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Untethered magnetic manipulation has found applications in a rapidly increasing number of fields, ranging from minimally
invasive surgery to assembly of industrial micro electromechanical systems. Despite this relevance, present-day literature on precise
magnetic mapping is sparse, especially for magnetic fields affected by external disturbances. In this work, we address this deficiency by
introducing a model-free mapping technique. Remarkably, the presented spline-based approach is capable of addressing the presence
of inhomogeneous static disturbances and the mapping of non-azimuthally symmetric electromagnets. The work is validated with the
mapping of nine metal-core electromagnets in the presence of inhomogeneous static disturbances. A grid of 5120 measurements is
collected, by a custom-programed robotic arm, and used for mapping. Further, the values predicted by the approach are compared
against 3430 independent field measurements, obtaining an R2 value of 0.9884 and maximum relative errors of 7%. Overall, this
spline-based approach provides a flexible technique for the precise mapping of electromagnetic fields and gradients even when, for
reasons regarding coil-shape or disturbances, the electromagnetic field does not present any axial symmetry.

Index Terms—Electromagnetics, Magnetic actuators, Magnetic levitation, Numerical methods

I. INTRODUCTION

In recent years, electromagnetic manipulation has gained
tremendous relevance for wireless actuation. The flexible and
untethered nature of electromagnetic waves has made them a
recurrent choice for the manipulation of a plethora of devices
ranging from tethered to untethered, from active to passive,
and from nano to macro scale, with applications in medical,
chemical, biological, and industrial environments [1]–[10].

In particular, homogeneous magnetic fields are often used
in these applications, allowing to control devices with up to 8
Degrees Of Freedom (DOFs) [11]. However, such fields are
often generated by air-core electromagnets. Hence, they are
subject to strong power constraints as the required workspace or
field strength increase. Alternatively, researchers have proposed
the use of inhomogeneous fields, as they offer both more DOFs
and represent a more power-efficient solution [12].

Yet inhomogeneous fields come at the cost of a higher
complexity and lower adherence to simple models. Conse-
quently, commonly used mapping techniques – based on simple
interpolations or first order approximations – fail to provide
an accurate estimation of the fields and gradients used for
inhomogeneous magnetic manipulation.

Notwithstanding the importance of precise mapping tech-
niques, present-day literature on the subject is sparse. Re-
markably, Petruska et al. recently presented a model-based
approach for precise electromagnetic mapping [13]. Despite
the considerable significance of such work, their approach can
only be used with azimuthally symmetric electromagnets, has
a lower bound on the number of measurements, and is not
able to address the presence of external inhomogeneous static
disturbances.

In this study, we investigate the development of a model-
free mapping technique. This novel approach is inspired
by tensor product Basis Splines (B-Splines), which due to

their properties, are the cornerstone of several engineering
and computer graphics techniques [14]–[17]. The developed
technique offers a model-free approach capable of precise
mapping of electromagnetic fields and gradients, even when
these are affected by static disturbances or are generated by
non-symmetric electromagnets. Additionally, the algorithm can
be applied to any number of measurements, enforces Maxwell’s
equation, and presents no lower or upper bound on the number
of measurements. Moreover, the effectiveness of the technique
is validated using an electromagnetic testbed (Fig. 1).

II. B-SPLINES

The presented work is based on the theory of B-Splines.
While the basic theory of B-Splines is well known, we choose
to give a brief summary of the used concepts and notations
to ensure thorough understanding; for further details, we refer
the reader to relevant literature [18], [19].

A. Parametric B-Splines

A B-Spline (f ) of non-negative degree d ∈ N is a parametric
curve in an α-dimensional space constructed from n ∈ N

control points (ci)
n
i=1 ∈ R

α and a nondecreasing sequence of
n+ d+ 1 knots (ti)

n+d+1
i=1 ∈ R according to

f(x) =

n∑
i=1

ciNi,d(x), (1)

where x ∈ R is the scalar parametrization variable, and Ni,d

are the basis functions, recursively defined as follows:

Ni,d(x) =
x− ti

ti+d − ti
Ni,d−1(x)+

ti+1+d − x

ti+1+d − ti+1
Ni+1,d−1(x),

(2)
where:

Ni,0(x) =

{
1, if ti ≤ x < ti+1;

0, otherwise.
(3)
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Fig. 1: Top: The setup used for the experimental validation of the
model-free spline-based technique. The nine metal-core electromagnets
of the electromagnetic setup generate an electromagnetic field that
is measured by the calibrated three axis teslameter. In order to
guarantee precise positioning the teslameter probe is attached to
the end effector of a 6-DOF robotic arm R that places it in the
desired position. Bottom-Left: Inside the workspace the custom-coded
tracking system allows to improve the positioning of the probe. Bottom-
Right: Graphical representation of the 8×8×8 (red) and 7×7×7 (blue)
grids used for training and validation, respectively. A total of 8550
measurements were collected in the 14× 14× 14 mm3 workspace.
The reference frame is oriented as shown, while its origin is in the
center of the workspace.

It is worth noting that, due to the formulation of B-Splines,
if x ∈ [ti, ti+1) then f(x) will belong to the convex hull
of (cj)

i
j=i−d. Further, if ti < ti+1 the B-Spline is Cd−1

continuous [18], [19]. Finally, For notational simplicity, we
will denote Ni,d as Ni for B-splines of known (or set) degree.

B. Multi-dimensional Tensor Product B-Splines

A B-Spline curve may have multi-dimensional co-domains,
however its input is always a single scalar value. This can be
an issue when a B-Spline function has to operate in a multi-
variable environment. Tensor products can be used to obtain
B-Splines with multi-dimensional domains.

For instance, assume two positive integers (d1, d2) and
two knot vectors (σ1, and σ2) yielding basis function spaces
(Sk, k = 1, 2)

S1 = Sd1,σ1
= span{N1, . . . , Nn1

},
S2 = Sd2,σ2

= span{M1, . . . ,Mn2
}. (4)

The tensor product (S1
⊗

S2) of these spaces can be expressed
as [19]

f(x, y) =

n1∑
i=1

n2∑
j=1

ci,jNi(x)Mj(y), (5)

where (ci,j)
n1,n2

i,j=1 is the set of control points. Using such
formulation, (5) allows to have a B-Spline behavior with a multi-
dimensional domain. Clearly, this procedure can be iterated to
obtain multi-variable B-Splines of any degree or dimension.

III. TENSOR PRODUCT B-SPLINES FOR
MAGNETIC 3D MAPPING

Specifically, in this work we will be using tricubic B-Splines
(three-variable tensor product B-Splines with d = 3) to calibrate
the electromagnetic field. The general formulation of such
functions is as follows:

B(x, y, z) =

n∑
i=1

m∑
j=1

p∑
w=1

ci,j,wNi(x)Mj(y)Pw(z), (6)

where B(x, y, z) ∈ R
3 is the magnetic field, x, y, z ∈ R are the

parametrization variables, which we choose to be the Cartesian
coordinates (Fig. 1). Further, (ci,j,w)

n,m,p
i,j,w=1 ∈ R

3 is the set
of control points, and Ni(x),Mj(y) and Pw(z) are the basis
functions of the B-Splines.

Furthermore, we assume – as is often the case in the
literature [13], [20], [21] – to have field measurements from a
grid of s×r×u points. Consequently, it is possible to rearrange
such measurements to obtain a matrix (D� ∈ R

s∗r∗u×3) such
that

D� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D�1,1,1
x D�1,1,1

y D�1,1,1
z

...
...

...
D�s,1,1

x D�s,1,1
y D�s,1,1

z

D�1,2,1
x D�1,2,1

y D�1,2,1
z

...
...

...
D�s,r,1

x D�s,r,1
y D�s,r,1

z

D�1,1,2
x D�1,1,2

y D�1,1,2
z

...
...

...
D�s,r,u

x D�s,r,u
y D�s,r,u

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where D�i,j,k
x,y,z is the x, y or z component of the field for the

measurement at (i, j, k). Moreover, we define D as the matrix
containing the value of the B-Spline at the coordinates of the
measured points. If D is arranged as D�, it follows from (6)
that

D = ZC, (8)

with

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nx1
1 My1

1 P z1
1 . . . Nx1

n My1
m P z1

p
...

. . .
...

Nxs
1 My1

1 P z1
1

. . . Nxs
n My1

m P z1
p

Nx1
1 My2

1 P z1
1

. . . Nx1
n My2

m P z1
p

...
. . .

...
Nxs

1 Myr

1 P zu
1 . . . Nxs

n Myr
m P zu

p

,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1,1x c1,1,1y c1,1,1z
...

...
...

cn,1,1x cn,1,1y cn,1,1z

c1,2,1x c1,2,1y c1,2,1z
...

...
...

cn,m,p
x cn,m,p

y cn,m,p
z

,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where (xi, yj , zi) are the parametrized coordinates of the
measured point, C ∈ R

n∗m∗p×3 is the matrix of control points
associated to the n∗m∗p basis functions of the tensor product
B-Spline, and Nα

i = Ni(α). Therefore, Z ∈ R
s∗r∗u×n∗m∗p

maps the control points to the values of the function in the
selected points.

Further, it is necessary to enforce Maxwell’s equation for a
quasi-static field measured outside of the electromagnet with
no electrical disturbance [13]

∇ ·B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 (11)

∇×B =

⎡⎢⎣ ∂Bz

∂z − ∂By

∂z
∂Bx

∂z − ∂Bz

∂x
∂By

∂x − ∂Bx

∂y

⎤⎥⎦ = 0 (12)

where B = B(x, y, z) for brevity and ∇ is the gradient
operator.

For this purpose, it is necessary to obtain the partial
derivatives of the tricubic spline using a formal derivation
of (6)

∂B(x, y, z)

∂x
=

n∑
i=1

m∑
j=1

p∑
w=1

ci,j,wṄi(x)Mj(y)Pw(z),

∂B(x, y, z)

∂y
=

n∑
i=1

m∑
j=1

p∑
w=1

ci,j,wNi(x)Ṁj(y)Pw(z),

∂B(x, y, z)

∂z
=

n∑
i=1

m∑
j=1

p∑
w=1

ci,j,wNi(x)Mj(y)Ṗw(z),

(13)

where Ṅi(x) =
∂Ni(x)

∂x , Ṁi(y) =
∂Mi(y)

∂y , and Ṗi(z) =
∂Pi(z)

∂z .
Finally, (13) can be substituted in (11) and (12) to obtain the
analytical constraints of the tensor B-spline.

IV. MULTI-COIL MAPPING WITH STATIC DISTURBANCE

The procedure presented in the previous section can be
iterated to obtain a magnetic map for multi-coil systems affected
by homogeneous or inhomogeneous disturbances. In point of
fact, if the electromagnets have not reached magnetic saturation,
the overall field in such systems can be computed as [13], [22]

B(p) =

ne∑
i=1

Bi(p) +Bd(p) =

ne∑
i=1

B̃i(p)Ii +Bd(p), (14)

where ne is the number of electromagnets, p ∈ R
3 is the

position in which the field is evaluated, Bi ∈ R
3 is the field

generated by the i-th electromagnet. Moreover, Bd ∈ R
3 is

the field sourced from the disturbance, B̃i ∈ R
3 is the vector

mapping currents to field of the i-th electromagnet, and Ii is
the current fed to such electromagnet.
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Fig. 2: Top (a): Histogram of relative error residuals for the mapping
procedure. The procedure validated the technique with a coefficient
of determination of 0.9884, maximum relative error of -7%, and
a standard deviation of residuals of 2.2%. Bottom (b) Graphical
representation of one of the used sets of cubic basis functions with a
open uniform knot vector. The knots of the depicted basis functions
were positioned on the grid of measured points (Fig. 1).

In order to calibrate the overall field we have to compute
the tensor-product B-splines of the ne B̃i and of Bd. First,
we measure the field when all the magnetic sources are fed
no current. It is clear from (14) that this will correspond to a
measurement of Bd. Further, we iteratively measure the field
as only one electromagnet is powered on. In such condition,
the current-to-field map can be computed as

B̃i(p) =
Bm(p)−Bd(p)

Ii
, Ij = 0 ∀j �= i, (15)

where Bm(p) is the field measured at point p ∈ R
3. Further,

it is worth noting that the measurements do not have to be
collected in the same points, nor in the same number. In point
of fact, after the first measurement the tensor-product B-spline
map of Bd can be used in (15).

V. MAPPING AND EXPERIMENTAL RESULTS

The first step in the construction of a tensor product B-
Spline for magnetic mapping consists in the choice of knots
and degrees. However, no combination of these variables is a
priori superior for magnetic mapping. Given the vast literature
regarding the selection of B-spline knots and degrees, we will
limit the discussion to a few considerations [23]–[26]:
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1) Knots selection
Every point in the B-Spline will belong to the convex-hull of

the control points associated with the d+ 1 neighboring knots
(See II). Consequently, selecting a number of knots that is
significantly smaller than the number of measured points leads
to a poor quality fit. Conversely, using significantly more knots
than measured points may result in a map that is overfitted to
the training data.

2) Degree of the B-Spline
An increase in the B-Spline degree generally offers a closer

fit to the training data. However, high degree curves often
result in overfitting and/or increases in the value of high-order
derivatives, resulting in issues such as ringing. On the other
hand, a B-Spline degree of at least two is necessary to ensure
continuous gradients. We found third and fifth order B-Splines
to yield the lowest errors. Nonetheless, the fifth order B-spline
did present higher elongation and ringing than third order B-
splines, with an average increase of 83% in the Frobenius norm
of the Hessian matrices [27].

Fitting to data

Given the knots and degrees of the B-Splines, Z† – the
Moore–Penrose pseudo-inverse of Z – can be used to obtain
a least square fit of the tensor product B-Spline to the
measurements using C = Z†D� while enforcing (11) and (12).

However, as the number of knots increases, solving (11)
and (12) analytically requires significant computational power.
Alternatively, we use the following convex linearly-constrained
quadratic approximation:

Input: D� ∈ R
r∗s∗u×3,Z ∈ R

r∗s∗u×n∗m∗p, xc ∈
R

e, yc ∈ R
f , zc ∈ R

g .
Result: C ∈ R

n∗m∗p×3

Objective function:

minC ||D� − ZC||
subject to:
∇ ·B(xc

i , y
c
j , z

c
k) = 0

∇×B(xc
i , y

c
j , z

c
k) = 0

end

with i = 1, . . ., e + 1; j = 1, . . ., f + 1; z = 1, . . ., g. In this
approximation, Maxwell’s equations are only enforced on the
grid of e× f × g points. Nonetheless, as reported in Table I
these can selected to have arbitrary small curl and divergence
values in any point of the mapping function.

The presented technique is validated with the mapping of an
electromagnetic testbed (Fig. 1) equipped with nine metal-core
electromagnets affected by a static disturbance (Table I). A 3D
grid of 8×8×8 points is used as training set, while a grid of
7×7×7 points is used for validation (Fig. 2). For improved
accuracy, the data was collected using a calibrated three-axis
teslameter (SENIS, Zurich, Switzerland) positioned by a 6-DOF
robotic arm (UR5, Universal Robots, Odense, Denmark).

Special Cases

It should be noted that the current validation is performed
on a cube of uniformly spaced measurements. Notwithstanding,

TABLE I: Summary of the experimental results. A non-uniform static
disturbance with average value 1.1 mT is introduced positioning a
30×10Ø mm cylindrical N45 permanent magnet at a distance of 10
cm, along the gravitational axis, from the center of the workspace.
Open uniform knots vectors are used. Further, the boundary conditions
are respected by defining a d + 1 multiplicity for the first and last
knots. The quadratic programs are solved using fmincon (MatLab,
MathWorks, Natick, United States). Abbreviations are as follows:
Number (#), Coefficient of Determination (R2), Adjusted (Adj.),
Maximum (Max.), Divergence (Div.).

d # of Knots R2 Adj.

R2
Max.

Error

Max.

Curl

[μT/m]

Max.

Div.

[μT/m]
3 14×14×14 0.9884 0.9883 7.00% 15.24 21.74

3 19×19×19 0.9587 0.9585 13.11% 8.11 5.54
5 14×14×14 0.9712 0.9710 8.85% 1.88 0.7

this technique can also be applied to irregularly shaped
workspaces using non-uniformly spaced measurements. For
this purposes the following should be observed:

1) Non-uniform measurements
The technique as presented is already suitable for magnetic

mapping using non-uniform measurements. However, the use
of a non-uniform knots distribution with higher knot-density
in volumes having higher density of measurement could yield
an improved fit in such scenario.

2) Irregularly shaped workspaces
In such a scenario a lattice big enough to inscribe the

irregular workspace has to be selected. It will be sufficient to
then assign a multiplicity of d + 1 to the knots on the edge
of the irregular workspace. Any value can then be assigned to
the control points outside of the area of interest.

VI. CONCLUSIONS

We present a novel technique for precise model-free mapping
of electromagnetic systems. Such spline-based technique is able
to accurately map the generated field. Moreover, this technique
is capable of addressing the presence of inhomogeneous static
electromagnetic disturbances or asymmetric electromagnets,
and has no lower or upper bound on the number of re-
quired measurements. Furthermore, a time-effective numerical
approximation of the mapping procedure is also presented.
The theoretical work is validated with the mapping of an
electromagnetic system with nine metal-core electromagnets in
the presence of a static electromagnetic disturbance. Overall,
the presented work provides a flexible technique for the precise
mapping of electromagnetic fields and gradients even in the
presence of axial asymmetry or disturbances.

In future work we will analyze the performance this
technique when mapping other electromagnetic setups. Further,
a quantitative comparison of time efficiency of techniques
for the mapping of electromagnetic fields will be performed.
Finally, we will investigate techniques aimed at increasing the
time effectiveness of the presented procedure.
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