 � 0.10 0.07 � 0.05
9 � 0.06 0.11 � 0.11 0.11 � 0.06 0.31 � 0.20 0.12 � 0.07
0 � 0.06 0.10 � 0.08 0.11 � 0.07 0.18 � 0.12 0.36 � 0.18
4 � 0.09 0.13 � 0.12 0.29 � 0.18 0.14 � 0.08 0.14 � 0.07
7 � 0.05 0.08 � 0.07 0.11 � 0.07 0.09 � 0.05 0.09 � 0.06

2 � 0.10 0.10 � 0.09 0.14 � 0.12 0.18 � 0.16 0.18 � 0.16
1 � 0.10 0.10 � 0.09 0.14 � 0.12 0.17 � 0.16 0.18 � 0.15
0 � 0.08 0.10 � 0.08 0.14 � 0.13 0.20 � 0.18 0.18 � 0.16

rtant attributes in that cluster [27]. The mean weights with SDs are

ration of screening; Wa, waiting time until results; Mo, mode of
ning Trial; PSGx, preference subgroup number x (here 1 is radiation-
until results, and 5 is sensitivity-specificity); UKLS, UK Lung Cancer

http://dx.doi.org/10.1016/j.jval.2018.01.021
http://dx.doi.org/10.1016/j.jval.2018.01.021
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Table 8 – Mode and location ranks per respondent subgroup.

First-ranked mode
(% of respondents in subgroup)

First-ranked location
(% of respondents in subgroup)

LDCT BA BB GP

Preference subgroup
PSG1 16 59 25 57
PSG2 32 34 34 61
PSG3 23 39 38 65
PSG4 28 46 26 56
PSG5 21 50 29 55

Population according to
NLST 25 38 37 53
NELSON 20 43 37 55
UKLS 28 30 42 48

Note. The preference subgroups names are based on the two most important attributes in that cluster [27].
BA, breath analysis; BB, blood biomarkers; GP, general practitioner; LDCT, low-dose computed tomography; NELSON; NLST, National Lung
Screening Trial; PSGx, preference subgroup number x (here 1 is radiation-sensitivity, 2 is mode-sensitivity, 3 is location-mode, 4 is waiting time
until results, and 5 is sensitivity-specificity); UKLS, UK Lung Cancer Screening.
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biased by the low quality level of evidence. No prospective
clinical trials have been done comparing BA or BB with LDCT,
and the diagnostic accuracy estimates we use are for clinical
tumors, not for preclinical tumors which would be more relevant
in a screening setting. In contrast, multiple large prospective
screening trials have been performed for LDCT, which provide
confidence and a solid and positive argument for its use in
screening. It would therefore be better to consider our results in
light of the question of how a screening program based on LDCT
can be further improved and implemented.

Our results can support policymakers in defining strategies
that can help the screening program reach as many people as
possible. Two practical concerns that reduce the value of LDCT
are waiting time until results and radiation burden. An improve-
ment strategy may thus be to try and reduce waiting time until
results are communicated to people, for example, by evaluating
CT images using machine learning algorithms [50]. Next, the fact
that the respondents in our sample seemed quite worried about
the radiation burden posed by LDCT (mean weight of 0.13) is
interesting because the actual incremental risk due to the
radiation induced by LDCT is likely to be small. A strategy for
addressing these concerns may be targeted information cam-
paigns that inform and shift people’s views. If machine learning
algorithms could reduce the waiting time until results to 1 day
and if the information campaign would reduce the concerns
about the radiation burden, our model shows that the overall
value for LDCT would be close or equal to BA and BB. This would
be beneficial because it improves people’s satisfaction with the
screening program, subsequently leading to more people attend-
ing first or follow-up screening rounds. This increased attend-
ance would increase the cost effectiveness of the screening
program as a whole.

The main strength of our study is that we had a large
representative sample from the Dutch population in which we
could study the value of screening programs for subgroups on the
basis of preferences or eligibility for trials. Second, by eliciting
bisection points we improved upon the commonly used but
unrealistic assumption of linear partial value functions in MCDA
for health care. Third, we provided an evidence-based assessment
of the perceived value of lung cancer screening policies by
explicitly including clinical evidence and results from a stated
preference study. As stated earlier, the main limitation of our
study is that the quality of evidence for BA and BB was low. This
precludes us from making strong statements about the value of
these modalities in screening practice. Moreover, because we did
not know the pack-years of the respondents but only the years of
smoking, we had to make assumptions regarding people’s smok-
ing habits on the basis of publicly available data. Finally, we have
taken the perspective of the potential participant who is deciding
which screening policy to attend for the first time. We have not
taken into account the long-term consequences of screening or
perceived values relevant for subsequent screening rounds.
Conclusions

We have evaluated the values of three different screening policies
by combining data from a large public preference sample and
clinical evidence. Although the evidence base for lung cancer
screening based on BA or BBs is still weak, these screening
modalities seem promising because of their practical advantages
such as application in a primary care setting. To improve the value
of LDCT-based screening for the eligible population it is important
to take nonclinical attributes of screening into account.

Source of financial support: No funding was received for the
preparation of this article.
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Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jval.2018.01.021.
The patient preference data set is available from the correspond-
ing author on reasonable request.
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